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Abstract

This thesis deals with the musical blind source separation problem: given multiple

instrument tracks recorded together, how can each be isolated from the others given

no additional knowledge about the instrument locations or sounds? There are many

advantages to solving the problem: live performances can convey the energy of the

performers, and the sound of the room can improve the perceptual quality of the

recording, while separating the instrument tracks afterwards allows for more pre-

cise equalization and mixing to improve the recording. This thesis proposes a novel

approach to the problem using an ambisonic microphone array. The directionality

of the microphones in the array provides information about the location of each

source and allows for the implementation of a direction of arrival estimator that

calculates the position of each source based on the directions that receive the most

non-reverberant acoustic energy. Given the directions of arrival (DOAs), the method

performs spatial filtering to virtually steer the microphone array in the desired direc-

tions. This approach is compared with a classic DOA estimator, MUSIC, a classic

non-negative matrix factorization (NMF) approach, and a state of the art ambisonic

domain filtering approach. The proposed method outperforms NMF and MUSIC

in nearly every tested configuration, and can outperform the ambisonic filtering ap-

proach in certain high-reverberation cases. The proposed method is significantly

more computationally efficient than the comparison methods, working much faster

while introducing less algorithmic noise to the separated tracks. The results raise

the question of how to best balance performance and computational complexity in

different use cases.

Keywords: Musical Blind Source Separation; Ambisonics; Spatial Filtering; Direc-

tion of Arrival Estimation





Chapter 1

Introduction

1.1 Motivation

Humans, whether we realize it or not, perform source separation constantly. While

walking down the street, we recognize that the soundscape our ears perceive can be

correctly segmented according to the sources generating each sound: the car passing,

the children playing, the speech from a friend. The same occurs when listening to

music: provided we are familiar with the constituent instruments we recognize that,

for example, the guitar, bass, drums, and vocals are distinct instruments. This

effect is amplified when we are in the middle of a live performance; we can group

the instruments according both to our instincts and to the directions from which we

perceive sound to come.

In addition to this localization effect, live music has many advantages, both for

the audience and the band. Live performances can convey to the audience more

effectively the energy and acoustic context of a performance, and performers can

more easily sync up, resulting in a more dynamic performance. However, a major

downside of live performances and recordings is the processing afterwards - when

the instruments are recorded separately as in a studio, it is easy to mix each track

separately to optimize equalization and apply other filters. In live performances,

generally, all tracks contain all instruments, making this impossible. We have thus

1



2 Chapter 1. Introduction

found the musical blind source separation problem: Given no outside information

(about where the sources are located and what sounds they emit, for instance), how

can we take a live recorded track and return a separate track for each instrument in

the mix?

1.2 Approach and Structure of the Report

Many approaches to the blind musical source separation problem have been pro-

posed. Section 2 of this report details some of the more prominent of these ap-

proaches, which use spatial information generated from a microphone array, the

non-negative matrix factorization method, filtering in the ambisonics domain, and

neural network approaches. Section 3 describes the novel solution proposed as part

of this thesis, which combines aspects of the spatial separation methods to provide

a highly time-efficient solution. The same section describes the configurations of the

compared methods and of the testing data. Section 4 describes the experiments car-

ried out to test and compare the different methods, and 5 presents and discusses the

outcomes of these experiments. Finally, section 6 concludes the report and proposes

future work.



Chapter 2

State of the Art

The cutting edge of the theories relevant to this thesis’ work are presented here:

• Microphone array signals and conventions

• Ambisonics and parametric values analysis

• (Musical) blind source separation

• Direction of arrival estimation

2.1 Microphone Array Signals and Conventions

Let us start by considering the simplest possible recording setup: a single source

playing in an anechoic (reverberation-free) room that gets recorded by a single re-

ceiver. (The lack of reverberation is termed free-field). We assume the source and

receiver are infinitely small so that their presence cannot alter the recording. In

this setup, if the source outputs sound signal s(t), a function of time, as a spherical

wave, the only changes to the received signal x(t) will be due to the attenuation

and delay of a traveling spherical sound wave, themselves functions of the speed of

sound c (nominally 343 m/s), the distance from source to receiver d, and the physics

3



4 Chapter 2. State of the Art

of spherical waves. At the receiver:

x(t) =
1p
4⇡d

s(t� d

c
) (2.1)

This is naturally an overly simplified model, as it ignores the effects of reverber-

ations on the sound’s path to the receiver, and is limited to a single source and

single receiver. The final shortcoming, the assumption of infinitesimal sources and

receivers, is beyond this thesis’ scope.

To make our model more realistic, let us first maintain our single source and single

receiver, but move to a reverberant environment. To simplify our calculations,

we will condense the math and physics contained in (2.1) to a causal, linear time-

invariant impulse response, h(t), that characterizes the room acoustic response. The

impulse response captures what the receiver would record if the source emitted an

impulse �, an infinitely short signal with unit amplitude (since such a compressed

signal contains all frequencies, it can also effectively characterize what the receiver

would record if the source emitted any given frequency. This is referred to as the

frequency response). In the free-field case discussed above, the impulse response

would be

h(t) =
1p
4⇡d

�(t� d

c
) (2.2)

Equation (2.2) captures the attenuation in the impulse’s scaled amplitude and the

sound propagation delay in its time shift. Now, moving to a reverberant room, our

impulse response will contain many impulses because of the multiple paths sound can

take from source to receiver: every reflection off a wall or other object will contribute

another scaled and time-delayed impulse to the response. Figure 1 displays a typical

room impulse response, which is made up of the direct sound, early reflections, and

reverberation. The direct sound travels from the source to the receiver without

making any reflections, necessarily arriving first and with the least attenuation.

The early echoes arrive after making a minimal number of reflections, and can

still be discerned as corresponding to the direct sound. Finally, the reverberation

arrives after making many reflections, and is not easily recognized as correlating to
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the original sound. Given an impulse response (either recorded in a live room or

Figure 1: Typical room impulse response (RIR). The direct sound (with a height
just over 0.06) reaches the receiver first, followed by the early echoes (roughly from
0.01 to 0.1 seconds), and reverberance (roughly 0.1 seconds to the end of the impulse
response).

simulated through software), we can calculate the received signal x(t) by breaking

the source signal s(t) into many impulses and adding the responses together, which

is equivalent to convolution, expressed with ⇤.

x(t) = s(t) ⇤ h(t) (2.3)

Alternately, equation (2.3) can be viewed as taking the source signal s(t) and adding

it to a scaled, time-delayed version for every reflection along the sound’s path.

