
228

Gradual Verification of Recursive Heap Data Structures

JENNA WISE, Carnegie Mellon University, USA

JOHANNES BADER, Jane Street, USA

CAMERON WONG, Jane Street, USA

JONATHAN ALDRICH, Carnegie Mellon University, USA

ÉRIC TANTER, Computer Science Department (DCC), University of Chile, Chile

JOSHUA SUNSHINE, Carnegie Mellon University, USA

Current static verification techniques do not provide good support for incrementality, making it difficult

for developers to focus on specifying and verifying the properties and components that are most important.

Dynamic verification approaches support incrementality, but cannot provide static guarantees. To bridge this

gap, prior work proposed gradual verification, which supports incrementality by allowing every assertion to

be complete, partial, or omitted, and provides sound verification that smoothly scales from dynamic to static

checking. The prior approach to gradual verification, however, was limited to programs without recursive

data structures. This paper extends gradual verification to programs that manipulate recursive, mutable data

structures on the heap. We address several technical challenges, such as semantically connecting iso- and

equi-recursive interpretations of abstract predicates, and supporting gradual verification of heap ownership.

This work thus lays the foundation for future tools that work on realistic programs and support verification

within an engineering process in which cost-benefit trade-offs can be made.

CCS Concepts: • Theory of computation→ Logic and verification; Separation logic.

Additional Key Words and Phrases: gradual verification, separation logic, implicit dynamic frames, recursive

predicates

ACM Reference Format:
Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric Tanter, and Joshua Sunshine. 2020.

Gradual Verification of Recursive Heap Data Structures. Proc. ACM Program. Lang. 4, OOPSLA, Article 228
(November 2020), 39 pages. https://doi.org/10.1145/3428296

1 INTRODUCTION
Hoare proposed a logic for static verification where developers specify method pre- and postcondi-

tions [Hoare 1969]. Over time, this work has been extended to support more interesting programs.
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Most notably, Reynolds [2002] introduced separation logic to support modular verification of pro-

grams that manipulate heap data structures. As an extension to separation logic, Parkinson and

Bierman [2005] proposed recursive abstract predicates, enabling the verification of recursive heap

data structures such as graphs, trees, or linked-lists. Shortly after, implicit dynamic frames (IDF)
was proposed by Smans et al. [2009] as an alternative to separation logic that allows developers to

specify heap ownership separately from heap contents.

Unfortunately, these techniques require developers to provide enough specifications to form

a complete inductive proof. Consequently, even in very simple programs, a specification that is

inductively verifiable may be twice the length of merely specifying the properties the programmer

cares about (§3.2). To address this issue, Bader et al. [2018] proposed gradual verification, which
builds on prior research on gradual typing [Siek and Taha 2007, 2006; Siek et al. 2015], in particular

the Abstracting Gradual Typing methodology [Garcia et al. 2016]. Bader et al. [2018] extend a

simple Hoare logic static verifier with partial, imprecise specifications. Statically, the gradual verifier
can optimistically assume any (non-contradictory) strengthening of an imprecise specification.

To ensure soundness, dynamic checks are added when partial specifications are optimistically

strengthened. Bader et al.’s approach smoothly supports the spectrum between static and dynamic

verification, as formalized similarly to the refined criteria for gradual typing [Siek et al. 2015].

While promising, the prior work on gradual verification does not support the specification of

recursive heap data structures, and thus cannot verify realistic programs. In this paper, we address

this limitation by presenting the design, formalization, and meta-theory of a sound gradual verifier

for programs that manipulate recursive heap data structures. Our approach follows Bader et al.’s
methodology, but starts from a static verifier with IDF and recursive abstract predicates. This more

sophisticated setting requires us to address the following technical challenges:

• Imprecise specifications may be strengthened not just with boolean assertions about arith-

metic expressions, but also with both abstract predicates and accessibility predicates, which
denote ownership of heap locations. Our strengthening definition also includes self-framing,
a well-formedness condition required by IDF [Smans et al. 2009].

• Both accessibility predicates and abstract predicates must potentially be verified dynamically.

Our system verifies accessibility predicates at runtime by tracking and updating a set of owned

heap locations.We verify recursive abstract predicates by executing them as recursive boolean

functions. This runtime semantics corresponds to an equi-recursive interpretation of abstract

predicates, contrasting with the iso-recursive interpretation used in static verifiers [Summers

and Drossopoulou 2013]; our theory ensures that these interpretations are consistent.

We show that the resulting gradual verifier is sound, that it is a conservative extension of the

static verifier—meaning that both coincide on programs with fully-precise specifications—and

that it adheres to the gradual guarantee. This guarantee, originally formulated for gradual type

systems [Siek et al. 2015], captures the intuition that relaxing specifications should not introduce

new (static or dynamic) verification errors.

The rest of this paper is outlined as follows. The annotation burden induced by statically verifying

linked list insertion is discussed in §2. Section 3 illustrates how this burden can be reduced or

eliminated with gradual verification by using examples, and §4 discusses challenges and solutions

to supporting such examples. In §5 we formally present a statically verified language supporting

a propositional specification logic extended with IDF and recursive heap data structures, before

gradualizing the static semantics of this language in §6 and dynamic semantics in §7. §8 discusses

the properties of the resulting gradual verifier. Finally, §9 and §10 further relate this paper to

prior work and discuss future work, respectively. The appendix of this paper contains full gradual

verification examples and supplementary definitions (e.g. complete semantics of both the static
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1 class Node { int val; Node next; }

2 class List {

3 Node head;

4 void insertLast(int val)

5 {

6 if (this.head == null) {

7 this.head = new Node(val ,null);

8 } else {

9 insertLastHelper(val);

10 }

11 }

12 void insertLastHelper(int val)

13 {

14 Node y = this.head;

15 while (y.next != null)

16 { y = y.next; }

17 y.next = new Node(val ,null);

18 }

19 }

Fig. 1. Linked list with insertion

and gradual verifier introduced in this work). Proofs of all propositions and lemmas are given in

Appendix §A.4.

2 THE BURDEN OF STATIC VERIFICATION
With static verification tools, ensuring that a component satisfies a given property requires more

than specifying the said property: many additional specifications are needed for tools to be able to

discharge proof obligations statically. In this section, we show that this additional specification

burden can be significant, even for a very simple example.

The program in Figure 1 implements a linked list and two methods for inserting an element at

the end of a list. Notice that insertLastHelper iteratively traverses a list for insertion, and that both

methods diverge if given cyclic lists. Therefore, it is useful to ensure these methods only receive

(and produce) acyclic lists. Let us look at how to achieve this with a static verifier.

One way to specify that a list is acyclic is to use the following abstract predicates [Parkinson and

Bierman 2005], which are essentially pure boolean functions:

predicate acyclic(List l) = acc(l.head) ∗ listSeg(l.head,null) and

predicate listSeg(Node from, Node to) = if (from == to) then true

else acc(from.val) ∗ acc(from.next) ∗ listSeg(from.next,to)

Notice that listSeg is a recursive abstract predicate. Additionally, acyclic and listSeg’s bodies rely

on accessibility predicates of the form acc(x.f) and on the separating conjunction ∗, from implicit

dynamic frames (IDF) [Smans et al. 2009]. A program can only access a particular heap location if

the corresponding accessibility predicate is provided. For example, acc(l.head) gives permission

to access the heap location o.head if l is bound to the object o. The separating conjunction forces

accessibility predicates to refer to different heap locations. listSeg recursively generates accessi-

bility predicates for every node in a list segment. The accessibility predicates are joined with the

separating conjunction. Therefore, the recursive predicate instance acyclic(l) states that all the
heap locations in list l are distinct, i.e. l is acyclic.
A developer can expect to simply specify that both insertLast and insertLastHelper have

acyclic(this) as pre- and postconditions. However, they may be disappointed by the many ad-

ditional specifications required to statically discharge the proof obligations these specifications

introduce: loop invariants, fold and unfold statements, and lemmas, as shown in Figure 2, and

inspired by Smans et al. [2009]. Although this example is very simple, there is far more specification

code (44 lines) than program code (19 lines). Furthermore, this 44:19 ratio only highlights part of

the problem: many specifications are far more complex than the program itself, as explained next.

The specification unfold acyclic(this) at line 18 expands the abstract predicate acyclic(this)

into its body. This unfolding exposes the accessibility predicate acc(this.head), which gives permis-

sion to access the heap location of this.head. Dually, fold acyclic(this) repacks acyclic(this)’s

body. Figure 2 explicitly uses unfold and fold statements to control the availability of predicate
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1 class Node { int val; Node next; }

2

3 class List {

4 Node head;

5

6 predicate acyclic(List l) =

7 acc(l.head) ∗ listSeg(l.head,null)

8

9 predicate listSeg(Node from, Node to) =

10 if (from == to) then true else

11 acc(from.val) ∗ acc(from.next) ∗

12 listSeg(from.next,to)

13

14 void insertLast(int val)

15 requires acyclic(this)

16 ensures acyclic(this)

17 {

18 unfold acyclic(this);

19 if (this.head == null) {

20 this.head = new Node(val ,null);

21 fold listSeg(this.head.next,null);

22 fold listSeg(this.head,null);

23 fold acyclic(this);

24 } else {

25 fold acyclic(this);

26 insertLastHelper(val);

27 }

28 }

29

30 void insertLastHelper(int val)

31 requires acyclic(this) ∗

32 unfolding acyclic(this) in

33 this.head != null

34 ensures acyclic(this)

35 {

36 unfold acyclic(this);

37 Node y = this.head;

38 fold listSeg(this.head,y);

39 unfold listSeg(y,null);

40 while (y.next != null)

41 invariant y != null ∗ acc(this.head) ∗

42 listSeg(this.head,y) ∗

43 acc(y.val) ∗ acc(y.next) ∗

44 listSeg(y.next,null);

45 {

46 Node x = y;

47 y = y.next;

48 unfold listSeg(y,null);

49 fold listSeg(x.next,y);

50 fold listSeg(x,y);

51 appendLemma(this.head, x, y);

52 }

53

54 y.next = new Node(val ,null);

55 fold listSeg(y.next.next,null);

56 fold listSeg(y.next,null);

57 fold listSeg(y,null);

58 appendLemma(this.head, y, null);

59 fold acyclic(this);

60 }

61

62 void appendLemma(Node a, Node b, Node c)

63 requires listSeg(a,b) ∗ listSeg(b,c)

64 ensures listSeg(a,c)

65 {

66 if (a == b) {

67 } else {

68 unfold listSeg(a,b);

69 appendLemma(a.next, b, c);

70 fold listSeg(a,c);

71 }

72 }

73 }

� Static specification � Program code

Fig. 2. Specifying and proving acyclicity for linked list insertion

information. Each predicate instance is an opaque permission to access its body, i.e. predicates are
iso-recursive [Summers and Drossopoulou 2013]. Some dynamic verifiers reason about predicate

instances equi-recursively, i.e. treat a predicate instance equal to its complete unfolding. However,

completely unfolding recursive predicates often requires statically unknown information, such as

the length of the list in our example. Therefore, static verifiers reason about predicate instances

iso-recursively.

The while loop invariant at lines 41–44 segments a list into three parts using listSeg: from the

head to the current node (listSeg(this.head,y)), the current node (acc(y.val) ∗ acc(y.next)), and

the rest of the list (listSeg(y.next,null)). The loop body accesses y.next, so the loop invariant
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must expose acc(y.next). After a new node holding the inserted element is added to the list at

line 54, we must show that the acyclic predicate holds for the new list. The loop invariant also

supports this goal. To build up the acyclic predicate we must first construct a listSeg predicate

from the beginning of the list to the new end of the list. We do this by starting with an empty list

segment (line 55) and incrementally extending it with the newly added element (line 56) and the

previous end of the list (line 57). This gives us a listSeg predicate from the current node to the

new end of the list. We then append the listSeg predicate from the head of the list to the current

node (loop invariant) to the listSeg predicate from the current node to the new end of the list (line

57). To achieve this, we need to prove that listSeg is transitive. Unfortunately, static tools usually

cannot automatically discharge such inductive proofs, so we encode the proof in the appendLemma

method at 58. Note that such additional proof efforts are part of the barriers to the adoption of

static verification, which would be important to get rid of. Finally, we combine the accessibility

predicate to the head of the list (loop invariant) with our listSeg predicate to reconstruct the

acyclic predicate (lines 7 and 59).

As the above descriptionmakes clear, static verification tools can impose a significant specification

burden on developers even for simple programs. Constructing loop invariants and (un)folding

predicates can be considerably more complex than program code. Simply ensuring that insertLast

and insertLastHelper receive and produce acyclic lists requires far more specification code than

program code. Of course, verifying more properties, for example that some insertion preserves

ordering, would require substantially more specification and verification effort.

3 GRADUAL VERIFICATION OF RECURSIVE HEAP DATA STRUCTURES IN ACTION
We now demonstrate how developers can use gradual verification to choose which obligations they

want to meet statically and leave the rest to be dynamically checked. They can then incrementally

address each proof obligation statically until they reach fully static verification, or stop at any point

along the way. As a result, the complexity of verification can be managed in small increments. In

the rest of this section, we show different partial specifications of list insertion (§3.1-§3.2), as well

as list search (§3.3). These examples illustrate the smooth scaling from dynamic to static checking

enabled by gradual verification.

3.1 Gradually Verifying List Insertion: Take 1
Figure 3 presents a possible gradual specification of acyclicity of list insertion. In addition to fully

precise formulas (in gray), the specification includes imprecise formulas [Lehmann and Tanter 2017]

(in yellow), which contain the unknown formula ? in addition to a static part (true if omitted).

Here, the developer chooses to completely ignore accessibility predicates, which would be

required for full static verification (§2), and only focuses on a partial specification. First, the acyclic

predicate is kept unknown by using ? as its body (line 4). Second, only the simple part of the loop

invariant—i.e. the current node of the list is not null—is statically specified, thanks to the imprecise

formula ? ∗ y != null (line 27). Intuitively, this formula means that only y != null is enforced and

guaranteed statically, but that other properties can be optimistically assumed. Note that the partial

specification explicitly deals with (un)folding the acyclic predicate; unfolding acyclic implies

bringing its imprecision (i.e. optimism) in the verification, while folding acyclic simply satisfies

the declared pre- and postconditions. In general, the only interesting properties that can be verified

with this gradual specification are whether y != null is preserved by the loop and whether heap

accesses are justified with accessibility predicates. We discuss this in more detail.
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1 class Node { int val; Node next; }

2 class List {

3 Node head;

4 predicate acyclic(List l) = ?

5 void insertLast(int val)

6 requires acyclic(this)

7 ensures acyclic(this)

8 {

9 unfold acyclic(this);

10 if (this.head == null) {

11 this.head = new Node(val ,null);

12 fold acyclic(this);

13 } else {

14 fold acyclic(this);

15 insertLastHelper(val);

16 }

17 }

18 void insertLastHelper(int val)

19 requires acyclic(this) ∗

20 unfolding acyclic(this) in

21 this.head != null

22 ensures acyclic(this)

23 {

24 unfold acyclic(this);

25 Node y = this.head;

26 while (y.next != null)

27 invariant ? ∗ y != null

28 { y = y.next; }

29 y.next = new Node(val ,null);

30 fold acyclic(this);

31 }

32 }

� Imprecise specification � Precise specification

Fig. 3. A possible gradual specification of insertLast and insertLastHelper from Figure 1

1 void insertLastHelper(int val)

2 requires acyclic(this) ∗

3 unfolding acyclic(this) in

4 this.head != null

5 ensures acyclic(this)

6 {

7 acyclic(this) ∗ unfolding acyclic(this) in

8 this.head != null ⇒̃

9 ? ∗ acyclic(this)

10 ? ∗ acyclic(this)

11 unfold acyclic(this);

12 ? ⇒̃ ? ∗ acc(this.head) ∗ this.head != null ∗

13 acc(this.head.next)

14 ? ∗ acc(this.head) ∗ this.head != null ∗

15 acc(this.head.next)

16 Node y = this.head;

17 ? ∗ y != null ∗ acc(y.next)

18 while (y.next != null)

19 invariant ? ∗ y != null

20 {

21 ? ∗ y != null ∗ y.next != null ∗ acc(y.next)

22 ⇒̃ ? ∗ acc(y.next.next)

23 ∗ acc(y.next) ∗ y.next != null

24 ? ∗ acc(y.next.next) ∗ acc(y.next) ∗

25 y.next != null

26 y = y.next;

27 ? ∗ y != null ∗ acc(y.next)

28 }

29 ? ∗ y != null ∗ y.next == null ⇒̃

30 ? ∗ acc(y.next)

31 ? ∗ acc(y.next)

32 y.next = new Node(val ,null);

33 ?

34 fold acyclic(this);

35 acyclic(this)

36 }

� Intermediate condition produced by �WLP � Dynamically checked right side of ⇒̃

� Left side of ⇒̃ � Statically checked right side of ⇒̃

Fig. 4. The gradual verification of insertLastHelper from Figure 3

Figure 4 demonstrates how to gradually verify insertLastHelper from Figure 3. The formulas

shown in method bodies (highlighted in purple) are the result of applying gradual weakest liberal
precondition rules �WLP (defined in §6.5) to each program statement.�WLP proceeds from the end of a method body to the beginning, starting with the postcondition

on the last line. Then, for each program statement �WLP calculates a new intermediate condition that
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is minimally sufficient to verify the new program statement and the prior intermediate condition.

Since ? is the body of the acyclic abstract predicate, �WLP calculates that ? is minimally sufficient

for lines 34 and 35. Assigning to y.next on line 32 requires an accessibility predicate, so �WLP joins

acc(y.next) to ? on line 31.

When �WLP cannot soundly propagate a condition backwards, a consistent implication ( ⇒̃ )

check is performed. These implications are necessary under five conditions: at the beginning

of a method, at the beginning of a loop body, at the end of a loop with an imprecise invariant,

after unfolding an abstract predicate with an imprecise body, and after a method call with an

imprecise postcondition. At line 29 the imprecise loop invariant is joined with the negation of the

loop guard. The right-hand side of ⇒̃ is always the next intermediate condition. Since line 29

is not sufficient to statically entail the intermediate condition on 30, but may optimistically do

so considering imprecision, it is optimistically discharged and therefore highlighted in red. An

optimistically-discharged obligation gives rise to a dynamic check when running the program. Note

that if the left-hand side of a consistent implication cannot possibly imply the right side (e.g. as in ?

∗ x == null ⇒̃ x != null), then the program is statically rejected.
The last condition in a loop body is always the loop invariant joined with accessibility predicates

needed to evaluate the loop guard. Line 27 contains the loop invariant and an accessibility predicate

for y.next. When encountering a variable assignment, like the one on line 26, �WLP substitutes the

right-hand side of the assignment (y.next) for the left-hand side (y) to generate the intermediate

condition above the assignment (lines 24 and 25). In addition, accessibility predicates are added for

the right-hand side of the assignment (acc(y.next)).

As mentioned earlier, a consistent implication is checked at the beginning of a loop body: the left-

hand side (line 21) is the loop invariant, the loop guard, and any accessibility predicates necessary

for the guard. The right-hand side, as usual, is the next intermediate condition. Observe that here,

some of the conditions to prove are definitely implied—via standard implication—by the static part

of the left-hand side: they can therefore be discharged statically, which is highlighted in green

(line 23). The others are optimistically discharged, as before.

The condition on line 17 includes the loop invariant and an accessibility predicate to the loop

guard. The condition on lines 14 and 15 follows the same pattern as the assignment discussed

earlier. The unfold statement generates the consistent implication on lines 12 and 13. The left side

is the body of the unfolded abstract predicate, in this case ?. Since ? provides no static information,

the entire right-hand side is optimistically discharged.

The condition on line 10 includes the abstract predicate that is unfolded on line 11. This is

joined to ? because the body of acyclic is an imprecise formula and �WLP maintains any residual

conditions beyond those needed for the unfolding. Finally, the left-hand side of the ⇒̃ at the

beginning of the method is the method precondition (lines 7 and 8). Since acyclic(this) is definitely

implied, the right-hand side is fully discharged statically.

The complete gradual verification of Figure 3, including the insertLast method, is in §A.1.

3.2 Gradually Verifying List Insertion: Take 2
In Figure 5, we show another, more precise gradual specification of acyclicity for insertLast and

insertLastHelper. The specifications highlighted in gray contain precise formulas, and the ones

highlighted in yellow contain imprecise formulas. The darker gray specifications are additional

specifications introduced by the developer as an increment over the ones in Figure 3. Here, the

developer chooses to fully specify acyclic’s body on lines 4 and 5 as acc(l.head) ∗ listSeg(l.head,

null). With these predicates, the developer fully specifies insertLast for static verification and

adds more complete specifications to insertLastHelper. The developer uses listSeg to write a loop
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1 class Node { int val; Node next; }

2 class List {

3 Node head;

4 predicate acyclic(List l) =

5 acc(l.head) ∗ listSeg(l.head, null)

6

7 predicate listSeg(Node from, Node to) =

8 if (from == to) then true else

9 acc(from.val) * acc(from.next)

10 * listSeg(from.next, to)

11

12 void insertLast(int val)

13 requires acyclic(this)

14 ensures acyclic(this)

15 {

16 unfold acyclic(this);

17 if (this.head == null) {

18 this.head = new Node(val ,null);

19 fold listSeg(this.head.next, null);

20 fold listSeg(this.head, null);

21 fold acyclic(this);

22 } else {

23 fold acyclic(this);

24 insertLastHelper(val);

25 }

26 }

27 void insertLastHelper(int val)

28 requires acyclic(this) ∗

29 unfolding acyclic(this) in

30 this.head != null

31 ensures ?

32 {

33 unfold acyclic(this);

34 Node y = this.head;

35 unfold listSeg(y, null);

36 while (y.next != null)

37 invariant y != null ∗ acc(y.val) ∗

38 acc(y.next) ∗ listSeg(y.next, null)

39 {

40 y = y.next;

41 unfold listSeg(y, null);

42 }

43 y.next = new Node(val ,null);

44 }

45 }

� Imprecise specification � New precise specification (increment over Fig. 3)

� Precise specification (from Fig. 3)

Fig. 5. Another possible gradual specification of insertLast and insertLastHelper from Figure 1

invariant, which exposes acc(y.next) for statically verifying accesses to y.next in the loop body and

on line 43. However, the developer does not want to build up specifications to statically prove that

the new list after insertion is acyclic. They therefore leave the postcondition of insertLastHelper

unknown. Observe that, in contrast to Figure 2, the programmer does not need to build up a listSeg

predicate from the previous end of the list to the new one, state and prove a separate lemma

about list concatenation, and state a more complex loop invariant. Instead, the gradual verifier

ensures at runtime that the new list after insertion is acyclic. This is a major benefit of gradual

verification, which can dispense the verification effort from working around certain limitations of

static reasoning tools. The detailed verification of Figure 5 with �WLP is in §A.1.

3.3 Gradually Verifying List Search
Let us now consider another helpful method for linked lists, findMax, which finds and returns the

maximal value of the list. The program in Figure 6 contains an iterative implementation of findMax.

We discuss how a developer uses gradual verification to ensure that findMax indeed returns the

maximal value of a list; they incrementally build up specifications as illustrated in Figure 7. In doing

so, we show how developers can incrementally address proof obligations of interest and explore

the cost-benefit tradeoffs between static reasoning effort and runtime overhead.
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1 class Node { int val; Node next; }

2

3 class List {

4 Node head;

5

6 int findMax ()

7 {

8 int max = this.head.val;

9 Node curr = this.head.next;

10 while (curr != null) {

11 if (curr.val > max) {

12 max = curr.val;

13 curr = curr.next;

14 } else {

15 curr = curr.next;

16 }

17 }

18 result = max;

19 }

20 }

Fig. 6. Linked list that iteratively finds and returns its maximal value

The developer begins the first increment (highlighted red, lines 6–20, 23–25, 34) by specifying

two properties: whether a value is an upper bound of a list (upperBound, lines 6, 7; upperBoundSeg,

lines 9–12) and whether a value is contained in a list (contains, lines 14, 15; containsSeg, lines

17–20). The upperBound and contains predicates are used in findMax’s postcondition to ensure that

it returns the maximal element (lines 24, 25). The predicates are imprecise to enable heap accesses to

l.head, from.val, and from.next without statically-acquired accessibility predicates. The developer

specifies that findMax not execute on empty lists in its precondition (this.head != null). In this

first increment, the precondition (line 23) is otherwise imprecise and the loop invariant (line 34) is

completely imprecise. As a result, the gradual verifier optimistically assumes—and dynamically

checks—accessibility predicates to heap accesses in findMax. The invariant also allows the verifier

to check upperBound(this, result) and contains(this, result) at runtime.

To move towards a strengthened version of findMax, the developer adds the specifications high-

lighted in yellow in Figure 7 (lines 30, 31, 35, 55). The developer folds upperBound(this, result)

on line 55 to show that findMax returns an upper bound of the list. The upperBound predicate

is constructed from an upperBoundSeg predicate for the whole list and result. To achieve this

upperBoundSeg predicate, the developer determines that the loop invariant (lines 34, 35) should con-

tain upperBoundSeg(this.head, curr, max). In other words, the loop should produce a value max that

is the upper bound of the list from its head to the current node at every iteration. Then, when the loop

terminates, max (result) will be an upper bound of the whole list (upperBoundSeg(this.head, null,

max)). The additional folds before the loop, on lines 30, 31, are used to build up the upperBoundSeg

for the first loop iteration.

As before, both accessibility predicates and contains(this, result) are dynamically verified.

However, the verifier now statically establishes that upperBound(this, result) holds, at an un-

fortunate cost. The loop invariant (lines 34, 35) must be preserved for every iteration of the loop,

but the developer has only constructed a proof for the first iteration (lines 30, 31). As a result,

imprecision introduced by the invariant is used to prove that the invariant holds for the remaining

iterations. That is, the invariant is dynamically checked—the list is traversed from its head to the

current node—at every iteration beyond the first!

Appalled by this dynamic checking overhead, the developer decides to construct the missing

static proofs. The resulting specifications are highlighted in green in Figure 7 (lines 48–50, 58–70).

Since the loop’s else case (lines 46–51) does not modify max, the developer focuses their effort here.

Their goal is to show that max is an upper bound of the list from its head to the next traversed

node (line 47). To achieve this, an empty upperBoundSeg starting and ending on the next node

(line 48) is extended with the previous (current) node (line 49). This creates an upperBoundSeg

predicate from the current node to the next node. The extension is justified by the negation of the

if condition curr.val ≤ max (line 38). Then, the developer achieves their proof goal for the else

case by appending (lines 50, 58–70) the upperBoundSeg predicate from the head of the list to the
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1 class Node { int val; Node next; }

2

3 class List {

4 Node head;

5

6 predicate upperBound(List l, int bound) =

7 ? ∗ upperBoundSeg(l.head, null, bound)

8

9 predicate upperBoundSeg(Node from, Node to, int bound)

10 = ? ∗ if (from == to) then true else

11 from.val ≤ bound ∗

12 upperBoundSeg(from.next, to, bound)

13

14 predicate contains(List l, int val) =

15 ? ∗ containsSeg(l.head, null, val)

16

17 predicate containsSeg(Node from, Node to, int val) =

18 ? ∗ if (from == to) then false else

19 if (from.val == val) then true else

20 containsSeg(from.next, to, val)

21

22 int findMax ()

23 requires ? ∗ this.head != null

24 ensures upperBound(this, result) ∗

25 contains(this, result)

26 {

27 int max = this.head.val;

28 Node curr = this.head.next;

29

30 fold upperBoundSeg(this.head.next, curr, max);

31 fold upperBoundSeg(this.head, curr, max);

32

33 while (curr != null)

34 invariant ?

35 ∗ upperBoundSeg(this.head, curr, max)

36 {

37 Node x = curr;

38 if (curr.val > max) {

39 int oldMax = max;

40 max = curr.val;

41 curr = curr.next;

42 fold upperBoundSeg(x.next, curr, max);

43 fold upperBoundSeg(x, curr, max);

44 upperBoundLemma(this.head, x, oldMax, max);

45 appendLemma(this.head, x, curr, max);

46 } else {

47 curr = curr.next;

48 fold upperBoundSeg(x.next, curr, max);

49 fold upperBoundSeg(x, curr, max);

50 appendLemma(this.head, x, curr, max);

51 }

52 }

53

54 result = max;

55 fold upperBound(this, result);

56 }

57

58 void appendLemma(Node a, Node b,

59 Node c, int val)

60 requires upperBoundSeg(a, b, val) ∗

61 upperBoundSeg(b, c, val)

62 ensures upperBoundSeg(a, c, val)

63 {

64 if (a == b) {

65 } else {

66 unfold upperBoundSeg(a, b, val);

67 appendLemma(a.next, b, c, val);

68 fold upperBoundSeg(a, c, val);

69 }

70 }

71

72 void upperBoundLemma(Node a, Node b,

73 int oldVal, int newVal)

74 requires oldVal ≤ newVal ∗

75 upperBoundSeg(a, b, oldVal)

76 ensures upperBoundSeg(a, b, newVal)

77 {

78 if (a == b) {

79 fold upperBoundSeg(a, b, newVal);

80 } else {

81 unfold upperBoundSeg(a, b, oldVal);

82 appendLemma(a.next, b, oldVal, newVal);

83 fold upperBoundSeg(a, b, newVal);

84 }

85 }

86

87 }

� 1st increment (most imprecise of the 4) � 3rd increment

� 2nd increment � 4th increment (most precise of the 4)

Fig. 7. Incrementally more precise ways to gradually verify findMax from Figure 6
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current node (loop invariant, lines 34, 35) to the upperBoundSeg predicate from the current node to

the next node.

Now, the gradual verifier can statically prove that the loop invariant is always preserved by the

else branch. However, the verifier still dynamically checks the invariant on each loop iteration

executing the then branch. The other dynamic checks for accessibility predicates and the contains

predicate also still remain.

Finally, the developer generates specifications for the then branch, highlighted in blue in Figure 7

(lines 42–45, 72–85). As in the else case, the developer’s goal is to show that max is an upper bound

of the list from its head to the next traversed node (line 41). Here, however, max is assigned the

current node’s value (line 40). The assignment justfies the build up of the upperBoundSeg predicate

from the current node to the next node (lines 42, 43). But, unlike in the else case, the loop invariant’s

upperBoundSeg predicate applies to an old max value rather than the current (new) one. The old value

happens to be less than the current one (then condition, line 38), so the current max is an upper bound

of the list from its head to the current node. The developer proves this fact with upperBoundLemma

(lines 44, 72–85). Finally, as before, the developer uses appendLemma (lines 45, 58–70) to achieve the

proof goal for the then case. This last increment allows the gradual verifier to prove that findMax

returns an upper bound of the list completely statically. Only accessibility predicates for heap

accesses and contains(this, result) are dynamically checked. The developer can stop here, or

work further on either proving contains(this, result) or specifying accessibility predicates.

By using gradual verification on findMax, the developer is able to manage the complexity of

meeting proofs obligations incrementally. The developer could have stopped at any of the afore-

mentioned increments and be certain, in the absence of runtime checking errors, that the program

returns the greatest element of the list and accesses only owned heap locations. Gradual verifica-

tion enables the exploration of cost-benefit tradeoffs between static reasoning effort and runtime

overhead.

4 CHALLENGES OF RECURSIVE HEAP DATA STRUCTURES
While the basic principles of gradual program verification have already been laid out by Bader

et al. [2018], their work only accounts for pre- and postconditions that include basic logical and

arithmetic formulas. The contribution of this work is to scale these basic principles to deal with

realistic programming scenarios that involve recursive heap data structures.

This section explains the challenges involved in accounting for implicit dynamic frames (IDF)

[Smans et al. 2009] and recursive abstract predicates [Parkinson and Bierman 2005] in the context

of gradual program verification. We also informally outline our novel solutions to these challenges,

which will be formally developed in the following sections.

4.1 Gradual Verification of Heap Ownership
Adapting the Abstracting Gradual Typing approach [Garcia et al. 2016] to the verification setting

gives meaning to imprecise formulas such as x > 10 ∧ ? by considering all the logically consistent
strengthenings of such formulas [Bader et al. 2018; Lehmann and Tanter 2017]. For instance, x >

10 ∧ ? consistently implies x > 20, but not x < 0. In the latter case, the formula x < 0 contradicts

the static part of the imprecise formula x > 10. In the former case, if we definitely know that x

> 10, then it might optimistically be the case that x > 20 as well. Of course, in order to preserve

soundness, optimistically assuming x > 20 when one only definitely knows that x > 10 requires a

runtime check to corroborate that the value bound to x at runtime is indeed greater than 20.

As we have seen in prior sections, when dealing with heap data structures, the logic—IDF in

our case—includes more than arithmetic: we need to be able to talk about heap separation and
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ownership of heap cells. How are we to extend the interpretation of imprecise formulas in such a

setting, and how can we soundly track optimistic assumptions?

