

Metadata schema and ontologies for FAIR research data in plasma technology

M. M. Becker^{1,*}, St. Franke¹, F. Hoppe^{2,3}, D. Loffhagen¹, H. Sack^{2,3}, V. Skwarek⁴, T. Tietz^{2,3}, S. Tschirner⁴, L. Vilardell Scholten¹

¹Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Straße 2, 17489 Greifswald, Germany ²FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH, 76344 Eggenstein-Leopoldshafen, Germany ³Karlsruhe Institute of Technology (KIT), Institute AIFB, 76133 Karlsruhe, Germany

⁴Hochschule für Angewandte Wissenschaften Hamburg (HAW Hamburg), Berliner Tor 5, 20099 Hamburg, Germany

*E-mail: markus.becker@inp-greifswald.de

INTRODUCTION

- Steady increase of need for public storage of digital research data (policies of funders, publishers, and institutions, transparency of research)
- Essential factors for efficient re-use of data, e.g. for data driven science [1, 2]: findability (F), accessibility (A), interoperability (I), and re-usability (R) of research data → FAIR data principles
- Lack of common standards and tools to publish data according to these FAIR data principles in low-temperature plasma physics
- Modular metadata standards, ontologies and a plasma knowledge graph providing a basis for further community activities for unified research data management under development

FAIR DATA PRINCIPLES

To be F indable	
F1	(meta)data are assigned a globally unique and persistent identifier
F2	data are described with rich metadata (defined by R1 below)
F3	metadata clearly and explicitly include the identifier of the data it describes
To be Accessible	
A1	(meta)data are retrievable by their identifier using a standardized communications prote

- A1.1 the protocol is open, free, and universally implementable
- A1.2 the protocol allows for an authentication and authorization procedure, where necessary

OOC

STATUS QUO

- International online survey to gather the status quo of research data management practices, important factors and used standards in the low-temperature plasma physics community completed (answers: 71 total, 38 complete)
- Most responses representative for individual research groups
- Important conclusions from survey:
 - High willingness to share data
 - Need to increased awareness for possibilities and benefit of FAIR data
 - Requirement: transparent structures and standards for storage, documentation, processing, quality assurance, and publication of data

A2 metadata are accessible, even when the data are no longer available

To be Interoperable

- I1 (meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation
- I2 (meta)data use vocabularies that follow FAIR principles
- I3 (meta)data include qualified references to other (meta)data

To be **R**eusable

- R1 meta(data) are richly described with a plurality of accurate and relevant attributes
- R1.1 (meta)data are released with a clear and accessible data usage license
- R1.2 (meta)data are associated with detailed provenance
- R1.3 (meta)data meet domain-relevant community standards

Sharing would help to improve my professional reputation

I am assured formal credit for my work

M. D. Wilkinson et al., Scientific Data 3 (2016) 160018.

Not completed or Not displayed

- I am somewhat open to sharing
- I am hesitant to share (e.g. I might only share a portion of information with close colleagues or close to publication)
- I will not share until after my research has been formally published

Not completed or Not displayed

APPROACH

- Process oriented documentation of data on the basis of Plasma-MDS as general standard for all fields of plasma science and technology [3]
- Modularized extensions for specific methods and resources
- Common ontology and knowledge graph as basis for unified terminology, linking of (meta-) data and quality criteria

Components of plasma study

Plasma Metadata Schema

PLANNED INFRASTRUCTURE

Important

Extension of INPTDAT data platform (https://www.inptdat.de) by Wikibase system for community driven plasma knowledge graph, and blockchain infrastructure

Somewhat important Not important I am not sure

 Open interfaces for integration of the plasma knowledge graph into external services and tools, e.g. data bases, research data repositories, and electronic lab books

Reputation monitoring

St. Franke *et al.*, arXiv:1907.07744, 2020.

Metadata modules for specific study

BENEFIT

Data reuse

- Visibility, transparency and reproducibility of scientific results
- Validation of quantitative results
- Less reproduction of same data
- Support of standardization
- New findings by meta analyses and data driven research
- Building confidence in data

References:

[1] M. D. Wilkinson *et al., Scientific Data* **3** (2016) 160018.
[2] GO-FAIR: FAIR Principles, https://www.go-fair.org/fair-principles.
[3] St. Franke *et al.*, arXiv:1907.07744, 2020.

SPONSORED BY THE

inistry The German Federal Ministry of Education and Research (BMBF) funded this work under grant marks 16QK03A, 16QK03B, and 16QK03C.

FIZ Karlsruhe

Leibniz-Institut für Informationsinfrastruktur

Leibniz Association