Let us now complete our realistic model by adding more sources and receivers.

Because of the linearity of sound propagation and convolution, we need only calculate

a sum of convolved signals; the overall theory is unchanged. We define a vector
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containing all of the I received signals (such that each column contains one received

signal),

x(t) = [x1, x2, ..., xI ] (2.4)

and a vector containing all J of the emitted signals

s(t) = [s1, s2, ..., sJ ] (2.5)

Since we will have an impulse response mapping every source to every receiver, we

store the impulse responses in an I by J matrix

h(t) =

2

6664

h1,1(t) ... h1,J(t)

... hi,j(t) ...

hI,1(t) ... hI,J(t)

3

7775
(2.6)

such that hi,j(t) is the impulse response from source j to receiver i. The signal

at a given receiver i is then the sum of the contributions from every source, each

contribution calculated by convolving the source with its impulse response:

xi =
X

j

sj ⇤ hi,j (2.7)

More detailed information about array signals and conventions is available in [1].

2.2 Ambisonics and Parametric Values Analysis

Ambisonics was invented as an efficient way to record, store, and reproduce 3-

dimensional sound spaces, and has gained popularity recently for its use in virtual

reality applications. Its chief advantage is storing spatial sound without regard to

what recording and playback setups are used, allowing more flexibility in sound

recreation. Additionally, it has been shown that converting signals to the ambisonic

domain can result in more effective source separation [2]. Because of the flexibility in

recording setups that ambisonics yields, we say that our array is made up of virtual
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microphones that represent ambisonics up to a specified order. This thesis uses

ambisonics up to first order, corresponding to the four virtual microphone channels

shown in Figure 2.

Figure 2: Virtual microphones in first-order ambisonic recording. These correspond
to one omni-directional channel W (0), and three oriented channels X (3), Y (1),
and Z (2). Lighter lobes indicate that recorded signals are in phase, while darker
lobes indicate counterphase. Image: "File:Spherical Harmonics deg5.png" by Dr
Franz Zotter <zotter@iem.at> is licensed under CC BY-SA 3.0 . With alterations.

The first channel (or zeroth order) is omni-directional, meaning that sound ap-

proaching it from any direction of arrival (DOA) will be equally amplified. The

second through fourth channels (which complete the first order) are bidirectionally

oriented, meaning that they amplify sounds approaching from along their preferred

axes and attenuate sounds from other directions. These microphones are oriented to

correspond to the 3-D cartesian coordinate system, so that one channel, X, amplifies

sounds arriving along the x-axis, and likewise for Y and Z. If we imagine a listener

sitting at the origin, the x-axis points in the direction the listener faces, the y-axis

to the listener’s left, and the z-axis up. In the figure, the sphere’s distance from the

origin indicates how much amplification that direction will receive. We assume these

virtual microphones to be coincident and of negligible size, so that they correspond

to spherical harmonic functions.

Following the process of [3], let us consider how each microphone in the array will

respond to a sound reaching it, termed the pickup pattern. Relative to the listener-

centric coordinate system we described above, we define � as the azimuth angle (0
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along the x-axis and increasing as it moves counter-clockwise when viewed from the

positive z-axis) and ✓ as the elevation (0 in the x-y plane, increasing as it moves

toward the positive z axis, and decreasing as it moves away). � and ✓ thus form

the angular basis for a spherical coordinate system. The virtual microphones’ coin-

cidence allows us to assume one signal, x(t), arriving equally at every microphone.

This thesis uses N3D normalization, which [4] describes as one method to normalize

the spherical harmonic functions underlying the ambisonic calculations. The signals,

as functions of time, received at every microphone are:

W (t) =

Z 2⇡

0

Z
⇡

0

x(t,�, ✓)d✓d� (2.8)

X(t) =
p
3

Z 2⇡

0

Z
⇡

0

x(t,�, ✓)cos(�)cos(✓)d✓d� (2.9)

Y (t) =
p
3

Z 2⇡

0

Z
⇡

0

x(t,�, ✓)sin(�)cos(✓)d✓d� (2.10)

Z(t) =
p
3

Z 2⇡

0

Z
⇡

0

x(t,�, ✓)sin(✓)d✓d� (2.11)

In other words, to derive the recorded signals (consisting of the convolution of the

source signals with their room impulse responses) we integrate the received signal

over the spherical harmonic representing the pickup pattern of the virtual micro-

phone. By computing the spectrogram with the short-time Fourier transform (with

digital frequencies represented by k and samples by n) of each of these virtual mi-

crophone channels, we can use the resulting vector B to perform DirAC analysis,

as Pulkki first did in [5]. This method allows us to calculate relevant sound field

parameters: the intensity, the direction of arrival, the energy, and the diffuseness.

B(k, n) = STFT ([W (t), X(t), Y (t), Z(t)]) (2.12)



2.2. Ambisonics and Parametric Values Analysis 9

The intensity refers to the amount of transmitted acoustic energy at a given fre-

quency, time, and cartesian coordinate direction, yielding a 3-dimensional vector

as a function of frequency and time. We multiply the directional channels by the

complex conjugate of the omni-directional channel, and then take the real part to

only look at the movement (versus circulation) of the sound field. We scale by the

characteristic impedance of the medium of sound propagation, Z0, and add a nega-

tive sign to match convention. The intensity vector indicates the direction of sound

propagation for a given time and frequency.

I(k, n) = � 1

Z0
<{[Bx,By,Bz]Bw⇤} (2.13)

Using the intensity information, we can calculate an estimate of the DOA for each

time-frequency bin of the sound as the azimuth and elevation angles, � and ✓ re-

spectively, of the negative of the intensity vector; the DOA points from the receiver

in the direction from which sound originates at a given time and frequency.

