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Abstract

The process of transforming a set of recordings into a musical mixture encompasses
a number of artistic and technical considerations. Due to this inherent complexity,
a great deal of training and expertise on the part of the audio engineer is required.
This complexity has also posed a challenge in modeling this task with an assistive
or automated system. While many approaches have been investigated, they fail to
generalize to the diversity and scale of real-world projects, with the inability to adapt
to a varying number of sources, capture stylistic elements across genre, or apply the
kinds of sophisticated processing used by mix engineers, such as compression.

Recent successes in deep learning motivate the application of these methods to
advance intelligent music production systems, although due to the complexity of this
task, as well as a lack of data, there are a number of challenges in directly applying
these methods. In this thesis, we address these shortcomings with the design of a
domain inspired model architecture. This architecture aims to facilitate learning
to carry out the mixing process by leveraging strong inductive biases through self-
supervised pre-training, weight-sharing, as well as a specialized stereo loss function.

We first investigate waveform based neural networks for modeling audio effects, and
advance the state-of-the-art by demonstrating the ability to model a series con-
nection of audio effects jointly over a dense sampling of their parameters. In this
process, we also demonstrate that our model generalizes to the case of modeling an
analog dynamic range compressor, surpassing the current state-of-the-art approach.
We employ our pre-trained model within our framework for learning to mix from
unstructured multitrack mix data. We show that our domain-inspired architecture
and loss function enable the system to operate on real-world mixing projects, placing
no restrictions on the identity or number of input sources. Additionally, our method
enables users to adjust the predicted mix configuration, a critical feature that en-
ables user interaction not provided by basic end-to-end approaches. A perceptual
evaluation demonstrates that our model, trained directly on waveforms, can produce
mixes that exceed the quality of baseline approaches. While effectively controlling all
the complex processors in the console remains challenging, we ultimately overcome
many of the challenges faced by canonical end-to-end deep learning approaches.

While the results presented in this work are preliminary, they indicate the poten-
tial for the proposed architecture to act as a powerful deep learning based mixing
system that learns directly from multitrack mix data. Further investigations with
this proposed architecture through the use of larger datasets, in addition to trans-
forming the controller to act a generative model, prove to be promising directions in
advancing intelligent music production, surpassing current knowledge based expert
systems and classical machine learning approaches for this task.
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Chapter 1

Introduction

1.1 Motivation
The journey from the original seed of a musical idea to the final recorded production
involves a number of different steps that are often not evident from the perspective
of the music listener. This process generally involves the collaboration of a number
of different individuals who perform unique roles, each with their own skills and
specialization, such as songwriters, musicians, producers, as well as the recording,
mixing, and mastering engineers. One critical step in this process is the task of
transforming the individual recorded elements into a final mixture, which is under-
taken by the mixing engineer, and is often an integral part of the creative process
in modern recordings. Without this step, it would be impossible to generate the
musical experience listeners are familiar with today.

This task of transforming a collection of audio signals into a cohesive mixture re-
quires a deep understanding of disparate technical and creative processes. For this
reason, audio engineers are required to study and practice mixing techniques for
some years before gaining the experience required to address the complexities in-
herent in the interaction among signals. To effectively carry out this task, an audio
engineer’s specialized training involves developing the ability to recognize how to
utilize an array of signal processing tools to achieve a set of desired technical and
creative goals. Due to this reality, there are a number of driving factors in the
development of intelligent music production (IMP) tools, tools that aim to offer
assistance in parts of this complex process (De Man et al., 2019).

The past decade has seen an increase in the affordability and overall accessability of
music production tools. This has been characterized by the growing availability of
digital audio workstation (DAW) and plugin offerings, along with affordable studio
quality microphones, headphones, and loudspeakers. Equipment once present only
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2 Chapter 1. Introduction

in world-class studios can now be found in the bedrooms of musicians and ama-
teur audio engineers, introducing music production to a new, diverse demographic.
When coupled with the expansion of accessible online platforms for music distri-
bution, such as Spotify, Apple Music, Pandora, YouTube, SoundCloud and others,
these circumstances have lead to an explosion of interest in music production among
amateur audio engineers and musicians (Walzer, 2017).

As a result, there are a number of factors motivating the development of tools
that simplify the music production process. The first factor involves addressing
the significant prerequisite experience in performing these music production tasks,
which amateur audio engineers and musicians often lack. Such tools aim to extend
the ability of inexperienced individuals by suggesting possible configurations, or
providing feedback that incorporates expert knowledge. These tools provide the
potential to greatly improve the quality of productions conceived by these creators,
and ultimately enhance the experience for music listeners. As the current trend of
independent music production continues to increase, demand for these kinds of tools
will only continue to increase, and software offerings from iZotope1, LANDR2, and
Accusonus3 are all evidence of this trend.

The second motivating factor involves the automation of complex and time con-
suming tasks in the music production process with the aim of reducing the time
investment required on the part of professional engineers. Clearly, intelligent music
production tools can produce benefit not only for amateur audio engineers, but also
for those with extensive experience, provided these tools are able to adequately carry
out repetitive tasks, or offer new methods for more efficiently traversing the space
of possible mix configurations. Such a system may have the effect of helping artists
work more rapidly when they desire, or enable them to explore more creative ideas
in a short period of time.

Finally, there is also the potential for intelligent music production tools to uncover el-
ements that bring greater understanding to the established practices and techniques
carried out by professional audio engineers. Moreover there is also the potential to
discover new practices and techniques that also produce quality mixes in novel or
interesting ways. Ultimately, these tools have the potential to enable musicians and
amateur audio engineers to produce higher quality work, function as an educational
tool, as well as expedite the production process for experienced audio engineers
allowing for greater focus on artistic considerations.

1https://www.izotope.com/en/products/neutron.html
2https://www.landr.com/en/online-audio-mastering/
3https://accusonus.com/
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1.2 Challenges

Over the past decade, researchers in the field of IMP have worked to develop new
technologies that aim to address the interest in tools that provide assistance to audio
engineers (De Man et al., 2017). A variety of approaches have been investigated, with
most falling into one of two categories (Moffat and Sandler, 2019b): knowledge-based
expert systems, or data-driven machine learning models, which will be addressed in
greater detail in the following chapter. While previous approaches in both of these
categories have demonstrated the ability to model the behavior of audio engineers
in a set of limited mixing tasks, these systems still fail to adequately adapt to the
diversity and scale present in many real-world projects (De Man, 2017).

Recently, deep learning has demonstrated impressive results on many audio tasks
that were previously thought to be extremely challenging. Some examples include
speech synthesis (van den Oord et al., 2016a, Wang et al., 2017, Engel et al., 2019),
instrument synthesis (Engel et al., 2017, Défossez et al., 2018), source separation
(Hershey et al., 2016, Stoller et al., 2018, Stöter et al., 2019), and speech enhance-
ment (Pascual et al., 2017, Rethage et al., 2018). For this reason, there is interest
in the application of these models in IMP, and more specifically within the context
of methods for automated multitrack mixing (Martínez Ramírez and Reiss, 2017).

While these recent successes appear promising in our goal of advancing IMP systems,
there are a number of challenges that impede our ability to design deep models for the
multitrack mixing task. Foremost, is the limited multitrack mix data available. In a
supervised training regime we are interested in parallel multitrack data, collections
containing the original unprocessed multitrack recordings, along with mixes of those
tracks made by trained audio engineers. Due to the realities of copyright and the
challenge in cataloging this kind of data, there has been a significant challenge in
developing large scale, open datasets of this kind, but efforts have been made to
make data of this kind available. One example is MedleyDB (Bittner et al., 2014),
which, after the latest update (Bittner et al., 2016), features 196 tracks, complete
with unprocessed multitrack recordings and a corresponding mix. In addition, the
Open Multitrack Testbed attempts to catalog multitrack content for educational
and research contexts (De Man et al., 2014), but contains many of the same source
as MedleyDB, and has significantly less organization with regards to metadata.
Nevertheless, these sources provide many orders of magnitude less samples compared
to common datasets used for deep learning in related domains. For example, the
VoxCeleb dataset with over one million speech utterances (Nagrani et al., 2019), the
Freesound dataset with quarter of a million sound recordings (Fonseca et al., 2017),
or the Million Song Dataset (Bertin-Mahieux et al., 2011) with acoustic features
extracted from over one million songs. Training end-to-end models operating in
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the waveform domain may require upwards of one million samples to perform as
effectively on classification tasks (Pons et al., 2017), and while spectrogram based
approaches have been shown to perform more competitively with less data, this
approach is more challenging for tasks that involve synthesis (Engel et al., 2019).