Imprecise Heap Formulas. When using IDF in a static verifier, one must make sure that formulas

are self-framed. For instance, this.head != null is not self-framed, because it does not explicitly

mention the accessibility predicate needed to evaluate the formula. The formula acc(this.head) ∗

this.head != null is self-framed. We want to ensure that programmers can smoothly strengthen

specifications, and one logical kind of strengthening is adding accessibility predicates that were

previously missing. Accordingly, in our design imprecise formulas must optimistically allow ?

to stand in for accessibility predicates that are necessary for framing. Furthermore, this is true

whether the imprecise formula appears directly in an assertion or indirectly in the definition of an

abstract predicate. Indeed, in IDF, framing can sometimes come from an abstract predicate. For

instance, acyclic(this) ∗ unfolding acyclic(this) in this.head != null is self-framed if the

body of acyclic(l) includes acc(l.head). Thus, our semantics for imprecise formulas must allow

? to denote not only for predicates such as acyclic(this), but also any unfoldings of them that

are necessary to frame the static part of the formula. These semantic choices support different

scenarios described in the previous section.

Runtime Checking of Ownership. For a gradual verifier to be sound, optimistic assumptions made

statically due to imprecision must be safeguarded dynamically through runtime checks. Extending

gradual verification to IDF by allowing imprecision to account for missing accessibility predicates

means that we need to keep track of ownership in the runtime system. In particular, we design a

runtime that tracks and updates a set of heap locations at every program point, indicating current

ownership. Heap locations are added to this set when objects are created. Each time a field is

accessed, the set of owned locations is looked up: if the corresponding permission is found, the

check succeeds, otherwise a runtime error is raised.

At a call site, if an owned heap location is required by the precondition of the callee, then it

is removed from the owned locations of the caller. When the callee finishes executing, all callee

owned heap locations are passed to the caller.

The challenge here is how to deal with imprecise preconditions, either directly or via an imprecise

abstract predicate. In order to maximize the ability for the callee to execute properly, an imprecise

precondition has to require all the owned heap locations of the caller. Indeed, said imprecision might

potentially denote any location owned by the caller, not already passed statically, and effectively

required in the callee. Not transferring its ownership means the callee might error out at runtime.

4.2 Gradual Verification of Recursive Predicates
Recursive predicates can be dealt with in two different manners in program verification [Summers

and Drossopoulou 2013]: either iso-recursively—in which case to be able to exploit a predicate

instance, one needs to explicitly unfold it, and vice versa, to explicitly fold it back to establish it—or

equi-recursively—in which case a predicate is deemed identical to its unfolding, which need not be

specified explicitly. These two approaches have complementary strengths, which, we argue, are

particularly relevant when apprehending gradual verification. The iso-recursive approach is critical

for making static reasoning manageable for tools (and for humans who must deal with the error

messages reported by these tools) because it breaks reasoning into small steps. In contrast, the

equi-recursive approach is much more convenient in a dynamic setting, where the runtime system

can automatically unfold predicates as needed, and so the user does not have to write explicit folds

and unfolds.

In this work, we propose a novel design that achieves the benefits of both approaches. Statically,

the gradual verifier treats recursive predicate instances iso-recursively: programmers can specify
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x, y, z ∈ VAR (variables)
v ∈ VAL (values)
e ∈ EXPR (expressions)
s ∈ STMT (statements)
o ∈ LOC (object Ids)
P ::= cls s
cls ::= class C { field pred method }

field ::= T f ;

pred ::= predicate p(T x) = θ
T ::= int | bool | C | ⊤

method ::= T m(T x ) contract {s }
contract ::= requires θ ensures θ

⊕ ::= + | − | ∗ | \

⊙ ::= , | = | < | > | ≤ | ≥

f ∈ FIELDNAME (field names)
m ∈ METHODNAME (method names)
C ∈ CLASSNAME (class names)
p ∈ PREDNAME (predicate names)
s ::= skip | s ; s | T x | x := e | x.f := y

| if (e) { s } else { s }

| while (e) inv θ { s } | x := new C
| y := z.m(x) | assert ϕ | fold p(e)
| unfold p(e)

e ::= v | x | e ⊕ e | e ⊙ e | e.f
x ::= result | id | old(id) | this

v ::= n | o | null | true | false

ϕ ::= true | false | e ⊙ e | p(e) | acc(e.f )
| if e then ϕ else ϕ
| unfolding p(e) in ϕ | ϕ ∧ ϕ | ϕ ∗ ϕ

θ ::= self-framed ϕ
Fig. 8. SVLRP: Syntax

folds and unfolds in the precise parts of their pre- and postconditions, as well as in program

statements, just as they would with mainstream static verifiers. By exploiting syntax, verification

becomes simply algorithmic for tools to implement, and visually clear for humans to keep track of

the underlying activity of the verifier.

In contrast, dynamically, predicate instances are checked equi-recursively. An equi-recursive

evaluation of predicate instances is the natural choice for dynamic checking, as the runtime system

can simply execute the predicate as if it were a function. Crucially, an equi-recursive approach to

program evaluation allows users to leave out fold and unfold statements, which one can expect to

be the default for partially (or un-)verified code. Seen dually, adopting an iso-recursive runtime

approach while allowing programmers to omit (un)folding statements would mean trying to

automatically infer when to actually perform (un)folding. Known approaches to this are heuristic,

meaning that some well-behaved code could be conservatively rejected when made imprecise

enough. This would result in a violation of the dynamic gradual guarantee [Siek et al. 2015], whose

motto is that losing precision is harmless.
Therefore we argue that combining iso- and equi-recursive treatments of recursive predicates is

required in order to achieve a proper gradual verifier: statically, the iso-recursive approach ensures

algorithmic checking, and dynamically, the equi-recursive approach allows imprecise code to run

smoothly.

5 SVLRP
Following the AGT methodology [Garcia et al. 2016], gradual verification is built on top of static

verification. Therefore, we first formally present a statically verified language supporting a propo-

sitional specification logic extended with implicit dynamic frames (IDF) and recursive abstract

predicates. This language, called SVLRP, is directly inspired by Summers and Drossopoulou [2013].

Readers familiar with static verification might want to read through this section anyway, because

it sets up notations and key concepts used in the gradualization (§6).

5.1 Syntax & Static Semantics
The complete syntax of SVLRP can be found in Figure 8. Programs consist of classes and statements.

Classes contain publicly accessible fields, predicates, and methods. Statements include the empty

statement, sequences, variable declarations, variable and field assignments, conditionals, while
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loops, object allocations, method calls, assertions, as well as fold and unfold statements. Expres-

sions can appear in specifications, and therefore cannot modify the heap. They consist of literal

values (integers, objects, null, and booleans), variables, arithmetic expressions, comparisons, and

field accesses. Methods have contracts consisting of pre- and postconditions, which are formulas

represented by ϕ. Formulas join boolean values, comparisons, predicate instances, accessibility

predicates, conditionals, and unfoldings via the non-separating conjunction ∧ or the separating

conjunction ∗. Note that θ refers to a self-framed formula [Smans et al. 2009], formally defined

in §5.2.4. We require pre- and postconditions, predicate definitions, and loop invariants to be

self-framed.

Looking ahead to gradual verification, we would like formulas to be efficiently evaluable at

runtime—and in the presence of accessibility predicates, efficient evaluation requires knowing

which branch of a disjunction to evaluate. Therefore, we include a conditional if construct in

formulas instead of disjunction ∨.

As the focus of this work is not on typing, we only consider well-formed and well-typed programs,

which is standard and not formalized here. Additionally, variables are declared and initialized before

use, and class, predicate, and method names are unique. Finally, contracts should only contain

variables that are in scope: a precondition can only contain the method’s parameters xi and this

and a postcondition can only contain the special variable result, this, and dummy variables old(xi ).

5.2 Formula Semantics
In this section, we give meaning to formulas in SVLRP. We also give related definitions for formula

satisfiability, implication, footprint computation, and framing. The semantics and related definitions

are inspired by Summers and Drossopoulou [2013] and Bader et al. [2018].

5.2.1 Equi-Recursive Evaluation. Evaluating the truth of formulas requires a heap H , a variable

environment ρ ∈ Env, and a dynamic footprint π ∈ DynFprint = P(Loc × FieldName). A heap

H is a partial function from heap locations to a value mapping of object fields, i.e. Heap = Loc⇀
(FieldName ⇀ Val). Additionally, we introduce a big-step evaluation relation for expressions

H , ρ ⊢ e ⇓ v , which is standard (and defined in Appendix Fig. 18). An expression e is evaluated
according to H , ρ ⊢ e ⇓ v yielding value v . The heap H is used to look up fields and the local

variable environment ρ to look up variables.

Then, formula evaluation · �E · ⊆ Mem × Formula determines the truth of a formula using

heap H , variable environment ρ, dynamic footprint π , and an equi-recursive interpretation of

predicate instances. Select rules for formula evaluation are given in Figure 9 (complete rules are in

Appendix Fig. 19). EvAcc checks whether access demanded by a formula is provided by the dynamic

footprint, e.g. acc(l.head) where l points to o is true when ⟨o, head⟩ ∈ π . EvSepOp checks two

separated subformulas against disjoint partitions of the dynamic footprint. This ensures that access

to the same field is not granted twice; for instance, this ensures that acc(l1.head) ∗ acc(l2.head)

references two distinct fields. In contrast, the rule for ∧ (EvAndOp) checks both operands against

the full dynamic footprint; therefore, acc(l1.head) ∧ acc(l2.head) may reference the same fields.

Further, EvPred checks the complete unrolling of a predicate instance using the function bodyµ :
PredName → Expr

∗ → SfrmFormula. Given a predicate name and arguments, this function

returns the predicate’s definition (from the ambient program
1
) after parameter substitution. We

make sure that every argument ei produces a value, only in order to line up with the isorecursive

semantics. But we do not need to substitute the values into bodyµ (p)(e1, ..., en), because it already
has the ei ’s within it after parameter substitution. Finally, the rule for an unfolding (EvUnfolding)

ignores the predicate unfolding, because it is an iso-recursive only construct. For example, unfolding

1
Many relations we define are implicitly parameterized over the ambient program.
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H, ρ ⊢ e ⇓ o H, ρ ⊢ e.f ⇓ v ⟨o, f ⟩ ∈ π

⟨H, ρ, π ⟩ �E acc(e.f)
EvAcc

⟨H, ρ, π1 ⟩ �E ϕ1 ⟨H, ρ, π2 ⟩ �E ϕ2

⟨H, ρ, π1 ⊎ π2 ⟩ �E ϕ1 ∗ ϕ2

EvSepOp

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π ⟩ �E bodyµ (p)(e1, ..., en )

⟨H, ρ, π ⟩ �E p(e1,...,en)
EvPred

⟨H, ρ, π ⟩ �E ϕ

⟨H, ρ, π ⟩ �E unfolding p(e1, ..., en ) in ϕ
EvUnfolding

Fig. 9. SVLRP: Formula evaluation (select rules)

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨p, v1, ..., vn ⟩ ∈ Π

⟨H, ρ, Π⟩ �I p(e1,...,en)
EvPred

Fig. 10. SVLRP: Iso-recursive formula evaluation (select rule)

acyclic(l) in l.head != null is true exactly when l.head != null is true. Also, all the construct

does is provide access to more heap locations in the predicate. The other rules are as expected.

5.2.2 Iso-Recursive Evaluation. We also introduce an iso-recursive formula evaluation semantics,

used in static verification (§2). This semantics differs from its equi-recursive counterpart in §5.2.1 on

the EvPred rule. Figure 10 presents the iso-recursive version of EvPred. It treats predicate instances

as opaque permissions by checking whether a predicate instance demanded by a formula is justified

by a dynamic permission set Π ∈ Permissions = P((Loc × FieldName) ∪ (PredName × Val
∗)).

Compared to a dynamic footprint, a dynamic permission set can contain dynamic predicate instances

in addition to heap locations. For example, acyclic(l)where l points to o is truewhen ⟨acyclic, o⟩ ∈
Π. Other than EvPred, the iso-recursive semantics is defined by replacing π in Figures 9 and 19

with Π.

5.2.3 Formula Satisfiability and Implication. Similar to SVL [Bader et al. 2018], formal definitions

for formula satisfiability and implication rely on sets of H , ρ, and Π tuples that make formulas true.

Definition 5.1 presents a function that produces these sets from formulas. Definitions 5.2 and 5.3

rely on Definition 5.1 to formally state formula satisfiability and implication respectively. Note that

these definitions are iso-recursive in order to be implementable in static verification tools (§2).

Definition 5.1 (Denotational Formula Semantics). J·K : Formula → P(Heap × Env × Permissions)

JϕK def

= { ⟨H , ρ,Π⟩ ∈ Heap × Env × Permissions | ⟨H , ρ,Π⟩ �I ϕ }

Definition 5.2 (Formula Satisfiability). A formula ϕ is satisfiable if and only if JϕK , ∅. Let

SatFormula ⊂ Formula be the set of satisfiable formulas. Ex. acc(l1.head) ∗ acc(l2.head) is satis-
fiable since l1 may not equal l2. In contrast, acc(l1.head) ∗ acc(l2.head) ∗ l1 = l2 is unsatisfiable.

Definition 5.3 (Formula Implication). ϕ1 ⇒ ϕ2 if and only if Jϕ1K ⊆ Jϕ2K.
Ex. l.head.val = 6 ⇒ l.head.val ≥ 5, and l.head.val = 6 ; acc(l.head.val) ∗ l.head.val ≥ 5 since

acc(l.head.val) is missing on the left-hand side.

5.2.4 Footprints and Framing. A statically-verified language supporting IDF requires formal defini-

tions for the footprint and framing of a formula. These definitions are also iso-recursive.

The footprint of a formula ϕ, denoted ⌊ϕ⌋H,ρ , is simply the minimum set of permissions Π
required to satisfy ϕ given a heap H and variable environment ρ:

⌊ϕ ⌋H ,ρ = min { Π ∈ Permissions | ⟨H, ρ, Π⟩ �I ϕ }
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⟨H, ρ, Π⟩ �I acc(e.f) ⟨H, ρ, Π⟩ ⊢frmI e

⟨H, ρ, Π⟩ ⊢frmI e.f
FrmField

⟨H, ρ, Π⟩ ⊢frmI e

⟨H, ρ, Π⟩ ⊢frmI acc(e.f)
FrmAcc

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ⟨H, ρ, Π⟩ ⊢frmI ϕ2

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ∗ ϕ2

FrmSepOp

⟨H, ρ, Π⟩ ⊢frmI e1 ... ⟨H, ρ, Π⟩ ⊢frmI en
⟨H, ρ, Π⟩ ⊢frmI p(e1,...,en)

FrmPred

⟨H, ρ, Π⟩ �I p(e1,...,en) ⟨H, ρ, Π⟩ ⊢frmI e1 ... ⟨H, ρ, Π⟩ ⊢frmI en
⟨H, ρ, Π′⟩ ⊢frmI ϕ Π′ = Π ∪ ⌊bodyµ (p)(e1, ..., en )⌋H ,ρ

⟨H, ρ, Π⟩ ⊢frmI unfolding p(e1, ..., en ) in ϕ
FrmUnfolding

Fig. 11. SVLRP: Framing (select rules)

The footprint is defined (i.e. there exists a unique minimal set of permission Π) for formulas

satisfiable under H and ρ. It can be more directly implemented by simply evaluating ϕ using H and

ρ, granting and recording precisely the permissions required. The footprint of l.head != null is

empty, while the footprint of acc(l.head) ∗ l.head != null is {⟨o, head⟩} when l points to o.

A formula is said to be framed by permissions Π iff it only mentions fields and unfolds predicates

in Π. We give select inference rules for formula framing in Figure 11 and give the rest in Appendix

Figure 20. Note that FrmUnfolding allows one unrolling of a predicate to frame a part of a

formula. Now, formula ϕ is called self-framed (we write ⊢frm ϕ) if for all H , ρ, Π ⟨H , ρ,Π⟩ �I ϕ

implies ⟨H , ρ,Π⟩ ⊢frmI ϕ. We define the set of self-framed formulas SfrmFormula

def

= { ϕ ∈

Formula | ⊢frm ϕ }. l.head != null is not self-framed, because it can evaluate to true even when

Π does not contain acc(l.head). On the other hand, acc(l.head) ∗ l.head != null is self-framed,

because it does not evaluate to true unless Π contains acc(l.head). Similarly, unfolding acyclic(l)

in l.head != null is not self-framed while acyclic(l) ∗ unfolding acyclic(l) in l.head !=

null is for acyclic(l) with body acc(l.head). We write θ to denote self-framed formulas.

5.2.5 Relating Permission Sets and Footprints. By using the footprint definition in §5.2.4, we can

formally relate dynamic permission sets to dynamic footprints via the partial function ⟨⟨ · ⟩⟩H of

type Permissions × Heap⇀ DynFprint:

⟨⟨ Π ⟩⟩H = { ⟨o, f ⟩ | ⟨o, f ⟩ ∈ Π} ∪ ⟨⟨ Π′ ⟩⟩H where Π′ = ∪⟨p,v1, . . .,vn ⟩∈Π ⌊bodyµ (p)(v1, ..., vn )⌋H , []

This function completely unrolls the predicate instances in a dynamic permission set gather-

ing owned heap locations on the way. For example, given ⟨acyclic, o⟩, with acyclic defined

precisely as in Figure 2, this function returns all the heap locations ({⟨o, head⟩, ⟨o.head, val⟩,

⟨o.head, next⟩, . . . }) in the list o. Note that ⟨⟨ · ⟩⟩H is only defined when predicates can be finitely

unrolled.

5.3 Static Verification
Static verification relies on a weakest liberal precondition calculus [Dijkstra 1975] to generate

verification conditions. We now present this WLP calculus, which is defined iso-recursively.

5.3.1 WLP Calculus. Select rules for a weakest liberal precondition function WLP(s,θ ) of type
Stmt × (SatFormula∩ SfrmFormula)⇀ (SatFormula∩ SfrmFormula) are given in Figure 12

(all rules are in Appendix Fig. 22). Note, we explicitly restrict the domain and codomain of theWLP

function to contain only satisfiable and self-framed formulas. These restrictions are often ensured
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WLP(x := e, θ ) = max
⇒

{ θ ′ | θ ′ ⇒ θ [e/x ] ∧ θ ′ ⇒ acc(e ) }

WLP(x.f := y, θ ) = acc(x.f) ∧ θ [y/x .f ]

WLP(y := z.m(x), θ ) = max
⇒

{ θ ′ | y < FV(θ ′) ∧

∃θf . θ ′ ⇒ (z , null) ∗ mpre(m)[z/this, x/mparam(m)] ∗ θf ∧

θf ∗ mpost(m)[z/this, x/old(mparam(m)), y/result] ⇒ θ }

Fig. 12. SVLRP: Weakest liberal precondition calculus (select rules)

in Figure 12 by finding a maximum self-framed and satisfiable formula with respect to implication

(the weakest formula).

The statement-specific rules forWLP are standard, save for specific care related to field accesses,

accessibility predicates, and predicate instances. Rules for variable and field assignment, conditionals,

and while loops produce accessibility predicates for field accesses in the program statement, e.g. the
WLP for y := l.head must contain acc(l.head). Some rules rely on the function acc(e) : Expr →

Formula (Appendix Fig. 21), which returns a formula of accessibility predicates corresponding

to field accesses in e . More interestingly, the rule for a method call frames off information in the

method’s postcondition from θ producing the frame θf . If the accessibility predicates and predicate

instances in θf are not in the method’s precondition, then θf is joined with the precondition

to produce the WLP. Consider computing the WLP for the call to insertLastHelper on line 26

in Figure 2. In this example, θ = acyclic(this), the precondition is acyclic(this) ∗ unfolding

acyclic(this) in this.head != null, and the postcondition is acyclic(this). Therefore, θf =

true and theWLP is this != null ∗ acyclic(this) ∗ unfolding acyclic(this) in this.head !=

null ∗ true.

5.3.2 Static Verification. A SVLRP program is statically verified if it is a valid program:

Definition 5.4 (Valid Method). A method with contract requires θp ensures θq , parameters x , and

body s is considered valid if θp ⇒ WLP(s,θq)[x/old(x)] holds.

Definition 5.5 (Valid Program). A program with entry point statement s is considered valid if

true ⇒ WLP(s, true) holds, θi ∧ (e = true) ⇒ WLP(r ,θi ) and θi ⇒ acc(e) hold for all loops with
condition e , body r , and invariant θi , and all methods are valid.

5.4 Dynamic Semantics
The soundness of static verification is relative to SVLRP’s dynamic semantics, which we now expose.

5.4.1 Program States. Program states consist of a heap and a stack, i.e. State = Heap × Stack. A

stack is made of stack frames that contain a variable environment ρ ∈ Env, a dynamic footprint

π ∈ DynFprint = P(Loc × FieldName), and a program statement s ∈ Stmt:

S ∈ Stack ::= E · S | nil where E ∈ StackFrame = Env × DynFprint × Stmt

During execution of an SVLRP program, expressions and statements operate on the topmost

variable environment ρ. Expressions and statements may additionally access and mutate the heap

as long as the topmost dynamic footprint contains the corresponding object-field permissions.

Thus, the memory accessible at any point of execution can be viewed as a tuple of type Mem =

Heap × Env × DynFprint.

5.4.2 Reduction Rules. Figure 13 presents select rules for SVLRP’s small-step semantics · −→ · ⊆

State × State. Complete rules are in Appendix Figure 23. Notably, we structure the rules so as
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⟨H, ρ, π ⟩ �E ϕ

⟨H, ⟨ρ, π , assert ϕ ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsAssert

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π , x := e ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′, π , s ⟩ · S ⟩
SsAssign

method(m) = Tr m(T x ′) requires θp ensures θq { r } H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v
ρ′ = [this 7→ o, x ′ 7→ v, old(x ′) 7→ v] π ′ = ⟨⟨ ⌊θp ⌋H ,ρ′ ⟩⟩H π ′ ⊆ π ⟨H, ρ′, π ′⟩ �E θp

⟨H, ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′, π ′, r ; skip⟩ · ⟨ρ, π \π ′, y := z.m(x) ; s ⟩ · S ⟩
SsCall

mpost(m) = θq ⟨H, ρ′, π ′⟩ �E θq ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′′, π ∪ π ′, s ⟩ · S ⟩
SsCallFinish

⟨H, ⟨ρ, π , fold p(e1,...,en) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsFold

Fig. 13. SVLRP: Small-step semantics (select rules)

to not require a sequence rule. This aligns the small-step semantics more closely with the WLP

calculus, and makes the SVLRP soundness proof easier.

The semantics gets stuck when a statement accesses a field that the current state does not

own, as specified in SsAssign. Notice that SsAssign relies on acc(e) to check the accessibility of

field accesses on the right-hand side. The semantics also gets stuck when preconditions (SsCall),

postconditions (SsCallFinish), loop invariants, or assertions (SsAssert) do not hold.

To determine whether a field access is valid at runtime, the semantics tracks a set of owned heap

locations π . This set is expanded during allocation with heap locations for the object’s fields. At a

method call (SsCall) π is split into disjoint caller and callee sets using the method’s precondition.

The callee set π ′
is derived from the precondition’s accessibility predicates and the accessibility

predicates gained from unrolling the predicates in the precondition. Ownership of the heap locations

in π ′
is passed to the callee, so the caller set is defined as π \ π ′

. After execution of the callee’s

body finishes (SsCallFinish), execution resumes at the call site. The callee returns to the call site

ownership of all received heap locations and new heap locations gained during execution.

Notice that we treat predicates equi-recursively when we track π , determine whether field

accesses are valid, and determine whether contracts, loop invariants, or assertions hold. We also

treat folds and unfolds equi-recursively as skip statements (SsFold). SVLRP’s dynamic semantics is

equi-recursively defined so the gradual verifier, which builds on SVLRP’s semantics, adheres to the

dynamic gradual guarantee (as discussed in §4.2).

5.5 Soundness
As explained above, the dynamic semantics of SVLRP is designed to get stuck when assertions,

method contracts, or loop invariants are violated during program execution. The dynamic semantics

also gets stuck if a program accesses fields it does not own during execution. Thus informally,

soundness says that valid SVLRP programs do not get stuck, i.e. verified programs respect program

specifications at runtime. Just as with SVL [Bader et al. 2018], we use a syntactic statement of

soundness via progress and preservation.

Now, we introduce the formal definition of a valid state in Definition 5.6. This definition is an

invariant that relates the static verification and dynamic semantics of valid SVLRP programs. It also

relates the formal statements of progress and preservation in Propositions 5.7 and 5.8. Informally,

if the current program state satisfies the WLP of a program, then execution does not get stuck
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(progress), and after each step of execution, the new state satisfies the WLP of the remaining

program (preservation).

Definition 5.6 (Valid State, Final State). We call the state ⟨H , ⟨ρn ,πn , sn⟩ · ... · ⟨ρ1,π1, s1⟩ · nil⟩ ∈
State valid if sn = s ; skip or skip for some s ∈ Stmt, si = s ′i ; skip for some s ′i ∈ Stmt for all

1 ≤ i < n, πi ∩ πj = ∅ for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i , j, and ⟨H , ρi ,πi ⟩ �E sWLPi (sn ·

... · s1 · nil, true) for all 1 ≤ i ≤ n (sWLPi (s,θ ) is the i-th component of sWLP(s,θ )). A state ψ is

final ifψ = ⟨H , ⟨ρ,π , skip⟩ · nil⟩ for some H , ρ,π .

Note that the definition above relies on sWLP, a stack-aware extension ofWLP (defined in Appendix

Fig. 24). sWLP ensures that access permissions are not duplicated in different stack frames. Program

validity (Def. 5.5) gives the validity of the initial program state.

Proposition 5.7 (SVLRP Progress). Ifψ is a valid non-final state thenψ −→ ψ ′ for someψ ′.

Proposition 5.8 (SVLRP Preservation). Ifψ is a valid state andψ −→ ψ ′ for someψ ′ thenψ ′ is
a valid state.

6 GVLRP: STATIC SEMANTICS
We now derive GVLRP, the gradually-verified language counterpart of SVLRP, essentially following

the Abstracting Gradual Typing methodology [Garcia et al. 2016], whose main principles and

mechanisms apply beyond type systems. This section presents the syntax and static semantics of

GVLRP. §7 develops the runtime semantics, and §8 establishes the main properties of GVLRP.

6.1 Syntax
The syntax of GVLRP is the same as SVLRP except for the addition of gradual formulas ϕ̃. Gradual
formulas replace formulas θ in method contracts, predicate definitions, and loop invariants:

pred ::= predicate p(T x) = ϕ̃
contract ::= requires ϕ̃ ensures ϕ̃

s ::= ... | while (e) inv ϕ̃ { s }

ϕ̃ ::= θ | ? ∗ ϕ

A gradual formula is either a self-framed syntactically precise formula θ or an imprecise formula

? ∗ ϕ. Note that the static part of an imprecise formula does not need to be self-framed (as discussed

in §4.1) and ? is syntactic sugar for ? ∗ true. Additionally, the set of all gradual formulas is given

by F̃ormula. A syntactically precise formula does not contain ? directly, i.e. it is not visibly partial.

However, it may contain hidden ?s by containing predicates that, when unrolled, expose ?, e.g.
acyclic(l) where acyclic’s body is ?. Self-framing is augmented to handle nested imprecision

in GVLRP, and its new definition is given in §6.2. We will refer to formulas that do not contain ?,

neither directly nor nested in predicates, as semantically precise formulas, e.g. acyclic(l) where
acyclic’s body is acc(l.head) ∗ listSeg(l.head, null) (as in Figs. 2 & 5). Note that all semantically

precise formulas are syntactically precise, but not all syntactically precise formulas are semantically

precise.

6.2 Framing
Definitions for framing and self-framing syntactically precise formulas in GVLRP are redefined to

handle imprecise predicate definitions exposed by the FrmUnfolding rule. For example,

acyclic(this)’s body is analyzed for the permissions required to frame this.head != null in

unfolding acyclic(this) in this.head != null. If acyclic(this)’s body is imprecise, then SVLRP’s

framing definition would be undefined for this formula. Therefore, formula framing in GVLRP,

⟨H , ρ,Π⟩ ⊢̃frmI ϕ, is defined as in SVLRP except for the FrmUnfolding rule:
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⟨H, ρ, Π⟩ �I p(e1,...,en) ⟨H, ρ, Π⟩ ⊢̃frmI e1 ... ⟨H, ρ, Π⟩ ⊢̃frmI en
⟨H, ρ, Π′⟩ ⊢̃frmI ϕ Π′ = Π ∪ ⌊bodyµ (p)(e1, ..., en )⌋TotalFP(ϕ,H ,ρ ),H ,ρ

⟨H, ρ, Π⟩ ⊢̃frmI unfolding p(e1, ..., en ) in ϕ
F̃rmUnfolding

This rule differs from its SVLRP counterpart in computing Π′
, which aides in framing ϕ. In

particular, the retrieval of accessibility predicates and predicate instances from bodyµ (p)(e1, ..., en )

now accounts for imprecision. The TotalFP(·, ·, ·) : Formula × Heap × Env → Permissions

function (Appendix Fig. 25) returns the explicit and implicit iso-recursive permissions required

by ϕ ({⟨o, head⟩} for this.head != null where this points to o). Then, a new footprint definition

⌊ϕ̃⌋Π,H,ρ is used to either frame ϕ optimistically with this maximal permission set or precisely with

calculated permissions from bodyµ (p)(e1, ..., en ). The result depends on whether bodyµ (p)(e1, ..., en )

is imprecise or precise, respectively (acyclic’s body is ? so {⟨o, head⟩} is used):

⌊θ ⌋Π,H ,ρ = ⌊θ ⌋H ,ρ ⌊? ∗ ϕ ⌋Π,H ,ρ = Π

Now, a formula ϕ is called self-framed (we write ⊢̃frm ϕ) if for all H , ρ, Π, ⟨H , ρ,Π⟩ �I ϕ im-

plies ⟨H , ρ,Π⟩ ⊢̃frmI ϕ. We redefine the set of self-framed formulas: SfrmFormula

def

= { ϕ ∈

Formula | ⊢̃frm ϕ }, and we still write θ to denote self-framed formulas. As a result, acyclic(this)

∗ unfolding acyclic(this) in this.head != null is self-framed when acyclic’s body is ?.

6.3 Interpretation of Gradual Formulas
Gradual formulas are given meaning by the set of precise formulas that they represent. The inter-

pretation of gradual formulas is used to define variants of formula evaluation, formula implication,

and the WLP calculus that operate over gradual formulas and are consistent liftings [Bader et al.
2018; Garcia et al. 2016] of their SVLRP counterparts. Then, the static verification judgment in

GVLRP is defined similarly to SVLRP using these lifted definitions. The set denoted by a gradual

formula is obtained via a concretization function [Lehmann and Tanter 2017]:

Definition 6.1 (Concretization of Gradual Formulas). γ : F̃ormula⇀ PFormula
is defined as:

γ (θ ) = { θ }

γ (? ∗ ϕ) = { θ ′ ∈ SatFormula | θ ′ ⇒ ϕ } if ϕ ∈ SatFormula

γ (? ∗ ϕ) undefined otherwise

The concretization of a syntactically precise formula is the singleton set of this formula. The

concretization of an imprecise formula is the (infinite) set of syntactically precise formulas that

are 1) satisfiable and 2) imply the static part of the imprecise formula. For example, γ (? ∗ x ≥ 0) =
{x = 2, y = x ∗ x ≥ 0, . . . }. Notice, x < 0 ∗ x ≥ 0 < γ (? ∗ x ≥ 0), because it is not satisfiable.
Novel compared to Bader et al. [2018]’s work is the requirement that all syntactically precise

formulas represented by gradual formulas must be self-framed (§6.2). This extra condition allows ?

to frame the static part of an imprecise formula, a requirement we motivated in §4.1. Additionally,

γ treats predicates opaquely by relying on iso-recursively defined satisfiability, self-framing, and

implication. We make this design choice, because γ is an integral part of GVLRP’s static verification

system, which we want to be iso-recursive (§4.2). This choice has implications. For example, when

both p(x) and q(x)’s bodies contain acc(x.f), p(x) ∗ q(x) is equi-recursively unsatisfiable but iso-

recursively satisfiable. Therefore, p(x) ∗ q(x) ∈ γ (? ∗ q(x)). On the other hand, acc(x.f) ∗ acc(x.f) <

γ (? ∗ acc(x.f)), since acc(x.f) ∗ acc(x.f) is also iso-recursively unsatisfiable.

Definition 6.1 induces a natural definition of the (im)precision of gradual formulas:

Definition 6.2 (Precision of Gradual Formulas). ϕ̃1 is more precise (i.e. less imprecise) than ϕ̃2,

written ϕ̃1 ⊑ ϕ̃2, if and only if γ (ϕ̃1) ⊆ γ (ϕ̃2).
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Ex. ? ∗ acc(l.head) ∗ listSeg(l.head, null) ⊑ ? ∗ acc(l.head).