⌦(k, n) = [�(k, n), ✓(k, n)] = � 6 (I(k, n)) (2.14)

The energy, E, of the field considers all information of the intensity vector except

direction; it indicates how much total energy is transmitted at a given time and

frequency.

E(k, n) =
|Bx|2 + |By|2 + |Bz|2

2Z0c
(2.15)

Finally, the diffuseness,  , is correlated to the ratio of direct sound to reverberance

for a given time and frequency. A fully diffuse field ( = 1) is completely reverberant,

potentially made up of many uncorrelated sound waves, and a fully non-diffuse field

( = 0) has no reverberation, potentially made up of a single wave in a free field. We

compute  by weighting the directional intensity, I, of the field against the energy

density. This serves to represent how direct the field is versus how reverberant it is.



10 Chapter 2. State of the Art

We take the time average, hi, of both values to get a better picture of the sound’s

behavior.

 (k, n) = 1� kI(k, n)k
chEi (2.16)

2.3 Musical Blind Source Separation

Blind source separation is the problem of finding and isolating different sources in

an audio mixture given no previous information about the physical configuration of

the sources or of the audio information they carry. In most techniques with spatial

information available (such as in microphone array signal processing contexts) this

can be split into two tasks: estimating the directions of arrival (DOA) of the sources,

and separating the sources. Because this thesis focuses on source separation, we

provide in this section a deeper analysis of source separation techniques with a priori

knowledge of the DOA, and provide a more cursory analysis of DOA estimation

methods in Section 2.4.

2.3.1 Spatial Filtering

The most basic multichannel, spatial source separation algorithms use only direc-

tional information; they filter the incoming signals to favor the DOAs of the sources,

but do not try to separate the sources given signal characteristics such as frequency

or history.

Given a DOA for source j (�j, ✓j), we perform beamforming by steering virtually our

ambisonic microphone array towards the desired source by weighting the channels

and summing. Thus, if our channel weights are given by w, a two-entry matrix

with the first entry weighting the omni-directional channel W and the second entry



2.3. Musical Blind Source Separation 11

weighting each of the directional channels, our source j estimate ŝj will be

ŝj = w(1)W (t)+

w(2)
p
3X(t)cos(�j)cos(✓j)+

w(2)
p
3Y (t)sin(�j)cos(✓j)+

w(2)
p
3Z(t)sin(✓j)

(2.17)

Depending on the w used, we achieve different beamforming patterns; Table 1 pro-

vides the weighting schemes advanced by [6] as well-tuned for spatial audio analysis:

basic, MaxRE, and in-phase. However, any cardioid can be created by varying the

weights.

Table 1: Beamforming patterns described in [6]
Beamformer w(1) (W channel weight) w(2) (X, Y, and Z channel weights)

Basic 1 1

MaxRE 0.775 0.4

In-phase 0.5 0.1

The basic beamformer, shown in Figure 3, benefits from a narrower lobe around

the estimated source DOA at the expense of a larger counterphase lobe centered at

180o away from the estimated DOA. The MaxRE beamformer, shown in Figure 4,

benefits from a smaller counterphase lobe at the expense of a wider centered lobe.

The in-phase beamformer, shown in Figure 5, has no counterphase angles but wider

main and 180o lobes. All three figures depict beamformers steered toward 0o.

Following beamforming, the virtual microphones that point in the direction of the

source are emphasized, while other microphones are minimized. Naturally, this

enhances the signal coming from the DOA. More information about beamforming,

particularly in the ambisonic context, is available in [7].
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Figure 3: Left: Beampattern of basic beamformer for source at 0o. Right: Gain of
basic beamformer as a function of angular distance away from the estimated DOA.

Figure 4: Left: Beampattern of MaxRE beamformer for source at 0o. Right: Gain
of MaxRE beamformer as a function of angular distance away from the estimated
DOA.
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Figure 5: Left: Beampattern of in-phase beamformer for source at 0o. Right: Gain
of in-phase beamformer as a function of angular distance away from the estimated
DOA.

2.3.2 Nonnegative Matrix Factorization (NMF)

Gathering information beyond the spatial data of the source, such as its frequency

content and temporal history, allows for a more informed separation, especially

when constrained to the spatially agnostic data of a single microphone setup. This

is frequently accomplished via non-negative matrix factorization (NMF).

NMF was first proposed by [8] as a way to compress matrix data such that only the

most relevant features were saved. Specifically, NMF sparsely decomposes a given

strictly non-negative n-by-m matrix V as ⇤, the product of two strictly non-negative

matrices: n-by-r matrix W and r-by-m matrix H. r is small enough to result in

significant data compression.

V ⇡ ⇤ = WH (2.18)

By requiring that all matrices be positive, the approximation matrix ⇤ is created
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strictly additively, and the component matrices represent meaningful structures from

the original data V : W can be seen to contain templates that occur frequently in

the original data, and H contains the weights that determine how the templates

appear in the data. Methods for calculating W and H given V , which depend on

minimizing a cost function dependent on V and ⇤, are given in [8].

Smaragdis first applied NMF in a musical context, to the problem of automatic

music transcription [9]. The method takes the magnitude of the short time Fourier

transform of the musical signal to be composed as V and decomposes it into the

notes that are present (W ) and when they are present (H). To illustrate for a simple

case, Figure 6 displays a signal that contains two notes that randomly turn on and

off.

Figure 6: Spectrogram of audio signal to be transcribed; the signal consists of two
notes that randomly switch on and off. Adapted from [9].

The algorithm is robust even when the number of notes present is unknown, but

assuming that we know there are two notes, we can set r to 2 to compute more

efficiently. Figure 7 shows our result: W contains the two notes that appear in

the piece (the templates) and H indicates when either of the two notes appears

(the weights). The paper continues to explain how to then transcribe the music by

locating in time the notes of W according to H, but for this thesis’ purposes, only

the ability to detect notes is of interest.
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Figure 7: Result of performing NMF on the spectrogram of Figure 6. H controls
when each of the two notes is active and W controls the pitch of each note. Adapted
from [9].