In addition to the lack of parallel data, there is also the challenge in building a
model that is able to adapt to the diversity present in real-world multitrack projects.
While many music productions are composed of similar sources, for example drums,
guitars, piano, vocals, etc., there is no consistent format or structure for the inputs
that compose a mix (Owsinski, 2006). Such characteristics are highly dependant
on the genre and the composition itself. This presents a challenge since we cannot
assume a priori the number of sources or their identity, and therefore the model must
be able to handle such variable sized inputs, as well as adapt its behavior accordingly.
Current state of the art models (e.g. convolutional neural networks for music source
separation (Stöter et al., 2019)) exploit both the explicit number and ordering of
inputs during the training of the network. In the case of multitrack mixing, since we
have no unified format or taxonomy, we require the model to operate on a variable
number of input sources, and for any arbitrary ordering of the same input tracks
to produce the same mix. To achieve this kind of behavior, a convolutional neural
network would require orders of magnitude more model capacity, as the learned
transformations for each input channel would need to effectively process every type
of input signal. This suggests that a more sophisticated architecture is required,
which we will address in detail in Chapter 3.

As outlined by Moffat and Sandler (2019b), there are a number of different roles
that an intelligent music production system can play in the process of creating a
multitrack mix. These range from assistive algorithms that provide feedback, but do
not directly generate a mix, all the way to fully automated systems that take inputs
and produce a complete mix. There is an inherent challenge in applying end-to-end
deep learning to the mixing task in this latter case, as the user will receive a complete
mixture at the output of the system, but no method for further adjusting this result.
A model that takes a set of inputs and maps them directly to a mix, without the
ability for human interaction, provides limited utility since the mixing process is
largely a creative task with no objectively “correct” output. Therefore, there is an
interest in designing a mixing system such that the end-user has the ability to further
tweak the results based on their internal goals. This interface could manifest itself
either with the same controls audio engineers are accustomed to, or in the case of
a tool designed for amateur users, these controls could be abstracted to higher level
controls that provide an easy method for traversing a number of potential options.

The final and often overlooked challenge comes from the aforementioned ill-defined
nature of the mixing task. While conventions are evident among professionally
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produced mixes, it is clear that different, yet equally acceptable mixes, may be
located in disparate areas of the so-called mix space or parameter space of the mixing
console (Wilson and Fazenda, 2017). Even when ignoring the task of attempting to
model this complex one-to-many mapping, there still remains an inherent challenge
when training a model in a supervised fashion to regress a ground truth mix.

As a concrete example of how this issue may manifest itself during training, consider
the case of panning a guitar source in a mix. During training, the model may have
seen many examples that contain a guitar, and often this source may be panned
either to the left or right side. For any song containing a guitar given as input, since
the model has no way to predict whether this guitar will appear on the left or right
in the ground truth mix, placing the source always in the center will minimize the
error in the loss function (assuming a loss based on L1 or L2 distance in the time or
frequency domains), and clearly this behavior is undesirable. For this reason, loss
functions that address this issue and take into account domain knowledge of mixing
may need to be designed, a claim we will address further in Chapter 5.

Due to these realities, it is unlikely that a canonical deep neural network architec-
ture, where the input is a collection of multitrack recordings and the output is a
mix of those tracks, will be able to be trained directly in a supervised fashion using
the limited multitrack data available. This contention between a lack of available
data and the need for data-demanding end-to-end models is one of the fundamental
challenges in the application of deep learning for intelligent music production. In
addition, these realizations suggest that more specialized architectures and loss func-
tions that incorporate domain knowledge from music production may be required
in order to train models that are able to learn mixing conventions from waveforms.

This thesis aims to provide a path towards rectifying this situation with an investi-
gation of an approach that incorporates domain knowledge in the design of a new
architecture and loss functions, as well as through self-supervised pre-training to
produce component models with stronger inductive biases to more efficiently lever-
age the limited available training data.

1.3 Research questions

We aim to design a system that takes as input a number of sources that compose
a musical work, and produce a stereo mixture of these sources that achieves a com-
parable level of quality to mixes produced by trained audio engineers. Our work
addresses two main tasks, first that of modeling audio effects in an end-to-end fash-
ion, and then the use of these models in the construction of a learned, end-to-end
multitrack mixing system.
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To begin, we first investigate the following questions on audio effect modeling.

(i) Can linear and nonlinear audio processors (equalizer, compressor, and reverb)
be effectively modeled with a dense sampling over their parameter space?

(ii) Can a series connection of these processors, as well as their ordering within
the chain, be effectively modeled jointly by a neural network?

(iii) Can such a model generalize to the case of modeling a nonlinear analog device
with limited training data?

Afterwards, we address the following questions in order to construct a multitrack
mixing system.

(i) Can a composition of these models be utilized to construct a differentiable
mixing console with sufficient transformational expressivity?

(ii) Can a controller network be designed that generates parameters for this mixing
console and adapt to handle a variable number of inputs?

(iii) Can an appropriate loss function be designed that encourages quality mixes
by incorporating domain knowledge of multitrack mixing?

1.4 Contributions
Our contributions can be divided into two major areas. The first involves our work
on extending current approaches in neural audio effect modeling. In our investiga-
tions we positively answer the research questions we propose and demonstrate the
following:

(i) A dense sampling over the parameter space of a number of linear and nonlinear
audio effects can be effectively modeled.

(ii) A series connection of audio effects, along with their parameters can be mod-
eled with a single network.

(iii) This model can also capture the behavior that arises from varying the ordering
of these processors within the signal chain.

(iv) Our proposed audio effect modeling architecture achieves state of the art per-
formance on the black-box modeling of an analog compressor.
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In the second part of our work, we propose a domain inspired architecture for learn-
ing to generate mutlitrack mixes using only multitrack recordings and mixes made
by audio engineers. Our approach addresses the aforementioned challenges and we
show the following about our proposed architecture:

(i) Can be trained using a limited number of multitrack training examples.

(ii) Makes no assumptions about the format or identity of input sources.

(iii) Is permutation invariant with respect to the order of inputs.

(iv) Places no upper or lower limit on the number of input sources in a mix.

(v) Enables interaction by users to adjust the output, providing interpretability.

(vi) Produces mixes that exceed baseline approaches in a perceptual evaluation.



Chapter 2

Background

2.1 Music production
The process of transforming a musical composition into a produced work, ready for
distribution, incorporates a large number of diverse tasks. These tasks are generally
carried out by a team of individuals working in tandem, and includes musicians,
producers, record labels, and recording, mixing, and mastering engineers. While
this process may involve composition and arrangement of musical pieces, where the
act of composing the song takes place concurrently, here we consider only the general
steps taken after all compositional decisions have been made.

2.1.1 Recording

Once a composition has been written, musicians often work in a recording studio,
along with a producer and audio engineer, to carry out the process of recording
each of the elements, either individually, jointly, or more often a combination of
both (Huber and Runstein, 2010). In the case of acoustic instruments, the record-
ing of each performance is often achieved with the use of a range of different types of
microphones placed in an acoustically treated space, designed to reduce unwanted
reflections. While some studios may feature a larger recording space, which im-
parts natural acoustic qualities to recordings, such facilities are often expensive and
inflexible. For this reason, the predominant approach is to record sources in an
acoustically “dry” or “dead” space, where as little of the room’s qualities impact the
final recording. Then, in the next stages artificial reverberation effects may be used
to make the recordings sound more natural (Case, 2011).

To capture the performance, a series of analog-to-digital converters (ADCs) are
used to convert the electrical signals of the microphones to a digital representation.

8
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This is achieved by sampling the voltage of each microphone with a fixed number
of possible voltage levels defined by the bit-depth (e.g. 16 or 24 bits) at a fixed
rate (e.g. 48 kHz, 96 kHz, or 192 kHz)1. The resultant digital representations are
then often stored on the hard disk of a computer running digital audio workstation
(DAW) software, which provides a means to later manipulate these recordings to
create a final product.

While many genres incorporate acoustic instruments, some genres like electronic
music may include only electronic instruments. In these cases the workflow often
remains quite similar to the traditional studio recording process. Individual elements
are created either by recording the output of various synthesizers and samplers, or
by writing MIDI data that will be sent to a hardware or software synthesizer during
playback. These tracks can then be treated the same as those recorded with acoustic
instruments when it comes time to create the final mix.

The entire process of tracking all the elements can take anywhere from days to years,
depending on the complexity of the composition and the vision of the artist. Often
the recording process is closely intertwined with the composition process. Artists
may experiment with new ideas, building the composition piece-by-piece, stacking
many small elements on top of each other to create the composition. Once the artist
is satisfied with the recorded elements, this stage is often concluded by selecting the
final takes that will be included and removing additional elements that are deemed
unnecessary. The recording engineer will then deliver these final recordings to the
mixing engineer for the next step in the process.