Semantic Interpretation of Gradual Formulas. Since Definition 6.1 is interpreted iso-recursively,

even if acyclic’s body is ?, we can have acyclic(l) ∗ unfolding acyclic(l) in l.head != null

∈ γ (? ∗ l.head != null). That is, γ in Definition 6.1 may give syntactically precise, but semantically
imprecise formulas. We therefore need a semantic interpretation of gradual formulas that extends

the concept of concretization to also cover imprecise predicate bodies. As a result, such a semantic
concretization of gradual formulas would only give semantically precise formulas.

A difficulty with writing semantic concretization is that in order to fully interpret formulas, we

require an additional function bodyµ , which returns predicate bodies from the ambient program

given a predicate instance, e.g. bodyµ(acyclic)(this) = ?. Since bodyµ may return imprecise

formulas, we cannot use it to interpret formulas that we want to be semantically precise. Instead,

we must rely on some new function body∆ : PredName → Expr
∗ → Formula, which returns only

precise formulas. As a result, we work with local formulas ⟨ϕ, body∆⟩ ∈ Formula× (PredName →

Expr
∗ → Formula) that explicitly drag along their body function.

Existing rules can easily be adjusted in order to deal with this new parameter, for example:

body∆(p)(e1, ..., en ) = ϕ H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π ⟩ �E ⟨ϕ, body∆ ⟩

⟨H, ρ, π ⟩ �E ⟨p(e1,...,en), body∆ ⟩
EvPred

The EvPred rule now uses body∆ to lookup predicate bodies, rather than using the designated

bodyµ . Notice the function body∆ is carried around for reference, simply making explicit what was

previously assumed as constant and ambient in SVLRP.

Now, we can give an interpretation to gradual body functions �body∆ by concretizing them into

sets of body∆ functions that produce precise, self-framed formulas. Given a
�
body∆, Definition 6.3

returns a set of body∆ functions constructed from formulas that are in the γ (Def. 6.1) of each

gradual formula in
�
body∆. For example, if dom(

�
body∆) = {acyclic}, �body∆(acyclic)(l) = ?, and

body∆(acyclic)(l) = acc(l.head), then body∆ ∈ γ (�body∆). Additionally, each body∆ function must

be well-formed with respect to self-framing, i.e. the body that body∆ returns for each predicate must

be self-framed with respect to the body∆ function itself. For example, if body∆(q)(l) = acyclic(l) ∗

unfolding acyclic(l) in l.head ! = null, then body∆(acyclic)(l) must contain acc(l.head).

Definition 6.3 (Concretization of Gradual Formulas (continued)). Concretization of a gradual body

function γ : (PredName → Expr
∗ → F̃ormula)⇀ PPredName→Expr

∗→SfrmFormula
is defined as:

γ (�body∆) = { body∆ = λpi ∈ dom(
�
body∆). λe ∈ Expr

∗ . θpi [e/tmpi ] | ⟨θp1, θp2, ...⟩ ∈

γ (�body∆(p1)(tmp1)) × γ (�body∆(p2)(tmp2)) × ..., ∀pi ∈ dom(
�
body∆). ⊢frm ⟨body∆(pi )(tmpi ), body∆ ⟩ }

where dom(
�
body∆) = { p1, p2, ... } ⊆ PredName.

Given this partial function, we can concretize a gradual formula and its gradual body function,

yielding a set of semantically precise self-framed formulas:

γ (⟨ϕ̃, �body∆ ⟩) = { ⟨θ, body∆ ⟩ | θ ∈ γ (ϕ̃), body∆ ∈ γ (�body∆), ⊢frm ⟨θ, body∆ ⟩ }

As before, Definition 6.3 allows us to give a natural (semantic) definition for formula precision:

Definition 6.4 (Precision of Formulas (continued)). ⟨ϕ̃1,�body1∆⟩ is more precise than ⟨ϕ̃2,�body2∆⟩,
written ⟨ϕ̃1,�body1∆⟩ ⊑ ⟨ϕ̃2,�body2∆⟩ if and only if γ (⟨ϕ̃1,�body1∆⟩) ⊆ γ (⟨ϕ̃2,�body2∆⟩).
6.4 Lifting Predicates
We lift predicates on formulas in SVLRP to handle gradual formulas in GVLRP such that they are

consistent liftings of corresponding SVLRP predicates. Following AGT [Garcia et al. 2016], the

consistent lifting P̃ ⊆ F̃ormula × F̃ormula of predicate P ⊆ Formula × Formula is defined as:
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P̃ (ϕ̃1, ϕ̃2)
def

⇐⇒ ∃ϕ1 ∈ γ (ϕ̃1), ϕ2 ∈ γ (ϕ̃2). P (ϕ1, ϕ2).

The existential in this definition expresses the optimistic nature of gradual semantics: we want a

gradual predicate to be true if there exists any interpetation of ? that makes the static version of

the predicate true.

Since we rely on an equi-recursive dynamic semantics for SVLRP and GVLRP and allow predicate

definitions to be imprecise, we now give a semantic definition of gradual formula evaluation:

Definition 6.5 (Consistent Formula Evaluation).
Let · �̃ · ⊆ Mem × (̃Formula × (PredName → Expr

∗ → F̃ormula)) be defined inductively as

⟨H, ρ, π ⟩ �E ⟨ϕ, body∆ ⟩ ⟨H, ρ, π ⟩ ⊢frmE ⟨ϕ, body∆ ⟩

⟨H, ρ, π ⟩ �̃ ⟨? ∗ ϕ, �body∆ ⟩
⟨H, ρ, π ⟩ �E ⟨θ, body∆ ⟩ ⟨H, ρ, π ⟩ ⊢frmE ⟨θ, body∆ ⟩

⟨H, ρ, π ⟩ �̃ ⟨θ, �body∆ ⟩
where body∆ = λp ∈ dom(

�
body∆). λe ∈ Expr

∗ . static(�body∆(p)(e))
and static : F̃ormula → Formula s.t. static(θ ) = θ and static(? ∗ ϕ) = ϕ .

Note that · �̃ · is a consistent lifting of · �E · (withγ from Def. 6.3). Our definition is conveniently

implementable for equi-recursive dynamic checking: it simply evaluates the static parts of predicates,

and ensures that any heap accesses touch only owned locations. For example, if acyclic’s body is ?

and l points to o, then acyclic(l) ∗ unfolding acyclic(l) in l.head != null evaluates to true

when o.head is owned and o.head , null. The static part of ? is true, so acyclic(l) is ignored.

Additionally, gradual formula evaluation depends on an equi-recursive framing judgment for

semantically precise formulas. The framing judgment ⟨H , ρ,π ⟩ ⊢frmE ϕ is defined similarly (re-

placing Π with π and iso-recursive formula evaluation with equi-recursive formula evaluation) to

its iso-recursive counterpart in SVLRP, except for FrmPred and FrmUnfolding. Equi-recursive

variants of these rules are:

∀i, ⟨H, ρ, π ⟩ ⊢frmE ei ⟨H, ρ, π ⟩ ⊢frmE bodyµ (p)(e1, ..., en )

⟨H, ρ, π ⟩ ⊢frmE p(e1, ..., en )

⟨H, ρ, π ⟩ ⊢frmE ϕ

⟨H, ρ, π ⟩ ⊢frmE unfolding p(e1, ..., en ) in ϕ

Then, a formula is said to be (equi-recursively) framed by permissions π if its complete unrolling

only mentions fields in π . For example, acyclic(l), where acyclic’s body is defined as in Figure 2,

is framed by π if π contains all of list l’s heap locations. We can also easily adjust the equi-recursive

framing judgment to pass around and use a body∆ context, as described in §6.3.

In contrast to gradual formula evaluation (Lemma 6.5), gradual formula implication is a consistent

lifting of SVLRP formula implication with the syntactic interpretation of gradual formulas given in

Definition 6.1. This is because SVLRP implication is defined iso-recursively, i.e. hides imprecision in

predicates. We give the definition for gradual formula implication in Lemma 6.6.

Definition 6.6 (Consistent Formula Implication).
Let · ⇒̃ · ⊆ F̃ormula × F̃ormula be defined inductively as

θ1 ⇒ static(ϕ̃2)

θ1 ⇒̃ ϕ̃2

ĨmplStatic

θ ∈ SatFormula θ ⇒ ϕ1 θ ⇒ static(ϕ̃2)

? ∗ ϕ1 ⇒̃ ϕ̃2

ĨmplGrad

Here also, · ⇒̃ · is a consistent lifting of · ⇒ · (with γ from Def. 6.3). For example, ? ⇒̃ ? ∗

acc(l.head) ∗ l.head != null because acc(l.head) ∗ l.head != null is satisfiable and implies the

static part of both sides of the implication.
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�WLP(if (e) { s1 } else { s2 }, ϕ̃) = α ({ max
⇒

{ ϕ′ ∈ SatFormula | ϕ′ ⇒ if e then θ1 else θ2 ∧

ϕ′ ⇒ acc(e ) ∧ ⊢frm ⟨ϕ′, body∆
′⟩ } | θ1 ∈ γ (�WLP(s1, ϕ̃)), θ2 ∈ γ (�WLP(s2, ϕ̃)),

body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ1, body∆′⟩, ⊢frm ⟨θ2, body∆′⟩ })�WLP(y := z.m(x), ϕ̃) = α ({ max

⇒
{ ϕ′ ∈ SatFormula | y < FV(ϕ′) ∧ ⊢frm ⟨ϕ′, body∆

′⟩ ∧

∃ϕf . ϕ′ ⇒ (z , null) ∗ θp [z/this, x/mparam(m)] ∗ ϕf ∧

ϕf ∗ θq [z/this, x/old(mparam(m)), y/result] ⇒ θ ∧ ⊢frm ⟨ϕf , body∆
′⟩ }

| θ ∈ γ (ϕ̃), θp ∈ γ (mpre(m)), θq ∈ γ (mpost(m)), body∆
′ ∈ γ (bodyµ ),

⊢frm ⟨θ, body∆′⟩, ⊢frm ⟨θp, body∆′⟩, ⊢frm ⟨θq, body∆′⟩ })�WLP(while (e) inv ϕ̃i { s }, ϕ̃) = α ({ max
⇒

{ ϕ′ ∈ SatFormula | ϕ′ ⇒ acc(e ) ∧ ⊢frm ⟨ϕ′, body∆
′⟩ ∧

∃ϕf . ϕ′ ⇒ θi ∗ ϕf ∧ xi < FV(ϕf ) ∧ ⊢frm ⟨ϕf , body∆
′⟩ ∧

ϕf ∗ (θi ∗ (e = false))[xi /yi ] ⇒ θ [xi /yi ] }

| θ ∈ γ (ϕ̃), θi ∈ γ (ϕ̃i ), body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ, body∆′⟩, ⊢frm ⟨θi , body∆′⟩ })

where yi are vars modified by the loop body s and xi are fresh�WLP(fold p(e), ϕ̃) = α ({ max
⇒

{ ϕ′ ∈ SatFormula | ϕ′ ∗ p(e) ⇒ θ ∧ ϕ′ ∗ p(e) ∈ SatFormula ∧

⊢frm ⟨ϕ′ ∗ body∆
′(p)(e), body∆′⟩ } ∗ body∆′(p)(e) ∈ SatFormula

| θ ∈ γ (ϕ̃), body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ, body∆′⟩ })

Fig. 14. GVLRP: Weakest liberal precondition calculus (select rules).

6.5 Lifting Functions
Functions that operate over formulas in SVLRP must also be lifted to handle gradual formulas in

GVLRP. The resulting GVLRP functions should approximate consistent liftings of corresponding

SVLRP functions. Following AGT [Garcia et al. 2016], given a partial function f : Formula ⇀

Formula, its consistent lifting f̃ : F̃ormula⇀ F̃ormula is defined as:

f̃ (ϕ̃) = α ({ f (ϕ) | ϕ ∈ γ (ϕ̃) }).

Notice, the definition of a consistent function lifting requires an abstraction function α , which given

a set of formulas produces the most precise gradual formula representing this set. We define α :

PFormula ⇀ F̃ormula asα(ϕ) = min
⊑

{ ϕ̃ ∈ F̃ormula | ϕ ⊆ γ (ϕ̃) }, e.g. α({acc(l1.head), acc(l1.head)∗

acc(l2.head)}) = ? ∗ acc(l1.head). Then, α clearly creates a Galois connection with γ from Def. 6.1.

Figure 14 shows select rules for �WLP (complete rules are in Appendix Fig. 26), which approximate

the consistent function lifting of WLP. Rules for method call, while loop, and if statements lift

the correspondingWLP rules with respect to two (while loop and if statements) or three (method

call statements) formula parameters instead of one formula parameter as in other rules. These

corresponding WLP rules rely on extra (often implicit) formula parameters that may be imprecise

in GVLRP, and therefore, must be accounted for in the lifting. Similarly, WLP implicitly exposes

predicate definitions in bodyµ through self-framing (§6.2) and in fold and unfold rules. In GVLRP,

predicate definitions may be imprecise, so non-sequence statementWLP rules are lifted with respect

to bodyµ . The �WLP rules are applied to a program in §3.1.

6.6 Lifting the Verification Judgment
We define static verification in GVLRP using lifted formula implication ( ⇒̃ , §6.4) and liftedWLP

(�WLP, §6.5):
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Definition 6.7 (Valid Method). A method with contract requires ϕ̃p ensures ϕ̃q , parameters x ,

and body s is considered valid if ϕ̃p ⇒̃ �WLP(s, ϕ̃q)[x/old(x)] holds.

Definition 6.8 (Valid Program). A program with entry point statement s is considered valid

if true ⇒̃ �WLP(s, true) holds, ϕ̃i ∧ acc(e) ∧ (e = true) ⇒̃ �WLP(r , ϕ̃i ∧ acc(e)) holds for all loops

with condition e , body r , and invariant ϕ̃i , and all methods are valid.

7 GVLRP: DYNAMIC SEMANTICS
A valid GVLRP program will plausibly remain valid during each step of execution. To ensure that it

does, the dynamic semantics of SVLRP are extended with runtime checks and considerations for

imprecise specifications.

7.1 Footprint Splitting
To split dynamic footprints at method calls and loop entries in GVLRP’s small-step semantics, we

use ⌊ϕ̃⌋π ,H,ρ :

⌊θ ⌋π ,H ,ρ = ⟨⟨ ⌊θ ⌋H ,ρ ⟩⟩π ,H ⌊? ∗ ϕ ⌋π ,H ,ρ = π

This definition relies on ⟨⟨ Π ⟩⟩π ,H : Permissions × DynFprint × Heap ⇀ DynFprint, which

returns the given dynamic footprint when any predicate bodies analyzed by the function are im-

precise. Otherwise, the function returns the dynamic footprint generated from unrolling predicates

in Π2
:

⟨⟨ Π ⟩⟩π ,H = { ⟨o, f ⟩ | ⟨o, f ⟩ ∈ Π} ∪ π ′

where π ′ =


π if ∃⟨p, v1, ..., vn ⟩ ∈ Π.∃ϕ ∈ Formula.bodyµ (p)(v1, ..., vn ) = ? ∗ ϕ
⟨⟨ Π′ ⟩⟩π ,H otherwise

for Π′ = ∪⟨p,v1, . . .,vn ⟩∈Π ⌊bodyµ (p)(v1, ..., vn )⌋H , []

Therefore, ⌊ϕ̃⌋π ,H,ρ returns the given dynamic footprint π when ϕ̃ is imprecise or contains nested im-

precision, and it returns a more precise dynamic footprint computed when ϕ̃ is semantically precise.

Example, if acyclic’s body is ?, then ⌊acyclic(l) ∗ unfolding acyclic(l) in l.head ! = null⌋π ,H,ρ
will return π . It will return all of list l’s heap locations when acyclic is defined as in Figures 2 & 5.

7.2 Small-Step Semantics
Wegive an augmented version of SVLRP’s small-step semantics ( · −̃→ · ⊆ State×(State∪{error}))
for GVLRP. We make considerations for imprecision and for runtime verification. Representative

rules are given in Figure 15 (complete rules are in Appendix Fig. 27).

Imprecision in Specifications. Method preconditions, postconditions, and loop invariants are now

checked with gradual formula evaluation (SsCall, SsCallFinish). Asserted formulas must also

be checked with gradual formula evaluation due to potentially hidden imprecision (SsAssert).

Additionally, we must ensure that introducing imprecision will not introduce a runtime error caused

by lack of accessibility (dynamic gradual guarantee, Prop. 8.6). Therefore, if a method precondition

in SsCall (or loop invariant) is imprecise or contains nested imprecision, then all owned heap

locations are forwarded from the call site to the callee (or loop body) for execution. Otherwise,

the call site’s owned heap locations can be precisely transferred to the callee (or loop body) as in

2
Note that ⟨⟨ Π ⟩⟩π ,H is a partial function, as it may not be well-defined if a predicate instance held in Π has an infinite

completely unrolling and no nested imprecise predicates.
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⟨H, ρ, π ⟩ �̃ ⟨? ∗ ϕ, bodyµ ⟩

⟨H, ⟨ρ, π , assert ϕ ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsAssert

method(m) = Tr m(T x ′) requires ϕ̃p ensures ϕ̃q { r }

H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v ρ′ = [this 7→ o, x ′ 7→ v, old(x ′) 7→ v]
π ′ = ⌊ϕ̃p ⌋π ,H ,ρ′ π ′ ⊆ π ⟨H, ρ′, π ′⟩ �̃ ⟨ϕ̃p, bodyµ ⟩

⟨H, ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ′, π ′, r ; skip⟩ · ⟨ρ, π \π ′, y := z.m(x) ; s ⟩ · S ⟩
SsCall

mpost(m) = ϕ̃q ⟨H, ρ′, π ′⟩ �̃ ⟨ϕ̃q, bodyµ ⟩ ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ′′, π ∪ π ′, s ⟩ · S ⟩
SsCallFinish

Fig. 15. GVLRP: Small-step semantics adjusted from Fig. 13 (select rules)

SVLRP. Heap locations held after the callee’s (or loop body’s) execution are returned as usual to the

call site.

Runtime Verification. Even for valid GVLRP programs, when specifications are imprecise the

formula evaluation premises in GVLRP’s small-step semantics are not guaranteed to hold. Therefore,

these premises are turned into runtime checks. If an assertion, accessibility predicate, method

precondition, method postcondition, or loop invariant does not hold in a program state where it

should, then program execution steps into a dedicated error state (extra rules illustrating this can

be found in the Appendix in Fig. 27).

8 PROPERTIES OF GVLRP
GVLRP is a sound gradually-verified language that conservatively extends SVLRP and adheres to

gradual guarantees. GVLRP is a conservative extension of SVLRP—meaning that GVLRP and SVLRP

coincide on fully precise programs—by construction following the Abstracting Gradual Typing

methodology [Bader et al. 2018; Garcia et al. 2016].

Soundness. Soundness for GVLRP is conceptually similar to soundness for SVLRP except that a

GVLRP program may step to a dedicated error state when runtime verification fails. We establish

soundness via progress and preservation.

Definition 8.1 (Valid State, Final State). We call the state ⟨H , ⟨ρn ,πn , sn⟩ · ... · ⟨ρ1,π1, s1⟩ · nil⟩ ∈
State valid if sn = s ; skip or skip for some s ∈ Stmt, si = s ′i ; skip for some s ′i ∈ Stmt

∀ . 1 ≤ i < n, and si = s1i ; s2i for some s1i , s
2
i ∈ Stmt where s1i is a method call or while loop

statement ∀ . 1 ≤ i < n. A stateψ is final ifψ = ⟨H , ⟨ρ,π , skip⟩ · nil⟩ for some H , ρ,π .

Proposition 8.2 (GVLRP Progress). Ifψ is a valid non-final state thenψ −̃→ψ ′ for someψ ′ or
ψ −̃→ error.

Proposition 8.3 (GVLRP Preservation). Ifψ is a valid state andψ −̃→ψ ′ for someψ ′ thenψ ′ is
a valid state.

Gradual Guarantees. GVLRP satisfies both the static and the dynamic gradual guarantees, origi-

nally formulated for gradual type systems [Siek et al. 2015], and first adapted to gradual verification

by Bader et al. [2018]. These properties ensure in GVLRP that decreasing the precision of specifica-

tions never breaks the verifiability and reducibility of a program, i.e. losing precision is harmless.

These properties rely on a notion of precision for programs. We say a program p1 is more precise

than program p2 (p1 ⊑ p2) if 1) p1 and p2 are equivalent except in terms of contracts, loop invariants,

and/or predicate definitions, and 2)p1’s contracts, loop invariants, and predicate definitions are more

precise than p2’s corresponding contracts, loop invariants, and predicate definitions. A contract
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requires ϕ̃1
p ensures ϕ̃1

q is more precise than contract requires ϕ̃2
p ensures ϕ̃2

q if ϕ̃1
p ⊑ ϕ̃2

p and

ϕ̃1
q ⊑ ϕ̃2

q . Similarly, a loop invariant (predicate definition) ϕ̃1
i is more precise than loop invariant

(predicate definition) ϕ̃2
i if ϕ̃1

i ⊑ ϕ̃2
i .

Using this notion of program precision, the static gradual guarantee can now be stated as follows:

Proposition 8.4 (GVLRP Static gradual guarantee).

Let p1,p2 ∈ Program such that p1 ⊑ p2. If p1 is valid then p2 is valid.

In general, the static gradual guarantee ensures that reducing the precision of specifications

never breaks static verification (i.e. makes a valid program invalid).

For the dynamic gradual guarantee, the fact that footprint tracking and splitting is influenced by

increasing imprecision (i.e. increasing imprecision results in larger parts of footprints being passed

up the stack) means that we must define an asymmetric state precision relation .:

Definition 8.5 (State Precision). Let ψ1,ψ2 ∈ State. Then ψ1 is more precise than ψ2, written

ψ1 . ψ2, if and only if all of the following applies:

a)ψ1 andψ2 have stacks of size n and identical heaps.

b)ψ1 andψ2 have stacks of variable environments that are identical.

c) Let s11..n and s21..n be the stack of statements of ψ1 and ψ2, respectively. Then for 1 ≤ i ≤ n,
s1i ⊑ s2i :
s ⊑ s ′ if and only if s is a fold or unfold statement and s ′ is a skip statement or equal to s ,

s = while (e) inv ϕ̃i { r } and s
′ = while (e) inv ϕ̃ ′

i { r } where ϕ̃i ⊑ ϕ̃ ′
i ,

s = sc1 ; sc2 and s ′ = s ′c1 ; s
′
c2 where sc1 ⊑ s ′c1 and sc2 ⊑ s ′c2 , or s = s

′
.

d) Let π1
1..n and π2

1..n be the stack of footprints ofψ1 andψ2, respectively. Then the following holds

for 1 ≤ m ≤ n:
n⋃

i=m

π1
i ⊆

n⋃
i=m

π2
i

Additionally, as long as it does not break the static gradual guarantee, we allow increased

imprecision through dropped fold and unfold statements from one program to the next. This is

reflected in condition c) in Definition 8.5 and an adjusted program precision definition ⊑d . That

is, a program p1 is more precise than a program p2 if 1) the programs are equivalent except for in

terms of contracts, loop invariants, and/or predicate definitions and fold and unfold statements in

p1 may be replaced with skip statements in p2, and 2) p1’s contracts, loop invariants, and predicate

definitions are more precise than p2’s corresponding contracts, loop invariants, and predicate

definitions. Now, the dynamic gradual guarantee can be given:

Proposition 8.6 (GVLRP Dynamic gradual guarantee).

Let p1,p2 ∈ Program such that p1 ⊑d p2, andψ1,ψ2 ∈ State such thatψ1 . ψ2.
Ifψ1 −̃→p1 ψ

′
1, thenψ2 −̃→p2 ψ

′
2, withψ

′
1 . ψ ′

2.

Since GVLRP adheres to the dynamic gradual guarantee, reducing the precision of specifications

and/or dropping fold and unfold statements does not affect the program’s observable behavior.

9 RELATEDWORK
Wehave already discussed themost-closely related research, including the underlying logics [Parkin-

son and Bierman 2005; Reynolds 2002; Smans et al. 2009] and foundational work on gradual typing

and gradual verification [Bader et al. 2018; Garcia et al. 2016; Siek and Taha 2007, 2006; Siek et al.

2015]. The contribution of this work compared to [Bader et al. 2018] is to identify and solve key

technical challenges related to recursive heap data structures, namely semantically connecting
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iso- and equi-recursive interpretations of abstract predicates, and dynamically checking heap

ownership.

Lehmann and Tanter [2017] extend the gradual typing paradigm to logical specifications in the

form of refinement types. Their language setting is quite different from the one considered here:

they deal with higher-order, purely functional programs, while we deal with first-order imperative

programs. Therefore they do not have to consider heap ownership. Also, they do not deal with

abstract recursive predicates. Combining both approaches in order to account for higher-order

stateful programs is a challenging venue for future work.

Prior work on gradual typestate [Garcia et al. 2014; Wolff et al. 2011] and gradual owner-

ship [Sergey and Clarke 2012] integrates static and dynamic checking of ownership of heap data

structures. Neither of these efforts considered verifying logical assertions. Both predate the AGT

framework that guided our design [Garcia et al. 2016], and the formulation of the gradual guaran-

tees Siek et al. [2015]; it is unclear whether these guarantees are hold in these proposals.

Nguyen et al. [2008] leveraged static information to reduce the overhead of their runtime checking

approach for separation logic. They do not try to report static verification failures, because their

technique cannot not distinguish between failures due to inconsistent specifications and failures

due to incomplete specifications. Also, their runtime checking approach forces developers to specify

matching heap footprints in pre- and postconditions to avoid false negatives.

There is also related work focused on making static verification more usable. In particular, Furia

and Meyer [2010] infer candidate loop invariants by using heuristics to weaken postconditions into

invariants. Their approach cannot infer invariants not expressible as weakenings of postconditions;

in contrast, our work can always insert run-time checks where specifications are insufficient

for static verification. Additionally, developers can use Dafny’s [Leino 2010] assume and assert
statements to debug specifications similar to how they debug programs with print statements [Lucio

2017]. Unlike gradual verification, this approach does not reduce specification burden and requires

manual elicitation of missing specifications needed for verification. Similarly, StaDy [Petiot et al.

2014] relies on a combination of static and dynamic analysis techniques to aide developers with

debugging specifications. But, it does not reduce specification burden and does not support recursive

data structures. Several tools (Smallfoot [Berdine et al. 2005], jStar [Distefano and Parkinson J 2008],

Chalice [Leino et al. 2009]) rely on heuristics to infer fold and unfold statements for verification.

Incorporating these heuristics in our setting may be challenging due to imprecise specifications,

but it is a promising direction for future work.

10 CONCLUSION
Gradual verification is a promising way to enable more incrementality in proofs of programs:

developers can focus on the most critical specifications first, benefiting from a combination of

static and dynamic checking, and increase the scope of verification over time. By extending sound

gradual verification to support programs that manipulate recursive heap data structures, we lay

the groundwork for the application of these ideas to realistic programs. Our paper describes how

we overcame several key technical challenges, including the semantics of imprecise formulas in

the presence of accessibility predicates and recursive predicates, and consistency between iso-

recursive static checking and equi-recursive dynamic checking. This opens the door to future work

developing prototype gradual verifiers based on our theory, and exploring practical questions such

as the efficiency of run-time verification in this setting.
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A APPENDIX
A.1 Full gradual verification examples

1 class Node { int val; Node next; }

2

3 class List {

4 Node head;

5

6 predicate acyclic(List l) = ?

7

8 void insertLast(int val)

9 requires acyclic(this)

10 ensures acyclic(this)

11 {

12 acyclic(this) ⇒̃ ? ∗ acyclic(this)

13 ? ∗ acyclic(this)

14 unfold acyclic(this);

15 ? ⇒̃ ? ∗ acc(this.head)

16 ? ∗ acc(this.head)

17 if (this.head == null) {

18 ? ∗ acc(this.head)

19 this.head = new Node(val ,null);

20 ?

21 fold acyclic(this);

22 acyclic(this)

23 } else {

24 ? ∗ this != null ∗ this.head != null

25 fold acyclic(this);

26 this != null ∗ acyclic(this) ∗

27 unfolding acyclic(this) in

28 this.head != null

29 insertLastHelper(val);

30 acyclic(this)

31 }

32 acyclic(this)

33 }

34 void insertLastHelper(int val)

35 requires acyclic(this) ∗

36 unfolding acyclic(this) in

37 this.head != null

38 ensures acyclic(this)

39 {

40 acyclic(this) ∗ unfolding acyclic(this) in

41 this.head != null

42 ⇒̃ ? ∗ acyclic(this)

43 ? ∗ acyclic(this)

44 unfold acyclic(this);

45 ? ⇒̃ ? ∗ acc(this.head) ∗

46 this.head != null ∗ acc(this.head.next)

47 ? ∗ acc(this.head) ∗ this.head != null ∗

48 acc(this.head.next)

49 Node y = this.head;

50 ? ∗ y != null ∗ acc(y.next)

51 while (y.next != null)

52 invariant ? ∗ y != null

53 {

54 ? ∗ y != null ∗ y.next != null ∗

55 acc(y.next) ⇒̃ ? ∗ acc(y.next.next)

56 ∗ acc(y.next) ∗ y.next != null

57 ? ∗ acc(y.next.next) ∗ acc(y.next) ∗

58 y.next != null

59 y = y.next;

60 ? ∗ y != null ∗ acc(y.next)

61 }

62 ? ∗ y != null ∗ y.next == null

63 ⇒̃ ? ∗ acc(y.next)

64 ? ∗ acc(y.next)

65 y.next = new Node(val ,null);

66 ?

67 fold acyclic(this);

68 acyclic(this)

69 }

70 }

� Intermediate condition produced by �WLP � Dynamically checked right side of ⇒̃

� Left side of ⇒̃ � Statically checked right side of ⇒̃

Fig. 16. The gradual verification of Figure 3.
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1 class Node { int val; Node next; }

2

3 class List {

4 Node head;

5

6 predicate acyclic(List l) =

7 acc(l.head) ∗ listSeg(l.head , null)

8

9 predicate listSeg(Node from , Node to) =

10 if (from == to) then true else

11 acc(from.val) * acc(from.next)

12 * listSeg(from.next , to)

13

14 void insertLast(int val)

15 requires acyclic(this)

16 ensures acyclic(this)

17 {

18 acyclic(this) ⇒ acyclic(this)

19 acyclic(this)

20 unfold acyclic(this);

21 acc(this.head) ∗ if this.head == null then true

22 else listSeg(this.head, null)

23 if (this.head == null) {

24 acc(this.head)

25 this.head = new Node(val ,null);

26 acc(this.head) ∗ acc(this.head.val) ∗

27 acc(this.head.next) ∗

28 if (this.head.next == null) then true

29 else ...

30 fold listSeg(this.head.next , null);

31 acc(this.head) ∗ if (this.head == null) then true

32 else acc(this.head.val) ∗ acc(this.head.next)

33 ∗ listSeg(this.head.next, null)

34 fold listSeg(this.head , null);

35 acc(this.head) ∗ listSeg(this.head, null)

36 fold acyclic(this);

37 acyclic(this)

38 } else {

39 acc(this.head) ∗ listSeg(this.head, null) ∗

40 this != null ∗ this.head != null

41 fold acyclic(this);

42 this != null ∗ acyclic(this) ∗

43 unfolding acyclic(this) in

44 this.head != null

45 insertLastHelper(val);

46 ? ⇒̃ acyclic(this)

47 acyclic(this)

48 }

49 }

50 void insertLastHelper(int val)

51 requires acyclic(this) ∗

52 unfolding acyclic(this) in

53 this.head != null

54 ensures ?

55 {

56 acyclic(this) ∗ unfolding acyclic(this) in

57 this.head != null ⇒̃

58 ? ∗ acyclic(this) ∗ unfolding acyclic(this)

59 in this.head != null

60 ? ∗ acyclic(this) ∗ unfolding acyclic(this)

61 in this.head != null

62 unfold acyclic(this);

63 ? ∗ acc(this.head) ∗ this.head != null ∗

64 listSeg(this.head, null)

65 Node y = this.head;

66 ? ∗ y != null ∗ listSeg(y, null)

67 unfold listSeg(y, null);

68 ? ∗ y != null ∗ acc(y.val) ∗ acc(y.next) ∗

69 listSeg(y.next, null)

70 while (y.next != null)

71 invariant y != null ∗ acc(y.val) ∗

72 acc(y.next) ∗ listSeg(y.next , null)

73 {

74 (y != null ∗ acc(y.val) ∗ acc(y.next) ∗

75 listSeg(y.next, null)) ∧ y.next != null

76 ⇒ acc(y.next) ∗ y.next != null ∗

77 ⇒ listSeg(y.next, null)

78 acc(y.next) ∗ listSeg(y.next, null) ∗

79 y.next != null

80 y = y.next;

81 listSeg(y, null) ∗ y != null

82 unfold listSeg(y, null);

83 y != null ∗ acc(y.val) ∗ acc(y.next) ∗

84 listSeg(y.next, null)

85 }

86 ? ∗ acc(y.next)

87 y.next = new Node(val ,null);

88 ?