To extend note detection to the source separation problem, we must correlate each

note to its originating source by considering temporal factors. Smaragdis proposed

doing this through NMF deconvolution (NMFD) in [10]. To be more realistic, we

consider the signal spectrogram of Figure 8 and assume that the five lower frequency

sweeps belong to one source and the higher frequency sweeps to a second source.

We set r to 2 to correspond to our two sources, add a temporal component by

shifting H, and use a different W for each source. The time period in samples of

the signal that each W samples is stored in T . Our decomposition is now

V ⇡ ⇤ =
T�1X

t=0

WtH
t�! (2.19)

where Wt is the collection of templates characterizing the sources, and t �! shifts
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Figure 8: Result of performing NMF deconvolution on a simple music signal spec-
trogram. We assume the high and low frequency sweeps correspond to two separate
sources, and then each template of W represents one source. Adapted from [10].

the matrix t positions to the right and back fills zeros.

2

6664

1 2 3

4 5 6

7 8 0

3

7775
1 �!=

2

6664

0 1 2

0 4 5

0 7 8

3

7775
(2.20)

Observing Figure 8, we see how our one H and r W s are created. H stores the

temporal data of when the two sources are playing as before, but W now stores the

source "signature"; H defines when each W appears. From this point, we have the

time and frequency bins of where each source appears, and we can extract an initial

spectrum estimate for the j-th source, ˆSinitj , by looking at our original sum applied

to only the j-th column of W , W (j)
t

ˆSinitj ⇡
T�1X

t=0

W
(j)
t H

t�! (2.21)

Once we have this initial estimate, we can apply Wiener or alpha-Wiener filtering

to improve our accuracy, as [11] describes. Our final spectrogram estimate Ŝj will
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appear as

Ŝj =
ˆSinitj

↵

P
J

j0=1
ˆSinitj

↵V (2.22)

Where ↵ is a constant between 1 and 2 and all operations are done element-wise.

This operation effectively keeps only the time-frequency bins of V that pertain to the

source of interest. If the target source appears more strongly in one time-frequency

bin, that bin will be weighted more heavily than a bin in which the source is less

present. Finally, we perform inverse short time Fourier transforms on each separated

signal spectrogram to arrive at the separated signals.

2.3.3 Filtering in the Ambisonics Domain

The current state of the art method for musical source separation, [2], relies on

having the signal data in the (higher order) ambisonics (HOA) domain and applying

statistical filtering. This separation method uses a multichannel Wiener filter to

minimize the expected squared error between the estimate of each source j in each

time-frequency bin (k, n) and the filtered version:

8j, k, n

Wj,k,n = argmin
W

E[kcj,k,n �Wj,k,nXk,nk22]
(2.23)

Where X is the spectrogram of one channel of the received signal and W is the

Wiener filter to be applied to X. cj,k,n is the contribution of the j-th source to

frequency bin (k, n), with covariance ⌃cj,k,n
, and which [2] approximates using a

local Gaussian model (LGM) distribution,

cj,k,n ⇠ N (0,⌃cj,k,n
) (2.24)

Thus, to calculate W we must minimize the difference between our contribution
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estimate c and filtered signal WX. As [2] indicates, the filter solution is given as a

ratio of the covariance between c and X and the covariance between X and itself,

Wj,k,n = ⌃cj,k,n,Xk,n
⌃Xk,n,Xk,n

(2.25)

Once we have calculated our W , we can calculate our final estimate for the contri-

bution of each source to each time-frequency bin as

cj,k,n = Wj,k,nXk,n (2.26)

and then calculate our source estimate by time-frequency bin ˆsj,k,n as

ˆsj,k,n =
y
H

j,k

kyj,kk2
cj,k,n (2.27)

where yj,k is the spherical harmonic vector evaluated at source j’s DOA and H is

the Hermitian matrix operator.

2.3.4 Neural Network Source Separation

Although this thesis does not deal explicitly with neural network approaches to the

source separation problem, for completeness we refer here to some representative

methods. In [12], a deep neural network (DNN) method is proposed that assumes

the instruments in the mixture are known; the network is then trained on recordings

of performances of the solo instruments. In [13], a monaural deep convolutional

neural network (CNN) method is proposed in which the network is used to estimate

time-frequency soft masks. In [14], a multichannel deep neural network is used to

model the source spectra, and this result is combined with a multi-channel Gaussian

model to also consider spatial information. The Gaussian model parameters are then

used to derive a multi-channel Wiener filter that is applied to the mixture to return

the source estimates.
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2.4 Direction of Arrival (DOA) Estimation

Although not a main focus of this thesis, direction of arrival estimation is an im-

portant step in many real-world source separation techniques. Here, we summarize

two such methods, both of which assume the number of sources to be known.

2.4.1 Parametric Value Estimation

In this method, proposed in [15], we use the parametric values calculated in section

2.2 to create masks that indicate time-frequency bins that most likely correspond

to a source rather than reverberation. To be precise, we set a threshold on our

diffuseness values such that time-frequency bins with small-enough diffuseness are

considered and all others are discarded. We calculate over both azimuth (�) and

elevation (✓) angles histograms of the DOA by only summing bins that are saved

by the mask. In a single source case, this will appear as in Figure 9. We can use a

peak-picking algorithm to find the DOA of the source.

2.4.2 MUSIC Estimation

The MUSIC (MUltiple SIgnal Classification) method, proposed by [16], works by

statistically separating the mixture into signal and noise components. We take the

number of sources J as given, and assume for simplicity that we need only find

the azimuth, and not elevation, angle of the DOA (the method is of course able to

return both values). We start by breaking the received signal matrix x into signal

and noise components:

x = AF +W (2.28)

A is a mode vector that expresses how the receiver responds to sounds from different
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Figure 9: Direction of arrival (DOA) histogram with 0.7 diffuseness threshold. This
is a single source case, and using a peak-picking algorithm would likely indicate that
the source is at roughly 0 radians direction of arrival angle. The 180o peak is due
to early reflections.