2.1.2 Mixing

After all the elements have been successfully captured, they are transferred to the
mixing engineer. In this stage of the process, the mixing engineer applies their
technical and artistic judgement to combine these elements into a cohesive stereo-
phonic, or multi-channel mixture, which aims to achieve the artist’s and producer’s
intention. This process generally involves the use of a mixing console as well as a
combination of different signal processors that allow the audio engineer to shape the
temporal and spectral characteristics of the recorded signals. The most common pro-
cesses carried out by the mixing engineer include balancing, panning, equalization,
compression, and additional effects such as reverb and delay (Owsinski, 2006).

Mixing is often challenging and requires great experience on the part of the audio
engineer, as the interaction between the recorded elements can be very complex. For
example, using an equalizer to adjust the quality of the low frequency content of the

1Readers are directed to Chapter 6 of Huber and Runstein (2010) for a complete treatment of
digital audio fundamentals
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kick drum may have a significant impact on the audibility of the bass guitar. Since
they occupy a similar part of the frequency spectrum, they are prone to masking
interactions (Wakefield and Dewey, 2015). This principle of interaction can then be
applied between each pair of sources in the entire mix. Clearly then, as the number
of individual tracks in the mix increases, the complexity of the mixing task increases.

This process also requires that the parameters of various signal processors be ad-
justed over time as elements within the mix evolve. This further complicates the
process. Often there is no singular configuration of the mixing console that achieves
a quality mix over the course of the whole work. To address this, mixing engineers
often use what is known as automation, a process wherein the settings of different
parameters are defined at each timestep in the project. Then during playback, the
processors follow these pre-programmed settings.

While the process and art of mixing has been studied (De Man, 2017) and many
resources are available to educate mixing engineers (Owsinski, 2006, Huber and
Runstein, 2010, Case, 2011, Izhaki, 2013), formalizing these tasks into a set of pre-
defined steps has not be achieved. Mixing engineers spend a great deal of time
practicing and studying the work of accomplished mixing engineers in order to hone
their craft. General practices and guidelines do exist in the aforementioned liter-
ature, but the diversity and complexity of the interactions among the elements of
most mixes means that expertise and intuition specific to the mixing engineer is
required to achieve the desired result.

2.1.3 Mastering

After the final mix has been created, it is often passed to the mastering engineer,
who provides a final assessment of the work and additionally carries out any further
processing to the complete mix. Their role is often to identify any problematic
characteristics of the mix that will potentially result in poor translation when the
content is reproduced across a range of different consumer playback systems (Katz
and Katz, 2007). In order to achieve this goal, the mastering engineer often uses
a very high fidelity monitoring system as well as signal processors similar to the
mixing engineer, like equalizers and compressors to make corrective adjustments to
the mix as a whole. In some cases, the mastering engineer may even request the
mixing engineer return to the mixing stage to make specific adjustments that are
better suited to be performed on an individual element directly, rather than across
the stereo mix by the mastering engineer. Once the mastering engineer has signed
off on the final production, the process of producing the work has been completed
and it is now ready for distribution.
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Reference Effects Param. Architecture Loss Fs (kHz) Dataset
Mendoza (2005) dist. & EQ no MLP L2 (t/f) 48.0 P
Holzmann and Hauser (2010) distortion no RNN L2 (t) 44.1 P
Covert and Livingston (2013) distortion no RNN L2 (t) 96.0 P
del Tejo Catalá and Masiá Fuster (2017) equalizer no CNN+LSTM L2 (t) 44.1 P
Martínez Ramírez and Reiss (2018) equalizer no CNN L1 (t) + L2 (f) 16.0 E
Schmitz and Embrechts (2018) distortion yes LSTM L2 (t) 22.05 P
Zhang et al. (2018b) distortion - LSTM L2 (t) 96.0 P
Damskägg et al. (2018) distortion yes CNN ESR (t) 44.1 P
Martínez Ramírez and Reiss (2019) dist. & EQ no CNN L1 (t) 16.0 A
Martínez Ramírez et al. (2019a) time-varying no CNN+LSTM L1 (t) 16.0 I
Martínez Ramírez et al. (2019b) reverb no CNN+LSTM L1 (t) + L2 (f) 16.0 I
Wright et al. (2019) distortion yes LSTM ESR (t) + DC(t) 44.1 B, C
Hawley et al. (2019) compression yes MLP Logcosh (t) + L2 (f) 44.1 G
Damskägg et al. (2019b) distortion yes CNN ESR (t) 44.1 B, C

Table 1: Summary of previous approaches in deep learning for audio effect modeling.
The Param. column indicates whether or not the control parameters of the effect
were modelled, or if only a single configuration of the model was used. For the loss
functions, (t) denotes time domain and (f) denotes frequency domain. ESR denotes
the error-to-signal ratio, and DC denotes a loss between the DC offsets. Complete
details about the dataset used are shown in Table 2.2.2

2.2 Audio effect modeling
The field of virtual analog audio effect modeling has been an active area of research
since the introduction of digital audio processors (Valimaki et al., 2010), wherein
the goal is to model the often highly nonlinear response of various analog audio pro-
cessors, using some kind of digital model to be implemented in software (Pakarinen
and Yeh, 2009). Processors of interest often include compressors (Giannoulis et al.,
2012), reverberators (Bilbao, 2013), and vacuum tube amplifiers (Karjalainen and
Pakarinen, 2006). Virtual analog models provide the flexibility of working in the
digital domain, most notably the reduction in physical space due to the elimina-
tion of hardware units, as well as effortless recall-ability, and extended use across a
number of instances, generally limited only by the computing power available. This
technology has become ubiquitous among both professional and hobbyist audio en-
gineers with the deployment in many plugins that provide high quality emulations of
analog hardware at a relatively low cost, such as offerings from plugin manufacturers
Universal Audio2 and Waves3.

2.2.1 White-box models

There are two approaches traditionally employed in the task of analog effect mod-
eling. The first is known as white-box modeling, where the behavior of an analog
device is modeled by examining the circuitry and design of the device, and then a
simulation of this same circuitry is implemented (Yeh et al., 2007). This can be

2https://www.uaudio.com/uad-plugins.html
3https://www.waves.com/bundles/abbey-road-collection
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achieved by using existing physical models of these circuit components with popular
simulation tools like SPICE (Vladimirescu, 1994). While these approaches have been
shown to be powerful, their major drawback comes from the computational expense
of high accuracy circuit simulations. This often forces the designers to simplify parts
of the circuitry within the simulation, hence reducing its level of realism. Never-
theless, this approach remains popular and can produce high quality simulations of
analog hardware when care is taken in the design of the circuit simulations.

2.2.2 Black-box models

The second approach is known as black-box modeling, where instead of examining
the inner workings of the device and carefully simulating each component, a large
number of measurements are made by passing different signals to the device and
testing how it responds (Eichas and Zölzer, 2016). These measurements can then
be used to construct a nonlinear model that attempts to emulate the behavior of
the original device. With these measurements, designers generally attempt to fit
a parameterized model to re-create this system, such as the Volterra series (Hélie,
2009), Wiener models (Schattschneider and Olzer, 2000), or Wiener-Hammerstein
models (Eichas and Zölzer, 2018).

Over the past decade, researchers began to investigate the application of neural net-
works in an attempt to model the nonlinear behavior of these analog signal proces-
sors. The proliferation of hardware specialized in the matrix operations employed by
neural networks makes these approaches potentially more efficient that white-box
modeling approaches that employ demanding physical models, and the ability to
learn more expressive functions than those employed in traditional black-box mod-
eling approaches, ultimately makes the application of neural networks attractive for
this task. Table 1 presents a summary of the neural network-based approaches,
including details about their implementation. Some of the earliest work in this
area involved the emulation of vacuum tube amplifiers for electric guitar distortion,
first in Mendoza (2005), which employed a simple multilayer perceptron with both
frequency domain and time domain approaches, as well as Covert and Livingston
(2013), which investigated the application of recurrent networks in the time domain.