89 }

90 }

� Intermediate condition produced by �WLP � Dynamically checked right side of ⇒̃

� Left side of ⇒̃ � Statically checked right side of ⇒̃

Fig. 17. The gradual verification of Figure 5.
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A.2 SVLRP
A.2.1 Formula Semantics.

H, ρ ⊢ v ⇓ v
EVal

H, ρ ⊢ x ⇓ ρ(x )
EVar

H, ρ ⊢ e ⇓ o H (o) = ⟨C, l ⟩

H, ρ ⊢ e .f ⇓ l (f )
EvField

H, ρ ⊢ e1 ⇓ v1 H, ρ ⊢ e2 ⇓ v2

H, ρ ⊢ e1 ⊕ e2 ⇓ v1 ⊕ v2

EvOp

H, ρ ⊢ e1 ⇓ v1 H, ρ ⊢ e2 ⇓ v2

H, ρ ⊢ e1 ⊙ e2 ⇓ v1 ⊙ v2

EvComp

Fig. 18. SVLRP: Expression dynamic semantics

⟨H, ρ, π ⟩ �E true
EvTrueExpr

H, ρ ⊢ e1 ⊙ e2 ⇓ true

⟨H, ρ, π ⟩ �E e1 ⊙ e2
EvCompExpr

H, ρ ⊢ e ⇓ o H, ρ ⊢ e.f ⇓ v ⟨o, f ⟩ ∈ π

⟨H, ρ, π ⟩ �E acc(e.f)
EvAcc

⟨H, ρ, π ⟩ �E ϕ1 ⟨H, ρ, π ⟩ �E ϕ2

⟨H, ρ, π ⟩ �E ϕ1 ∧ ϕ2

EvAndOp

⟨H, ρ, π1 ⟩ �E ϕ1 ⟨H, ρ, π2 ⟩ �E ϕ2

⟨H, ρ, π1 ⊎ π2 ⟩ �E ϕ1 ∗ ϕ2

EvSepOp

H, ρ ⊢ e1 ⇓ v1 ... H, ρ ⊢ en ⇓ vn ⟨H, ρ, π ⟩ �E bodyµ (p)(e1, ..., en )

⟨H, ρ, π ⟩ �E p(e1,...,en)
EvPred

H, ρ ⊢ e ⇓ true ⟨H, ρ, π ⟩ �E ϕT
⟨H, ρ, π ⟩ �E if e then ϕT else ϕF

EvCondTrue

H, ρ ⊢ e ⇓ false ⟨H, ρ, π ⟩ �E ϕF
⟨H, ρ, π ⟩ �E if e then ϕT else ϕF

EvCondFalse

⟨H, ρ, π ⟩ �E ϕ

⟨H, ρ, π ⟩ �E unfolding p(e1, ..., en ) in ϕ
EvUnfolding

Fig. 19. SVLRP: Formula evaluation
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⟨H, ρ, Π⟩ ⊢frmI v
FrmVal

⟨H, ρ, Π⟩ ⊢frmI x
FrmVar

⟨H, ρ, Π⟩ ⊢frmI e1 ⟨H, ρ, Π⟩ ⊢frmI e2
⟨H, ρ, Π⟩ ⊢frmI e1 ⊕ e2

FrmOp

⟨H, ρ, Π⟩ ⊢frmI e1 ⟨H, ρ, Π⟩ ⊢frmI e2
⟨H, ρ, Π⟩ ⊢frmI e1 ⊙ e2

FrmComp

⟨H, ρ, Π⟩ �I acc(e.f) ⟨H, ρ, Π⟩ ⊢frmI e

⟨H, ρ, Π⟩ ⊢frmI e.f
FrmField

⟨H, ρ, Π⟩ ⊢frmI e

⟨H, ρ, Π⟩ ⊢frmI acc(e.f)
FrmAcc

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ⟨H, ρ, Π⟩ ⊢frmI ϕ2

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ∧ ϕ2

FrmAndOp

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ⟨H, ρ, Π⟩ ⊢frmI ϕ2

⟨H, ρ, Π⟩ ⊢frmI ϕ1 ∗ ϕ2

FrmSepOp

⟨H, ρ, Π⟩ ⊢frmI e1 ... ⟨H, ρ, Π⟩ ⊢frmI en
⟨H, ρ, Π⟩ ⊢frmI p(e1,...,en)

FrmPred

⟨H, ρ, Π⟩ ⊢frmI e H, ρ ⊢ e ⇓ true ⟨H, ρ, Π⟩ ⊢frmI ϕT
⟨H, ρ, Π⟩ ⊢frmI if e then ϕT else ϕF

FrmCondTrue

⟨H, ρ, Π⟩ ⊢frmI e H, ρ ⊢ e ⇓ false ⟨H, ρ, Π⟩ ⊢frmI ϕF
⟨H, ρ, Π⟩ ⊢frmI if e then ϕT else ϕF

FrmCondFalse

⟨H, ρ, Π⟩ �I p(e1,...,en) ⟨H, ρ, Π⟩ ⊢frmI e1 ... ⟨H, ρ, Π⟩ ⊢frmI en
⟨H, ρ, Π′⟩ ⊢frmI ϕ Π′ = Π ∪ ⌊bodyµ (p)(e1, ..., en )⌋H ,ρ

⟨H, ρ, Π⟩ ⊢frmI unfolding p(e1, ..., en ) in ϕ
FrmUnfolding

Fig. 20. SVLRP: Framing

A.2.2 Static Verification.

acc(v ) = true

acc(x ) = true

acc(e1 ⊙ e2) = acc(e1) ∧ acc(e2)

acc(e1 ⊕ e2) = acc(e1) ∧ acc(e2)

acc(e .f ) = acc(e ) ∧ acc(e.f)

Fig. 21. acc(e) : Expr → Formula
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WLP(skip, θ ) = θ

WLP(s1 ; s2, θ ) =WLP(s1, WLP(s2, θ ))

WLP(T x, θ ) =

{
θ if x < FV(θ )
undefined otherwise

WLP(if (e) { s1 } else { s2 }, θ ) = max
⇒

{ θ ′ | θ ′ ⇒ if e then WLP(s1, θ ) else WLP(s2, θ ) ∧

θ ′ ⇒ acc(e ) }

WLP(x := e, θ ) = max
⇒

{ θ ′ | θ ′ ⇒ θ [e/x ] ∧ θ ′ ⇒ acc(e ) }

WLP(while (e) inv θi { s }, θ ) = max
⇒

{ θ ′ | θ ′ ⇒ acc(e ) ∧ ∃θf . θ ′ ⇒ θi ∗ θf ∧ xi < FV(θf ) ∧

θf ∗ (θi ∗ (e = false))[xi /yi ] ⇒ θ [xi /yi ] }

where yi are variables modified by the loop body s

and xi are fresh logical variables

WLP(x.f := y, θ ) = acc(x.f) ∧ θ [y/x .f ]

WLP(x := new C, θ ) = max
⇒

{ θ ′ | x < FV(θ ′) ∧

θ ′ ∗ x , null ∗ x , ei ∗ acc(x .fi ) ∗ x .fi = defaultValue(Ti ) ⇒ θ }

where fields(C) = Ti fi and x , ei is a conjunctive term in θ

WLP(y := z.m(x), θ ) = max
⇒

{ θ ′ | y < FV(θ ′) ∧

∃θf . θ ′ ⇒ (z , null) ∗ mpre(m)[z/this, x/mparam(m)] ∗ θf ∧

θf ∗ mpost(m)[z/this, x/old(mparam(m)), y/result] ⇒ θ }

WLP(assert ϕa, θ ) = max
⇒

{ θ ′ | θ ′ ⇒ θ ∧ θ ′ ⇒ ϕa }

WLP(fold p(e1,...,en), θ ) = max
⇒

{ ϕ′ | ϕ′ ∗ p(e1,...,en) ⇒ θ ∧ ϕ′ ∗ p(e1,...,en) ∈ SatFormula ∧

ϕ′ ∗ bodyµ (p)(e1, ..., en ) ∈ SfrmFormula } ∗ bodyµ (p)(e1, ..., en )

if this result exists and is satisfiable, undefined otherwise

WLP(unfold p(e1,...,en), θ ) = max
⇒

{ ϕ′ | ϕ′ ∗ bodyµ (p)(e1, ..., en ) ⇒ θ ∧

ϕ′ ∗ bodyµ (p)(e1, ..., en ) ∈ SatFormula ∧

ϕ′ ∗ p(e1,...,en) ∈ SfrmFormula } ∗ p(e1,...,en)

if this result exists and is satisfiable, undefined otherwise

Fig. 22. SVLRP: Weakest liberal precondition calculus
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A.2.3 Dynamic Semantics.

⟨H, ⟨ρ, π , skip⟩ · nil ⟩ final
SsSkipFin

⟨H, ⟨ρ, π , skip ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsSkip

⟨H, ⟨ρ, π , T x ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsDeclare

⟨H, ρ, π ⟩ �E ϕ

⟨H, ⟨ρ, π , assert ϕ ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsAssert

⟨H, ρ, π ⟩ �E acc(x.f) H, ρ ⊢ y ⇓ v H ′ = H [o 7→ [f 7→ v]]

⟨H, ⟨ρ, π , x.f := y ; s ⟩ · S ⟩ −→ ⟨H ′, ⟨ρ, π , s ⟩ · S ⟩
SsFAssign

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π , x := e ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′, π , s ⟩ · S ⟩
SsAssign

o < dom(H ) fields(C ) = Ti fi; H ′ = H [o 7→ [fi 7→ defaultValue(Ti )]]

⟨H, ⟨ρ, π , x := new C ; s ⟩ · S ⟩ −→ ⟨H ′, ⟨ρ[x 7→ o], π ∪ ⟨o, fi ⟩, s ⟩ · S ⟩
SsAlloc

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ true

⟨H, ⟨ρ, π , if (e) { s1 } else { s2 } ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s1 ; s ⟩ · S ⟩
SsIfTrue

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ false

⟨H, ⟨ρ, π , if (e) { s1 } else { s2 } ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s2 ; s ⟩ · S ⟩
SsIfFalse

Fig. 23. SVLRP: Small-step semantics
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method(m) = Tr m(T x ′) requires θp ensures θq { r } H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v
ρ′ = [this 7→ o, x ′ 7→ v, old(x ′) 7→ v] π ′ = ⟨⟨ ⌊θp ⌋H ,ρ′ ⟩⟩H π ′ ⊆ π ⟨H, ρ′, π ′⟩ �E θp

⟨H, ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′, π ′, r ; skip⟩ · ⟨ρ, π \π ′, y := z.m(x) ; s ⟩ · S ⟩
SsCall

mpost(m) = θq ⟨H, ρ′, π ′⟩ �E θq ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ′′, π ∪ π ′, s ⟩ · S ⟩
SsCallFinish

⟨H, ρ, π ⟩ �E θi ⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ false

⟨H, ⟨ρ, π , while (e) inv θi { r } ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsWhileFalse

⟨H, ρ, π ⟩ �E θi ⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ true
π ′ = ⟨⟨ ⌊θi ⌋H ,ρ ⟩⟩H

⟨H, ⟨ρ, π , while (e) inv θi { r } ; s ⟩ · S ⟩
−→

⟨H, ⟨ρ, π ′, r ; skip⟩ · ⟨ρ, π \π ′, while (e) inv θi { r } ; s ⟩ · S ⟩

SsWhileTrue

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , while (e) inv θi { r } ; s ⟩ · S ⟩
−→

⟨H, ⟨ρ′, π ∪ π ′, while (e) inv θi { r } ; s ⟩ · S ⟩

SsWhileFinish

⟨H, ⟨ρ, π , fold p(e1,...,en) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsFold

⟨H, ⟨ρ, π , unfold p(e1,...,en) ; s ⟩ · S ⟩ −→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsUnfold

Fig. 23. SVLRP: Small-step semantics (continued)

A.2.4 Weakest Precondition across stack frames. The formal statement of soundness relies on an

extended definition ofWLP given in Figure 24. It is used to validate arbitrary intermediate program

states (Def. 5.6), and in particular, program states with multiple stack frames. sWLP accepts a stack

of statements and postcondition θ and returns a stack of preconditions by recursively picking up

the postconditions of methods or loop invariants of loops. sWLP relies on sWLP
θf

to weaken each

precondition in the stack except the top-most one. A precondition is weakened by ensuring its

accessibility predicates and predicate instances are disjoint from those inθf . Effectively,θf represents
the implicit frame of the executing method or loop, so ownership given by θf is withdrawn from

the call site aligning with SVLRP’s runtime semantics.

For example, imagine a program state with a lower stack frame i having a WLP of acc(x.f) ∗

(x.f = 3). Assume that access to x.f was passed up the call stack (i.e. it was demanded by the

preconditions of called methods or invariants of executing loops), so currently executing statements

can change the value of x.f. As a result, ⟨H , ρi ,πi ⟩ �E sWLPi (sn · ... · s1 · nil, true) is violated.

sWLP(s · nil, θ ) =WLP(s, θ ) · nil

sWLP(s · (y := z.m(x) ; s′) · s, θ ) =WLP(s, mpost(m)) ·

sWLP
mpre(m)[z/this,x/mparam(m)]((y := z.m(x) ; s′) · s, θ )

sWLP(s · (while (e) inv θi { r } ; s′) · s, θ ) =WLP(s, θi ) · sWLP
θi ((while (e) inv θi { r } ; s′) · s, θ )

where sWLP
θf (s, θ ) = min

⇒
{ θ ′n | θn ⇒ θf ∗ θ ′n } · θn−1 · ... · θ1 · nil

and θn · θn−1 · ... · θ1 · nil = sWLP(s, θ )

Fig. 24. Heap aware weakest liberal precondition across multiple stack frames
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We solve this problem by making sure that the stack frame does not have a WLP of acc(x.f) ∗

(x.f = 3) if it is currently buried under other stack frames that own x.f.

A.3 GVLRP
A.3.1 Framing.

TotalFP(v, H, ρ) = ∅

TotalFP(x, H, ρ) = ∅

TotalFP(e1 ⊙ e2, H, ρ) = TotalFP(e1, H, ρ) ∪ TotalFP(e2, H, ρ)

TotalFP(e1 ⊕ e2, H, ρ) = TotalFP(e1, H, ρ) ∪ TotalFP(e2, H, ρ)

TotalFP(e .f , H, ρ) = TotalFP(e, H, ρ) ∪ { ⟨o, f ⟩ |H, ρ ⊢ e ⇓ o }

TotalFP(acc(e.f), H, ρ) = TotalFP(e .f , H, ρ)

TotalFP(ϕ1 ∧ ϕ2, H, ρ) = TotalFP(ϕ1, H, ρ) ∪ TotalFP(ϕ2, H, ρ)

TotalFP(ϕ1 ∗ ϕ2, H, ρ) = TotalFP(ϕ1, H, ρ) ∪ TotalFP(ϕ2, H, ρ)

TotalFP(p(e1, ..., en ), H, ρ) = TotalFP(e1, H, ρ) ∪ ... ∪ TotalFP(en, H, ρ) ∪

{ ⟨p, v1, ..., vn ⟩ |H, ρ ⊢ e1 ⇓ v1, ..., H, ρ ⊢ en ⇓ vn }

TotalFP(if e then ϕ1 else ϕ2, H, ρ) =


TotalFP(e, H, ρ) ∪ TotalFP(ϕ1, H, ρ) if H, ρ ⊢ e ⇓ true

TotalFP(e, H, ρ) ∪ TotalFP(ϕ2, H, ρ) if H, ρ ⊢ e ⇓ false

∅ otherwise

TotalFP(unfolding p(e1, ..., en ) in ϕ, H, ρ) = TotalFP(p(e1, ..., en ), H, ρ) ∪ TotalFP(ϕ, H, ρ)

Fig. 25. Definition of the TotalFP function.
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A.3.2 Lifting functions.

�WLP(s1 ; s2, ϕ̃) =�WLP(s1,�WLP(s2, ϕ̃))�WLP(if (e) { s1 } else { s2 }, ϕ̃) = α({ max
⇒

{ ϕ ′ ∈ SatFormula | ϕ ′ ⇒ if e then θ1 else θ2 ∧

ϕ ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ ′, body∆
′⟩ } | θ1 ∈ γ (�WLP(s1, ϕ̃)),θ2 ∈ γ (�WLP(s2, ϕ̃)),

body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ1, body∆

′⟩, ⊢frm ⟨θ2, body∆
′⟩ })�WLP(y := z.m(x), ϕ̃) = α({ max

⇒
{ ϕ ′ ∈ SatFormula | y < FV(ϕ ′) ∧ ⊢frm ⟨ϕ ′, body∆

′⟩ ∧

∃ϕf . ϕ ′ ⇒ (z , null) ∗ θp [z/this,x/mparam(m)] ∗ ϕf ∧

ϕf ∗ θq [z/this,x/old(mparam(m)),y/result] ⇒ θ ∧ ⊢frm ⟨ϕf , body∆
′⟩ }

| θ ∈ γ (ϕ̃), θp ∈ γ (mpre(m)), θq ∈ γ (mpost(m)), body∆
′ ∈ γ (bodyµ ),

⊢frm ⟨θ , body∆
′⟩, ⊢frm ⟨θp , body∆

′⟩, ⊢frm ⟨θq , body∆
′⟩ })�WLP(while (e) inv ϕ̃i { s }, ϕ̃) = α({ max

⇒
{ ϕ ′ ∈ SatFormula | ϕ ′ ⇒ acc(e) ∧ ⊢frm ⟨ϕ ′, body∆

′⟩ ∧

∃ϕf . ϕ ′ ⇒ θi ∗ ϕf ∧ xi < FV(ϕf ) ∧ ⊢frm ⟨ϕf , body∆
′⟩ ∧

ϕf ∗ (θi ∗ (e = false))[xi/yi ] ⇒ θ [xi/yi ] }

| θ ∈ γ (ϕ̃), θi ∈ γ (ϕ̃i ), body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ , body∆

′⟩, ⊢frm ⟨θi , body∆
′⟩ })

where yi are vars modified by the loop body s and xi are fresh�WLP(fold p(e), ϕ̃) = α({ max
⇒

{ ϕ ′ ∈ SatFormula | ϕ ′ ∗ p(e) ⇒ θ ∧ ϕ ′ ∗ p(e) ∈ SatFormula ∧

⊢frm ⟨ϕ ′ ∗ body∆
′(p)(e), body∆

′⟩ } ∗ body∆
′(p)(e) ∈ SatFormula

| θ ∈ γ (ϕ̃), body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ , body∆

′⟩ })�WLP(unfold p(e), ϕ̃) = α({ max
⇒

{ ϕ ′ ∈ SatFormula | ϕ ′ ∗ body∆
′(p)(e) ⇒ θ ∧

ϕ ′ ∗ body∆
′(p)(e) ∈ SatFormula ∧ ⊢frm ⟨ϕ ′ ∗ p(e), body∆

′⟩ } ∗ p(e) ∈ SatFormula

| θ ∈ γ (ϕ̃), body∆
′ ∈ γ (bodyµ ), ⊢frm ⟨θ , body∆

′⟩ })�WLP(s, ϕ̃) = α({ WLP(s,θ , body∆
′) | θ ∈ γ (ϕ̃), body∆

′ ∈ γ (bodyµ ), ⊢frm ⟨θ , body∆
′⟩ }) otherwise

Fig. 26. GVLRP: Weakest liberal precondition calculus.
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A.3.3 Dynamic semantics.

⟨H, ⟨ρ, π , skip⟩ · nil ⟩ final
SsSkipFin

⟨H, ⟨ρ, π , skip ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsSkip

⟨H, ⟨ρ, π , T x ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsDeclare

⟨H, ρ, π ⟩ �̃ ⟨? ∗ ϕ, bodyµ ⟩

⟨H, ⟨ρ, π , assert ϕ ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsAssert

⟨H, ρ, π ⟩ 2̃ ⟨? ∗ ϕ, bodyµ ⟩

⟨H, ⟨ρ, π , assert ϕ ; s ⟩ · S ⟩ −̃→ error
SsAssertError

⟨H, ρ, π ⟩ �E acc(x.f) H, ρ ⊢ y ⇓ v H ′ = H [o 7→ [f 7→ v]]

⟨H, ⟨ρ, π , x.f := y ; s ⟩ · S ⟩ −̃→ ⟨H ′, ⟨ρ, π , s ⟩ · S ⟩
SsFAssign

⟨H, ρ, π ⟩ 2E acc(x.f)

⟨H, ⟨ρ, π , x.f := y ; s ⟩ · S ⟩ −̃→ error
SsFAssignError

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ v ρ′ = ρ[x 7→ v]

⟨H, ⟨ρ, π , x := e ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ′, π , s ⟩ · S ⟩
SsAssign

⟨H, ρ, π ⟩ 2E acc(e )

⟨H, ⟨ρ, π , x := e ; s ⟩ · S ⟩ −̃→ error
SsAssignError

o < dom(H ) fields(C ) = Ti fi; H ′ = H [o 7→ [fi 7→ defaultValue(Ti )]]

⟨H, ⟨ρ, π , x := new C ; s ⟩ · S ⟩ −̃→ ⟨H ′, ⟨ρ[x 7→ o], π ∪ ⟨o, fi ⟩, s ⟩ · S ⟩
SsAlloc

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ true

⟨H, ⟨ρ, π , if (e) { s1 } else { s2 } ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s1 ; s ⟩ · S ⟩
SsIfTrue

⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ false

⟨H, ⟨ρ, π , if (e) { s1 } else { s2 } ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s2 ; s ⟩ · S ⟩
SsIfFalse

⟨H, ρ, π ⟩ 2E acc(e )

⟨H, ⟨ρ, π , if (e) { s1 } else { s2 } ; s ⟩ · S ⟩ −̃→ error
SsIfError

Fig. 27. GVLRP: Small-step semantics adjusted from Fig. 23 for gradual formulas
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method(m) = Tr m(T x ′) requires ϕ̃p ensures ϕ̃q { r } H, ρ ⊢ z ⇓ o H, ρ ⊢ x ⇓ v
ρ′ = [this 7→ o, x ′ 7→ v, old(x ′) 7→ v] π ′ = ⌊ϕ̃p ⌋π ,H ,ρ′ π ′ ⊆ π ⟨H, ρ′, π ′⟩ �̃ ⟨ϕ̃p, bodyµ ⟩

⟨H, ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ′, π ′, r ; skip⟩ · ⟨ρ, π \π ′, y := z.m(x) ; s ⟩ · S ⟩
SsCall

⟨H, ρ, π ⟩ 2̃ ⟨mpre(m)[z/this, x/mparam(m)], bodyµ ⟩

⟨H, ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ error
SsCallError

mpost(m) = ϕ̃q ⟨H, ρ′, π ′⟩ �̃ ⟨ϕ̃q, bodyµ ⟩ ρ′′ = ρ[y 7→ ρ′(result)]

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ′′, π ∪ π ′, s ⟩ · S ⟩
SsCallFinish

⟨H, ρ′, π ′⟩ 2̃ ⟨mpost(m), bodyµ ⟩

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , y := z.m(x) ; s ⟩ · S ⟩ −̃→ error
SsCallFinishError

⟨H, ρ, π ⟩ �̃ ⟨ϕ̃i , bodyµ ⟩ ⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ false

⟨H, ⟨ρ, π , while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsWhileFalse

⟨H, ρ, π ⟩ �̃ ⟨ϕ̃i , bodyµ ⟩ ⟨H, ρ, π ⟩ �E acc(e ) H, ρ ⊢ e ⇓ true

π ′ = ⌊ϕ̃i ⌋π ,H ,ρ

⟨H, ⟨ρ, π , while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩
−̃→

⟨H, ⟨ρ, π ′, r ; skip⟩ · ⟨ρ, π \π ′, while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩

SsWhileTrue

⟨H, ρ, π ⟩ 2̃ ⟨ϕ̃i ∧ acc(e ), bodyµ ⟩

⟨H, ⟨ρ, π , while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩ −̃→ error
SsWhileError

⟨H, ⟨ρ′, π ′, skip⟩ · ⟨ρ, π , while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩
−̃→

⟨H, ⟨ρ′, π ∪ π ′, while (e) inv ϕ̃i { r } ; s ⟩ · S ⟩

SsWhileFinish

⟨H, ⟨ρ, π , fold p(e1,...,en) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsFold

⟨H, ⟨ρ, π , unfold p(e1,...,en) ; s ⟩ · S ⟩ −̃→ ⟨H, ⟨ρ, π , s ⟩ · S ⟩
SsUnfold

Fig. 27. GVLRP: Small-step semantics adjusted from Fig. 23 for gradual formulas (continued)

A.4 Proofs
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1 Cross cutting lemmas

Lemma 1 (Equi Permissions Supersets & Formula Evaluation). If � ⊆ �′ and
⟨H, �, �⟩ ⊨E �, then ⟨H, �, �′⟩ ⊨E �.

Proof. Falls out easily by structural induction on the derivation of ⟨H, �, �⟩ ⊨E �.

Lemma 2 (Iso Permissions Supersets & Formula Evaluation). If Π ⊆ Π′ and
⟨H, �,Π⟩ ⊨I �, then ⟨H, �,Π′⟩ ⊨I �.

Proof. Falls out easily by structural induction on the derivation of ⟨H, �,Π⟩ ⊨I �.

Lemma 3 (Sequence Stmt Rearrangement). If s = s1; s2, then s = sℎ; st such that
sℎ is not a sequence statement and st = s2 or st1; s2 where s1 = sℎ; st1 .

Proof. Suppose s = s1; s2.
We will show by induction on the syntax of s1 that s = sℎ; st such that sℎ is not a

sequence statement and st = s2 or st1; s2 where s1 = sℎ; st1 .

Case 1 (s1 is not a sequence statement). Then s = s1; s2 such that s1 is not a sequence
statement and the tail statement is s2.

Case 2 (s1 = s′1; s
′′
1 ). Then s = s

′
1; (s

′′
1 ; s2).

Then by the IH on s′1, we get that s = sℎ; st such that sℎ is not a sequence statement
and st = (s′′1 ; s2) or st1; (s

′′
1 ; s2) where s′1 = sℎ; st1 .

If st = (s′′1 ; s2), then
s′1; (s

′′
1 ; s2) = s = sℎ; (s′′1 ; s2), and so sℎ = s′1.

Therefore, s = sℎ; st such that sℎ is not a sequence statement and st =
s′′1 ; s2 where s1 = sℎ; s′′1 (st1 = s

′′
1 ).

If st = st1; (s
′′
1 ; s2) where s′1 = sℎ; st1 , then

s1 = s′1; s
′′
1 = sℎ; st1; s

′′
1 = sℎ; (st1; s

′′
1 ).

Therefore, s = sℎ; st such that sℎ is not a sequence statement and st =
(st1; s

′′
1 ); s2 where s1 = sℎ; (st1; s

′′
1 ).

Lemma 4 (Permission Erasure Subset Preservation). If Π ⊆ Π′ and ⟨⟨ Π′ ⟩⟩H is
defined, then ⟨⟨ Π ⟩⟩H is defined and ⟨⟨ Π ⟩⟩H ⊆ ⟨⟨ Π′ ⟩⟩H .

Proof. The proof of this lemma can be found here: extra-proofs/extra-proofs.pdf.

2 SVLRP Soundness

2.1 Progress

Claim (SVLRP Progress). If  ∈ STATE is a valid state and
 ∉ {⟨H, ⟨�, �, skip⟩ ⋅ nil⟩ |H ∈ HEAP, � ∈ ENV, � ∈ DYNFPRINT}
then  ⟶  ′ for some  ′ ∈ STATE.
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Proof. Suppose  = ⟨H, ⟨�n, �n, sn⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ∈ STATE such that  is a
valid state and  ∉ {⟨H, ⟨�, �, skip⟩ ⋅ nil⟩ |H ∈ HEAP, � ∈ ENV, � ∈ DYNFPRINT}.

Since  is a valid state, by definition, we get that sn = sn1; skip for some sn1 ∈
STMT or sn = skip.
If sn = skip, then  = ⟨H, ⟨�n, �n, skip⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

If = ⟨H, ⟨�n, �n, skip⟩⋅⟨�n−1, �n−1, y := z.m(x); s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩,
then
Since  is a valid state, by definition, we get that
⟨H, �n, �n⟩ ⊨E sWLPn(skip ⋅ (y := z.m(x); s) ⋅ ... ⋅ s1 ⋅ nil, true).
Also, by the definition of sWLP, we get that
sWLPn(skip ⋅ (y := z.m(x); s) ⋅ ... ⋅ s1 ⋅ nil, true) = mpost(m). Then
by SSCALLFINISH,

 ⟶ ⟨H, ⟨�n−1[y↦ �n(result)], �n ∪ �n−1, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩.

If  = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, while (e) inv � { s′ }; s⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩ ⋅ nil⟩, then by SSWHILEFINISH,

 ⟶ ⟨H, ⟨�n, �n ∪�n−1, while (e) inv � { s′ }; s⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩.

If  = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, sn−1⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅nil⟩ and n > 1
where sn−1 ≠ y := z.m(x); s and sn−1 ≠ while (e) inv � { s′ }; s,
then we have a contradiction because  being a valid state gives that
sWLP(skip ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined, but according to the
definition of sWLP, sWLP(skip ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is not defined
since sn−1 ≠ y := z.m(x); s, sn−1 ≠ while (e) inv � { s′ }; s, and
n > 1.

If  = ⟨H, ⟨�n, �n, skip⟩ ⋅ nil⟩, then contradiction because we assumed  ∉
{⟨H ′, ⟨�′, �′, skip⟩ ⋅ nil⟩ |H ′ ∈ HEAP, �′ ∈ ENV, �′ ∈ DYNFPRINT}.

If sn = sn1; skip for some sn1 ∈ STMT, then by lemma 3, we get sn = sℎ; st such that
sℎ is not a sequence statement and st = skip or st1; skip where sn1 = sℎ; st1 .

We will show  ⟶  ′ for some  ′ ∈ STATE by casing on sℎ.

Case 3 (sℎ = skip). Then  = ⟨H, ⟨�n, �n, skip; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ and by
SSSKIP, ⟨H, ⟨�n, �n, skip; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 4 (sℎ = T x). Then  = ⟨H, ⟨�n, �n, T x; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅nil⟩ and by SSDE-
CLARE, ⟨H, ⟨�n, �n, T x; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 5 (sℎ = assert �). Then  = ⟨H, ⟨�n, �n, assert �; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
Since is a valid state, by definitionwe get that ⟨H, �n, �n⟩ ⊨E sWLPn((assert �; st)⋅

... ⋅ s1 ⋅ nil, true).
Also, by the definition of sWLP, we get that sWLPn((assert �; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ �.

Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E �.
Thus, by SSASSERT, ⟨H, ⟨�n, �n, assert �; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶

⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
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Case 6 (sℎ = x.f := y). Then  = ⟨H, ⟨�n, �n, x.f := y; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
Since is a valid state, by definitionwe get that ⟨H, �n, �n⟩ ⊨E sWLPn((x.f := y; st)⋅

... ⋅ s1 ⋅ nil, true).
Also, by the definition of sWLP, we get that sWLPn((x.f := y; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ acc(x.f).

Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E acc(x.f). Additionally,H, �n ⊢ y ⇓ v = �n(y) by
EVAR, since y ∈ dom(�n) is given by the fact that we are operating over well-typed
programs .

Thus, by SSFASSIGN, ⟨H, ⟨�n, �n, x.f := y; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶
⟨H[o↦ [f ↦ v]], ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 7 (sℎ = x := e). Then  = ⟨H, ⟨�n, �n, x := e; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
Since is a valid state, by definitionwe get that ⟨H, �n, �n⟩ ⊨E sWLPn((x := e; st)⋅

... ⋅ s1 ⋅ nil, true).
Also, by the definition of sWLP, we get that sWLPn((x := e; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ acc(e).

Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E acc(e).
We are operating over well-typed programs, soH, �n ⊢ e ⇓ v .
Thus, by SSASSIGN, ⟨H, ⟨�n, �n, x := e; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶

⟨H, ⟨�n[x↦ v], �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 8 (sℎ = x := new C). Then  = ⟨H, ⟨�n, �n, x := new C; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩.

Let o ∈ LOC and o ∉ dom(H).
Thus, by SSALLOC, ⟨H, ⟨�n, �n, x := new C; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶

⟨H ′, ⟨�n[x ↦ o], �n ∪ ⟨o, fi⟩, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ where fields(C) =
Ti fi; andH ′ = H[o↦ [fi ↦ defaultValue(Ti)]].