DOAs,

A =

2

6664

a(�1)

...

a(�J)

3

7775
(2.29)

F expresses the signals incident on the array microphones,

F =
h
F1 ... FJ

i
(2.30)
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and W is the noise at each microphone,

W =
h
W1 ... WJ

i
(2.31)

We then calculate S, the covariance matrix of X,

S = ¯XX⇤ = A ¯FF ⇤ + ¯WW ⇤ = APA
⇤ + �S0 (2.32)

where ¯ and ⇤ are complex conjugate operators, P is defined to be ¯FF ⇤, � is an

eigenvalue of W , and S0 is the eigenmatrix of W . By ordering the eigenvalues by

magnitude, we determine that the J largest correspond to the signal, and span a

signal subspace, and that the remaining N correspond to and span a noise subspace.

We then calculate P (�) as

P (�) =
1

a⇤(�ENE
⇤
N
a(�))

(2.33)

where EN is the N�by�I matrix containing the N noise eigenvectors. Plotting P (�)

against � gives an angular distribution, and returning the J largest peaks produces

DOA estimates that can be more accurate than methods that do not consider a

separate noise subspace.
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Methods

This section details the novel proposed method submitted as part of this thesis,

the configurations of the existing methods tested, and the generation of the testing

data. Because the state of the art methods we compare against do not compute both

DOA and separated signals, we test both aspects separately. All code to reproduce

the methods and experiments described here is available at https://github.com/

henryhasti/master_thesis.

3.1 Proposed Method

The novel approach works as depicted in Figure 10. It is an end-to-end combination

of the approaches described in Sections 2.2, 2.3.1, and 2.4.1, and was found heuris-

tically to work best with the configurations in Table 2. The diffuseness threshold

is varied according to how diffuse the mixture is; more diffuse fields have a lower

threshold so that there is enough data to compute the angular distributions. psiSum

is the sum of diffuseness across all time-frequency bins, and psiMax is the value of

psiSum in a hypothetical fully diffuse sound field.

The processing blocks work as follows:

22

https://github.com/henryhasti/master_thesis
https://github.com/henryhasti/master_thesis
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Table 2: End-to-end separation parameters
Parameter Value (unit)

Hop size 0.01 rad

Diffuseness threshold 0.2 + psiSum/psiMax

Noise floor 0.15/1

Angular separation 0.5 rad

Beamformer weights [0.775, 0.4] (MaxRE beamshape)

Figure 10: Flow diagram of novel approach. The combined DOA estimation and
separation technique combines components from Sections 2.2, 2.3.1, and 2.4. Black
boxes represent processes and red boxes represent variables.
.

3.1.1 Analyze Parametric Values

Given the ambisonic signals recorded by the receiver, the diffuseness and spectro-

gram DOA (the direction of arrival at each time-frequency bin) are calculated as in
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[3].

3.1.2 Diffuse Masking

This algorithm calculates the azimuth angular distribution similarly to [15]. First,

the time-frequency bins of the spectrogram DOA with diffuseness levels above the

threshold are eliminated. Then, the DOAs of the remaining bins are sorted by

magnitude into bins according to the hop size input. The output is the azimuth

angle distribution as in Figure 9.

3.1.3 Azimuth DOA Estimation

This algorithm picks peaks of the azimuth distribution to estimate the azimuth

component of the DOAs. First, the angular distribution is pre-processed: all values

below the noise floor are set to zero and the distribution is smoothed (in this case

with the built-in Matlab function). Then, the distribution is doubled to eliminate

the �⇡ to ⇡ discontinuity: when the distribution arrives to ⇡, a second copy is

added, starting at �⇡. Next, all candidate peaks (the distribution’s maxima that

are at least as far apart as the input parameter) are calculated. Finally, one peak

for each source is returned by assuming the maximum peaks most likely correspond

to sources, and eliminating peaks that come from the doubled distribution.

3.1.4 Elevation DOA Estimation

This algorithm returns the elevation angle that corresponds to each azimuth angle.

Given the spectrogram DOA, it eliminates the elevation time-frequency bins that

do not correspond to the input azimuth angle, and then picks the highest peak after

smoothing.

3.1.5 Beamform

This process steers the virtual microphones towards the input DOA as described in

section 2.3.1.
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3.2 Existing Approaches Tested

The blind musical source separation methods and DOA estimation methods dis-

cussed in Chapter 2 were all tested, with the following configurations:

3.2.1 NMF

NMF was conducted as in section 2.3.2, with the toolbox provided by [17] and the

configurations, taken from the toolbox, as in Table 3.

Table 3: NMF implementation parameters
Parameter Value (unit)

STFT window size 2048 samples

STFT hop size 512 samples

Window type Hanning

Iterations 30

Template frames 10

3.2.2 Ambisonic Domain Filtering

This method was conducted as in section 2.3.3, using the toolbox provided by [18].

The parameters were taken from [2], with the exception of ambisonic order, which

was held at one.

3.2.3 MUSIC DOA Estimation

This method was conducted as in section 2.4.2, using the Spherical-array-processing

repository available at https://github.com/polarch.

3.3 Data Generation

For all experiments, the data was simulated using the shoebox-roomsim-master and

dependent repositories available at https://github.com/polarch. Following the

https://github.com/polarch
https://github.com/polarch
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configurations of [2], four rooms were simulated, all with dimensions 10x8x3 meters

and reverberations capped after 0.01, 0.2, 0.4, and 0.7 seconds, respectively. The 0

second reverberation room was increased to 0.01 seconds to circumvent a processing

error in the shoebox-roomsim-master repository. In both test cases discussed below,

the sources were held fixed at 0o elevation and 1 meter distance from the receiver,

which was modeled as an infinitesimal, 1st-order ambisonic microphone array at the

center of the room.

The musical segments used come from the DSD100 (demixing secrets dataset), [19],

which contains anechoic recordings of songs isolated into four tracks representing

bass, drums, vocals, and all remaining sources ("other"). This thesis’ dataset con-

sists of 5-second segments randomly selected from 10 randomly selected songs, dis-

played in Table 4. All ten segments contain all four tracks.