More recently, the latest advancements in deep learning have been applied to this
area and have brought about improved results, as well as additional insight into the
most effective methods to train and implement these kinds of models. Continued
work on modeling vacuum tube amplifiers with neural networks has resulted in
further improvements. This was achieved in Damskägg et al. (2019a) by employing
a WaveNet-like architecture, in Zhang et al. (2018b) with the application of LSTMs,
and in Martínez Ramírez and Reiss (2019) with a hybrid CNN and bidirectional
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ID Name Year Sources Effects Samples Hours GB Sample Rate Reference.
A IDMT-SMT-Audio-Effects 2010 Bass/Guitar Many 55044 30 - 44.1 kHz Stein et al. (2010)
B IDMT-SMT-Bass-Single-Tracks 2013 Bass None 17 - - 44.1 kHz Abeßer et al. (2013)
C IDMT-SMT-Guitar 2014 Guitar None 6000 - - 4.1 kHz Kehling (2014)
D MedleyDB V1 2014 Many None 849 120 43.1 Multiple Bittner et al. (2014)
E Salamander Grand Piano 2015 Piano None 1440 1.6 1.3 48.0 kHz -
F MedleyDB V2 2016 Many None 428 70 44.3 Multiple Bittner et al. (2016)
G SignalTrain LA2A 2019 Many/Noise Comp. 67 20 21.0 44.1 kHz Hawley et al. (2019)
H FSDnoisy18k 2019 Noise None 18179 43 9.5 44.1 kHz Fonseca et al. (2019)
I DL-AFx 2019 Bass/Guitar Many 2372 1.5 0.9 44.1 kHz Martínez Ramírez et al. (2020a)

Table 2: Summary of datasets commonly used in the audio effect modeling task, as
well as mutlitack datasets. Information about the number of samples, their length,
and total size of the datasets are provided when available.

LSTM architecture. In addition, other more complex signal processors have begun
to be modeled with deep learning approaches, such as dynamic range compressors
in Hawley et al. (2019), which models both a digital compressor and analog LA-
2A compressor. In Martínez Ramírez et al. (2020b), the authors present a further
extension of Martínez Ramírez and Reiss (2019), which enables the modeling of
spring and plate reverberators through the addition of SFIR filtering within the
latent space of the model.

Limitations

While these findings indicate that DNNs are capable of learning both the linear and
nonlinear transformations characteristic of traditional signal processors utilized by
audio engineers, the investigations conducted thus far have some limitations. Some
of these works train models that operate on audio at sampling rates lower than
44.1 kHz, and therefore additional work must be carried out to demonstrate that
a range of effects can be modeled effectively at higher sampling rates. Also, many
works, with with of exception of SignalTrain (Hawley et al., 2019), make strong
assumptions about the type of inputs to the model, restricting this to only a certain
sets of instruments, such as the electric guitar, electric bass, and piano. Finally,
most works only consider a single configuration of the audio effect parameters, or a
sparse sampling over this parameter space. In order to fully capture the behavior of
these audio effects we must be able to model the audio effects over a dense sampling
of their parameter space, which may present additional challenges.

2.3 Intelligent music production
Intelligent music production (IMP) is a research field that aims to develop algorithms
that provide assistance in the process of recording, mixing, or mastering a musical
production (Moffat and Sandler, 2019b). Implementations can range from systems
that simply provide feedback or recommendations on how to improve a production,
to the complete autonomous control of an entire mixing console in real-time for live
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sound reinforcement. The field of IMP extends beyond autonomous mixing systems
and also encompasses tools that provide semantic control of signal processors.

Moffat and Sandler (2019b) outline two different approaches in designing intelligent
music production systems. They first introduce the concept of parametric systems,
where a model is designed such as to produce an appropriate parameterization of a
pre-existing signal processing device, such as the mixing console. The majority of
previous systems have followed this approach as they produce interpretable results
and enable interaction from users to easily tweak the models predictions according
to their goals. They go on to introduce the concept of direct transformation systems,
which instead of attempting to produce parameters for traditional DSP modules,
operate directly on the inputs to produce the desired output. These systems open
the door for new kinds of transformations that are potentially more expressive than
existing hand crafted DSP algorithms. Although, this greater level of expressivity
generally comes at the cost of less interpretablity, and the inability for users to easily
tweak the generated mixes. This class of models have been relatively unexplored
within the context of intelligent music production, and therefore future work is
needed to address these challenges.

2.3.1 Early work

Somewhat surprisingly, the earliest attempts at designing a system to automate
the task of the mixing engineer predate the era of digital audio. Dugan famously
introduced his design of an automatic microphone mixing system in 1975 at the
Convention of the Audio Engineering Society in Los Angeles (Dugan, 1975). His
proposed system aimed to control the gain of multiple microphones for speech in
a sound reinforcement scenario adaptively. By monitoring the level of other mi-
crophones, an algorithm was developed to achieve the maximum output without
feedback. These mixers evolved over the past decades and remain in use within the
industry, but aim only to provide simple control over the level of multiple channels
in a scenario where an expert audio engineer is not required. The limited scope of
these devices left a desire to develop more advanced control algorithms that went
beyond just controlling the level, and ultimately would be better able to emulate the
actions of a professional audio engineer. Nearly 25 years later, Pachet and Delerue
(2000) developed a system that allowed listeners to adjust the spatialization of a
multitrack mix while meeting a set of constraints set by the audio engineer. This
work suggested that multitrack mixing could be framed as an optimization problem,
and would go on to influence the future directions of the field.
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2.3.2 Knowledge-based systems

It was work by Perez Gonzalez and Reiss, beginning in 2007, that initially began
the reexamination of this research question of designing more powerful intelligent
tools for mixing. These early systems were characterized by framing various mixing
tasks as optimization problems, such as the minimization of perceptual masking
between elements in the mix (De Man and Reiss, 2013a). They often also featured
simple logic or rules to ensure the device under control did not become uncontrolled.
These early systems established a general architecture for the design of what are
considered intelligent audio processors. Most systems contain two signal paths: the
main processing signal path, and the side-chain pathway in which some analysis of
the input signals is undertaken (De Man et al., 2019). This side-chain pathway often
involves some kind of feature extraction, where additional processing is carried out
on input signals to gather information about the inputs. This information is then fed
to an optimization algorithm, a knowledge-base containing rules, or a combination
of the two. Figure 1 illustrates the basic architecture of a mutli-channel knowledge-
based system for audio processing.

Signal processors

...

Input audio

Feature extraction

...

Output audio

Control
OptimizationKnowledge-based

rules

Figure 1: Block diagram of the basic design of a multi-channel knowledge-based
intelligent audio effect, which is adapted from De Man et al. (2019).

For example, in Perez Gonzalez and Reiss (2007), the authors present an autonomous
system for panning multiple tracks within a multitrack mixture. Their algorithm
attempts to reduce spectral masking amongK input tracks through a simple priority
system and a filter bank of K filters that measure the energy within each band of
each input. These values are then used to determine how to pan each source across
different panning steps in the stereo field, with the goal of reducing spectral masking
by panning sources with similar spectral content apart.

This initial work was extended to other tasks within the mixing process such as
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equalization (Perez Gonzalez and Reiss, 2009a), delay correction (Perez Gonzalez
and Reiss, 2008), and leveling (Perez Gonzalez and Reiss, 2009b). Similar targets
such as masking reduction were used to direct the optimization process of controlling
the parameters of these processors. Of course these methods assume both that
the perceptual models used for masking are representative of human perception
and furthermore that the set of underlying rules and constraints truly align with
the internal goal of mixing engineers. Some of these early systems demonstrated
promising results, specifically the results from the PhD thesis of Perez Gonzalez,
which incorporated many of these subsystems together into a complete system for
mixing a fixed set of multitrack sources. While this system achieved performance
beyond any other existing system, the results left much to be desired. The algorithms
were sensitive to parameter tuning and lacked the robustness required to adjust to
the scale and diversity of real-world projects.

Following the groundwork laid by Perez Gonzalez and Reiss (2009a), more re-
searchers began expanding upon these early systems. In addition to the goal of
reducing spectral masking within a mix, approaches that attempted to achieve an
equal loudness criterion across input channels were also investigated. This was first
implemented in Perez Gonzalez and Reiss (2009b), which uses a simple model of
time varying loudness based on the ISO 226 loudness curves (ISO 226:2003). Fur-
ther advancements were made in Mansbridge et al. (2012) with the implementation
of the EBU R-128 recommendation (R128) for extracting channel loudness features,
and Ward et al. (2012) investigated the use of more perceptually accurate models
of loudness. Work in this area has continued, most notably with Fenton (2018),
which presented modifications to the ITU BS.1770 loudness algorithm (BS1770) for
increased accuracy in the context of multitrack mixing.