Case 9 (sℎ = if (e) {s′1} else {s
′
2
}).Then = ⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; st⟩⋅

... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
Since is a valid state, by definitionwe get that ⟨H, �n, �n⟩ ⊨E sWLPn((if (e) {s′1} else {s

′
2
}; st)⋅

... ⋅ s1 ⋅ nil, true).
Also, by the definition of sWLP, we get that sWLPn((if (e) {s′1} else {s

′
2
}; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ acc(e)

and sWLPn((if (e) {s′1} else {s
′
2
}; st) ⋅ ... ⋅ s1 ⋅ nil, true)⇒

(if e then WLP(s′1,WLP(st, �)) else WLP(s′2,WLP(st, �))) for

� =

⎧

⎪

⎨

⎪

⎩

mpost(m) if sn−1 = y := z.m(x); s′′2 ∧ n > 1
�i if sn−1 = while (e) inv �i { r }; s′′2 ∧ n > 1
true if n = 1

(all cases covered by definition of sWLP and since sWLP((if (e) {s′
1
} else {s′

2
}; st)⋅

... ⋅ s1 ⋅ nil, true) is defined).
Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E acc(e) and

⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(st, �)) else WLP(s′2,WLP(st, �))).
By inversion on ⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(st, �)) else WLP(s′2,WLP(st, �))),

either H, �n ⊢ e ⇓ true and ⟨H, �n, �n⟩ ⊨E WLP(s′1,WLP(st, �)) or H, �n ⊢ e ⇓
false and ⟨H, �n, �n⟩ ⊨E WLP(s′2,WLP(st, �)).

IfH, �n ⊢ e ⇓ true and ⟨H, �n, �n⟩ ⊨E WLP(s′1,WLP(st, �)), then by SSIFTRUE,
⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶
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⟨H, ⟨�n, �n, s′1; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
If H, �n ⊢ e ⇓ false and ⟨H, �n, �n⟩ ⊨E WLP(s′2,WLP(st, �)), then by SSIF-

FALSE,
⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶

⟨H, ⟨�n, �n, s′2; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 10 (sℎ = y := z.m(x)).Then = ⟨H, ⟨�n, �n, y := z.m(x); st⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩

Since  is a valid state, by definition we get that
⟨H, �n, �n⟩ ⊨E sWLPn((y := z.m(x); st) ⋅ ... ⋅ s1 ⋅ nil, true).

Then, by the definition of sWLP, we get that
sWLPn((y := z.m(x); st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ mpre(m)[z∕this, x∕mparam(m)] and
sWLPn((y := z.m(x); st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ z ≠ null. Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E mpre(m)[z∕this, x∕mparam(m)] and ⟨H, �n, �n⟩ ⊨E z ≠ null.

Thenmparam(m) andmpre(m) are defined for m, which impliesmethod(m) and all
related look-up functions are also defined for m.

We are operating overwell-typed programs sowe getH, �n ⊢ z ⇓ o andH, �n ⊢ x ⇓ v
.

Since �n(z) = o, �n(x) = v, ⟨H, �n, �n⟩ ⊨E mpre(m)[z∕this, x∕mparam(m)], and
a method’s precondition can only mention variables, this and mparam(m), we get
⟨H, �′n = [this ↦ o,mparam(m) ↦ v, old(mparam(m)) ↦ v], �n⟩ ⊨E mpre(m) .

Since ⟨H, �′n, �n⟩ ⊨E mpre(m), by lemma 8, we get ∃ Π . ⟨H, �′n,Π⟩ is a good iso-
state, ⟨⟨ Π ⟩⟩H = �n and ⟨H, �′n,Π⟩ ⊨I mpre(m).

Then, by definition, ⌊mpre(m)⌋H,�′n is defined and ⌊mpre(m)⌋H,�′n ⊆ Π. And so, by
lemma 4, we get that ⟨⟨ ⌊mpre(m)⌋H,�′n ⟩⟩H is defined and�′n = ⟨⟨ ⌊mpre(m)⌋H,�′n ⟩⟩H ⊆
⟨⟨ Π ⟩⟩H = �n. Finally, by lemma 5, we get ⟨H, �′n, �

′
n⟩ ⊨E mpre(m).

Then by SSCALL,
 ⟶ ⟨H, ⟨�′n, �

′
n,mbody(m); skip⟩⋅⟨�n, �n⧵�′n, y := z.m(x); st⟩⋅...⋅⟨�1, �1, s1⟩⋅

nil⟩.

Case 11 (sℎ = while (e) inv � { s′ }).Then = ⟨H, ⟨�n, �n, while (e) inv � { s′ }; st⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩
Since  is a valid state, by definition we get that
⟨H, �n, �n⟩ ⊨E sWLPn((while (e) inv � { s′ }; st) ⋅ ... ⋅ s1 ⋅ nil, true).

Then, by the definition of sWLP, we get that
sWLPn((while (e) inv � { s′ }; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ � and
sWLPn((while (e) inv � { s′ }; st) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ acc(e). Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E � and ⟨H, �n, �n⟩ ⊨E acc(e).

We are operating over well-typed programs, so we getH, �n ⊢ e ⇓ true orH, �n ⊢
e ⇓ false .

IfH, �n ⊢ e ⇓ true, then
since ⟨H, �n, �n⟩ ⊨E �, by lemma 8, we get ∃ Π . ⟨H, �n,Π⟩ is a good
iso-state, ⟨⟨ Π ⟩⟩H = �n and ⟨H, �n,Π⟩ ⊨I �.
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Then, by definition, ⌊�⌋H,�n is defined and ⌊�⌋H,�n ⊆ Π. And so, by
lemma 4, we get that ⟨⟨ ⌊�⌋H,�n ⟩⟩H is defined and�′n = ⟨⟨ ⌊�⌋H,�n ⟩⟩H ⊆
⟨⟨ Π ⟩⟩H = �n.
Then by SSWHILETRUE,
 ⟶ ⟨H, ⟨�n, �′n, s

′; skip⟩ ⋅ ⟨�n, �n ⧵�′n, while (e) inv � { s
′ }; st⟩ ⋅

... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
IfH, �n ⊢ e ⇓ false, then

by SSWHILEFALSE,
 ⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 12 (sℎ = fold p(e)). Then  = ⟨H, ⟨�n, �n, fold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩
and by SSFOLD,

⟨H, ⟨�n, �n, fold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

Case 13 (sℎ = unfold p(e)). Then  = ⟨H, ⟨�n, �n, unfold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ and by SSUNFOLD,

⟨H, ⟨�n, �n, unfold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

2.2 Preservation

Claim (SVLRP Preservation). If  is a valid state and  ⟶  ′ for some  ′ ∈ STATE
then  ′ is a valid state.

Proof. Suppose  ∈ STATE such that  is a valid state and  ⟶  ′ for some  ′ ∈
STATE.

We will show  ′ is a valid state by case analysis on  ⟶  ′.

Case 14 (SSSKIP). We have  = ⟨H, ⟨�n, �n, skip; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that skip; s = s′; skip for some s′ ∈
STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i∩�j = ∅ for all 1 ≤ i ≤ n,
1 ≤ j ≤ n such that i ≠ j, and ⟨H, �i, �i⟩ ⊨E sWLPi((skip; s) ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true)
for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((skip; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2 or sn−1 =
while (e) inv �i { r }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

.
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Now,

sWLP((skip; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)

=WLP(skip; s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)

=WLP(skip,WLP(s, �)) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)

=WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)
= sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) by the definition of sWLP.

Therefore, sWLP((skip; s) ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) = sWLP(s ⋅sn−1 ⋅ ... ⋅
s1 ⋅nil, true), so we get ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true)
for all 1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, skip; s⟩ ⋅ nil⟩ ⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ nil⟩ =  ′ and
by the definition of sWLP, we get that sWLP((skip; s) ⋅ nil, true) =
WLP(s, true) ⋅ nil = sWLP(s ⋅ nil, true).
Therefore, ⟨H, �n, �n⟩ ⊨E sWLPn(s ⋅ nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.
Case 15 (SSDECLARE). We have  = ⟨H, ⟨�n, �n, T x; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that T x; s = s′; skip for some
s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((T x; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((T x; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2 or sn−1 =
while (e) inv �i { r }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

.

Now,

sWLP((T x; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)

=WLP(T x; s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true)

=WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) since WLP(T x,WLP(s, �)) is defined

= sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) by the definition of sWLP.

Therefore, sWLP((T x; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅nil, true) = sWLP(s ⋅ sn−1 ⋅ ... ⋅
s1 ⋅nil, true), so we get ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true)
for all 1 ≤ i ≤ n.
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If n = 1, then
 = ⟨H, ⟨�n, �n, T x; s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ nil⟩ =  ′ and by the
definition of sWLP, sWLP((T x; s) ⋅ nil, true) =WLP(T x; s, true) ⋅
nil = WLP(T x,WLP(s, true)) ⋅ nil = WLP(s, true) ⋅ nil = sWLP(s ⋅
nil, true).
Therefore, ⟨H, �n, �n⟩ ⊨E sWLPn(s ⋅ nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 16 (SSASSERT).Wehave = ⟨H, ⟨�n, �n, assert �′; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′ and ⟨H, �n, �n⟩ ⊨E �′.

Since  is a valid state, by definition we get that assert �′; s = s′; skip for some
s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((assert �′; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((assert �′; s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2 or sn−1 =
while (e) inv �i { r }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((assert �′; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true), by the definition of sWLP, we get that
sWLPn((assert �′; s) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ WLP(s, �). Then lemma
6 gives ⟨H, �n, �n⟩ ⊨E WLP(s, �).

Now, sWLP((assert �′; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) =
WLP(assert �′,WLP(s, �)) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true),
so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

By the definition of sWLP, we get sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) =WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and so
sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

Finally, since sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅nil, true) =WLP(s, �)
and sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = sWLPi(assert �′; s ⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i < n, we get
⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) for all 1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, assert �′; s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ nil⟩ =  ′.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((assert �′; s)⋅nil, true), by the def-
inition of sWLP, we get that
sWLPn((assert �′; s) ⋅ nil, true) ⇒ WLP(s, true). Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E WLP(s, true) = sWLPn(s ⋅ nil, true).
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In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 17 (SSFASSIGN).
The proof of this case can be found here: extra-proofs/svlrp-preservation-ssfassign.pdf.

Case 18 (SSASSIGN). Wehave = ⟨H, ⟨�n, �n, x := e; s⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩⟶ ⟨H, ⟨�n[x↦ v], �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ v.

Since  is a valid state, by definition we get that x := e; s = s′; skip for some
s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((x := e; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((x := e; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) is defined, we get that sn−1 = y := z.m(x); r′ or sn−1 =
while (e′) inv �i { r }; r′.

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e′) inv �i { r }; r′

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e′) inv �i { r }; r′
.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((x := e; s)⋅sn−1⋅...⋅s1⋅nil, true),
by the definition of sWLP, we get that
sWLPn((x := e; s) ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ WLP(s, �)[e∕x]. Then
lemma 6 gives ⟨H, �n, �n⟩ ⊨E WLP(s, �)[e∕x].
Since H, �n ⊢ e ⇓ v, we get ⟨H, �n[x ↦ v], �n⟩ ⊨E WLP(s, �)

.
Now, sWLP((x := e; s)⋅sn−1⋅...⋅s1⋅nil, true) =WLP(x := e,WLP(s, �))⋅

sWLP�f (sn−1 ⋅...⋅s1 ⋅nil, true), so sWLP�f (sn−1 ⋅...⋅s1 ⋅nil, true)
is defined.

By the definition of sWLP, we get sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) =WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and so
sWLP(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

Finally, since sWLPi(s⋅sn−1⋅...⋅s1⋅nil, true) = sWLPi((x := e; s)⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i < n, we get
⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) for all 1 ≤ i < n
and we have ⟨H, �n[x↦ v], �n⟩ ⊨E WLP(s, �) =
sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true).

If n = 1, then
 = ⟨H, ⟨�n, �n, x := e; s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n[x↦ v], �n, s⟩ ⋅ nil⟩ =  ′.
Since ⟨H, �n, �n⟩ ⊨E sWLPn((x := e; s)⋅nil, true), by the definition of
sWLP, we get that sWLPn((x := e; s)⋅nil, true)⇒WLP(s, true)[e∕x].
Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E WLP(s, true)[e∕x].
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Since H, �n ⊢ e ⇓ v, we get ⟨H, �n[x ↦ v], �n⟩ ⊨E WLP(s, true) =
sWLPn(s ⋅ nil, true) .

In either case, ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i < n.
and ⟨H, �n[x↦ v], �n⟩ ⊨E sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true).
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 19 (SSALLOC).
The proof of this case can be found here: extra-proofs/svlrp-preservation-ssalloc.pdf.

Case 20 (SSIFTRUE).Wehave = ⟨H, ⟨�n, �n, if (e) {s′1} else {s
′
2
}; s⟩⋅...⋅⟨�1, �1, s1⟩⋅

nil⟩ ⟶ ⟨H, ⟨�n, �n, s′1; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ true.

Since is a valid state, by definitionwe get that if (e) {s′
1
} else {s′

2
}; s = s′; skip

for some s′ ∈ STMT, si = s′′i ; skip for some s′′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((if (e) {s′1} else {s

′
2
}; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤

i ≤ n.
If n > 1, then

by the definition of sWLP and since sWLP((if (e) {s′
1
} else {s′

2
}; s) ⋅

sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); r′
or sn−1 = while (e) inv �i { r }; r′.

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e) inv �i { r }; r′

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e) inv �i { r }; r′
.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((if (e) {s′1} else {s
′
2
}; s) ⋅

sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), by the definition of sWLP, we get that
sWLPn((if (e) {s′1} else {s

′
2
}; s) ⋅ ... ⋅ s1 ⋅ nil, true)⇒

(if e then WLP(s′1,WLP(s, �)) else WLP(s′2,WLP(s, �))).
Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(s, �)) else WLP(s′2,WLP(s, �))).
By inversion on this and sinceH, �n ⊢ e ⇓ true, we get
⟨H, �n, �n⟩ ⊨E WLP(s′1,WLP(s, �)) =WLP(s′1; s, �).

Now, sWLP((if (e) {s′
1
} else {s′

2
}; s)⋅sn−1⋅...⋅s1⋅nil, true) =

WLP(if (e) {s′
1
} else {s′

2
},WLP(s, �)) ⋅ sWLP�f (sn−1 ⋅ ... ⋅s1 ⋅

nil, true), so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.
By the definition of sWLP, we get sWLP((s′1; s) ⋅ sn−1 ⋅ ... ⋅

s1 ⋅nil, true) =WLP(s′1; s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅nil, true),
and so sWLP((s′1; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

Finally, since sWLPi((s′1; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) =
sWLPi((if (e) {s′1} else {s

′
2
}; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for

all 1 ≤ i < n and ⟨H, �n, �n⟩ ⊨E WLP(s′1; s, �), we get
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⟨H, �i, �i⟩ ⊨E sWLPi((s′1; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all
1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; s⟩⋅nil⟩⟶ ⟨H, ⟨�n, �n, s′1; s⟩⋅

nil⟩ =  ′.
Since ⟨H, �n, �n⟩ ⊨E sWLPn((if (e) {s′1} else {s

′
2
}; s)⋅nil, true), by

the definition of sWLP, we get that
sWLPn((if (e) {s′1} else {s

′
2
}; s) ⋅ nil, true)⇒

(if e then WLP(s′1,WLP(s, true)) else WLP(s′2,WLP(s, true))).
Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(s, true)) else WLP(s′2,WLP(s, true))).
By inversion on this and sinceH, �n ⊢ e ⇓ true, we get
⟨H, �n, �n⟩ ⊨E WLP(s′1,WLP(s, true)) =WLP(s′1; s, true) = sWLPn((s′1; s)⋅
nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi((s′1; s)⋅sn−1 ⋅ ...⋅s1 ⋅nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , which gives
that s′1; s = s

′
1; skip or ((s′1; s

′′); skip) for some s′′ ∈ STMT, and we are given that
si = s′′i ; skip for some s′′i ∈ STMT for all 1 ≤ i < n. Additionally, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 21 (SSIFFALSE).Wehave = ⟨H, ⟨�n, �n, if (e) {s′1} else {s
′
2
}; s⟩⋅...⋅⟨�1, �1, s1⟩⋅

nil⟩ ⟶ ⟨H, ⟨�n, �n, s′2; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ false.

Since is a valid state, by definitionwe get that if (e) {s′
1
} else {s′

2
}; s = s′; skip

for some s′ ∈ STMT, si = s′′i ; skip for some s′′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((if (e) {s′1} else {s

′
2
}; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤

i ≤ n.
If n > 1, then

by the definition of sWLP and since sWLP((if (e) {s′
1
} else {s′

2
}; s) ⋅

sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); r′
or sn−1 = while (e) inv �i { r }; r′.

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e) inv �i { r }; r′

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); r′

�i if sn−1 = while (e) inv �i { r }; r′
.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((if (e) {s′1} else {s
′
2
}; s) ⋅

sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), by the definition of sWLP, we get that
sWLPn((if (e) {s′1} else {s

′
2
}; s) ⋅ ... ⋅ s1 ⋅ nil, true)⇒

(if e then WLP(s′1,WLP(s, �)) else WLP(s′2,WLP(s, �))).
Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(s, �)) else WLP(s′2,WLP(s, �))).
By inversion on this and sinceH, �n ⊢ e ⇓ false, we get
⟨H, �n, �n⟩ ⊨E WLP(s′2,WLP(s, �)) =WLP(s′2; s, �).
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Now, sWLP((if (e) {s′
1
} else {s′

2
}; s)⋅sn−1⋅...⋅s1⋅nil, true) =

WLP(if (e) {s′
1
} else {s′

2
},WLP(s, �)) ⋅ sWLP�f (sn−1 ⋅ ... ⋅s1 ⋅

nil, true), so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.
By the definition of sWLP, we get sWLP((s′2; s) ⋅ sn−1 ⋅ ... ⋅

s1 ⋅nil, true) =WLP(s′2; s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅nil, true),
and so sWLP((s′2; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

Finally, since sWLPi((s′2; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) =
sWLPi((if (e) {s′1} else {s

′
2
}; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for

all 1 ≤ i < n and ⟨H, �n, �n⟩ ⊨E WLP(s′2; s, �), we get
⟨H, �i, �i⟩ ⊨E sWLPi((s′2; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all
1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; s⟩⋅nil⟩⟶ ⟨H, ⟨�n, �n, s′2; s⟩⋅

nil⟩ =  ′.
Since ⟨H, �n, �n⟩ ⊨E sWLPn((if (e) {s′1} else {s

′
2
}; s)⋅nil, true), by

the definition of sWLP, we get that
sWLPn((if (e) {s′1} else {s

′
2
}; s) ⋅ nil, true)⇒

(if e then WLP(s′1,WLP(s, true)) else WLP(s′2,WLP(s, true))).
Then lemma 6 gives
⟨H, �n, �n⟩ ⊨E (if e then WLP(s′1,WLP(s, true)) else WLP(s′2,WLP(s, true))).
By inversion on this and sinceH, �n ⊢ e ⇓ false, we get
⟨H, �n, �n⟩ ⊨E WLP(s′2,WLP(s, true)) =WLP(s′2; s, true) = sWLPn((s′2; s)⋅
nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi((s′2; s)⋅sn−1 ⋅ ...⋅s1 ⋅nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , which gives
that s′2; s = s

′
2; skip or ((s′2; s

′′); skip) for some s′′ ∈ STMT, and we are given that
si = s′′i ; skip for some s′′i ∈ STMT for all 1 ≤ i < n. Additionally, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 22 (SSCALL).
This case is structured similarly to the proof case for SSWHILETRUE.

Case 23 (SSCALLFINISH).
The proof of this case can be found here: extra-proofs/svlrp-preservation-sscallfinish.pdf.

Case 24 (SSWHILEFALSE). Wehave = ⟨H, ⟨�n, �n, while (e) inv �i { r }; s⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E �i,
⟨H, �n, �n⟩ ⊨E acc(e), andH, �n ⊢ e ⇓ false.

Since  is a valid state, by definition we get that while (e) inv �i { r }; s =
s′; skip for some s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i <
n, �i ∩ �j = ∅ for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤
i ≤ n.

If n > 1, then
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by the definition of sWLP and since sWLP((while (e) inv �i { r }; s) ⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2
or sn−1 = while (e′) inv �′i { r

′ }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�′i if sn−1 = while (e′) inv �′i { r

′ }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�′i if sn−1 = while (e′) inv �′i { r

′ }; s′′2
.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((while (e) inv �i { r }; s) ⋅sn−1 ⋅ ... ⋅
s1 ⋅ nil, true), by the definition of sWLP, we get that
sWLPn((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) ⇒ �i * �f
for �f ∈ FORMULA such that �f * (�i * e = false)[xi∕yi] ⇒ WLP(s, �)[xi∕yi]
where xi ∉ FV(�f ), yi are variables modified in the loop body r, and xi
are fresh logical variables.

Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E �i * �f , and by inversion we get
⟨H, �n, �n1⟩ ⊨E �i and ⟨H, �n, �n2⟩ ⊨E �f such that �n1 ⊎ �n2 = �n.

Since H, �n ⊢ e ⇓ false and H, �n ⊢ false ⇓ false by axiom
EVAL, we get by EVCOMP that H, �n ⊢ e = false ⇓ true. Then
by EVCOMPEXPR, ⟨H, �n, ∅⟩ ⊨E e = false. Finally, by EVSEPOP,
⟨H, �n, �n1 ⊎ ∅⟩ ⊨E �i * e = false.

For yik ⊆ yi such that yik ∈ FV(�i*e = false), we getH, �n ⊢ yik ⇓ vk
holds for some values vk from inversion on the derivation of ⟨H, �n, �n1⟩ ⊨E �i*e = false.
Then let �′n = �n[xik ↦ vk] where xik ⊆ xi.

Since xi being fresh logical variables gives xi ∉ dom(�n),H, �n ⊢ yik ⇓ vk,
no variables in yi⧵yik are inFV(�i*e = false), and ⟨H, �n, �n1⟩ ⊨E �i*e = false,
we get ⟨H, �′n, �n1⟩ ⊨E (�i * e = false)[xi∕yi] .

Also, since xi are fresh logical variables gives xi ∉ dom(�n), xi ∉
FV(�f ), and ⟨H, �n, �n2⟩ ⊨E �f , we get ⟨H, �′n, �n2⟩ ⊨E �f .
Therefore, by EVSEPOP, we get
⟨H, �′n, �n1 ⊎ �n2 = �n⟩ ⊨E �f * (�i * e = false)[xi∕yi].

Then, since �f * (�i * e = false)[xi∕yi] ⇒ WLP(s, �)[xi∕yi], we get
from lemma 6 that ⟨H, �′n, �n⟩ ⊨E WLP(s, �)[xi∕yi]. Clearly, since xi ∉
dom(�n) gives no variables in xi ⧵ xik are in dom(�

′
n) and

⟨H, �′n, �n⟩ ⊨E WLP(s, �)[xi∕yi] holds, we get that
⟨H, �′n, �n⟩ ⊨E WLP(s, �)[xik∕yik ] . Then, sinceH, �n ⊢ yik ⇓ vk,
we get ⟨H, �n, �n⟩ ⊨E WLP(s, �) .

Now, sWLP((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) =
WLP((while (e) inv �i { r }; s), �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true),
so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

By the definition of sWLP, we get sWLP(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) =
WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and so sWLP(s ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined.
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Finally, since sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = WLP(s, �) and
sWLPi(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) = sWLPi((while (e) inv �i { r }; s) ⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i < n, we get
⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, while (e) inv �i { r }; s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅
nil⟩ =  ′.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((while (e) inv �i { r }; s)⋅nil, true),
by the definition of sWLP, we get that
sWLPn((while (e) inv �i { r }; s) ⋅ nil, true) ⇒ �i * �f for �f ∈ FORMULA

such that �f * (�i * e = false)[xi∕yi] ⇒ WLP(s, true)[xi∕yi]where xi ∉
FV(�f ), yi are variables modified in the loop body r, and xi are fresh log-
ical variables.

Then lemma 6 gives ⟨H, �n, �n⟩ ⊨E �i * �f , and by inversion we get
⟨H, �n, �n1⟩ ⊨E �i and ⟨H, �n, �n2⟩ ⊨E �f such that �n1 ⊎ �n2 = �n.

Since H, �n ⊢ e ⇓ false and H, �n ⊢ false ⇓ false by axiom
EVAL, we get by EVCOMP that H, �n ⊢ e = false ⇓ true. Then
by EVCOMPEXPR, ⟨H, �n, ∅⟩ ⊨E e = false. Finally, by EVSEPOP,
⟨H, �n, �n1 ⊎ ∅⟩ ⊨E �i * e = false.

For yik ⊆ yi such that yik ∈ FV(�i*e = false), we getH, �n ⊢ yik ⇓ vk
holds for some values vk from inversion on the derivation of ⟨H, �n, �n1⟩ ⊨E �i*e = false.
Then let �′n = �n[xik ↦ vk] where xik ⊆ xi.

Since xi being fresh logical variables gives xi ∉ dom(�n),H, �n ⊢ yik ⇓ vk,
no variables in yi⧵yik are inFV(�i*e = false), and ⟨H, �n, �n1⟩ ⊨E �i*e = false,
we get ⟨H, �′n, �n1⟩ ⊨E (�i * e = false)[xi∕yi] .

Also, since xi are fresh logical variables gives xi ∉ dom(�n), xi ∉
FV(�f ), and ⟨H, �n, �n2⟩ ⊨E �f , we get ⟨H, �′n, �n2⟩ ⊨E �f .
Therefore, by EVSEPOP, we get
⟨H, �′n, �n1 ⊎ �n2 = �n⟩ ⊨E �f * (�i * e = false)[xi∕yi].

Then, since �f * (�i * e = false)[xi∕yi] ⇒ WLP(s, true)[xi∕yi], we
get from lemma 6 that ⟨H, �′n, �n⟩ ⊨E WLP(s, true)[xi∕yi]. Clearly, since
xi ∉ dom(�n) gives no variables in xi ⧵ xik are in dom(�

′
n) and

⟨H, �′n, �n⟩ ⊨E WLP(s, true)[xi∕yi] holds, we get that
⟨H, �′n, �n⟩ ⊨E WLP(s, true)[xik∕yik ] . Then, sinceH, �n ⊢ yik ⇓ vk,
we get ⟨H, �n, �n⟩ ⊨E WLP(s, true) = sWLPn(s⋅nil, true) .

In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 25 (SSWHILETRUE). Wehave = ⟨H, ⟨�n, �n, while (e) inv �i { r }; s⟩⋅
... ⋅⟨�1, �1, s1⟩ ⋅nil⟩⟶ ⟨H, ⟨�n, �′n, r; skip⟩ ⋅⟨�n, �n⧵�′n, while (e) inv �i { r }; s⟩ ⋅
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...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′,⟨H, �n, �n⟩ ⊨E �i, ⟨H, �n, �n⟩ ⊨E acc(e),H, �n ⊢ e ⇓ true,
and �′n = ⟨⟨ ⌊�i⌋H,�n ⟩⟩H .

Since  is a valid state, by definition we get that while (e) inv �i { r }; s =
s′; skip for some s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i <
n, �i ∩ �j = ∅ for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤
i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((while (e) inv �i { r }; s) ⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2
or sn−1 = while (e′) inv �′i { r

′ }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�′i if sn−1 = while (e′) inv �′i { r

′ }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�′i if sn−1 = while (e′) inv �′i { r

′ }; s′′2
.

1) Since H, �n ⊢ e ⇓ true and H, �n ⊢ true ⇓ true by EVAL, by
EVCOMP we get H, �n ⊢ e = true ⇓ true. Then by EVCOMPEXPR
we get ⟨H, �n, �′n⟩ ⊨E e = true.

Also, since ⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined and equals�′n, and ⟨H, �n, �n⟩ ⊨E �i,
we get by lemma 5 that ⟨H, �n, �′n⟩ ⊨E �i. Then, by EVANDOP ⟨H, �n, �′n⟩ ⊨E �i ∧
e = true.

Since the programwe are operating over is valid ,
we get �i ∧ e = true ⇒ WLP(r, �i). Then, since ⟨H, �n, �′n⟩ ⊨E �i ∧
e = true by lemma 6, we get
⟨H, �n, �′n⟩ ⊨E WLP(r, �i) =WLP(r,WLP(skip, �i)) =WLP(r; skip, �i)
(1).

2)Now, sWLP((while (e) inv �i { r }; s)⋅sn−1 ⋅...⋅s1 ⋅nil, true) =
WLP((while (e) inv �i { r }; s), �)⋅sWLP�f (sn−1 ⋅...⋅s1 ⋅nil, true), so
WLP((while (e) inv �i { r }; s), �) and sWLP�f (sn−1 ⋅...⋅s1 ⋅nil, true)
are defined.

Then, we have ⟨H, �n, �n⟩ ⊨E WLP((while (e) inv �i { r }; s), �) =
WLP(while (e) inv �i { r },WLP(s, �)).

Let �′n = min
⇒

{�′′n | WLP(while (e) inv �i { r }; s, �) ⇒ �i ∗
�′′n }, which is defined since {�

′′
n |WLP(while (e) inv �i { r }; s, �)⇒

�i ∗ �′′n } is non-empty from WLP(while (e) inv �i { r }; s, �) being
defined.

Since ⟨H, �n, �n⟩ ⊨E WLP((while (e) inv �i { r }; s), �) and
WLP(while (e) inv �i { r }; s, �) ⇒ �i ∗ �′n, by lemma 6 we get
⟨H, �n, �n⟩ ⊨E �i ∗ �′n.

By inversion on ⟨H, �n, �n⟩ ⊨E �i ∗ �′n, we get ⟨H, �n, �n1⟩ ⊨E �i,
⟨H, �n, �n2⟩ ⊨E �′n, and �n1 ⊎ �n2 = �n for some �n1 and �n2 .

Since ⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined, then ⌊�i⌋H,�n must be defined. Also,
by lemma 8 on ⟨H, �n, �n1⟩ ⊨E �i, we get that ∃ Π . ⟨H, �n,Π⟩ is a
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good iso-state, ⟨⟨Π ⟩⟩H = �n1 and ⟨H, �n,Π⟩ ⊨I �i. Then, by definition
⌊�i⌋H,�n ⊆ Π.

Since ⌊�i⌋H,�n ⊆ Π and ⟨⟨ Π ⟩⟩H is defined, we get by lemma 4 that
⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined and �′n = ⟨⟨ ⌊�i⌋H,�n ⟩⟩H ⊆ ⟨⟨ Π ⟩⟩H = �n1 .
Therefore, �′n ∩ �n2 = ∅ and so �n2 ⊆ �n ⧵ �

′
n. Also, �

′
n ⊆ �n1 ⊆ �n.

Finally, by lemma 1 on �n2 ⊆ �n ⧵�
′
n and ⟨H, �n, �n2⟩ ⊨E �′n, we get

⟨H, �n, �n ⧵ �′n⟩ ⊨E �′n (2).
By definition, sWLP�i ((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅

nil, true) = min
⇒
{�′′n |WLP(while (e) inv �i { r }; s, �)⇒ �i ∗ �′′n }⋅

sWLP�f (sn−1⋅...⋅s1⋅nil, true), then sWLP�i ((while (e) inv �i { r }; s)⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

By the definition of sWLP, we get sWLP((r; skip)⋅(while (e) inv �i { r }; s)⋅
sn−1⋅...⋅s1⋅nil, true) =WLP(r; skip, �i)⋅sWLP�i ((while (e) inv �i { r }; s)⋅
sn−1⋅...⋅s1⋅nil, true), and so sWLP((r; skip)⋅(while (e) inv �i { r }; s)⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is defined.

Since ⟨H, �n, �′n⟩ ⊨E WLP(r; skip, �i) = sWLPn+1((r; skip) ⋅
(while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true),

⟨H, �n, �n⧵�′n⟩ ⊨E �′n = sWLPn((r; skip)⋅(while (e) inv �i { r }; s)⋅
sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and

⟨H, �i, �i⟩ ⊨E sWLPi((while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅
nil, true) = sWLPi((r; skip) ⋅ (while (e) inv �i { r }; s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) for all 1 ≤ i < n.

Also, r; skip is clearly s′′; skip for some s′′ ∈ STMT where that
s′′ is r. Additionally, we are given that while (e) inv �i { r }; s =
s′; skip for some s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT
for all 1 ≤ i < n. Also, �′n ⊆ �n and �n ∩ �i = ∅ for all 1 ≤ i ≤ n − 1
gives �′n ∩ �i = ∅ for all 1 ≤ i ≤ n − 1 and (�n ⧵ �′n) ∩ �i = ∅ for all
1 ≤ i ≤ n − 1. Clearly, �′n ∩ (�n ⧵ �

′
n) = ∅. Therefore,  

′ is a valid state
in this case.

If n = 1, then
 = ⟨H, ⟨�n, �n, while (e) inv �i { r }; s⟩⋅nil⟩⟶ ⟨H, ⟨�n, �′n, r; skip⟩⋅
⟨�n, �n ⧵ �′n, while (e) inv �i { r }; s⟩ ⋅ nil⟩ =  

′.
1) Since H, �n ⊢ e ⇓ true and H, �n ⊢ true ⇓ true by EVAL, by
EVCOMP we get H, �n ⊢ e = true ⇓ true. Then by EVCOMPEXPR
we get ⟨H, �n, �′n⟩ ⊨E e = true.