Table 4: DSD100 songs used
Song Name Artist

Rockshow ANiMAL

One Minute Smile Actions

Ghost Bitch Drumtracks

We Feel Alright Girls Under Glass

Knockout M.E.R.C. Music

A Reason To Leave Patrick Talbot

What Have You Done To Me Signe Jakobsen

Rothko The WrongUns

Pony Timboz

Comfort Lives In Belief Voelund

Two room and instrument setup cases were tested:

3.3.1 Two Source Case

In this regime, illustrated in Figure 11, one source (drums) remained fixed at 0o

azimuth angle, while a second source (vocals) moved in 10o increments from 0o to
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180o azimuth angle. This test case highlights method performance as a function of

source angular separation.

Figure 11: The two source case: the drums source remains at 0o azimuth while the
vocals source moves from 0o (top image) to 180o azimuth in 10o increments (bottom
image). The red circle represents the receiver and stars the sources. All elements
have 0o elevation. Reproduced from [2] with alterations.

3.3.2 Four Source Case

In this regime, the four instrument configurations of [2] were used, as figure 12

displays.
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Figure 12: Source configurations as used in [2], which make up the four source test
case. The red circle represents the receiver and stars the sources. All elements have
0o elevation. Reproduced from [2].



Chapter 4

Experiments

Several experiments were carried out to compare the performances of the methods

defined in chapter 3.

4.1 DOA Estimation

The method implemented as part of this thesis was compared against the state of

the art method detailed in section 2.4.2. The two source case was tested, and the

performance was graded as the average of the great circle angular distance between

the calculated and actual DOAs across the 10 song segments.

4.2 Optimized Beamformer Shape

To determine the optimal beamformer shape to use for the beamforming section of

the novel method, the three beamformer shapes in Table 1 were tested with the two

source case.

4.3 Separation Performance

Using the two and four source cases, the performances of all three separation meth-

ods were compared using the signal to interference (SIR) and artifact (SAR) ratios

defined in [20] and now summarized. The paper additionally defines the signal to

29
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distortion ratio (SDR), which also penalizes reverberations in the separated signals,

but we do not use it since we consider reverberations to be valuable additions to the

signal given that they characterize the conditions of the room and setup at the time

of recording. The section in [21] on room acoustics and reverberation notes that

in many cases reverberation is a desired effect that improves the perceived sound

quality.

Given an estimated source ŝj that we have separated from the mix of all signals,

{s1, ...sJ}, and noise recorded by each microphone, {n1, ...nI}, we intend to classify

the effectiveness of the separation. While this is a difficult, subjective, task that

is closer to psychoacoustics than to any mathematical algorithm, [20] provides a

method for objectively evaluating source separations by considering ratios between

different signal components of the mixture and estimated target signal.

To do this, the authors outline a framework in which signals, all of length T , are

represented in a space in which every sample is a dimension. For example, the

three signals captured by the directional ambisonic virtual microphones will span

a 3-dimensional subspace within the full T -dimensional space. In this way, a test

signal can be compared to target signals by projecting it onto the subspace spanned

by the target signals. The T -by-T projection matrix onto the subspace spanned by

arbitrary column vectors {y1, ..., yk} is

Y
{y1, ..., yk} =

Y
{Y } = Y (Y tr

Y )�1
Y

tr (4.1)

where tr is the matrix transpose function. We define several projection matrices

relevant to our source separation problem:

Psj =
Y

{sj} (4.2)

Ps =
Y

{(sj0)1  j
0  J} (4.3)
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Ps,n =
Y

{(sj0)1  j
0  J, (ni)1  i  I} (4.4)

Psj projects into the subspace of the target signal, indicating how closely an estimate

matches the actual signal. Ps projects into the subspace of all sources in the mix,

indicating how closely an estimate matches the combination of all signals. Ps,n

projects into the subspace of the combination of all sources in the mix and noise at

each microphone, indicating how closely an estimate matches the total mix. Given

an estimate signal , we can use these projection matrices to define several important

quantities:

Starget = Psj ŝj (4.5)

einterf = Psŝj � Psŝj (4.6)

enoise = Ps,nŝj � Psŝj (4.7)

eartif = ŝj � Ps,nŝj (4.8)

starget is the amount of the estimate that matches the desired signal; in an ideal

separation ŝj = starget, and multiplying the projection matrix leaves the estimate

unchanged. einterf is the error present in the estimate due to other sources in the

mix. enoise is the error due to noise. eartif is the component of the estimate that

was never in the original mix, the artifacts from the separation algorithm. Due

to how we defined our separation problem initially, our estimate is necessarily the

combination of these terms:

ŝj = starget + einterf + enoise + eartif (4.9)

To determine the effectiveness of the separation, we define several logarithm-scale

ratios between the different components of ŝj.

The source to distortion ratio measures how much of the desired signal was captured



32 Chapter 4. Experiments

versus all other components in the calculated signal.

SDR = 10log10
kstargetk2

keinterf + enoise + eartifk2
(4.10)

The source to interference ratio measures how much of the desired signal was cap-

tured versus other signals in the mix.

SIR = 10log10
kstargetk2

keinterfk2
(4.11)

The sources to noise ratio measures how much of any signal was captured versus

noise.

SNR = 10log10
kstarget + einterfk2

kenoisek2
(4.12)

Finally, the sources to artifacts ratio measures how much of the total mix (including

all sources and noise) was captured versus the artifacts introduced by the algorithms.

SAR = 10log10
kstarget + einterf + enoisek2

kenoisek2
(4.13)

4.4 Computation Time Performance

The computation times of the three separation methods and two DOA estimator

methods as implemented in https://github.com/henryhasti/master_thesis and

run on an HP Notebook - 15-db0074ns personal computer were compared using the

real time factor,

Real time factor =
Computation time

Audio length
(4.14)

The illustrative two source case of 0o separation and only one song was used, and

the computation times were averaged across the four reverberation times.

https://github.com/henryhasti/master_thesis
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Results and Discussion

5.1 DOA Estimation

The results from this experiment are displayed in Figures 13, 14, and 15. The pro-

posed method (abbreviated "Parametric") follows a nearly linear trajectory because

of the 180o phase reflections that come from the wall opposite the stationary source;

for many songs the two DOAs returned will correspond to the 0o source and the

early reflections. As the second source gets closer to 180o, the total error decreases.