While progress was made on expanding these largely constraint based approaches,
a new direction emerged that placed a greater focus on expanding the quality of
domain knowledge present in these systems. These systems aim to improve on earlier
ones by building rich rule bases through the in-depth study of mixing practices.
This work was led largely by De Man and Reiss who presented a framework for
incorporating domain knowledge collected from a study of mixing engineers into a
complete multitrack mixing system (De Man and Reiss, 2013b). While these systems
offered additional benefit from their interpretablity, and often produced mixes with
a level of quality above more basic baselines, they still lacked the ability to easily and
seamlessly adapt to the diversity in real-world projects, and ultimately were unable
to capture the same level of detail and adaptation afforded by human engineers
De Man (2017).
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2.3.3 Machine learning

Machine learning approaches differ from knowledge-based systems in that they in-
volve the large scale processing of data in order to construct a system or algorithm
that analyzes an input and predicts an output. In addition to the knowledge-based
approaches, some of the early approaches in the field began by investigating machine
learning methods. Notable works include a system in Kolasinski (2008) that utilized
a genetic algorithm and audio features for leveling tracks, and Scott et al. (2011)
that utilized linear dynamical systems to predict time varying gains based on ex-
tracted audio features and a dataset of mutlitack mixes. The application of machine
learning approaches have also notably enabled the investigation of intelligent sys-
tems for more complex signal processors like dynamic range compression (Mimilakis
et al., 2016) and artificial reverberation (Chourdakis and Reiss, 2016, 2017, Benito
and Reiss, 2017), which have proven more difficult to design formalized rules for in
knowledge-based approaches.

Ultimately, machine learning approaches have been relatively less explored in com-
parison to knowledge-based systems, and this is due to a number of factors. Probably
the most significant is that lack of large scale datasets for music production tasks.
Due to copyright and the lack of standardization across different music production
software tools, it has remained challenging to collect significant amounts of data
related to the processes normally carried out by audio engineers. In addition most
machine learning formulations for this task require the mixing parameters them-
selves for the optimization process, which are often unavailable. While projects
such as MedleyDB (Bittner et al., 2016) and the Open Multitrack Testbed (De Man
et al., 2014) have aimed at filling this gap, the scale of data they provide is still
very limited and often only contains the waveforms on the multitrack recordings
and mixes. Nevertheless, interest in machine learning methods has been increasing
in recent years (De Man et al., 2017), and as the field of deep learning develops, the
application of these methods have become relevant as well (Martínez Ramírez and
Reiss, 2017).

2.3.4 Deep learning

Deep learning is a subfield of machine learning that provides a framework for learning
complex, nonlinear relationships from data, by composing multiple layers of param-
eterized computations. These techniques are generally characterized by the use of
neural network architectures composed of multiple layers, whose parameters are op-
timized with the use of an appropriate loss function and the application of stochastic
gradient descent and backpropagation. This approach differs from previous machine
learning approaches in that instead of using features that are hand-crafted for each
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type of input data and task, we train models that learn more powerful representa-
tions that are specialized for the task at hand.

The result of compositionality means that by stacking many layers of learnable com-
putations we are able to build functions that are far more expressive than previous
approaches, and this has led to major breakthroughs in many tasks in computer vi-
sion, audio, and natural language processing. As these successes in the field of deep
learning have continued to increase across many domains, so have the results in ap-
plication of these approaches to tasks in audio. Applications now have demonstrated
state of the art performance across tasks in the audio domain such as automatic tag-
ging (Pons and Serra, 2019), speech synthesis (Wang et al., 2017), speech recognition
(Park et al., 2019), and music source separation (Stöter et al., 2019).

Many deep learning systems operating on audio follow a similar approach. Gen-
erally, they first perform a short-time Fourier transform (STFT) on the audio and
extract the magnitude spectrum, discarding the phase component as it tends prove
more complicated to utilize effectively. Optionally, additional transformations are
performed on these representations, such as splitting the signal into mel-frequency
bins or applying logarithmic scaling, in effort to instill perceptual characteristics.
These time-frequency representations are then fed as input. For models that perform
a classification task such as tagging or speech recognition, this kind of approach has
been shown to work very well (Pons and Serra, 2019).

Challenges with this approach arise though when the goal of the model is to produce
audio at its output. Since these methods operate only on the magnitude spectrum
and produce a magnitude spectrum as output, they must reconstruct the time do-
main signal in an additional stage. Applications in source separation or speech
enhancement often simply use the phase from the original signal to perform the re-
construction with the iSTFT (Stöter et al., 2019). In cases where this is not possible
such as synthesis, the reconstruction process many utilize the Griffin-Lim algorithm
(Griffin and Lim, 1984) to approximate the phase given a magnitude spectrum, but
these results still leave much to be desired (Le Roux et al., 2008). More recent ap-
proaches train a network to reconstruct an audio waveform given a melspectrogram,
and demonstrate promising results within the context of speech and music synthesis
(Kumar et al., 2019). Although, such methods require the use of adversarial losses
which may complicate training, and the use of intermediate representations like the
melspectrogram adds additional complexity.

To address some of these shortcomings, a new class of models have been investigated,
known as end-to-end approaches. They are unique in that they operate on audio in
the time domain directly and at their output produce a time domain signal. Unlike
the previous spectrogram-based approaches, there are no pre or post processing
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stages to generate intermediate, hand-designed representations, instead we let the
model find the optimal representations of the audio waveforms directly. This has the
benefit of enabling the explicit modeling of the phase component of the signal jointly
with the magnitude. Applications of this approach in speech enhancement (Pascual
et al., 2017), instrument synthesis (Engel et al., 2017), and music source separation
(Stoller et al., 2018), indicate similar performance to spectrogram based methods
with potential benefits (Lluís et al., 2019). As these architectures have developed,
the latest results indicate that they can surpass, or remain very competitive with
the performance of spectrogram-based methods (Défossez et al., 2019).

Deep learning for multitrack mixing

A canonical end-to-end deep learning approach for the task of multitrack mixing may
employ a convolutional neural network (CNN), where each input recording is passed
to the model as a waveform, and the output is a two channel signal, representing
the stereo mixture. Using a dataset of paired multitrack recordings and mixes of
these inputs, the model could be trained using gradient descent where the L1 or
L2 distance is minimized between the predicted and ground truth mixes. This
problem formulation falls within the domain of direct transformation approaches
introduced previously, and is quite reminiscent of the music source separation task,
where instead of processing a mixture to produce multiple isolated sources, multiple
isolated sources are combined to produce a processed mixture. Just as in the source
separation task, this requires a model with sufficient depth to achieve a large enough
receptive field, as well as enough model capacity to capture the variation among the
mixes in the dataset, along with sufficient training examples.

As a direct transformation approach, the canonical end-to-end deep learning ap-
proach provides the potential benefit of not imposing any limiting inductive bias on
the mixing task, leaving the network free to learn a set of expressive transformations,
without the need for manually designing more complex subsystems. While this high
level of model expressivity may be desireable, it comes at a cost. Likely more train-
ing data will be required as well as additional iterations over the training data, in
order to achieve performance on par with a system with stronger inductive bias
for the mixing task. In addition, since the entire mixing task is abstracted within
the weights of the convolutional layers, and the output of the model is a complete
mixture, there is no clear method to interpret the mix that is produced within the
context of traditional mixing parameters. This proves quite problematic, since it
leaves the user without any means to further adjust the output mix. This is true
of course only in the simplest case of a discriminative model. The introduction of a
generative component in the model could help to alleviate this issue, although this
will now require users to navigate a latent space that could have arbitrary organiza-
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tion, and therefore be quite unintuitive to navigate in comparison to the interfaces
that audio engineers are already accustomed to.

In addition to these more apparent potential disadvantages, there are also a number
of less obvious challenges in applying such an approach. The first comes from the
requirement of defining the total number of input channels during training. The
general, CNN architecture requires that the input layer contain one set of N kernels
for each of the K input signals. In computer vision, this often manifests itself as
the RGB channels of an image, or in the case music source separation, this may
be the left and right channels of the input mixture. Since there is no single format
for multitrack projects, the number of input channels may range from 1 to upwards
of 200 depending on the complexity of the project. The simplest approach to this
problem may involve setting the input of input channels equal to the largest expected
input size, and then simply filling unused input channels with zeros. Unfortunately,
due to the reality that the number of input channels across projects often appears
as a long-tailed distribution, this method tends to be quite inefficient. Many of the
input channels will be filed with zeros for a large number of projects, not to mention
this greatly complicates the modeling problem.