Also, since ⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined and equals�′n, and ⟨H, �n, �n⟩ ⊨E �i,
we get by lemma 5 that ⟨H, �n, �′n⟩ ⊨E �i. Then, by EVANDOP ⟨H, �n, �′n⟩ ⊨E �i ∧
e = true.

Since the programwe are operating over is valid ,
we get �i ∧ e = true ⇒ WLP(r, �i). Then, since ⟨H, �n, �′n⟩ ⊨E �i ∧
e = true by lemma 6, we get
⟨H, �n, �′n⟩ ⊨E WLP(r, �i) =WLP(r,WLP(skip, �i)) =WLP(r; skip, �i)
(1).

2) Now, sWLP((while (e) inv �i { r }; s) ⋅ nil, true) =
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WLP((while (e) inv �i { r }; s), true) ⋅ nil.
So, we have ⟨H, �n, �n⟩ ⊨E WLP((while (e) inv �i { r }; s), true) =

WLP(while (e) inv �i { r },WLP(s, true)).
Let �′n = min

⇒
{�′′n | WLP(while (e) inv �i { r }; s, �) ⇒ �i ∗

�′′n }, which is defined since {�
′′
n |WLP(while (e) inv �i { r }; s, �)⇒

�i ∗ �′′n } is non-empty from WLP(while (e) inv �i { r }; s, �) being
defined.

Since ⟨H, �n, �n⟩ ⊨E WLP((while (e) inv �i { r }; s), true) and
WLP(while (e) inv �i { r }; s, true) ⇒ �i ∗ �′n, by lemma 6 we get
⟨H, �n, �n⟩ ⊨E �i ∗ �′n.

By inversion on ⟨H, �n, �n⟩ ⊨E �i ∗ �′n, we get ⟨H, �n, �n1⟩ ⊨E �i,
⟨H, �n, �n2⟩ ⊨E �′n, and �n1 ⊎ �n2 = �n for some �n1 and �n2 .

Since ⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined, then ⌊�i⌋H,�n must be defined. Also,
by lemma 8 on ⟨H, �n, �n1⟩ ⊨E �i, we get that ∃ Π . ⟨H, �n,Π⟩ is a
good iso-state, ⟨⟨Π ⟩⟩H = �n1 and ⟨H, �n,Π⟩ ⊨I �i. Then, by definition
⌊�i⌋H,�n ⊆ Π.

Since ⌊�i⌋H,�n ⊆ Π and ⟨⟨ Π ⟩⟩H is defined, we get by lemma 4 that
⟨⟨ ⌊�i⌋H,�n ⟩⟩H is defined and �′n = ⟨⟨ ⌊�i⌋H,�n ⟩⟩H ⊆ ⟨⟨ Π ⟩⟩H = �n1 .
Therefore, �′n ∩ �n2 = ∅ and so �n2 ⊆ �n ⧵ �

′
n. Also, �

′
n ⊆ �n1 ⊆ �n.

Finally, by lemma 1 on �n2 ⊆ �n ⧵�
′
n and ⟨H, �n, �n2⟩ ⊨E �′n, we get

⟨H, �n, �n ⧵ �′n⟩ ⊨E �′n (2).
By definition, sWLP�i ((while (e) inv �i { r }; s) ⋅ nil, true) =

min
⇒

{�′′n |WLP(while (e) inv �i { r }; s, true)⇒ �i ∗ �′′n } ⋅nil, then

sWLP�i ((while (e) inv �i { r }; s) ⋅ nil, true) is defined.
By the definition of sWLP, we get sWLP((r; skip)⋅(while (e) inv �i { r }; s)⋅

nil, true) = WLP(r; skip, �i) ⋅ sWLP�i ((while (e) inv �i { r }; s) ⋅
nil, true), and so sWLP((r; skip)⋅(while (e) inv �i { r }; s)⋅nil, true)
is defined.

Since ⟨H, �n, �′n⟩ ⊨E WLP(r; skip, �i) = sWLPn+1((r; skip) ⋅
(while (e) inv �i { r }; s) ⋅ nil, true), and

⟨H, �n, �n⧵�′n⟩ ⊨E �′n = sWLPn((r; skip)⋅(while (e) inv �i { r }; s)⋅
nil, true).

Also, r; skip is clearly s′′; skip for some s′′ ∈ STMT where that
s′′ is r. Additionally, we are given that while (e) inv �i { r }; s =
s′; skip for some s′ ∈ STMT. Also, �′n ⊆ �n gives �′n ∩ (�n ⧵ �

′
n) = ∅.

Therefore,  ′ is a valid state in this case.
In either case,  ′ is a valid state.

Case 26 (SSWHILEFINISH).
The proof of this case can be found here: extra-proofs/svlrp-preservation-sswhilefinish.pdf.

Case 27 (SSFOLD).We have  = ⟨H, ⟨�n, �n, fold p(e); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.
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Since  is a valid state, by definition we get that fold p(e); s = s′; skip for some
s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅ for all
1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((fold p(e); s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((fold p(e); s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2 or sn−1 =
while (e) inv �i { r }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((fold p(e); s)⋅sn−1 ⋅ ...⋅s1 ⋅nil, true),
by the definition of sWLP, we get that
sWLPn((fold p(e); s) ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) = �′*body�(p)(e) for the
weakest �′ ∈ FORMULA such that �′ * p(e) ⇒ WLP(s, �), �′ * p(e) ∈
SATFORMULA, and �′ * body�(p)(e) ∈ SFRMFORMULA.

By inversion on ⟨H, �n, �n⟩ ⊨E �′*body�(p)(e), we get ⟨H, �n, �n1⟩ ⊨E �′

and ⟨H, �n, �n2⟩ ⊨E body�(p)(e) for �n1 ⊎ �n2 = �n.
Also, sincewe are operating overwell-typed programs, we getH, �n ⊢ e ⇓ v

.
Then EVPRED gives ⟨H, �n, �n2⟩ ⊨E p(e), and so EVSEPOP gives

⟨H, �n, �n⟩ ⊨E �′*p(e). Finally, since�′ * p(e) ⇒ WLP(s, �), by lemma
6, we get ⟨H, �n, �n⟩ ⊨E WLP(s, �).

Now, sWLP((fold p(e); s)⋅sn−1⋅...⋅s1⋅nil, true) =WLP((fold p(e); s), �)⋅
sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is
defined.

By the definition of sWLP, we get sWLP(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) =
WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and so sWLP(s ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined.

Finally, since sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = WLP(s, �) and
sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = sWLPi((fold p(e); s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) for all 1 ≤ i < n, we get
⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n = 1, then
 = ⟨H, ⟨�n, �n, fold p(e); s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ nil⟩ =  ′.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((fold p(e); s) ⋅ nil, true), by the def-
inition of sWLP, we get that
sWLPn((fold p(e); s) ⋅ nil, true) = �′ * body�(p)(e) for the weak-
est �′ ∈ FORMULA such that �′ * p(e) ⇒ WLP(s, true), �′ * p(e) ∈
SATFORMULA, and �′ * body�(p)(e) ∈ SFRMFORMULA.

By inversion on ⟨H, �n, �n⟩ ⊨E �′*body�(p)(e), we get ⟨H, �n, �n1⟩ ⊨E �′

and ⟨H, �n, �n2⟩ ⊨E body�(p)(e) for �n1 ⊎ �n2 = �n.
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Also, sincewe are operating overwell-typed programs, we getH, �n ⊢ e ⇓ v
.

Then EVPRED gives ⟨H, �n, �n2⟩ ⊨E p(e), and so EVSEPOP gives
⟨H, �n, �n⟩ ⊨E �′ * p(e). Finally, since �′ * p(e) ⇒ WLP(s, true), by
lemma 6, we get ⟨H, �n, �n⟩ ⊨E WLP(s, true) = sWLPn(s ⋅ nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

Case 28 (SSUNFOLD). We have  = ⟨H, ⟨�n, �n, unfold p(e); s⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that unfold p(e); s = s′; skip for
some s′ ∈ STMT, si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, �i ∩ �j = ∅ for
all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j, and
⟨H, �i, �i⟩ ⊨E sWLPi((unfold p(e); s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.

If n > 1, then
by the definition of sWLP and since sWLP((unfold p(e); s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined, we get that sn−1 = y := z.m(x); s′′2 or sn−1 =
while (e) inv �i { r }; s′′2 .

Then let � =

{

mpost(m) if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

and �f =

{

mpre(m)[z∕this, x∕mparam(m)] if sn−1 = y := z.m(x); s′′2
�i if sn−1 = while (e) inv �i { r }; s′′2

.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((unfold p(e); s)⋅sn−1⋅...⋅s1⋅nil, true),
by the definition of sWLP, we get that
sWLPn((unfold p(e); s) ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = �′ * p(e) for
the weakest �′ ∈ FORMULA such that �′ * body�(p)(e) ⇒ WLP(s, �),
�′ * body�(p)(e) ∈ SATFORMULA, and �′ * p(e) ∈ SFRMFORMULA.

By inversion on ⟨H, �n, �n⟩ ⊨E �′*p(e), we get ⟨H, �n, �n1⟩ ⊨E �′

and ⟨H, �n, �n2⟩ ⊨E p(e) for �n1 ⊎ �n2 = �n.
By inversion on ⟨H, �n, �n2⟩ ⊨E p(e), we get ⟨H, �n, �n2⟩ ⊨E body�(p)(e)

andH, �n ⊢ e ⇓ v, and so EVSEPOP gives ⟨H, �n, �n⟩ ⊨E �′*body�(p)(e).
Finally, since�′ * body�(p)(e) ⇒ WLP(s, �), by lemma 6, we get ⟨H, �n, �n⟩ ⊨E WLP(s, �).

Now, sWLP((unfold p(e); s)⋅sn−1⋅...⋅s1⋅nil, true) =WLP((unfold p(e); s), �)⋅
sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), so sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) is
defined.

By the definition of sWLP, we get sWLP(s ⋅sn−1 ⋅ ... ⋅s1 ⋅nil, true) =
WLP(s, �) ⋅ sWLP�f (sn−1 ⋅ ... ⋅ s1 ⋅ nil, true), and so sWLP(s ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) is defined.

Finally, since sWLPn(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = WLP(s, �) and
sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) = sWLPi((unfold p(e); s) ⋅ sn−1 ⋅ ... ⋅
s1 ⋅ nil, true) for all 1 ≤ i < n, we get
⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
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If n = 1, then
 = ⟨H, ⟨�n, �n, unfold p(e); s⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, s⟩ ⋅ nil⟩ =  ′.

Since ⟨H, �n, �n⟩ ⊨E sWLPn((unfold p(e); s) ⋅ nil, true), by the
definition of sWLP, we get that
sWLPn((unfold p(e); s) ⋅ nil, true) = �′ * p(e) for the weakest �′ ∈
FORMULA such that�′ * body�(p)(e) ⇒ WLP(s, true),�′*body�(p)(e) ∈
SATFORMULA, and �′ * p(e) ∈ SFRMFORMULA.

By inversion on ⟨H, �n, �n⟩ ⊨E �′*p(e), we get ⟨H, �n, �n1⟩ ⊨E �′

and ⟨H, �n, �n2⟩ ⊨E p(e) for �n1 ⊎ �n2 = �n.
By inversion on ⟨H, �n, �n2⟩ ⊨E p(e), we get ⟨H, �n, �n2⟩ ⊨E body�(p)(e)

andH, �n ⊢ e ⇓ v, and so EVSEPOP gives ⟨H, �n, �n⟩ ⊨E �′*body�(p)(e).
Finally, since �′ * body�(p)(e) ⇒ WLP(s, true), by lemma 6, we get
⟨H, �n, �n⟩ ⊨E WLP(s, true) = sWLPn(s ⋅ nil, true).

In either case ⟨H, �i, �i⟩ ⊨E sWLPi(s ⋅ sn−1 ⋅ ... ⋅ s1 ⋅ nil, true) for all 1 ≤ i ≤ n.
Also, s is clearly skip or s′′; skip for some s′′ ∈ STMT , and we are
given that si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n. Additionally, �i∩�j = ∅
for all 1 ≤ i ≤ n, 1 ≤ j ≤ n such that i ≠ j. Therefore,  ′ is a valid state.

2.3 Soundness Lemmas

Lemma 5 (Formula Footprint&Evaluation). If ⟨⟨ ⌊�⌋H,� ⟩⟩H is defined, ⟨⟨ ⌊�⌋H,� ⟩⟩H =
�′, and ⟨H, �, �⟩ ⊨E �, then ⟨H, �, �′⟩ ⊨E �.

Proof. Let � ∈ FORMULA, ⟨H, �, �⟩ ∈ MEM, and �′ ∈ DYNFPRINT, such that
⟨⟨ ⌊�⌋H,� ⟩⟩H is defined, ⟨⟨ ⌊�⌋H,� ⟩⟩H = �′, and ⟨H, �, �⟩ ⊨E �.

Wewill show by structural induction on the derivation of ⟨H, �, �⟩ ⊨E � that ⟨H, �, �′⟩ ⊨E �.

Case 29 (BC: EVTRUEEXPR). We have ⟨H, �, �⟩ ⊨E true and so � = true. By ax-
iom rule EVTRUEEXPR, ⟨H, �, �′⟩ ⊨E true.

Case 30 (IC: EVCOMPEXPR).We have ⟨H, �, �⟩ ⊨E e1⊙e2,H, � ⊢ e1⊙e2 ⇓ true,
and � = e1 ⊙ e2. Then, by EVCOMPEXPR, we get ⟨H, �, �′⟩ ⊨E e1 ⊙ e2.

Case 31 (IC: EVACC). We have ⟨H, �, �⟩ ⊨E acc(e.f), H, � ⊢ e ⇓ o, H, � ⊢ e.f ⇓
v, ⟨o, f⟩ ∈ �, and � = acc(e.f).

Then, ⟨o, f⟩ ∈ {⟨o, f⟩} = ⟨⟨ {⟨o, f⟩} ⟩⟩H = ⟨⟨ ⌊acc(e.f)⌋H,� ⟩⟩H = �′.
Thus, by EVACC, we get ⟨H, �, �′⟩ ⊨E acc(e.f).

Case 32 (IC:EVPRED).Wehave ⟨H, �, �⟩ ⊨E p(e1, ..., en), ⟨H, �, �⟩ ⊨E body�(p)(e1, ..., en),
andH, � ⊢ e ⇓ v, and � = p(e1, ..., en).

Then, ⟨⟨ ⌊p(e1, ..., en)⌋H,� ⟩⟩H is defined, and so by definition, ⌊p(e1, ..., en)⌋H,� =
{⟨p, v1, ..., vn⟩}. And so, ⟨⟨ ⌊body�(p)(e1, ..., en)⌋H,� ⟩⟩H = ⟨⟨ ⌊body�(p)(v1, ..., vn)⌋H,[] ⟩⟩H =
⟨⟨ {⟨p, v1, ..., vn⟩} ⟩⟩H = ⟨⟨ ⌊p(e1, ..., en)⌋H,� ⟩⟩H = �′.

Therefore, by the IH on ⟨H, �, �⟩ ⊨E body�(p)(e1, ..., en), we get ⟨H, �, �′⟩ ⊨E body�(p)(e1, ..., en).
Finally, by EVPRED, ⟨H, �, �′⟩ ⊨E p(e1, ..., en).
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Case 33 (IC:EVANDOP).Wehave ⟨H, �, �⟩ ⊨E �1 ∧�2, ⟨H, �, �⟩ ⊨E �1, ⟨H, �, �⟩ ⊨E �2,
and � = �1 ∧ �2.

Since ⟨⟨ ⌊�1 ∧ �2⌋H,� ⟩⟩H is defined, we get that ⌊�1 ∧ �2⌋H,� is defined, and so
⌊�1⌋H,� and ⌊�2⌋H,� are defined. Also, by definition, ⌊�1⌋H,� ⊆ ⌊�1 ∧ �2⌋H,� and
⌊�2⌋H,� ⊆ ⌊�1 ∧ �2⌋H,�.

Therefore, by lemma 4, we get that ⟨⟨ ⌊�1⌋H,� ⟩⟩H and ⟨⟨ ⌊�2⌋H,� ⟩⟩H are defined
and ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊆ ⟨⟨ ⌊�1 ∧ �2⌋H,� ⟩⟩H = �′ and ⟨⟨ ⌊�2⌋H,� ⟩⟩H ⊆ ⟨⟨ ⌊�1 ∧
�2⌋H,� ⟩⟩H = �′.

By the IH on ⟨H, �, �⟩ ⊨E �1 and ⟨H, �, �⟩ ⊨E �2, we get ⟨H, �, ⟨⟨ ⌊�1⌋H,� ⟩⟩H⟩ ⊨E �1
and ⟨H, �, ⟨⟨ ⌊�2⌋H,� ⟩⟩H⟩ ⊨E �2.

Therefore, by lemma 1, we get ⟨H, �, �′⟩ ⊨E �1 and ⟨H, �, �′⟩ ⊨E �2
Then, by EVANDOP, we get ⟨H, �, �′⟩ ⊨E �1 ∧ �2.

Case 34 (IC: EVSEPOP). We have ⟨H, �, �1 ⊎ �2⟩ ⊨E �1 ∗ �2, ⟨H, �, �1⟩ ⊨E �1,
⟨H, �, �2⟩ ⊨E �2, � = �1 ∗ �2, and � = �1 ⊎ �2.

Since ⟨⟨ ⌊�1 ∗ �2⌋H,� ⟩⟩H is defined, we get that ⌊�1 ∗ �2⌋H,� is defined, and so
⌊�1⌋H,� and ⌊�2⌋H,� are defined. Also, by definition, ⌊�1⌋H,� ⊆ ⌊�1 ∗ �2⌋H,� and
⌊�2⌋H,� ⊆ ⌊�1 ∗ �2⌋H,�.

Therefore, by lemma 4, we get that ⟨⟨ ⌊�1⌋H,� ⟩⟩H and ⟨⟨ ⌊�2⌋H,� ⟩⟩H are defined
and ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊆ ⟨⟨ ⌊�1 ∗ �2⌋H,� ⟩⟩H = �′ and ⟨⟨ ⌊�2⌋H,� ⟩⟩H ⊆ ⟨⟨ ⌊�1 ∗
�2⌋H,� ⟩⟩H = �′.

Also, since ⟨H, �, �1⟩ ⊨E �1 and ⟨H, �, �2⟩ ⊨E �2, by lemma 8, we get∃Π1 . ⟨H, �,Π1⟩
is a good iso-state, ⟨⟨ Π1 ⟩⟩H = �1 and ⟨H, �,Π1⟩ ⊨I �1, and ∃ Π2 . ⟨H, �,Π2⟩ is a
good iso-state, ⟨⟨ Π2 ⟩⟩H = �2 and ⟨H, �,Π2⟩ ⊨I �2 respectively.

Then, by definition ⌊�1⌋H,� ⊆ Π1 and ⌊�2⌋H,� ⊆ Π2. And so, by lemma 4, we get
that ⟨⟨ ⌊�1⌋H,� ⟩⟩H and ⟨⟨ ⌊�2⌋H,� ⟩⟩H are defined and ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊆ ⟨⟨ Π1 ⟩⟩H =
�1 and ⟨⟨ ⌊�2⌋H,� ⟩⟩H ⊆ ⟨⟨ Π2 ⟩⟩H = �2.

Since �1 ⊎ �2, we get ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊎ ⟨⟨ ⌊�2⌋H,� ⟩⟩H .
Now, by the IH on ⟨H, �, �⟩ ⊨E �1 and ⟨H, �, �⟩ ⊨E �2, we get ⟨H, �, ⟨⟨ ⌊�1⌋H,� ⟩⟩H⟩ ⊨E �1

and ⟨H, �, ⟨⟨ ⌊�2⌋H,� ⟩⟩H⟩ ⊨E �2.
Then, by EVSEPOP, we get ⟨H, �, ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊎ ⟨⟨ ⌊�2⌋H,� ⟩⟩H⟩ ⊨E �1 ∗ �2.
Since ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊆ �′ and ⟨⟨ ⌊�2⌋H,� ⟩⟩H ⊆ �′, we get ⟨⟨ ⌊�1⌋H,� ⟩⟩H ⊎

⟨⟨ ⌊�2⌋H,� ⟩⟩H ⊆ �′.
Therefore, by lemma 1, we get ⟨H, �, �′⟩ ⊨E �1 ∗ �2.

Case 35 (IC:EVCONDTRUE).Wehave ⟨H, �, �⟩ ⊨E (if e then �T else �F ), ⟨H, �, �⟩ ⊨E �T ,
H, � ⊢ e ⇓ true, and � = (if e then �T else �F ).

Since ⟨⟨ ⌊(if e then �T else �F )⌋H,� ⟩⟩H is defined, we get that ⌊(if e then �T else �F )⌋H,�
is defined. Then, sinceH, � ⊢ e ⇓ true, by definition, ⌊(if e then �T else �F )⌋H,� =
⌊�T ⌋H,�. And so, ⟨⟨ ⌊�T ⌋H,� ⟩⟩H = ⟨⟨ ⌊(if e then �T else �F )⌋H,� ⟩⟩H = �′.

Therefore, by the IH on ⟨H, �, �⟩ ⊨E �T , we get ⟨H, �, �′⟩ ⊨E �T .
Finally, by EVCONDTRUE, we get ⟨H, �, �′⟩ ⊨E (if e then �T else �F ).

Case 36 (IC:EVCONDFALSE).Wehave ⟨H, �, �⟩ ⊨E (if e then �T else �F ), ⟨H, �, �⟩ ⊨E �F ,
H, � ⊢ e ⇓ false, and � = (if e then �T else �F ).
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Since ⟨⟨ ⌊(if e then �T else �F )⌋H,� ⟩⟩H is defined, we get that ⌊(if e then �T else �F )⌋H,�
is defined. Then, sinceH, � ⊢ e ⇓ false, by definition, ⌊(if e then �T else �F )⌋H,� =
⌊�F ⌋H,�. And so, ⟨⟨ ⌊�F ⌋H,� ⟩⟩H = ⟨⟨ ⌊(if e then �T else �F )⌋H,� ⟩⟩H = �′.

Therefore, by the IH on ⟨H, �, �⟩ ⊨E �F , we get ⟨H, �, �′⟩ ⊨E �F .
Finally, by EVCONDFALSE, we get ⟨H, �, �′⟩ ⊨E (if e then �T else �F ).

Case 37 (IC:EVUNFOLDING).Wehave ⟨H, �, �⟩ ⊨E (unfolding p(e) in �′), ⟨H, �, �⟩ ⊨E �′,
and � = (unfolding p(e) in �′).

Since ⟨⟨ ⌊(unfolding p(e) in �′)⌋H,� ⟩⟩H is defined, we get that ⌊(unfolding p(e) in �′)⌋H,�
is defined. Then, by definition, ⌊(unfolding p(e) in �′)⌋H,� = ⌊�′⌋H,�. And so,
⟨⟨ ⌊�′⌋H,� ⟩⟩H = ⟨⟨ ⌊(unfolding p(e) in �′)⌋H,� ⟩⟩H = �′.

Therefore, by the IH on ⟨H, �, �⟩ ⊨E �′, we get ⟨H, �, �′⟩ ⊨E �′.
Finally, by EVUNFOLDING, we get ⟨H, �, �′⟩ ⊨E (unfolding p(e) in �′).

Lemma 6 (Formula Implication & Evaluation). ∀ �, �′ ∈ FORMULA, ⟨H, �, �⟩ ∈
MEM. � ⇒ �′ and ⟨H, �, �⟩ ⊨E � ⟹ ⟨H, �, �⟩ ⊨E �′.

Proof. Let �, �′ ∈ FORMULA, ⟨H, �, �⟩ ∈ MEM. � ⇒ �′ and ⟨H, �, �⟩ ⊨E �.
Since ⟨H, �, �⟩ ⊨E �, by lemma 8 we get that ∃ Π . ⟨H, �,Π⟩ is a good iso-state,

⟨⟨ Π ⟩⟩H = � and ⟨H, �,Π⟩ ⊨I �.
Then ⟨H, �,Π⟩ ∈ J�K by the definition of J⋅K. � ⇒ �′ gives ⟨H, �,Π⟩ ∈ J�K ⊆

J�′K. Therefore, by the definition of J⋅K, we get ⟨H, �,Π⟩ ⊨I �′.
Then by theorem 1, ⟨H, �, ⟨⟨ Π ⟩⟩H⟩ ⊨E �′, ie. ⟨H, �, �⟩ ⊨E �′.

Definition 1 (Good Iso-state). An iso-recursive state defined by heap H , variable en-
vironment �, and permissions Π, is good if:

1. ⟨⟨ Π ⟩⟩H is defined
2. ∀ ⟨p, v1, ..., vn⟩ ∈ Π . ⟨H, �, ⟨⟨ Π ⟩⟩H⟩ ⊨E p(v1, ..., vn)
3. {(o, f ) | (o, f ) ∈ Π} ∪ ⟨⟨ Π∗ ⟩⟩H exists and is equal to ⟨⟨ Π ⟩⟩H , where Π∗ =

⨄

⟨p,v1,…,vn⟩∈Π{⟨o, f⟩ ∣ ⟨o, f⟩ ∈ ⌊body�(p)(v1,… , vn)⌋}⊎
⋃

⟨p,v1,…,vn⟩∈Π{⟨p, v1,… , vn⟩ ∣
⟨p, v1,… , vn⟩ ∈ ⌊body�(p)(v1,… , vn)⌋}

Lemma 7 (sWLP�f Minimal Implication Closure). If �s ⇒ �f * �, �s ⇒ �f * �′,
and �, �′, �s ∈ SATFORMULA, then 1) � ∧ �′ ∈ SATFORMULA, 2) �s ⇒ �f ∗ (� ∧ �′),
3) � ∧ �′ ⇒ �, and 4) � ∧ �′ ⇒ �′.

Proof. Let �, �′, �s, �f ∈ FORMULA such that �s ⇒ �f * �, �s ⇒ �f * �′, and �, �′, �s ∈
SATFORMULA.

Since �s ∈ SATFORMULA, �s ⇒ �f * �, and �s ⇒ �f * �′, we get that ∅ ≠ J�sK ⊆
J�f * �K and ∅ ≠ J�sK ⊆ J�f * �′K. Then let ⟨H, �,Π⟩ ∈ J�sK and so ⟨H, �,Π⟩ ∈
J�f * �K and ⟨H, �,Π⟩ ∈ J�f * �′K.

Therefore, ⟨H, �,Π⟩ ⊨I �f*� and ⟨H, �,Π⟩ ⊨I �f*�′. By inversion on ⟨H, �,Π⟩ ⊨I �f*�
and ⟨H, �,Π⟩ ⊨I �f*�′, we get ⟨H, �,Π1⟩ ⊨I �f , ⟨H, �,Π2⟩ ⊨I �, ⟨H, �,Π3⟩ ⊨I �f ,
and ⟨H, �,Π4⟩ ⊨I �′ where Π1 ⊎ Π2 = Π and Π3 ⊎ Π4 = Π.
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1) Therefore, since Π2 ⊆ Π, ⟨H, �,Π2⟩ ⊨I �, Π4 ⊆ Π, and ⟨H, �,Π4⟩ ⊨I �′, we
get by lemma 2 that ⟨H, �,Π⟩ ⊨I � and ⟨H, �,Π⟩ ⊨I �′. Then by EVANDOP we get
⟨H, �,Π⟩ ⊨I � ∧ �′.

Then, ⟨H, �,Π⟩ ∈ J� ∧ �′K and so ∅ ≠ J� ∧ �′K and � ∧ �′ ∈ SATFORMULA.
2) Then, since ⟨H, �,Π1⟩ ⊨I �f and ⟨H, �,Π3⟩ ⊨I �f , by definition ⌊�f⌋H,� is de-
fined. By definition, ⌊�f⌋H,� ⊆ Π1 and ⌊�f⌋H,� ⊆ Π3.

Therefore, ⌊�f⌋H,� ∩ Π2 = ∅ and ⌊�f⌋H,� ∩ Π4 = ∅. So, ⌊�f⌋H,� ∩ (Π2 ∪ Π4) = ∅.
Also, since Π2 ⊆ Π2 ∪ Π4, ⟨H, �,Π2⟩ ⊨I �, Π4 ⊆ Π2 ∪ Π4, and ⟨H, �,Π4⟩ ⊨I �′,

lemma 2 gives ⟨H, �,Π2 ∪ Π4⟩ ⊨I � and ⟨H, �,Π2 ∪ Π4⟩ ⊨I �′. Then, by EVANDOP
⟨H, �,Π2 ∪ Π4⟩ ⊨I � ∧ �′.

Since ⟨H, �, ⌊�f⌋H,�⟩ ⊨I �f by def of ⌊�f⌋H,�, ⟨H, �,Π2 ∪ Π4⟩ ⊨I � ∧ �′, and
⌊�f⌋H,�∩(Π2∪Π4) = ∅, by EVSEPOPwe get that ⟨H, �, ⌊�f⌋H,�⊎(Π2∪Π4)⟩ ⊨I �f ∗ (�∧
�′).

Then, since ⌊�f⌋H,�⊎(Π2∪Π4) ⊆ Π, by lemma 2we get ⟨H, �,Π⟩ ⊨I �f ∗ (�∧�′)
and ⟨H, �,Π⟩ ∈ J�f ∗ (� ∧ �′)K. Therefore, J�sK ⊆ J�f ∗ (� ∧ �′)K and so �s ⇒ �f ∗ (� ∧ �′).
3) & 4) By 1) we get that � ∧ �′ ∈ SATFORMULA. Therefore, J� ∧ �′K ≠ ∅ and so let
⟨H ′, �′,Π′⟩ ∈ J� ∧ �′K. Then, ⟨H ′, �′,Π′⟩ ⊨I � ∧ �′.

By inversion on ⟨H ′, �′,Π′⟩ ⊨I �∧�′, we get ⟨H ′, �′,Π′⟩ ⊨I � and ⟨H ′, �′,Π′⟩ ⊨I �′.
Therefore, ⟨H ′, �′,Π′⟩ ∈ J�K and ⟨H ′, �′,Π′⟩ ∈ J�′K. This gives J� ∧ �′K ⊆ J�K

and J� ∧ �′K ⊆ J�′K. So, finally, � ∧ �′ ⇒ � and � ∧ �′ ⇒ �′.

Lemma 8 (Summers). If ⟨H, �, �⟩ ⊨E �, then ∃ Π . ⟨H, �,Π⟩ is a good iso-state,
⟨⟨ Π ⟩⟩H = � and ⟨H, �,Π⟩ ⊨I �.

Proof. The proof of this lemma can be found here: extra-proofs/extra-proofs.pdf.

Theorem 1 (Summers). If ⟨H, �,Π⟩ ⊨I � and ⟨H, �,Π⟩ is a good iso-state, then
⟨H, �, ⟨⟨ Π ⟩⟩H⟩ ⊨E �.

Proof. The proof of this theorem can be found here: extra-proofs/extra-proofs.pdf.

3 Consistent Formula Evaluation

Claim (Consistent Formula Evaluation). ⋅ ⊨̃ ⋅ is a consistent lifting of ⋅ ⊨E ⋅.
∀ �̃ ∈ F̃ORMULA, b̃odyΔ ∈ PREDNAME → EXPR∗ → F̃ORMULA, ⟨H, �, �⟩ ∈

MEM . ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩ ⟺ ∃ ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩) . ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩

Proof. The proof of this claim can be found here: extra-proofs/extra-proofs.pdf.

Definition 2 (Body Context Implication). Let bodyΔ, bodyΔ′ ∈ PREDNAME →
EXPR∗ → FORMULA. Then bodyΔ ⇒ bodyΔ′ if and only if dom(bodyΔ) = dom(bodyΔ′),
∀p ∈ dom(bodyΔ) . dom(bodyΔ(p)) = dom(bodyΔ′(p)), and ∀p ∈ dom(bodyΔ) . ∀e ∈
dom(bodyΔ(p)) . bodyΔ(p)(e) ⇒ bodyΔ′(p)(e).

Lemma 9 (Body Context Implication & Formula Evaluation). ∀ � ∈ FORMULA,
bodyΔ, bodyΔ′ ∈ PREDNAME → EXPR∗ → FORMULA, ⟨H, �, �⟩ ∈ MEM. bodyΔ ⇒ bodyΔ′
and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩
⟹ ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ′⟩.
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Proof. Let � ∈ FORMULA, bodyΔ, bodyΔ′ ∈ PREDNAME → EXPR∗ → FORMULA,
⟨H, �, �⟩ ∈ MEM. bodyΔ ⇒ bodyΔ′ and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩.

Using structural induction on the derivation of ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, we will
show ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ′⟩.

Case 38 (Base Case: EVTRUEEXPR). We have ⟨H, �, �⟩ ⊨E ⟨true, bodyΔ⟩ and so
� = true. By axiom rule EVTRUEEXPR, we get ⟨H, �, �⟩ ⊨E ⟨true, bodyΔ′⟩.