The jump in error at 180o separation and 0.01 second reverb is due to both DOAs

wrongly getting calculated at either 0o or 180o. The MUSIC algorithm displays this

same early reflection bias. Comparing the two, we see that their errors are quite

similar, although the proposed method outperforms MUSIC at several angles.

33
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Figure 13: Average DOA error (black) and standard deviation (red) across 10 songs
using the proposed parametric values estimation method.
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Figure 14: Average DOA error (black) and standard deviation (red) across 10 songs
using MUSIC estimation method.
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Figure 15: Average DOA errors of proposed and MUSIC estimation methods.
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5.2 Optimized Beamformer Shape

Figures 16, 17, 18, and 19 display the results of this experiment. The average ratios

across the 10 songs are displayed in black, and the standard deviations are in red.

For reference, the beamformer’s gain is shown by the dotted blue line.

By comparing the SIRs to the beampattern gain, we see that the experiment’s results

match what we expect: as the angular separation of the sources places the interfering

source closer to the beamformer’s null, separation performance improves. This is

most noticeable with minimal reverb, because there are no early echoes from the

interfering source.

Since the artifacts introduced by the beamformer are theoretically uncorrelated to

the separation angle, we are unsurprised that SAR is generally flat. The increases

in SAR at the beamformer null in the low reverb cases can be explained due to

processing errors; small differences in sample alignment between the estimated and

target tracks can be minimized when there is only one prominent instrument track

audible.

Given these results, we conclude that the MaxRE beamformer provides the best

performance, and we use it for all calculations related to spatial filtering going

forward. Due to its decreased counter-phase lobe, it provides better performance

when the source are separated by an angle greater than the beamformer null, and

it still performs comparably to the other beamformers at closer angles.
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Figure 16: Signal to interference ratio of drums track in optimized beamformer
shape experiment. The average ratios in decibels across the 10 songs are displayed
in black, and the standard deviations in red. For reference, the beamformer’s gain
is shown by the dotted blue line.



5.2. Optimized Beamformer Shape 39

Figure 17: Signal to interference ratio of vocals track in optimized beamformer
shape experiment. The average ratios in decibels across the 10 songs are displayed
in black, and the standard deviations in red. For reference, the beamformer’s gain
is shown by the dotted blue line.
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Figure 18: Signal to artifact ratio of drums track in optimized beamformer shape
experiment. The average ratios in decibels across the 10 songs are displayed in black,
and the standard deviations in red. For reference, the beamformer’s gain is shown
by the dotted blue line.
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Figure 19: Signal to artifact ratio of vocals track in optimized beamformer shape
experiment. The average ratios in decibels across the 10 songs are displayed in black,
and the standard deviations in red. For reference, the beamformer’s gain is shown
by the dotted blue line.
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5.3 Separation Performance

5.3.1 Two Source Case

The results from this experiment for NMF and separation in the ambisonics domain

methods are presented below, along with graphics comparing all three methods. The

results for spatial filtering are the same as in Section 5.2.

NMF results

The results for the two source case separated using NMF are presented in Figures

20 and 21. Averages and standard deviations across the 10 songs are represented in

black and red, respectively. Of particular interest is that the SIR is not negatively

affected by increasing reverb: the templates seek out the correct time and frequency

bins without regard to the ambient reverberation. This does not hold true, however,

for the SAR, which drops significantly with reverb. This effect is audible in estimated

sources that cut in and out and sound noticeably discontinuous.
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Figure 20: Signal to interference ratios of drum and vocal tracks for two source case
evaluated with NMF. The average ratios in decibels are in black and the standard
deviations in red.
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Figure 21: Signal to artifact ratios of drum and vocal tracks for two source case
evaluated with NMF. The average ratios in decibels are in black and the standard
deviations in red.
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Ambisonic Domain Filtering

The results from the two source problem separated with ambisonic domain filtering

are presented in Figures 22, 23, 24, and 25. The averages and standard deviations

across the 10 songs are in black and red, respectively. With the exceptions of

the performance decrease with the spatially ambiguous 0o separation case and the

performance increase at 90o - likely due to the nulls of the X and Y ambisonic

microphones there - performance is roughly independent of source separation angle.

We can say that the algorithm is robust with respect to many source configurations,

but adding reverb shows a clear performance degradation. It appears, however, that

the difference going from minimal (0.01 s) to some (0.2 s) reverb is much greater

than the difference going to higher reverb amounts; once any reverb is added, the

system performs comparably.

Figure 22: Signal to interference ratios of drum track for two source case evaluated
with ambisonic domain filtering method. The average ratios in decibels are in black
and the standard deviations in red.
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Figure 23: Signal to interference ratios of vocal track for two source case evaluated
with ambisonic domain filtering method. The average ratios in decibels are in black
and the standard deviations in red.
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Figure 24: Signal to artifact ratios of drum track for two source case evaluated with
ambisonic domain filtering method. The average ratios in decibels are in black and
the standard deviations in red.
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Figure 25: Signal to artifact ratios of vocals track for two source case evaluated with
ambisonic domain filtering method. The average ratios in decibels are in black and
the standard deviations in red.
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Overall Comparison

Figures 26, 27, 28, and 29 contain a comparison of the three methods. Worth noting

is that NMF is significantly outperformed by the other two methods except at the

ambiguous-configuration near-0o source angular separation cases; standard NMF

as implemented by [10] does not consider source positions. In terms of SIR, the

ambisonic domain filtering method significantly outperforms spatial filtering at low

reverb, but both perform comparably at higher reverb. In terms of SAR, spatial

filtering performs better in virtually all cases; the method has very few avenues to

produce extra noise in its operation.

Figure 26: Signal to interference ratios of drum tracks for two source case evaluated
with all three methods. The average ratios in decibels are in black and the standard
deviations in red. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 27: Signal to interference ratios of vocal tracks for two source case evaluated
with all three methods. The average ratios in decibels are in black and the standard
deviations in red. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.