Beyond this problem of defining the fixed number of input channels during training,
there is also the problem of the ordering of these inputs. Again, since there is no
established format with regards to the identity and number of inputs present in a
project, different projects will contain different elements, which will be potentially
passed as input to any of the network’s input channels. In this case, we desire that,
regardless of the ordering of these input channels, we produce the same mix. It is
clear that the ordering of the these inputs (e.g. kick, snare, guitar, etc.), should not
impact the mix produced. This is a challenge for the traditional CNN architecture,
since it means that for a project with K input channels, there will be K! different
permutations of the input channels, each of which will require the model to produce
the same mixture. All of these challenges remain unaddressed in the literature to
our knowledge, and we aim to first bring these challenges to light and then address
them through the design of a domain inspired deep learning approach, which we will
introduce in the following chapter.
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Multitrack mixing system design

3.1 Problem formulation
At the beginning of the mixing process we have a collection of N monophonic audio
signals, which we assume all are T samples in length. We can represent this set
of inputs as X ∈ RN×T . Our task is then to process each of these signals with its
own unique transformation and then sum these signals in order to create the final
mixture. To address this task, audio engineers generally utilize an array of signal
processing tools such as gain, panning, equalization, dynamic range compression,
and reverberation. Each of these signal processing devices can be represented as
an individual function y = f(φp,x) that takes as input a monophonic audio signal
x, a vector of parameters φp that defines the configuration of the processor, and
produces a processed audio signal y, which may have one, two, or more channels.

A single channel strip within a mixing console is often constructed with a series
connection of D processors, where the output of each processor is fed as input to the
following one. The result is a composition of functions, where each function receives
the output of the previous function, as well as its own unique parameterization φd,
such that the output of the ith channel is given by

yi = fd(φd) ◦ fd−1(φd−1) ◦ · · · ◦ f1(φ1,xi). (3.1)

To generate a mix, a unique configuration for the processors in each channel is
utilized to process each of the N input signals. Therefore, we can define the final
stereo mix at the output of the mixing console, m, as a sum of the outputs of each
channel n, parameterized with its own set of states φn,d, for each processor d, given
by

21
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m =
N∑
n=1

fn,d(φn,d) ◦ fn,d−1(φn,d−1) ◦ · · · ◦ fn,1(φn,1,xn). (3.2)

In practice, this composition of functions can be arbitrarily complex and may consist
of many linear and nonlinear signal processors. There is no established method or
technique for how to compose these processors, and hence the task of developing an
appropriate signal chain, as well as generating the optimal parameterization is a very
challenging task. Additionally, this representation of the mix is a simplification of the
routing possibilities afforded by traditional mixing console, which include the ability
to create auxillary busses. This complexity in the signal processing configurations
is one of the factors in why extensive training is required on the part of the audio
engineer for this mixing task.

For this reason, in our work we define a fixed chain of processors that provides
adequate transformational power for a general multitrack mixing task. We will
detail the design of this signal chain further in Chapter 4. It should be noted that
this assumption simply places an upper limit of the number of the processors in the
chain, as each processor can be parameterized in such a way that it does not affect
the signal, and is effectively removed from the signal chain. Then, in the case of
an automated multitrack mixing system, where we are given a collection of input
recordings X ∈ RN×T , we aim to build a model that predicts a set of P parameters
for each of the N inputs, φ ∈ RN×P , such that a desireable mixture is achieved.

3.1.1 Goal definition

It is important to carefully define what we mean by a desireable mixture. The mix-
ing task, seeing as it combines both technical and creative processes, will produce
an output assessed within an artistic context. Unlike other common tasks in audio
signal processing, such as source separation, denoising, or dereverberation, the mix-
ing task is largely ill-defined, meaning there lacks a single, agreed upon target, given
a set of input recordings. This is evidenced by the fact that when multiple audio
engineers are provided with the same set of input recordings, they tend to produce
mixes that are different from each other, but are still all rated favorably by listeners
(De Man and Reiss, 2017). This presents a challenge for our learning problem.

Therefore, our aim is not to “solve” this task, since no objectively correct mix
exists for a given input. Instead, our focus is on modeling the music production
conventions present within our dataset. We can then classify a desireable mixture
as one that follows the conventions implicit within the training data. Unfortunately
evluating the degree to which a system follows these conventions remains quite
challenging, and while multiple attempts have been made to formalize objective
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metrics for characterizing this relationship (Wilson and Fazenda, 2015, 2016, Colonel
and Reiss, 2019), this remains an open problem in the field. As a result, our aim is
to build a model that is able to process recordings in a manner similar to trained
audio engineers, based upon these conventions, with the goal of providing utility to
users by suggesting appropriate mixing parameters. To address this limitation of
objective evaluation metrics, we must rely most heavily on the feedback provided
by trained listeners in the assessment of our approaches.

3.2 Learned differentiable mixing console
To facilitate learning from limited data, avoid undesirable artifacts, as well as pro-
duce interpretable mixing decisions, we would like to utilize an existing mixing
console to carry out processing of the input recordings. A controller network would
then be trained to predict the optimal parameterization of each channel, as shown in
Figure 2, where the controller network receives the input signals, extracts informa-
tion, and produces as output a set of parameters for each channel. In order to train
this controller network with modern deep learning techniques, we need to employ
an appropriate loss function and compute gradients with respect to the weights in
the controller network, so we can optimize the network for the mixing task.

Input 1 

Controller network

Input 2 

Input N

...

...

Mixing console

Mix

Figure 2: Desired formulation where a controller network learns to predict the op-
timal parameterization of a traditional mixing console given some input recordings.

Unfortunately, some of the processing operations employed in the mixing console
likely do not have tractable derivatives, such as the dynamic range compressor. Fur-
thermore, even if their derivatives prove to be tractable, they present a challenge in
easily implementing them with existing automatic differentiation frameworks. Ad-
ditionally, these functions may have a loss landscape that proves to be significantly
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more difficult to optimize compared to traditional deep learning building blocks, for
which we have robust techniques that are shown to facilitate convergence, such as
weight initialization, batch normalization, and appropriate activation functions.

Input 1 

Controller network

Input 2 

Input N

...

...

Differentiable mixing console

MixΣ

Figure 3: Proposed formulation where a controller network learns to predict the
optimal parameterization of a mixing console proxy, which is a neural network pre-
trained to emulate the processing of a mixing console.

Such an approach, where we explicitly define these processing functions and use their
formulation to perform backpropagation, requires that we construct a unique differ-
entiable implementation for each manifestation of the processor class (e.g. equalizer,
compressor, etc.). This presents a challenge in scaling this method to the diversity
of different existing processors. While this may not appear to be an issue, there is
in fact large diversity among different formulations of the same class of processors,
such as the dynamic range compressor, which can be implemented in a number of
unique manifestations (Giannoulis et al., 2012).

To address these challenges, we propose an architecture in which the mixing console
itself is replaced with a set of neural networks, allowing us to build a fully differen-
tiable mixing console with deep learning building blocks. To do so, we note that the
mixing console itself is composed of a set of repeated channels, all of which enable
the same set of transformations using a composition of processors. Therefore, in
order to emulate the mixing console, all we must do is to emulate a single channel
within the console, and then repeat this channel across each input recording. We
achieve this by designing an appropriate network and training it to emulate the
signal processing chain of a single channel in the mixing console, with the ability to
extend this network across multiple input recordings. Ideally, when this network is
given an audio signal and parameters for processors in the channel, it will produce
an audio signal that is indistinguishable from the output of the true mixing console
channel.
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Figure 4: High level overview of the proposed multitrack mixing system.

This network, which we call the transformation network, is pre-trained in a separate
task before being employed in the mixing console. We train this network to emulate
the signal chain of a single channel in a mixing console, where the network takes as
input a waveform and a set of parameters, and then produces a processed waveform,
as would the original channel. As shown in Figure 3, this transformation network
is then applied across each input channel, and the controller network now produces
one set of parameters for each input channel to produce a mix, which is the sum of
the outputs of each transformation network. This method of weight sharing across
the input recordings addressed some of the previously identified challenges. With
this proposed design we are able to train the controller network, as the complete
system is fully differentiable, and moreover is composed of standard deep learning
building blocks (e.g. convolutional layers and nonlinear activations), so we can
take advantage of the existing techniques in training such networks. Additionally,
this method provides the benefit of easily scaling to many different effects, and
potentially growing the size of the signal chain without the need for creating unique
differentiable implementations of each new digital audio effect. This even enables the
ability to directly model well-known digital plugin implementations already in use
by audio engineers by leveraging a VST host that is controllable programmatically1.

3.2.1 Transformation network

The transformation network replaces the traditional channel in a mixing console,
and attempts to operate in a identical manner when provided with an input signal
and a set of parameters. By composing multiple instances of the same pre-trained
transformation network, we can construct a complete differentiable mixing console
that ultimately enables training of the controller network, while providing an induc-
tive bias during the learning process to facilitate learning from limited data. This
inductive bias is key to building a model that can generalize to the mixing of unseen
examples since our training data is so limited, on the order of a few hundred.