Case 39 (IC: EVCOMPEXPR). We have ⟨H, �, �⟩ ⊨E ⟨e1 ⊙ e2, bodyΔ⟩, H, � ⊢ e1 ⊙
e2 ⇓ true, and � = e1 ⊙ e2. Then, by EVCOMPEXPR, we get ⟨H, �, �⟩ ⊨E ⟨e1 ⊙
e2, bodyΔ′⟩.

Case 40 (IC:EVACC).Wehave ⟨H, �, �⟩ ⊨E ⟨acc(e.f), bodyΔ⟩,H, � ⊢ e ⇓ o,H, � ⊢
e.f ⇓ v, ⟨o, f⟩ ∈ �, and� = acc(e.f). Then, by EVACC, we get ⟨H, �, �⟩ ⊨E ⟨acc(e.f), bodyΔ′⟩.

Case 41 (IC:EVPRED).Wehave ⟨H, �, �⟩ ⊨E ⟨p(e), bodyΔ⟩, ⟨H, �, �⟩ ⊨E ⟨bodyΔ(p)(e), bodyΔ⟩,
and � = p(e).

By the IH on ⟨H, �, �⟩ ⊨E ⟨bodyΔ(p)(e), bodyΔ⟩, we get ⟨H, �, �⟩ ⊨E ⟨bodyΔ(p)(e), bodyΔ′⟩.
Since bodyΔ ⇒ bodyΔ′ by definition 2, bodyΔ(p)(e) ⇒ bodyΔ′(p)(e). Then, by lemma

10, we get ⟨H, �, �⟩ ⊨E ⟨bodyΔ′(p)(e), bodyΔ′⟩.
Thus, by EVPRED, ⟨H, �, �⟩ ⊨E ⟨p(e), bodyΔ′⟩.

Case 42 (IC:EVANDOP).Wehave ⟨H, �, �⟩ ⊨E ⟨�1 ∧�2, bodyΔ⟩, ⟨H, �, �⟩ ⊨E ⟨�1, bodyΔ⟩,
⟨H, �, �⟩ ⊨E ⟨�2, bodyΔ⟩, and � = �1 ∧ �2.

By the IH on both ⟨H, �, �⟩ ⊨E ⟨�1, bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨�2, bodyΔ⟩, we get
⟨H, �, �⟩ ⊨E ⟨�1, bodyΔ′⟩ and ⟨H, �, �⟩ ⊨E ⟨�2, bodyΔ′⟩.

Then, by EVANDOP, we get ⟨H, �, �⟩ ⊨E ⟨�1 ∧ �2, bodyΔ′⟩.

Case 43 (IC:EVSEPOP).Wehave ⟨H, �, �1 ⊎�2⟩ ⊨E ⟨�1 ∗ �2, bodyΔ⟩, ⟨H, �, �1⟩ ⊨E ⟨�1, bodyΔ⟩,
⟨H, �, �2⟩ ⊨E ⟨�2, bodyΔ⟩, � = �1 ∗ �2, and � = �1 ⊎ �2.

By the IH on both ⟨H, �, �1⟩ ⊨E ⟨�1, bodyΔ⟩ and ⟨H, �, �2⟩ ⊨E ⟨�2, bodyΔ⟩, we
get ⟨H, �, �1⟩ ⊨E ⟨�1, bodyΔ′⟩ and ⟨H, �, �2⟩ ⊨E ⟨�2, bodyΔ′⟩.

Then, by EVSEPOP, we get ⟨H, �, �⟩ ⊨E ⟨�1 ∗ �2, bodyΔ′⟩.

Case 44 (IC:EVCONDTRUE).Wehave ⟨H, �, �⟩ ⊨E ⟨(if e then �T else �F ), bodyΔ⟩,
⟨H, �, �⟩ ⊨E ⟨�T , bodyΔ⟩,H, � ⊢ e ⇓ true, and � = (if e then �T else �F ).

By the IH on ⟨H, �, �⟩ ⊨E ⟨�T , bodyΔ⟩, we get ⟨H, �, �⟩ ⊨E ⟨�T , bodyΔ′⟩.
Then, by EVCONDTRUE, we get ⟨H, �, �⟩ ⊨E ⟨(if e then �T else �F ), bodyΔ′⟩.

Case 45 (IC:EVCONDFALSE).Wehave ⟨H, �, �⟩ ⊨E ⟨(if e then �T else �F ), bodyΔ⟩,
⟨H, �, �⟩ ⊨E ⟨�F , bodyΔ⟩,H, � ⊢ e ⇓ false, and � = (if e then �T else �F ).

By the IH on ⟨H, �, �⟩ ⊨E ⟨�F , bodyΔ⟩, we get ⟨H, �, �⟩ ⊨E ⟨�F , bodyΔ′⟩.
Then, by EVCONDFALSE, we get ⟨H, �, �⟩ ⊨E ⟨(if e then �T else �F ), bodyΔ′⟩.

Case 46 (IC:EVUNFOLDING).Wehave ⟨H, �, �⟩ ⊨E ⟨(unfolding p(e) in �′), bodyΔ⟩,
⟨H, �, �⟩ ⊨E ⟨�′, bodyΔ⟩, and � = (unfolding p(e) in �′).

By the IH on ⟨H, �, �⟩ ⊨E ⟨�′, bodyΔ⟩, we get ⟨H, �, �⟩ ⊨E ⟨�′, bodyΔ′⟩.
Then, by EVUNFOLDING, we get ⟨H, �, �⟩ ⊨E ⟨(unfolding p(e) in �′), bodyΔ′⟩.
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Lemma 10 (Formula Implication & Evaluation). ∀ �, �′ ∈ FORMULA, bodyΔ ∈
PREDNAME → EXPR∗ → FORMULA, ⟨H, �, �⟩ ∈ MEM. � ⇒ �′ and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩
⟹ ⟨H, �, �⟩ ⊨E ⟨�′, bodyΔ⟩.

Proof. Let �, �′ ∈ FORMULA, bodyΔ ∈ PREDNAME → EXPR∗ → FORMULA, and
⟨H, �, �⟩ ∈ MEM. � ⇒ �′ and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩.

Since ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, by lemma 11 we get that ∃ Π . ⟨H, �,Π, bodyΔ⟩ is
a good iso-state, ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H = � and ⟨H, �,Π⟩ ⊨I �.

Then ⟨H, �,Π⟩ ∈ J�K by the definition of J⋅K. � ⇒ �′ gives ⟨H, �,Π⟩ ∈ J�K ⊆
J�′K. Therefore, by the definition of J⋅K, we get ⟨H, �,Π⟩ ⊨I �′.

Then by theorem 2, ⟨H, �, ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H⟩ ⊨E ⟨�′, bodyΔ⟩, ie. ⟨H, �, �⟩ ⊨E ⟨�′, bodyΔ⟩.

Definition 3 (Good Iso-state w/ body). An iso-recursive state defined by heapH , vari-
able environment �, permissions Π, and concrete body context bodyΔ, is good if:

1. ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H is defined
2. ∀ ⟨p, v1, ..., vn⟩ ∈ Π . ⟨H, �, ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H⟩ ⊨E ⟨p(v1, ..., vn), bodyΔ⟩
3. {(o, f ) | (o, f ) ∈ Π}∪⟨⟨ ⟨Π∗, bodyΔ⟩ ⟩⟩H exists and is equal to ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H ,

whereΠ∗ =
⨄

⟨p,v1,…,vn⟩∈Π{⟨o, f⟩ ∣ ⟨o, f⟩ ∈ ⌊bodyΔ(p)(v1,… , vn)⌋}⊎
⋃

⟨p,v1,…,vn⟩∈Π{⟨p, v1,… , vn⟩ ∣
⟨p, v1,… , vn⟩ ∈ ⌊bodyΔ(p)(v1,… , vn)⌋}

Lemma 11 (Summers). If ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, then ∃ Π . ⟨H, �,Π, bodyΔ⟩ is a
good iso-state, ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H = � and ⟨H, �,Π⟩ ⊨I �.

Proof. The proof of this lemma can be found here: extra-proofs/extra-proofs.pdf.

Theorem 2 (Summers). If ⟨H, �,Π⟩ ⊨I � and ⟨H, �,Π, bodyΔ⟩ is a good iso-state,
then ⟨H, �, ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H⟩ ⊨E ⟨�, bodyΔ⟩.

Proof. The proof of this theorem can be found here: extra-proofs/extra-proofs.pdf.

4 Consistent Formula Implication

Claim (Consistent Formula Implication). ⋅ ⇒̃ ⋅ is a consistent lifting of ⋅ ⇒ ⋅ .
∀ �̃1, �̃2 ∈ F̃ORMULA . �̃1 ⇒̃ �̃2 ⟺ ∃ �1 ∈ 
(�̃1), �2 ∈ 
(�̃2) . �1 ⇒ �2

Proof. Let �̃1, �̃2 ∈ F̃ORMULA.
(⟸ ) Suppose ∃ �1 ∈ 
(�̃1), �2 ∈ 
(�̃2) . �1 ⇒ �2.

Case 47 (�̃1 = �1). Since ⋅ ⇒ ⋅ is reflexive and �2 ∈ 
(�̃2), by the definition of 
 , we
get �2 ⇒ static(�̃2).

Then by the transitivity of ⋅ ⇒ ⋅, we get �1 ⇒ static(�̃2). Therefore, �̃1 ⇒̃ �̃2 by
ĨMPLSTATIC.

Case 48 (�̃1 = ?*�1 and �1 ∈ SATFORMULA). Since �1 ∈ 
(?*�1), by the definition
of 
 , �1 ⇒ �1 and �1 ∈ SATFORMULA.

Since ⋅ ⇒ ⋅ is reflexive and �2 ∈ 
(�̃2), by the definition of 
 , we get �2 ⇒ static(�̃2).
Then by the transitivity of ⋅ ⇒ ⋅, we get �1 ⇒ static(�̃2).

Therefore, �̃1 ⇒̃ �̃2 by ĨMPLGRAD.
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Case 49 (�̃1 = ? * �1 and �1 ∉ SATFORMULA). Contradiction, because �1 ∈ 
(�̃1) =
undefined.

(⟹ ) Suppose �̃1 ⇒̃ �̃2.

Case 50 (�̃1 = �1). Then �1 ⇒ static(�̃2) by inversion and �1 ∈ 
(�̃1).
If �̃2 = �2,

then �1 ∈ 
(�̃1), �2 ∈ 
(�̃2), and �1 ⇒ �2.
If �̃2 = ? * �2 and �2 ∈ SATFORMULA,

then if �1 ∈ SATFORMULA, �1 ∈ 
(�̃1), �1 ∈ 
(�̃2), and �1 ⇒ �1 (by
reflexivity of ⋅ ⇒ ⋅).
Otherwise, if �1 ∉ SATFORMULA, �1 ∈ 
(�̃1) and �2 ∈ 
(�̃2) . �1 ⇒ �2
(J�1K = ∅ ⊆ J�2K), where �2 is created by adding the missing permis-
sions of �2 to self-frame �2 to �2 via the non-separating conjunction.

If �̃2 = ? * �2 and �2 ∉ SATFORMULA,
then if �1 ∈ SATFORMULA, we have a contradiction. �1 ⇒ static(�̃2)
gives J�1K ≠ ∅ ⊆ Jstatic(�̃2)K = ∅.
Otherwise, if �1 ∉ SATFORMULA, this case is never used in any proof
where it is necessary. Always,�2 ∈ SATFORMULA.

Case 51 (�̃1 = ?*�1 and �1 ∈ SATFORMULA). Then ∃ . � ∈ SATFORMULA, � ⇒ �1,
� ⇒ static(�̃2) by inversion. Also, � ∈ 
(�̃1).

If �̃2 = �2,
then � ∈ 
(�̃1), �2 ∈ 
(�̃2), and �1 ⇒ �2.

If �̃2 = ? * �2 and �2 ∈ SATFORMULA,
then � ∈ 
(�̃1), � ∈ 
(�̃2), and � ⇒ � (by reflexivity of ⋅ ⇒ ⋅).

If �̃2 = ? * �2 and �2 ∉ SATFORMULA,
thenwe have a contradiction. � ⇒ static(�̃2) gives J�K ≠ ∅ ⊆ Jstatic(�̃2)K =
∅.

Case 52 (�̃1 = ?*�1 and �1 ∉ SATFORMULA). Then ∃ . � ∈ SATFORMULA, � ⇒ �1,
� ⇒ static(�̃2) by inversion. This results in a contradiction, because � ⇒ �1 gives
J�K ≠ ∅ ⊆ J�1K = ∅.

5 GVLRP Soundness (Non-optimized Semantics)

5.1 Progress

Claim (GVLRP Progress). If  ∈ STATE is a valid state and
 ∉ {⟨H, ⟨�, �, skip⟩ ⋅ nil⟩ |H ∈ HEAP, � ∈ ENV, � ∈ DYNFPRINT}
then  ⟶̃  ′ for some  ′ ∈ STATE or  ⟶̃ error.
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Proof. Suppose  = ⟨H, ⟨�n, �n, sn⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ∈ STATE such that  is a
valid state and  ∉ {⟨H, ⟨�, �, skip⟩ ⋅ nil⟩ |H ∈ HEAP, � ∈ ENV, � ∈ DYNFPRINT}.

Since  is a valid state, by definition we get that sn = sn1; skip for some sn1 ∈
STMT or sn = skip and si = si1; si2 for some si1 , si2 ∈ STMT such that si1 is a method
call or while loop statement for all 1 ≤ i < n.
If sn = skip, then  = ⟨H, ⟨�n, �n, skip⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.

If = ⟨H, ⟨�n, �n, skip⟩⋅⟨�n−1, �n−1, y := z.m(x); sn−12⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩, then
If ⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m), body�⟩ holds. Then by SSCALLFINISH,

 ⟶̃ ⟨H, ⟨�n−1[y↦ �n(result)], �n ∪ �n−1, sn−12⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩ =  ′.
If ⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m), body�⟩ does not hold. Then by SSCALLFIN-
ISHERROR,  ⟶̃ error.
Either way,  ⟶̃  ′ or  ⟶̃ error.

If  = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, while (e) inv �̃ { s′ }; sn−12⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩ ⋅ nil⟩, then by SSWHILEFINISH,

 ⟶̃⟨H, ⟨�n, �n ∪�n−1, while (e) inv �̃ { s′ }; sn−12⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩ =  ′. Then clearly,  ⟶̃  ′ or  ⟶̃ error.

If  = ⟨H, ⟨�n, �n, skip⟩ ⋅ nil⟩, then contradiction because we assumed  ∉
{⟨H ′, ⟨�′, �′, skip⟩ ⋅ nil⟩ |H ′ ∈ HEAP, �′ ∈ ENV, �′ ∈ DYNFPRINT}.

If sn = sn1; skip for some sn1 ∈ STMT, then by lemma 3, we get sn = sℎ; st such that
sℎ is not a sequence statement and st = skip or st1; skip where sn1 = sℎ; st1 .

We will show  ⟶̃  ′ for some  ′ ∈ STATE or  ⟶̃ error by casing on sℎ.

Case 53 (sℎ = skip). Then  = ⟨H, ⟨�n, �n, skip; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ and by
SSSKIP, ⟨H, ⟨�n, �n, skip; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =
 ′. Then clearly  ⟶̃  ′ or  ⟶̃ error.

Case 54 (sℎ = T x). Then = ⟨H, ⟨�n, �n, T x; st⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ and by SSDE-
CLARE, ⟨H, ⟨�n, �n, T x; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =
 ′. Then clearly  ⟶̃  ′ or  ⟶̃ error.

Case 55 (sℎ = assert �). Then  = ⟨H, ⟨�n, �n, assert �; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅nil⟩.
If ⟨H, �n, �n⟩ ⊨̃ ⟨? * �, body�⟩ holds. Then by SSASSERT,

⟨H, ⟨�n, �n, assert �; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃
⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

If ⟨H, �n, �n⟩ ⊨̃ ⟨?*�, body�⟩ does not hold. Then by SSASSERTERROR,  ⟶̃ error.
Either way,  ⟶̃  ′ or  ⟶̃ error.

Case 56 (sℎ = x.f := y). Then  = ⟨H, ⟨�n, �n, x.f := y; st⟩ ⋅ ... ⋅⟨�1, �1, s1⟩ ⋅nil⟩.
Also, we are operating over well-typed programs soH, �n ⊢ y ⇓ v .

If ⟨H, �n, �n⟩ ⊨E acc(x.f) holds. Then by SSFASSIGN,
⟨H, ⟨�n, �n, x.f := y; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃

⟨H[o↦ [f ↦ v]], ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.
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If ⟨H, �n, �n⟩ ⊨E acc(x.f) does not hold. Then by SSFASSIGNERROR,  ⟶̃ error.
Either way,  ⟶̃  ′ or  ⟶̃ error.

Case 57 (sℎ = x := e). Then  = ⟨H, ⟨�n, �n, x := e; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
Since we are operating over well-typed programs,H, �n ⊢ e ⇓ v .

If ⟨H, �n, �n⟩ ⊨E acc(e) holds. Then by SSASSIGN,
⟨H, ⟨�n, �n, x := e; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃

⟨H, ⟨�n[x↦ v], �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.
If ⟨H, �n, �n⟩ ⊨E acc(e) does not hold. Then by SSASSIGNERROR,  ⟶̃ error.
Either way,  ⟶̃  ′ or  ⟶̃ error.

Case 58 (sℎ = x := new C).Then = ⟨H, ⟨�n, �n, x := new C; st⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩.

Let o ∈ LOC and o ∉ dom(H).
Thus, by SSALLOC, ⟨H, ⟨�n, �n, x := new C; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃

⟨H ′, ⟨�n[x↦ o], �n∪⟨o, fi⟩, st⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′ where fields(C) =
Ti fi; andH ′ = H[o↦ [fi ↦ defaultValue(Ti)]].

Then clearly  ⟶̃  ′ or  ⟶̃ error.

Case 59 (sℎ = if (e) {s′1} else {s
′
2
}).Then = ⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; st⟩⋅

... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩.
We operate over well-typed programs, so we have H, �n ⊢ e ⇓ v where v ∈

{ true, false } .
IfH, �n ⊢ e ⇓ true and ⟨H, �n, �n⟩ ⊨E acc(e) holds, then by SSIFTRUE,

⟨H, ⟨�n, �n, if (e) {s′1} else {s
′
2
}; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃

⟨H, ⟨�n, �n, s′1; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  
′.

IfH, �n ⊢ e ⇓ false and ⟨H, �n, �n⟩ ⊨E acc(e) holds, then by SSIFFALSE,
⟨H, ⟨�n, �n, if (e) {s′1} else {s

′
2
}; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃

⟨H, ⟨�n, �n, s′2; st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  
′.

If ⟨H, �n, �n⟩ ⊨E acc(e) does not hold. Then by SSIFERROR,  ⟶̃ error.
In all cases,  ⟶̃  ′ or  ⟶̃ error.

Case 60 (sℎ = y := z.m(x)).
The proof of this case can be found here: extra-proofs/gvlrp-progress-methodcall.pdf.

Case 61 (sℎ = while (e) inv �̃i { r }).
The proof of this case can be found here: extra-proofs/gvlrp-progress-whileloop.pdf.

Case 62 (sℎ = fold p(e)). Then  = ⟨H, ⟨�n, �n, fold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩
and by SSFOLD,

⟨H, ⟨�n, �n, fold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =
 ′. Then clearly  ⟶̃  ′ or  ⟶̃ error.

Case 63 (sℎ = unfold p(e)). Then  = ⟨H, ⟨�n, �n, unfold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ and by SSUNFOLD,

⟨H, ⟨�n, �n, unfold p(e); st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶ ⟨H, ⟨�n, �n, st⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =
 ′. Then clearly  ⟶̃  ′ or  ⟶̃ error.
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5.2 Preservation

Claim (GVLRP Preservation). If  is a valid state and  ⟶̃  ′ for some  ′ ∈ STATE
then  ′ is a valid state.

Proof. Suppose  ∈ STATE such that  is a valid state and  ⟶̃  ′ for some  ′ ∈
STATE.

We will show  ′ is a valid state by case analysis on  ⟶̃  ′.

Case 64 (SSSKIP).Wehave = ⟨H, ⟨�n, �n, skip; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃ ⟨H, ⟨�n, �n, s⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that
1) skip; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is clearly skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 65 (SSDECLARE).Wehave = ⟨H, ⟨�n, �n, T x; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃ ⟨H, ⟨�n, �n, s⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that
1) T x; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is clearly skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 66 (SSASSERT). We have  = ⟨H, ⟨�n, �n, assert �′; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ ⟶̃ ⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′ and ⟨H, �n, �n⟩ ⊨̃ ⟨? * �′, body�⟩.

Since  is a valid state, by definition we get that
1) assert �′; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is clearly skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 67 (SSFASSIGN). We have  = ⟨H, ⟨�n, �n, x.f := y; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃ ⟨H[o↦ [f ↦ v]], ⟨�n, �n, s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(x.f),
andH, �n ⊢ y ⇓ v.

Since  is a valid state, by definition we get that
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1) x.f := y; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is clearly skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 68 (SSASSIGN).Wehave = ⟨H, ⟨�n, �n, x := e; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃ ⟨H, ⟨�n[x↦
v], �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), andH, �n ⊢ e ⇓ v.

Since  is a valid state, by definition we get that
1) x := e; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 69 (SSALLOC). We have  = ⟨H, ⟨�n, �n, x := new C; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃ ⟨H ′, ⟨�n[x↦ o], �n∪⟨o, fi⟩, s⟩ ⋅ ... ⋅⟨�1, �1, s1⟩ ⋅nil⟩ =  ′ where o ∉ dom(H),
fields(C) = Ti fi ;, andH ′ = H[o↦ [fi ↦ defaultValue(Ti)]].

Since  is a valid state, by definition we get that
1) x := new C; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 70 (SSIFTRUE).Wehave = ⟨H, ⟨�n, �n, if (e) {r1} else {r2}; s⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩ ⟶̃ ⟨H, ⟨�n, �n, r1; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ true.

Since  is a valid state, by definition we get that
1) if (e) {r1} else {r2}; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT, and so r1; s = r1; skip or r1; s =

(r1; s′′); skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 71 (SSIFFALSE).Wehave = ⟨H, ⟨�n, �n, if (e) {r1} else {r2}; s⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩ ⟶̃ ⟨H, ⟨�n, �n, r2; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ false.
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Since  is a valid state, by definition we get that
1) if (e) {r1} else {r2}; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT, and so r2; s = r2; skip or r2; s =

(r2; s′′); skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 72 (SSCALL). We have  = ⟨H, ⟨�n, �n, y := z.m(x); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃ ⟨H, ⟨�′n, �

′
n,mbody(m); skip⟩ ⋅⟨�n, �n⧵�′n, y := z.m(x); s⟩ ⋅ ... ⋅⟨�1, �1, s1⟩ ⋅

nil⟩ =  ′,H, �n ⊢ z ⇓ o,H, �n ⊢ x ⇓ v,
�′n = [this ↦ o,mparam(m) ↦ v, old(mparam(m)) ↦ v], �′n = ⌊mpre(m)⌋�n,H,�′n ,
�′n ⊆ �n, and ⟨H, �′n, �

′
n⟩ ⊨̃ ⟨mpre(m), body�⟩.

Since  is a valid state, by definition we get that
1) y := z.m(x); s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) mbody(m); skip = r; skip for some r ∈ STMT, and
b) y := z.m(x); s = r1; r2 for r1, r2 ∈ STMT where r1 = y := z.m(x) and r2 = s.
Therefore, by a), 1), 2), b), and 3) we get that  ′ is a valid state.

Case 73 (SSCALLFINISH). We have
 = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, y := z.m(x); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃
⟨H, ⟨�n−1[y↦ �n(result)], �n ∪ �n−1, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′, and
⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m), body�⟩.

Since  is a valid state, by definition we get that
1) sn = skip,
2) y := z.m(x); s = s′; skip for some s′ ∈ STMT and si = s′i; skip for some

s′i ∈ STMT for all 1 ≤ i < n − 1, and
3) y := z.m(x); s = s1n−1; s2n−1 for some s1n−1, s

2
n−2 ∈ STMT where s1n−1 =

y := z.m(x), s2n−1 = s and si = s
1
i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method

call or while loop statement for all 1 ≤ i < n − 1.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 74 (SSWHILEFALSE).We have  = ⟨H, ⟨�n, �n, while (e) inv �̃i { r }; s⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩⋅nil⟩⟶̃ ⟨H, ⟨�n, �n, s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′, ⟨H, �n, �n⟩ ⊨̃ ⟨�̃i, body�⟩,
⟨H, �n, �n⟩ ⊨E acc(e), andH, �n ⊢ e ⇓ false.

Since  is a valid state, by definition we get that
1) while (e) inv �̃i { r }; s = s′; skip for some s′ ∈ STMT,
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2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

Case 75 (SSWHILETRUE).We have  = ⟨H, ⟨�n, �n, while (e) inv �̃i { r }; s⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃ ⟨H, ⟨�n, �′n, r; skip⟩ ⋅ ⟨�n, �n ⧵ �′n, while (e) inv �̃i { r }; s⟩ ⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′,⟨H, �n, �n⟩ ⊨̃ ⟨�̃i, body�⟩, ⟨H, �n, �n⟩ ⊨E acc(e), H, �n ⊢
e ⇓ true, and �′n = ⌊�̃i⌋�n,H,�n .

Since  is a valid state, by definition we get that
1) while (e) inv �̃i { r }; s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) while (e) inv �̃i { r }; s = r1; r2 for r1, r2 ∈ STMTwhere r1 = while (e) inv �̃i { r }

and r2 = s.
Therefore, by 1), 2), a), and 3) we get that  ′ is a valid state.

Case 76 (SSWHILEFINISH). We have
 = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, while (e) inv �̃i { r }; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ ⟶̃
⟨H, ⟨�n, �n ∪ �n−1, while (e) inv �̃i { r }; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that
1) sn = skip,
2) while (e) inv �̃i { r }; s = s′; skip for some s′ ∈ STMT and si = s′i; skip

for some s′i ∈ STMT for all 1 ≤ i < n − 1, and
3) while (e) inv �̃i { r }; s = s1n−1; s

2
n−1 for some s1n−1, s

2
n−2 ∈ STMT where

s1n−1 = while (e) inv �̃i { r }, s
2
n−1 = s and si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT

where s1i is a method call or while loop statement for all 1 ≤ i < n − 1.
Therefore, by 2) and 3) we get that  ′ is a valid state.

Case 77 (SSFOLD).We have  = ⟨H, ⟨�n, �n, fold p(e); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩⟶̃
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that
1) fold p(e); s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.
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Case 78 (SSUNFOLD). We have  = ⟨H, ⟨�n, �n, unfold p(e); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ ⟶̃ ⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since  is a valid state, by definition we get that
1) unfold p(e); s = s′; skip for some s′ ∈ STMT,
2) si = s′i; skip for some s′i ∈ STMT for all 1 ≤ i < n, and
3) si = s1i ; s

2
i for some s1i , s

2
i ∈ STMT where s1i is a method call or while loop

statement for all 1 ≤ i < n.
Then clearly,
a) s is skip or s′′; skip for some s′′ ∈ STMT.
Therefore, by a), 2), and 3) we get that  ′ is a valid state.

6 GVLRP Static Gradual Guarantee (Non-optimized Semantics)

The proof of the static gradual guarantee can be found here: extra-proofs/gvlrp-sgg.pdf.

7 GVLRP Dynamic Gradual Guarantee (Non-optimized Semantics)

Proposition 1 (Dynamic gradual guarantee of verification).
Let p1, p2 ∈ PROGRAM such that p1 ⊑d p2, and  1,  2 ∈ STATE such that  1 ≲  2.

If  1 ⟶̃p1  
′
1 then  2 ⟶̃p2  

′
2, with  

′
1 ≲  

′
2.

Proof. Suppose p1, p2 ∈ PROGRAM and  1,  2 ∈ STATE such that p1 ⊑d p2,  1 ≲  2,
and  1 ⟶̃p1  

′
1.

Then, let  1 = ⟨H, ⟨�n, �n, sn⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩. Since  1 ≲  2, we get  2 =

⟨H, ⟨�n, �′n, s
′
n⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ where sm ⊑ s

′
m for 1 ≤ m ≤ n and

n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i

for 1 ≤ m ≤ n.
We will show  2 ⟶̃p2  

′
2, with  

′
1 ≲  

′
2 for some  ′2 ∈ STATE by case analysis on

 1 ⟶̃p1  
′
1.

Case 79 (SSSKIP).Wehave 1 = ⟨H, ⟨�n, �n, skip; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃p1 ⟨H, ⟨�n, �n, s⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′.

Since skip; s ⊑ s′n, then by definition we get s′n = s
′
n1

; s′n2 where skip ⊑ s′n1 and
s ⊑ s′n2 . Then skip ⊑ s′n1 gives s

′
n1
= skip, and so s′n = skip; s′n2 .

Therefore, by SSSKIP, we have  2 = ⟨H, ⟨�n, �′n, skip; s′n2⟩ ⋅ ... ⋅ ⟨�1, �
′
1, s

′
1⟩ ⋅

nil⟩ ⟶̃p2 ⟨H, ⟨�n, �
′
n, s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.
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Case 80 (SSDECLARE).Wehave 1 = ⟨H, ⟨�n, �n, T x; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃p1 ⟨H, ⟨�n, �n, s⟩⋅
... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1.

Since T x; s ⊑ s′n, then by definition we get s′n = s′n1; s
′
n2

where T x ⊑ s′n1 and
s ⊑ s′n2 . Then T x ⊑ s′n1 gives s

′
n1
= T x, and so s′n = T x; s′n2 .

Therefore, by SSDECLARE, we have  2 = ⟨H, ⟨�n, �′n, T x; s′n2⟩ ⋅ ... ⋅ ⟨�1, �
′
1, s

′
1⟩ ⋅

nil⟩ ⟶̃p2 ⟨H, ⟨�n, �
′
n, s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 81 (SSASSERT). We have  1 = ⟨H, ⟨�n, �n, assert �′; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃p1 ⟨H, ⟨�n, �n, s⟩⋅ ...⋅⟨�1, �1, s1⟩⋅nil⟩ =  

′
1 and ⟨H, �n, �n⟩ ⊨̃ ⟨?*�′, body�p1⟩.

Since assert �′; s ⊑ s′n, then by definitionwe get s
′
n = s

′
n1

; s′n2 where assert�′ ⊑
s′n1 and s ⊑ s

′
n2
. Then assert�′ ⊑ s′n1 gives s

′
n1
= assert�′, and so s′n = assert �′; s′n2 .

Since p1 ⊑d p2, we get that dom(body�p1) = dom(body�p2) and∀p ∈ dom(body�p1) .∀tmp ∈
VAR∗ . body�p1 (p)(tmp) ⊑ body�p2 (p)(tmp).

Then, by lemma 13 on
dom(body�p1) = dom(body�p2),∀p ∈ dom(body�p1) .∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑
body�p2 (p)(tmp) and
⟨H, �n, �n⟩ ⊨̃ ⟨? * �′, body�p1⟩, we get ⟨H, �n, �n⟩ ⊨̃ ⟨? * �′, body�p2⟩.

Also, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ⊆ �′n.

By lemma 14 on�n ⊆ �′n and ⟨H, �n, �n⟩ ⊨̃ ⟨?*�′, body�p2⟩, we get ⟨H, �n, �
′
n⟩ ⊨̃ ⟨?*�′, body�p2⟩.

Therefore, since ⟨H, �n, �′n⟩ ⊨̃ ⟨? * �′, body�p2⟩, by SSASSERT, we have
 2 = ⟨H, ⟨�n, �′n, assert �′; s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�n, �′n, s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 82 (SSFASSIGN). We have  1 = ⟨H, ⟨�n, �n, x.f := y; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃p1 ⟨H[o↦ [f ↦ v]], ⟨�n, �n, s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′1, ⟨H, �n, �n⟩ ⊨E acc(x.f),
andH, �n ⊢ y ⇓ v.
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Since x.f := y; s ⊑ s′n, then by definitionwe get s
′
n = s

′
n1

; s′n2 where x.f := y ⊑
s′n1 and s ⊑ s

′
n2
. Then x.f := y ⊑ s′n1 gives s

′
n1
= x.f := y, and so s′n = x.f := y; s′n2 .

Since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ⊆ �′n.

By lemma 1 on�n ⊆ �′n and ⟨H, �n, �n⟩ ⊨E acc(x.f), we get ⟨H, �n, �′n⟩ ⊨E acc(x.f).
Therefore, since ⟨H, �n, �′n⟩ ⊨E acc(x.f) and H, �n ⊢ y ⇓ v, by SSFASSIGN, we

have
 2 = ⟨H, ⟨�n, �′n, x.f := y; s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H[o↦ [f ↦ v]], ⟨�n, �′n, s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 83 (SSASSIGN).Wehave 1 = ⟨H, ⟨�n, �n, x := e; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃p1 ⟨H, ⟨�n[x↦
v], �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1, ⟨H, �n, �n⟩ ⊨E acc(e), andH, �n ⊢ e ⇓ v.