Figure 28: Signal to artifact ratios of drum tracks for two source case evaluated
with all three methods. The average ratios in decibels are in black and the standard
deviations in red. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 29: Signal to artifact ratios of vocal tracks for two source case evaluated
with all three methods. The average ratios in decibels are in black and the standard
deviations in red. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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5.3.2 Four Source Case

Figures 30 through 37 display the data comparing the source separation meth-

ods. For brevity, the figures deal only with averages and not standard deviations,

but the code to create the complete figures is available at https://github.com/

henryhasti/master_thesis.

In general, the results match what would be expected from extrapolating the two

source case results. The ambisonic domain filtering method vastly outperforms the

other two in low reverberation, but tends to perform more comparably as reverb in-

creases. The proposed method tends to perform better in the cases when sources are

more separated; its performance drops significantly when sources are only 10o apart.

In terms of SIR, we can conclude that the ambisonic domain method’s comparative

performance improves significantly as more sources are added. The SARs tend to

follow the same pattern, with the proposed method virtually always outperforming:

it is the least computationally complex and thus least likely to introduce algorithmic

noise.

https://github.com/henryhasti/master_thesis
https://github.com/henryhasti/master_thesis
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Figure 30: Source to interference ratios of bass for the four source case evaluated
with all methods. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 31: Source to interference ratios of drums for the four source case evaluated
with all methods. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 32: Source to interference ratios of "other" for the four source case evaluated
with all methods. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 33: Source to interference ratios of vocals for the four source case evaluated
with all methods. "HOA" is the ambisonic domain filtering method and "Spatial"
is the proposed method.
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Figure 34: Source to artifact ratios of bass for the four source case evaluated with
all methods. "HOA" is the ambisonic domain filtering method and "Spatial" is the
proposed method.
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Figure 35: Source to artifact ratios of drums for the four source case evaluated with
all methods. "HOA" is the ambisonic domain filtering method and "Spatial" is the
proposed method.
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Figure 36: Source to artifact ratios of other for the four source case evaluated with
all methods. "HOA" is the ambisonic domain filtering method and "Spatial" is the
proposed method.
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Figure 37: Source to artifact ratios of vocals for the four source case evaluated with
all methods. "HOA" is the ambisonic domain filtering method and "Spatial" is the
proposed method.
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5.4 Computation Time Performance

The real time factors of the three separation and two DOA estimation methods are

presented in Table 5.

Table 5: Real time factors of the methods
Separation method Real time factor

Ambisonic domain 29.5978

NMF 1.0638

Spatial 0.0097572

DOA estimation method Real time factor

MUSIC 1.3324

Intensity 0.086803

Of particular note is the worse performance of the ambisonic domain filtering method;

although it tends to (but does not always) outperform the other two in terms of sep-

aration scores, it does so at the cost of computation time. In the given testing

configuration, the NMF and MUSIC algorithms both work at roughly (but slower

than) real time, but it is worth noting that a real-world system requires both DOA

estimation and source separation; an implementation combining the two would work

at roughly double real time. Finally, the proposed method combining spatial filter-

ing and intensity vector statistics DOA estimation are both much faster than real

time; even in combination their real time factor is only 0.0966.
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Conclusions

The low-level discussions related to the individual experiments are presented in the

previous section; we move directly to the high-level conclusions.

6.1 Conclusions

Looking at the methods this thesis investigated and the results they delivered, it

seems fair for us to define a continuum based on computational complexity along

which DOA estimation and source separation algorithms (or any algorithm, for that

matter) lie. At the far end (most computationally intensive) clearly lies the am-

bisonic domain approach of [2], and at the opposite end the novel methods proposed

in this thesis. In evaluating the trade-offs along this continuum, we must consider

algorithm performance, obviously, but also application to the real-world setting. In

terms of performance, we willingly concede that the ambisonic domain approach is

best: while NMF and spatial filtering outperform it in select cases, it never performs

vastly worse, and at many points performs significantly better. While its SAR scores

are lower than those of the spatial approach, this tradeoff is both mathematically

and subjectively compensated by its SIR scores.

However, computation time can be important: in a real-time application, such as

applying separation to live signals before mixing and transmitting them, for instance,
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the user would expect near real-time performance. In evaluating DOA estimation

and separation methods, we must then ask what level of performance we truly

require, and how much computation time we will sacrifice to achieve it. Figures 38

and 39 illustrate this point with the methods tested in this thesis.

Figure 38: Average performance of the DOA estimation algorithms on the two source
case as a function of their computation times.
.
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Figure 39: Average performance of the source separation algorithms on the two
source case as a function of their computation times.
.

6.2 This Thesis’ Contributions

This thesis proposes a novel method to solve the musical blind source separation

problem using ambisonics in a time-efficient approach. In terms of computational

complexity and SAR, it vastly outperforms the existing methods of NMF and am-

bisonic domain separation. In terms of SIR, it outperforms NMF except in cases

when sources are close together, and outperforms ambisonic domain separation in

some higher reverberation cases. The proposed DOA estimation algorithm is sig-

nificantly less complex than the MUSIC algorithm it is compared to, and performs

roughly comparably at all angular separations; its average error is superior to that

of the MUSIC method. Overall, this thesis’ method provides an extremely compu-

tationally efficient DOA estimation and source separation at the cost of decreased

performance.
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6.3 Future work

Several areas of the proposed method could be improved with further fine-tuning.

Most notably, the DOA estimator should be improved to be more robust to the

180o error induced by early reflections off of the opposite wall. The parameters to

the DOA estimator could also be further refined. More diverse beamformer shapes

could be tested to potentially improve performance in specific cases. Additionally, a

larger testing dataset should be explored, moving beyond pop music and considering

the higher reverberation times common in orchestra halls and other spaces.

In terms of larger scale research questions that this thesis raises, one of the the-

sis’ goals is that the question of computational complexity versus performance be

brought more into the spotlight. It is increasingly common to see approaches pro-

posed that can be highly accurate, but that require significant computation time (or

even unaddressed computation time in the case of many papers). In the context of

musical blind source separation, this thesis has shown that computationally simpler

approaches can reach and, in certain circumstances, exceed the performance levels

of state of the art approaches without the computation time cost. As a concluding

thought, this thesis proposes that these considerations play a larger role in future

algorithms both for source separation and for general computation tasks.
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