1https://github.com/DBraun/DawDreamer
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Before training the controller network, we must first train the transformation net-
work in a separate task. In this task we aim to emulate the behavior of the mixing
console channel. We achieve this by employing a self-supervised training regime. A
DSP implementation of a channel is used, where its parameterization can be ran-
domly configured during training, and a large dataset of audio examples can be
passed as input to produce a practically infinite number of ground truth targets.
We implement a number of different digital audio effects in an open source Python
package called pymixconsole2, for easy integration with the training process, as
explained in further detail in Chapter 4. Once this network is trained, its weights
can be frozen, and it can be placed within the complete system in order to train the
controller network.

Previous work has demonstrated that a single audio effect, like those employed
in a mixing console channel, can be modeled by a neural network in this manner
(Martínez Ramírez et al., 2020a, Wright et al., 2020). Although, it has yet to be
demonstrated if these methods are able to model a series of these signal proces-
sors, jointly, with a dense sampling over their continuous parameter spaces. To our
knowledge, all pre-existing approaches have trained a single model for each effect
to be modeled, and often only model a small number of configurations of the audio
effect in question. In order to utilize such models for multitrack mixing, we aim to
model a series of linear and nonlinear effects using a single network. We are also
interested in the ability of this model to capture the behavior that arises for varying
the ordering of these processors, if possible. In addition, we desire that this network
operates on audio at a sampling rate of at least 44.1 kHz, makes very few assump-
tions about the type of input sources, fully captures the range of parametric control
offered by the original effects, and introduces limited artifacts in the processing of
inputs, all of which we will address in the following chapter.

3.2.2 Controller network

The controller network aims to generate a set of parameters, one for each of the input
channels within the mix. To do so, there are two main steps that are employed as
two separate subnetworks: the encoder, and the post-processor. Additionally, in
order to address the previously introduced challenges, we employ weight sharing
throughout the system, where one instance of the encoder and post-processor is
applied individually to each of the input channels, producing a set of parameters
for each channel to be passed to the set of transformation networks, which also
have shared weights. The complete system is shown in Figure 4, where weight
sharing across the N input channels is shown for each of the three sub-networks that
comprise the complete system. Again, the controller network’s role is to process the

2https://github.com/csteinmetz1/pymixconsole
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input channels, extract useful information about these inputs, and finally produce
a set of parameters that will be passed to the associated transformation network in
order to process the input channel in question. Ideally, after training, the summation
of all the processed channels will result in a desireable mix.

Encoder

The encoder assumes the role of extracting relevant information from the input chan-
nels. The kind of information that may be relevant to the mixing task may be char-
acteristics like the identify of the input (e.g. guitar, percussion, voice, etc.), as well
as more detailed information such as the energy envelop over time, or the allocation
of energy across the frequency spectrum, which could be critical in understanding
masking interactions among sources. These are the same kinds of considerations
that audio engineers may make when attempting to create a mix. This encoder will
then produce a representation for each input signal, which will be passed on to the
set of post-processors.

Post-processor

The role of the post-processor is then to aggregate information from the encoder
in order to make a decision about how to parameterize the transformation network
operating on the associated input recording. Critically, we note that this decision
cannot be made in isolation from the other input channels, as each mixing deci-
sion is highly dependent on all other inputs. These are the same considerations
that a human audio engineer would make when accessing differing options in a mix.
Therefore, we provide the post-processor with a learned representation not only of
the respective input recording, but also a learned representation that summarizes
all of the other inputs, in our case a simple average across all input representations,
which we denote as the context representation, shown in Figure 4. With this infor-
mation the post-processor can then make a decision about how to set the parameters
for the respective transformation network.



Chapter 4

Audio effect modeling
Audio effects are tools used by audio engineers to apply processing to recorded signals
in order to adjust perceptual attributes of signals such as loudness, timbre, pitch,
spatialization, or rhythm (Wilmering et al., 2020). These devices can operate on
signals either in the analog or digital domains. While analog signal processors retain
some relevance in modern audio production, today the majority of audio effects are
implemented using digital signal processing (Valimaki et al., 2010). These audio
effects may manifest as physical hardware units employing digital circuitry, or more
commonly as software that can run on a number of different consumer platforms
such as mobile devices and laptops, generally within a DAW.

4.1 Problem formulation

We will define a generalized audio effect as a system that takes as input x(n),
a discrete time signal of n − 1 samples, and produces some discrete time signal
y(n), as its output. Additionally, an audio effect generally has a set of controls
or parameters φp that define the manner in which the audio effect will operate on
the input. Most often in digital audio effects, these parameters are exposed via
user interface elements displayed on screen. By adjusting these parameters, users
are able to modify the underlying behavior of the signal processing algorithm, and
therefore achieve a range of perceptual effects.

We can view this generalized audio effect as a function f(φp,x) that takes as input
the signal x, a vector of values sampled at a constant rate (we drop the sample index
n for readability), and the parameters φp, a vector containing the parameterization
of the audio effect. In the task of modeling the audio effect, we want to learn a
function g(φp,x) such that

g(φp,x) = f(φp,x) ∀ φp,x.

28
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Figure 5: Block diagram of the audio effect modeling task, where we train a neural
network to closely imitate an existing DSP implementation of the audio effect.

This audio effect takes as input two sets of values, the audio waveform itself, and
the parameters of the effect, as illustrated in Figure 5, Our desire is to construct a
model that when given these same inputs produces the same output. In our case, we
have direct knowledge of the underlying function we aim to model, which we could
use to help build an informed model, an approach known as white-box modeling.
Although, for our use case we do not directly leverage this information, since unlike
traditional modeling approaches that aim to simply emulate the underlying function,
we aim to create a proxy for this function that is composed solely of deep learning
building blocks. In a following section we will address the process of determining a
set of deep learning architectures that may be appropriate for this modeling task.

4.2 Audio effect implementation
In this section we will briefly introduce the audio effect implementations that we
attempt to model. While many of these audio effects have been modeled in the
literature thus far, our ultimately goal is combine these effects into a single chain of
effects, which will be modelled by a single network, jointly.

4.2.1 Gain and panning

The gain effect is the foundational transformation in audio processing, and involves
applying a simple scalar, α, to the input vector of samples, x,

y = αx. (4.1)

In the context of multitrack mixing, a gain is often implemented in the fader of
a mixing console to enable the audio engineer to control the relative levels of the
different elements within the mix. Due to the logarithmic nature of the human
auditory system, it is often useful to adjust this gain value using a decibel (dB)
scale, where the gain value α would be a function of the gain in decibels gdB,
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α = 10
gdB
20 . (4.2)

Stereo or multichannel panning is also achieved with the use of a gain control. The
panning process involves taking a single channel input x, and producing a stereo
output, by applying a different gain value to each output channel. This method of
level-based panning takes advantage of the effect of the interaural level difference
(ILD), one method by which the human auditory system is able to localize sounds
in space simply by differences in the level of the sound reaching the ears (Stevens
and Newman, 1936).

The simplest of these panning methods, know as linear panning, is parameterized
by a single value θ ∈ [0, 1], where the two channels of the stereo signal are given by,

yL = θx (4.3)
yR = (1− θ)x (4.4)

such that as θ is increased, the signal is progressively panned more to the right, and
the level of the signal in the left channel is decreased proportionally. Since both
the fader and pan controls are implemented with simple gains, and hence are easily
differentiable, we do not attempt to directly model these effects in our signal chain.
Instead we directly apply these gain and pan values in the differentiable mixing
console, as we can backpropagate through these operations.

4.2.2 Equalization

Equalization or EQ is concerned with providing a means to adjust the spectral
content of a signal. This is generally achieved with the use of finite impulse response
(FIR) or infinite impulse response (IIR) filters that can be applied to the input.
FIR filters, those which the output is conditioned only of the current and previous
inputs, and not on previous outputs, see some use in multitrack mixing applications.
Although, to produce useful transfer functions they often must be of very high
order in order, and therefore tend to induce significant delay, and require additional
computations. In contrast, the IIR filter, which incorporates the output signal, by
feeding it back to the input, is much more popular, as it can achieve complex transfer
functions with filters of significantly lower order. For this reason we aim to model a
cascade of second order IIR filters, known as biquad filters.

H(z) = b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2 (4.5)
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Low shelf 1st band 2nd Band 3rd Band High shelf

Figure 6: Block diagram of the parametric equalizer with a low shelf filter, three
peaking filters, and a high shelf filter, where G is the gain, Fc is the cutoff frequency,
and Q is the Q-factor, or bandwidth.