Since x := e; s ⊑ s′n, then by definition we get s′n = s′n1; s
′
n2

where x := e ⊑ s′n1
and s ⊑ s′n2 . Then x := e ⊑ s′n1 gives s

′
n1
= x := e, and so s′n = x := e; s′n2 .

Since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ⊆ �′n.

By lemma 1 on �n ⊆ �′n and ⟨H, �n, �n⟩ ⊨E acc(e), we get ⟨H, �n, �′n⟩ ⊨E acc(e).
Therefore, since ⟨H, �n, �′n⟩ ⊨E acc(e) andH, �n ⊢ e ⇓ v, by SSASSIGN, we have

 2 = ⟨H, ⟨�n, �′n, x := e; s′n2⟩ ⋅ ... ⋅ ⟨�1, �
′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�n[x↦ v], �′n, s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 84 (SSALLOC). We have  1 = ⟨H, ⟨�n, �n, x := new C; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩⟶̃p1 ⟨H

′, ⟨�n[x↦ o], �n∪⟨o, fi⟩, s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  ′1 where o ∉ dom(H),
fields(C) = Ti fi ;, andH ′ = H[o↦ [fi ↦ defaultValue(Ti)]].

Since x := new C; s ⊑ s′n, then by definitionwe get s
′
n = s

′
n1

; s′n2 where x := new C ⊑
s′n1 and s ⊑ s′n2 . Then x := new C ⊑ s′n1 gives s′n1 = x := new C, and so s′n =
x := new C; s′n2 .
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Therefore, since o ∉ dom(H), fields(C) = Ti fi ;, andH ′ = H[o↦ [fi ↦ defaultValue(Ti)]],
by SSALLOC, we have
 2 = ⟨H, ⟨�n, �′n, x := new C; s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H ′, ⟨�n[x↦ o], �′n ∪ ⟨o, fi⟩, s′n2⟩ ⋅ ... ⋅ ⟨�1, �
′
1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Also, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ∪

n−1
⋃

i=m
�i ⊆ �′n ∪

n−1
⋃

i=m
�′i for

1 ≤ m ≤ n.
Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3) �n ∪ ⟨o, fi⟩ ∪
n−1
⋃

i=m
�i ⊆ �′n ∪ ⟨o, fi⟩ ∪

n−1
⋃

i=m
�′i for 1 ≤ m ≤ n

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 85 (SSIFTRUE).Wehave 1 = ⟨H, ⟨�n, �n, if (e) {r1} else {r2}; s⟩⋅...⋅⟨�1, �1, s1⟩⋅
nil⟩ ⟶̃p1 ⟨H, ⟨�n, �n, r1; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1, ⟨H, �n, �n⟩ ⊨E acc(e), and
H, �n ⊢ e ⇓ true.

Since if (e) {r1} else {r2}; s ⊑ s′n, then by definition we get s
′
n = s

′
n1

; s′n2 where
if (e) {r1} else {r2} ⊑ s′n1 and s ⊑ s′n2 . Then if (e) {r1} else {r2} ⊑ s′n1 gives
s′n1 = if (e) {r1} else {r2}, and so s′n = if (e) {r1} else {r2}; s

′
n2
.

Since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ⊆ �′n.

By lemma 1 on �n ⊆ �′n and ⟨H, �n, �n⟩ ⊨E acc(e), we get ⟨H, �n, �′n⟩ ⊨E acc(e).
Therefore, since ⟨H, �n, �′n⟩ ⊨E acc(e) and H, �n ⊢ e ⇓ true, by SSIFTRUE, we

have
 2 = ⟨H, ⟨�n, �′n, if (e) {r1} else {r2}; s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�n, �′n, r1; s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) r1 ⊑ r1 and s ⊑ s′n2 gives r1; s ⊑ r1; s

′
n2
,

2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 86 (SSIFFALSE). We have  1 = ⟨H, ⟨�n, �n, if (e) {r1} else {r2}; s⟩ ⋅ ... ⋅
⟨�1, �1, s1⟩⋅nil⟩⟶̃p1 ⟨H, ⟨�n, �n, r2; s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  

′
1, ⟨H, �n, �n⟩ ⊨E acc(e),

andH, �n ⊢ e ⇓ false.
Since if (e) {r1} else {r2}; s ⊑ s′n, then by definition we get s

′
n = s

′
n1

; s′n2 where
if (e) {r1} else {r2} ⊑ s′n1 and s ⊑ s′n2 . Then if (e) {r1} else {r2} ⊑ s′n1 gives
s′n1 = if (e) {r1} else {r2}, and so s′n = if (e) {r1} else {r2}; s

′
n2
.
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Since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ⊆ �′n.

By lemma 1 on �n ⊆ �′n and ⟨H, �n, �n⟩ ⊨E acc(e), we get ⟨H, �n, �′n⟩ ⊨E acc(e).
Therefore, since ⟨H, �n, �′n⟩ ⊨E acc(e) andH, �n ⊢ e ⇓ false, by SSIFFALSE, we

have
 2 = ⟨H, ⟨�n, �′n, if (e) {r1} else {r2}; s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�n, �′n, r2; s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) r2 ⊑ r2 and s ⊑ s′n2 gives r2; s ⊑ r2; s

′
n2
,

2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 87 (SSCALL). We have  1 = ⟨H, ⟨�n, �n, y := z.m(x); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ ⟶̃p1 ⟨H, ⟨�p1n , �

p1
n ,mbody(m)p1; skip⟩ ⋅ ⟨�n, �n ⧵ �p1n , y := z.m(x); s⟩ ⋅ ... ⋅

⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1,H, �n ⊢ z ⇓ o,H, �n ⊢ x ⇓ v,
�p1n = [this ↦ o,mparam(m)p1 ↦ v, old(mparam(m)p1) ↦ v],�p1n = ⌊mpre(m)p1⌋

p1
�n,H,�

p1
n
,

�p1n ⊆ �n, and ⟨H, �p1n , �
p1
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩.

Since y := z.m(x); s ⊑ s′n, then by definitionwe get s
′
n = s

′
n1

; s′n2 where y := z.m(x) ⊑
s′n1 and s ⊑ s′n2 . Then y := z.m(x) ⊑ s′n1 gives s′n1 = y := z.m(x), and so s′n =
y := z.m(x); s′n2 .

Since p1 ⊑d p2, we get that mbody(m)p1 ⊑ mbody(m)p2 , mpre(m)p1 ⊑ mpre(m)p2 ,
dom(body�p1) = dom(body�p2), and∀p ∈ dom(body�p1) .∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑

body�p2 (p)(tmp), and �
p2
n = [this ↦ o,mparam(m)p2 ↦ v, old(mparam(m)p2) ↦ v] =

�p1n .
⟨H, �p1n , �

p1
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩ and �

p1
n = �p2n , gives ⟨H, �p2n , �

p1
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩.

Also, since p1 ⊑d p2,
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n gives �n ⊆ �′n, mpre(m)p1 ⊑

mpre(m)p2 , �
p1
n = ⌊mpre(m)p1⌋

p1
�n,H,�

p1
n
= ⌊mpre(m)p1⌋

p1
�n,H,�

p2
n
, and �p1n ⊆ �n by

lemma 15, we get �p2n = ⌊mpre(m)p2⌋
p2
�′n,H,�

p2
n
and �p1n ⊆ �p2n .

Then, �p2n ⊆ �′n since if mpre(m)p2 is semantically precise and p1 ⊑d p2, we get
�p2n = �p1n ⊆ �n ⊆ �′n and otherwise, �

p2
n = �′n .

By lemma 14 on �p1n ⊆ �p2n and ⟨H, �p2n , �
p1
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩, we get

⟨H, �p2n , �
p2
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩.

By lemma 12 onmpre(m)p1 ⊑ mpre(m)p2 and ⟨H, �
p2
n , �

p2
n ⟩ ⊨̃ ⟨mpre(m)p1 , body�p1⟩,

we get ⟨H, �p2n , �
p2
n ⟩ ⊨̃ ⟨mpre(m)p2 , body�p1⟩.
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Similarly, by lemma 13 on
dom(body�p1) = dom(body�p2),∀p ∈ dom(body�p1) .∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑
body�p2 (p)(tmp), and
⟨H, �p2n , �

p2
n ⟩ ⊨̃ ⟨mpre(m)p2 , body�p1⟩, we get ⟨H, �

p2
n , �

p2
n ⟩ ⊨̃ ⟨mpre(m)p2 , body�p2⟩.

Therefore, since ⟨H, �p2n , �
p2
n ⟩ ⊨̃ ⟨mpre(m)p2 , body�p2⟩,�

p2
n = ⌊mpre(m)p2⌋

p2
�′n,H,�

p2
n
,

and �p2n ⊆ �′n, by SSCALL, we have
 2 = ⟨H, ⟨�n, �′n, y := z.m(x); s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�p2n , �
p2
n ,mbody(m)p2; skip⟩⋅⟨�n, �′n⧵�

p2
n , y := z.m(x); s′n2⟩⋅...⋅⟨�1, �

′
1, s

′
1⟩⋅

nil⟩ =  ′2
We have �p1n ⊆ �p2n and �n ⊆ �′n. Also, �n ⊆ �

p1
n ∪�n ⧵�

p1
n and �′n ⊆ �

p2
n ∪�′n ⧵�

p2
n .

Therefore, �p1n ∪ �n ⧵ �
p1
n ⊆ �p2n ∪ �′n ⧵ �

p2
n .

Also, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get �n ∪

n−1
⋃

i=m
�i ⊆ �′n ∪

n−1
⋃

i=m
�′i for

1 ≤ m ≤ n.

Therefore, we have (�p1n ∪�n⧵�
p1
n )∪

n−1
⋃

i=m
�i ⊆ (�

p2
n ∪�′n⧵�

p2
n )∪

n−1
⋃

i=m
�′i for 1 ≤ m ≤ n.

Finally, since
1) �p1n = �p2n ,
2) s ⊑ s′n2 gives y := z.m(x); s ⊑ y := z.m(x); s′n2 andmbody(m)p1 ⊑ mbody(m)p2

gives mbody(m)p1; skip ⊑ mbody(m)p2; skip,
3) sm ⊑ s′m for 1 ≤ m < n − 1,

4) (�p1n ∪�n ⧵�
p1
n ) ∪

n−1
⋃

i=m
�i ⊆ (�

p2
n ∪�′n ⧵�

p2
n ) ∪

n−1
⋃

i=m
�′i for 1 ≤ m ≤ n, and �p1n ⊆ �p2n .

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 88 (SSCALLFINISH).We have
 1 = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, y := z.m(x); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ ⟶̃p1
⟨H, ⟨�n−1[y↦ �n(result)], �n ∪ �n−1, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1, and
⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m)p1 , body�p1⟩.

Since skip ⊑ s′n, then by definition we get s′n = skip.
Also, since y := z.m(x); s ⊑ s′n−1, then by definition we get s′n−1 = s′n−11; s

′
n−12

where y := z.m(x) ⊑ s′n−11 and s ⊑ s′n−12 . Then y := z.m(x) ⊑ s′n−11 gives s
′
n−11

=
y := z.m(x), and so s′n−1 = y := z.m(x); s′n−12 .

Since p1 ⊑d p2, we get thatmpost(m)p1 ⊑ mpost(m)p2 , dom(body�p1) = dom(body�p2),
and ∀p ∈ dom(body�p1) . ∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑ body�p2 (p)(tmp).

By lemma 12 onmpost(m)p1 ⊑ mpost(m)p2 and ⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m)p1 , body�p1⟩,
we get ⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m)p2 , body�p1⟩.

Similarly, by lemma 13 on
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dom(body�p1) = dom(body�p2),∀p ∈ dom(body�p1) .∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑
body�p2 (p)(tmp), and
⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m)p2 , body�p1⟩, we get ⟨H, �n, �n⟩ ⊨̃ ⟨mpost(m)p2 , body�p2⟩.

Finally, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n gives �n ⊆ �′n, by lemma 14, we get

⟨H, �n, �′n⟩ ⊨̃ ⟨mpost(m)p2 , body�p2⟩.
Therefore, since ⟨H, �n, �′n⟩ ⊨̃ ⟨mpost(m)p2 , body�p2⟩, by SSCALLFINISH, we have

 2 = ⟨H, ⟨�n, �′n, skip⟩ ⋅ ⟨�n−1, �′n−1, y := z.m(x); s′n−12⟩ ⋅ ... ⋅ ⟨�1, �
′
1, s

′
1⟩ ⋅nil⟩⟶̃p2

⟨H, ⟨�n−1[y↦ �n(result)], �′n ∪ �
′
n−1, s

′
n−12

⟩ ⋅ ... ⋅ ⟨�1, �′1, s
′
1⟩ ⋅ nil⟩ =  

′
2.

Also, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get (�n∪�n−1)∪

n−2
⋃

i=m
�i ⊆ (�′n∪�

′
n−1)∪

n−2
⋃

i=m
�′i for 1 ≤ m ≤ n − 1.

Finally, since
1) s ⊑ s′n−12 ,
2) sm ⊑ s′m for 1 ≤ m < n − 1, and

3) (�n ∪ �n−1) ∪
n−2
⋃

i=m
�i ⊆ (�′n ∪ �

′
n−1) ∪

n−2
⋃

i=m
�′i for 1 ≤ m ≤ n − 1

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 89 (SSWHILEFALSE). We have  1 = ⟨H, ⟨�n, �n, while (e) inv �̃
p1
i
{ r }; s⟩ ⋅

...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃p1 ⟨H, ⟨�n, �n, s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩ =  
′
p1
, ⟨H, �n, �n⟩ ⊨̃ ⟨�̃p1i , body�p1⟩,

⟨H, �n, �n⟩ ⊨E acc(e), andH, �n ⊢ e ⇓ false.
Since while (e) inv �̃p1

i
{ r }; s ⊑ s′n, then by definition we get s′n = s′n1; s

′
n2

where while (e) inv �̃p1
i
{ r } ⊑ s′n1 and s ⊑ s

′
n2
. Then while (e) inv �̃p1

i
{ r } ⊑ s′n1

gives s′n1 = while (e) inv �̃
p2
i
{ r }, where �̃p1i ⊑ �̃p2i , and so s′n = while (e) inv �̃

p2
i
{ r }; s′n2 .

Since p1 ⊑d p2, we get that dom(body�p1) = dom(body�p2) and∀p ∈ dom(body�p1) .∀tmp ∈
VAR∗ . body�p1 (p)(tmp) ⊑ body�p2 (p)(tmp).

By lemma 12 on �̃p1i ⊑ �̃p2i and ⟨H, �n, �n⟩ ⊨̃ ⟨�̃p1i , body�p1⟩, we get ⟨H, �n, �n⟩ ⊨̃ ⟨�̃p2i , body�p1⟩.
Similarly, by lemma 13 on

dom(body�p1) = dom(body�p2),∀p ∈ dom(body�p1) .∀tmp ∈ VAR∗ . body�p1 (p)(tmp) ⊑
body�p2 (p)(tmp), and
⟨H, �n, �n⟩ ⊨̃ ⟨�̃p2i , body�p1⟩, we get ⟨H, �n, �n⟩ ⊨̃ ⟨�̃p2i , body�p2⟩.

Finally, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n gives �n ⊆ �′n, by lemma 14, we get

⟨H, �n, �′n⟩ ⊨̃ ⟨�̃p2i , body�p2⟩.
By lemma 1 on �n ⊆ �′n and ⟨H, �n, �n⟩ ⊨E acc(e), we get ⟨H, �n, �′n⟩ ⊨E acc(e).
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Therefore, since ⟨H, �n, �′n⟩ ⊨̃ ⟨�̃p2i , body�p2⟩, ⟨H, �n, �
′
n⟩ ⊨E acc(e), andH, �n ⊢

e ⇓ false, by SSWHILEFALSE, we have
 2 = ⟨H, ⟨�n, �′n, while (e) inv �̃

p2
i
{ r }; s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ ⟶̃p2

⟨H, ⟨�n, �′n, s
′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 90 (SSWHILETRUE). The proof of this case is similar in structure to SSCALL.

Case 91 (SSWHILEFINISH). We have
 1 = ⟨H, ⟨�n, �n, skip⟩ ⋅ ⟨�n−1, �n−1, while (e) inv �̃

p1
i
{ r }; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅

nil⟩⟶̃p1 ⟨H, ⟨�n, �n ∪ �n−1, while (e) inv �̃
p1
i
{ r }; s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1.

Since skip ⊑ s′n, then by definition we get s′n = skip.
Also, since while (e) inv �̃p1

i
{ r }; s ⊑ s′n−1, then by definition we get s′n−1 =

s′n−11; s
′
n−12

where while (e) inv �̃p1
i
{ r } ⊑ s′n−11 and s ⊑ s

′
n−12

. Then while (e) inv �̃p1
i
{ r } ⊑

s′n−11 gives s
′
n−11

= while (e) inv �̃p2
i
{ r } where �̃p1i ⊑ �̃p2i ,

and so s′n−1 = while (e) inv �̃
p2
i
{ r }; s′n−12 .

Therefore, by SSWHILEFINISH, we have
 2 = ⟨H, ⟨�n, �′n, skip⟩ ⋅⟨�n−1, �′n−1, while (e) inv �̃

p2
i
{ r }; s′n−12⟩ ⋅ ... ⋅⟨�1, �

′
1, s

′
1⟩ ⋅

nil⟩ ⟶̃p2
⟨H, ⟨�n, �′n ∪ �

′
n−1, while (e) inv �̃

p2
i
{ r }; s′n−12⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Also, since
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n, we get (�n∪�n−1)∪

n−2
⋃

i=m
�i ⊆ (�′n∪�

′
n−1)∪

n−2
⋃

i=m
�′i for 1 ≤ m ≤ n − 1.

Finally, since
1) while (e) inv �̃p1

i
{ r }; s = sn−1 ⊑ s′n−1 = while (e) inv �̃

p2
i
{ r }; s′n−12

and ,
2) sm ⊑ s′m for 1 ≤ m < n − 1, and

3) (�n ∪ �n−1) ∪
n−2
⋃

i=m
�i ⊆ (�′n ∪ �

′
n−1) ∪

n−2
⋃

i=m
�′i for 1 ≤ m ≤ n − 1

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 92 (SSFOLD).Wehave 1 = ⟨H, ⟨�n, �n, fold p(e); s⟩⋅...⋅⟨�1, �1, s1⟩⋅nil⟩⟶̃p1
⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  ′1.
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Since fold p(e); s ⊑ s′n, then by definition we get s
′
n = s

′
n1

; s′n2 where fold p(e) ⊑
s′n1 and s ⊑ s′n2 . Then fold p(e) ⊑ s′n1 gives s

′
n1
= fold p(e) or s′n1 = skip, and so

s′n = fold p(e); s′n2 or s
′
n = skip; s′n2 .

If s′n = fold p(e); s′n2 , then
by SSFOLD, we have 2 = ⟨H, ⟨�n, �′n, fold p(e); s′n2⟩⋅...⋅⟨�1, �

′
1, s

′
1⟩⋅nil⟩⟶̃p2 ⟨H, ⟨�n, �

′
n, s

′
n2
⟩⋅

... ⋅ ⟨�1, �′1, s
′
1⟩ ⋅ nil⟩ =  

′
2.

If s′n = skip; s′n2 , then
by SSSKIP, we have 2 = ⟨H, ⟨�n, �′n, skip; s′n2⟩⋅...⋅⟨�1, �

′
1, s

′
1⟩⋅nil⟩⟶̃p2 ⟨H, ⟨�n, �

′
n, s

′
n2
⟩⋅

... ⋅ ⟨�1, �′1, s
′
1⟩ ⋅ nil⟩ =  

′
2.

In either case,  2 ⟶̃p2 ⟨H, ⟨�n, �
′
n, s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.

Case 93 (SSUNFOLD). We have  1 = ⟨H, ⟨�n, �n, unfold p(e); s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅
nil⟩ ⟶̃p1 ⟨H, ⟨�n, �n, s⟩ ⋅ ... ⋅ ⟨�1, �1, s1⟩ ⋅ nil⟩ =  

′
1.

Since unfold p(e); s ⊑ s′n, then by definitionwe get s
′
n = s

′
n1

; s′n2 where unfold p(e) ⊑
s′n1 and s ⊑ s′n2 . Then unfold p(e) ⊑ s′n1 gives s

′
n1
= unfold p(e) or s′n1 = skip, and

so s′n = unfold p(e); s′n2 or s
′
n = skip; s′n2 .

If s′n = unfold p(e); s′n2 , then
by SSUNFOLD, we have  2 = ⟨H, ⟨�n, �′n, unfold p(e); s′n2⟩ ⋅ ... ⋅ ⟨�1, �

′
1, s

′
1⟩ ⋅

nil⟩ ⟶̃p2 ⟨H, ⟨�n, �
′
n, s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

If s′n = skip; s′n2 , then
by SSSKIP, we have 2 = ⟨H, ⟨�n, �′n, skip; s′n2⟩⋅...⋅⟨�1, �

′
1, s

′
1⟩⋅nil⟩⟶̃p2 ⟨H, ⟨�n, �

′
n, s

′
n2
⟩⋅

... ⋅ ⟨�1, �′1, s
′
1⟩ ⋅ nil⟩ =  

′
2.

In either case,  2 ⟶̃p2 ⟨H, ⟨�n, �
′
n, s

′
n2
⟩ ⋅ ... ⋅ ⟨�1, �′1, s

′
1⟩ ⋅ nil⟩ =  

′
2.

Finally, since
1) s ⊑ s′n2 ,
2) sm ⊑ s′m for 1 ≤ m < n, and

3)
n
⋃

i=m
�i ⊆

n
⋃

i=m
�′i for 1 ≤ m ≤ n,

we clearly have  ′1 ≲  
′
2.

Then clearly,  2 ⟶̃p2  
′
2, with  

′
1 ≲  

′
2.
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8 GVLRP Lemmas

Lemma 12 (Gradual Eval PreservedReducedPrecision). If ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩
and �̃ ⊑ �̃′, then ⟨H, �, �⟩ ⊨̃ ⟨�̃′, b̃odyΔ⟩.

Proof. Let ⟨H, �, �⟩ ∈ MEM, �̃, �̃′ ∈ F̃ORMULA, and b̃odyΔ ∈ PREDNAME →

EXPR∗ → F̃ORMULA . ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩ and �̃ ⊑ �̃′.
Then, since ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩, by claim 3, we get that∃ ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩)

. ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩.
Since ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩), we get that � ∈ 
(�̃), bodyΔ ∈ 
(b̃odyΔ), and

⊢frm ⟨�, bodyΔ⟩.
Also, by definition �̃ ⊑ �̃′ implies that 
(�̃) ⊆ 
(�̃′). Therefore, � ∈ 
(�̃) ⊆ 
(�̃′).
Since � ∈ 
(�̃′), bodyΔ ∈ 
(b̃odyΔ), and ⊢frm ⟨�, bodyΔ⟩, we get that ⟨�, bodyΔ⟩ ∈


(⟨�̃′, b̃odyΔ⟩)
Since ⟨�, bodyΔ⟩ ∈ 
(⟨�̃′, b̃odyΔ⟩) and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, we get by claim

3 that ⟨H, �, �⟩ ⊨̃ ⟨�̃′, b̃odyΔ⟩.

Lemma 13 (Gradual Eval PreservedReducedPrecision forBodyContext). If dom(b̃odyΔ) =
dom(b̃ody

′
Δ), ∀p ∈ dom(b̃odyΔ) . ∀tmp ∈ VAR∗ . b̃odyΔ(p)(tmp) ⊑ b̃ody

′
Δ(p)(tmp),

and ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩, then ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃ody
′
Δ⟩.

Proof. Let ⟨H, �, �⟩ ∈ MEM, �̃ ∈ F̃ORMULA, and b̃odyΔ, b̃ody
′
Δ ∈ PREDNAME →

EXPR∗ → F̃ORMULA . ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩, dom(b̃odyΔ) = dom(b̃ody
′
Δ), and

∀p ∈ dom(b̃odyΔ) . ∀tmp ∈ VAR∗ . b̃odyΔ(p)(tmp) ⊑ b̃ody
′
Δ(p)(tmp).

Then, since ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩, by claim 3, we get that∃ ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩)
. ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩.

Since ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩), we get that � ∈ 
(�̃), bodyΔ ∈ 
(b̃odyΔ), and
⊢frm ⟨�, bodyΔ⟩.

bodyΔ ∈ 
(b̃odyΔ), gives bodyΔ = �pi ∈ dom(b̃odyΔ) . �e ∈ EXPR∗ . �pi [e∕tmpi]
such that∀pi ∈ dom(b̃odyΔ) . �pi ∈ 
(b̃odyΔ(pi)(tmpi)) and∀pi ∈ dom(b̃odyΔ) . ⊢frm ⟨bodyΔ(pi)(tmpi), bodyΔ⟩.

Since ∀p ∈ dom(b̃odyΔ) . ∀tmp ∈ VAR∗ . b̃odyΔ(p)(tmp) ⊑ b̃ody
′
Δ(p)(tmp), we get

∀p ∈ dom(b̃odyΔ) . ∀tmp ∈ VAR∗ . 
(b̃odyΔ(p)(tmp)) ⊆ 
(b̃ody
′
Δ(p)(tmp)).

Therefore, ∀pi ∈ dom(b̃odyΔ) . �pi ∈ 
(b̃odyΔ(pi)(tmpi)) ⊆ 
(b̃ody
′
Δ(pi)(tmpi)).

That is, ∀pi ∈ dom(b̃odyΔ) . �pi ∈ 
(b̃ody
′
Δ(pi)(tmpi)).

Since dom(b̃odyΔ) = dom(b̃ody
′
Δ), we get bodyΔ = �pi ∈ dom(b̃ody

′
Δ) . �e ∈

EXPR∗ . �pi [e∕tmpi] such that ∀pi ∈ dom(b̃ody
′
Δ) . �pi ∈ 
(b̃ody

′
Δ(pi)(tmpi)) and

∀pi ∈ dom(b̃ody
′
Δ) . ⊢frm ⟨bodyΔ(pi)(tmpi), bodyΔ⟩. Therefore, bodyΔ ∈ 
(b̃ody

′
Δ).
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Since � ∈ 
(�̃), bodyΔ ∈ 
(b̃ody
′
Δ), and ⊢frm ⟨�, bodyΔ⟩, we get that ⟨�, bodyΔ⟩ ∈


(⟨�̃, b̃ody
′
Δ⟩).

Since ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃ody
′
Δ⟩) and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, we get by claim 3

that ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃ody
′
Δ⟩.

Lemma 14 (Gradual Eval PreservedDynamic Footprint Larger). If ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩
and � ⊆ �′, then ⟨H, �, �′⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩.

Proof. Let ⟨H, �, �⟩ ∈ MEM, �′ ∈ DYNFPRINT, �̃ ∈ F̃ORMULA, and b̃odyΔ ∈
PREDNAME → EXPR∗ → F̃ORMULA . ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩ and � ⊆ �′.

Then, since ⟨H, �, �⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩, by claim 3, we get that∃ ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩)
. ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩.

Since ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩ and� ⊆ �′, by lemma 16, we get ⟨H, �, �′⟩ ⊨E ⟨�, bodyΔ⟩.
Finally, since ⟨�, bodyΔ⟩ ∈ 
(⟨�̃, b̃odyΔ⟩) and ⟨H, �, �′⟩ ⊨E ⟨�, bodyΔ⟩, we get by

claim 3 that ⟨H, �, �′⟩ ⊨̃ ⟨�̃, b̃odyΔ⟩.

Lemma 15 (Gradual Dynamic Footprint Calc Preserved Across Programs). Let
p1, p1 ∈ STATE such that p1 ⊑d p2. If ⌊�̃⌋

p1
�,H,� = �1, �̃ ⊑ �̃′, and �1 ⊆ � ⊆ �′, then

⌊�̃′⌋p2�′,H,� = �2 and �1 ⊆ �2.

Proof. The proof of this lemma can be found here: extra-proofs/gvlrp-lemma-dynfpcalc-
acrossprograms.pdf.

Lemma 16 (Equi Permissions Supersets & Formula Evaluation With Body Con-
text). If � ⊆ �′ and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, then ⟨H, �, �′⟩ ⊨E ⟨�, bodyΔ⟩.

Proof. This proof is similar to the proof of lemma 1 (its SVLRP counterpart without
bodyΔ), bodyΔ is just carried around in this proof.

Lemma 17 (Permission Erasure Subset Preservation with Body Context). If Π ⊆
Π′ and ⟨⟨ ⟨Π′, bodyΔ⟩ ⟩⟩H is defined, then ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H is defined and ⟨⟨ ⟨Π, bodyΔ⟩ ⟩⟩H ⊆
⟨⟨ ⟨Π′, bodyΔ⟩ ⟩⟩H .

Proof. This proof is similar to the proof of lemma 4 (its SVLRP counterpart without
bodyΔ), bodyΔ just replaces body� in the proof.

Lemma 18 (Formula Footprint&EvaluationwithBodyContext). If ⟨⟨ ⟨⌊�⌋H,�, bodyΔ⟩ ⟩⟩H
is defined, ⟨⟨ ⟨⌊�⌋H,�, bodyΔ⟩ ⟩⟩H = �′, and ⟨H, �, �⟩ ⊨E ⟨�, bodyΔ⟩, then ⟨H, �, �′⟩ ⊨E ⟨�, bodyΔ⟩.

Proof. This proof is similar to the proof of lemma 5 (its SVLRP counterpart without
bodyΔ), bodyΔ just replaces body� and is carried around in the proof. The lemmas
referenced in the SVLRP proof are replaced with their bodyΔ containing counterparts.
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Lemma 19 (Acc(e) Eval PreservedWithout BodyContext). If ⟨H, �, �⟩ ⊨E ⟨acc(e), bodyΔ⟩,
then ⟨H, �, �⟩ ⊨E acc(e).

Proof. Let ⟨H, �, �⟩ ∈ MEM, e ∈ EXPR, and bodyΔ ∈ PREDNAME → EXPR∗ →
FORMULA . ⟨H, �, �⟩ ⊨E ⟨acc(e), bodyΔ⟩.

Then, we will prove ⟨H, �, �⟩ ⊨E acc(e), by induction on the syntax of e.

Case 94 (e = v). Then, acc(e) = acc(v) = true by definition. By axiom rule EVTRUE-
EXPR, we get ⟨H, �, �⟩ ⊨E true.

Case 95 (e = x). Then, acc(e) = acc(x) = true by definition. By axiom rule EVTRUE-
EXPR, we get ⟨H, �, �⟩ ⊨E true.

Case 96 (e = e1⊕e2). Then, acc(e) = acc(e1 ⊕ e2) = acc(e1)∧ acc(e2) by definition.
So, we have ⟨H, �, �⟩ ⊨E ⟨acc(e1) ∧ acc(e2), bodyΔ⟩, and by inversion we get that

⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨acc(e2), bodyΔ⟩.
Then, by the IH on ⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨acc(e2), bodyΔ⟩,

we get that ⟨H, �, �⟩ ⊨E acc(e1) and ⟨H, �, �⟩ ⊨E acc(e2).
Finally, by EVANDOP, we get ⟨H, �, �⟩ ⊨E acc(e1) ∧ acc(e2).

Case 97 (e = e1 ⊙ e2). Then, acc(e) = acc(e1 ⊙ e2) = acc(e1) ∧ acc(e2) by definition.
So, we have ⟨H, �, �⟩ ⊨E ⟨acc(e1) ∧ acc(e2), bodyΔ⟩, and by inversion we get that

⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨acc(e2), bodyΔ⟩.
Then, by the IH on ⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨acc(e2), bodyΔ⟩,

we get that ⟨H, �, �⟩ ⊨E acc(e1) and ⟨H, �, �⟩ ⊨E acc(e2).
Finally, by EVANDOP, we get ⟨H, �, �⟩ ⊨E acc(e1) ∧ acc(e2).

Case 98 (e = e1.f ). Then, acc(e) = acc(e1.f ) = acc(e1) ∧ acc(e1.f) by definition.
So, we have ⟨H, �, �⟩ ⊨E ⟨acc(e1) ∧ acc(e1.f), bodyΔ⟩, and by inversion we get

that ⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩ and ⟨H, �, �⟩ ⊨E ⟨acc(e1.f), bodyΔ⟩.
Then, by the IH on ⟨H, �, �⟩ ⊨E ⟨acc(e1), bodyΔ⟩, we get that ⟨H, �, �⟩ ⊨E acc(e1).
Also, by inversion on ⟨H, �, �⟩ ⊨E ⟨acc(e1.f), bodyΔ⟩, we get thatH, � ⊢ e1 ⇓ o,

H, � ⊢ e1.f ⇓ v, and ⟨o, f⟩ ∈ �. By EVACC, we get that ⟨H, �, �⟩ ⊨E acc(e1.f).
Finally, by EVANDOP, we get ⟨H, �, �⟩ ⊨E acc(e1) ∧ acc(e1.f).
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