The biquad filter is defined as a function of six filter coefficients: a0, a1, a2, b0, b1,
and b2, with a transfer function as shown in Equation 4.5. “The Cookbook formulae
for audio equalizer biquad filter coefficients”1 derives functions to compute these
coefficients for a number of different filter types of interest.

In our formulation, we adopt the popular cascade of filters that composes what is
known as a parametric equalizer, which features a low-shelf filter, three peaking
filters, and finally a high-shelf filter. Parametric equalizers may come in a range
of different varieties with more or less bands, as they are referred to, but in our
formulation we choose a simple, yet fairly standard design that enables a significant
amount of flexibility and control. Each of the peaking filters is intended to be used
to adjust the spectral content of a different portion of the spectrum, and the shelving
filters provide more broad control at the ends of the spectrum. Each of these filters
is parameterized by the gain, cutoff frequency, and Q-factor, with the exception of
the shelving filters, which feature only gain, and cutoff frequency controls. A block
diagram of the complete parametric equalizer is shown in Figure 6. With such an
equalizer, the audio engineer is provided quite extensive control over the spectral
shape of a recording.

In order to compute the coefficients for these filters, we refer to the aforementioned
derivations, which involve first computing intermediate values that are a function of
the filter gain, G, in dB, cutoff frequency, Fc, in Hz, Q-factor, as well as the sampling
rate, Fs, shown in Equations 4.6, 4.7, and 4.8. With these intermediate values, we
can then compute the coefficients of the peaking filters as shown in Equation 4.9.

A = 10G/40 (4.6)

ω0 = 2πFc
Fs

(4.7)

α = sinω0

2Q (4.8)

1https://webaudio.github.io/Audio-EQ-Cookbook/audio-eq-cookbook.html
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b0 = 1 + αA

b1 = −2 cosω0

b2 = 1− αA

a0 = 1 + α

A

a1 = −2 cosω0

a2 = 1− α

A
,

(4.9)

The computation for the low shelf filter coefficients differs, as shown below,

b0 = A
(
(A+ 1)− (A− 1) cosω0 + 2

√
Aα

)
b1 = 2A

(
(A− 1)− (A+ 1) cosω0

)
b2 = A

(
(A+ 1)− (A− 1) cosω0 − 2

√
Aα

)
a0 = (A+ 1) + (A− 1) cosω0 + 2

√
Aα

a1 = −2
(

(A− 1) + (A+ 1) cosω0

)
a2 = (A+ 1) + (A− 1) cosω0 − 2

√
Aα,

and with some slight adjusts, finally the high shelf filter coefficients,

b0 = A
(
(A+ 1) + (A− 1) cosω0 + 2

√
Aα

)
b1 = −2A

(
(A− 1) + (A+ 1) cosω0

)
b2 = A

(
(A+ 1) + (A− 1) cosω0 − 2

√
Aα

)
a0 = (A+ 1)− (A− 1) cosω0 + 2

√
Aα

a1 = 2
(

(A− 1)− (A+ 1) cosω0

)
a2 = (A+ 1)− (A− 1) cosω0 − 2

√
Aα.

4.2.3 Dynamic range compression

The dynamic range compressor is also a critical tool employed by the audio engineer
in the mixing process. Unlike the equalizer, which applies a linear time-invariant
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Figure 7: Block diagram of the simple hard-knee dynamic range compressor adapted
from Reiss and McPherson (2014).

transformation to the underlying signal, the dynamic range compressor enables non-
linear time-dependent processing, generally by adapting its behavior based upon the
amplitude of the input signal. There are a number of uses for the dynamic range
compressor, or simply compressor, including controlling transients, increasing the
sustain of notes, and for creative effects (Reiss and McPherson, 2014).

There are many approaches that may be employed in the dynamic range compressor,
and there tends to be far less consistency among implementations in comparison to
the equalizer (Giannoulis et al., 2012). In our implementation we choose to employ
a very basic feedforward compressor design with a hard knee, with a level detector
with the difference equation with attack time, αA and release time, αR,

yL[n] =

αAyL[n− 1] + (1− αA)xL[n], xL[n] > yL[n− 1]
αRyL[n− 1] + (1− αR)xL[n], xL[n] ≤ yL[n− 1]

with the compression characteristic given by

yG[n] =

xG[n], xG[n] ≤ T

T + (xG[n]−T )
R

, xG[n] > T
,

where we compute the input signal level in the log domain

xG[n] = 20× log10|x[n]|
xL[n] = xG[n]− yG[n]
cdB[n] = −yL[n].
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4.2.4 Reverberation

Reverberation effects involve manipulating a recording to make it sound as if it was
recorded in a different acoustic space. The room a sound is recorded in can often
have a significant impact on the perception of sound, and audio engineers often
use this reality to create productions that sound more natural, or potentially other
worldly, through the use of artificial reverberation (Case, 2011).

Early artificial reverberation systems involved simply playing back recorded sounds
through a speaker placed in a reverberant room, along with a microphone in the
same room. Obviously this method was quite costly as it required a dedicated
space, often known as the reverb chamber. More compact approaches generally
employed vibrating materials, along with transducers to put the materials in motion,
which would then be recorded by the other transducers, such as spring or plate
reverberators (Doyle, 2005).

With the introduction of digital signal processing, digital implementations of feed-
back delay networks enabled the introduction of algorithmic reverb systems, which
enabled parametric control of virtual spaces that aimed to approximate room rever-
beration (Schroeder and Logan, 1961). Additionally, rooms may also be modeled
as linear time invariant systems, and therefore characterized by their impulse re-
sponse, which can be measured using appropriate recording equipment. With this
impulse response, a convolutional reverb can be used to closely recreate the acoustic
characteristics of the captured room on dry signals during post-production. While
convolutional reverbs can offer a high level of realism, they are often more compu-
tationally expensive than algorithmic reverb, and provide less flexibility.

In our implementation we employ a convolutional reverb, which given an input signal
x of N samples, and the impulse response of an acoustic space, h, we can compute
the reverberant output signal, y, as follows.

y[n] = (x~ h)[n] =
N−1∑
k=0

x[n− k] · h[k]

Although, implementing the reverb as a convolution in the time domain can be very
costly computationally, and since we aim to generate training examples on-the-fly
while training, we would prefer an optimized implementation. Therefore, instead of
performing the operation in the time domain, we take advantage of the convolution
theorem, which allows us to perform a convolution in the time domain with a mul-
tiplication in the Fourier domain. Combined with block-based FFT algorithms we
achieve a significantly faster convolutional reverb implementation.
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Figure 8: Block diagram of the complete channel strip formulation that aims to
mimic the canonical series connection of processors found in a single channel of a
multitrack mixing console. The input to the chain is always a mono signal, and the
output will be a stereo signal.

4.2.5 Channel signal chain

We combine these audio effects, in order to construct a signal chain that imitates a
chain of effects often found within a single channel of a multitrack mixing console.
This signal chain is shown in Figure 8, which introduces a few additional elements to
complete the channel strip. The parameters that each processor receives are shown
adjacent to each processor. Only the three processing elements within the dashed
box (EQ, compressor, and reverb) will be modeled by the neural network, since the
rest of the elements are simply gain-like processors, for which gradients can easily
be computed in the final stage when we will train the controller network. Therefore,
at this stage, we are interested only in modeling the behavior of the three core
processors that present some challenges in computing their gradients.

A Python implementation of these digital audio effects is available in our open source
library pymixconsole2, which includes optimized code using the numba3 library
for runtime compilation. This library enables the ability to easily pass numpy arrays
containing audio signals, so that they can be processed by a series connection of
audio processors. Additionally, this library provides specific support for handling the
randomization of the parameters of all of the implemented processors, and enables
the ability to carefully define the distributions from which their values are sampled.

4.2.6 Analog dynamic range compression

In addition to the digital audio effects presented so far, for which we generate ef-
fectively limitless training examples, we are also interested in determining how the
proposed models perform in the task of modeling analog signal processors. In this

2https://github.com/csteinmetz1/pymixconsole
3http://numba.pydata.org/
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task, the behavior of the system is often nonlinear, and since the process is imple-
mented with physical hardware components, we are able to generate data only by
passing different input signals, varying the physical parameters, and recording the
signals at the output. Ultimately, this is a quite labor intensive and slow process,
so only a limited amount of training data is available.

The task of modeling the LA-2A leveling amplifier, an analog dynamic range com-
pressor originally introduced in the early 1960s, was proposed in Hawley et al. (2019).
They propose a time domain based architecture for this task, along with a dataset of
input and output pairs over a discrete range of settings of the physical compressor.
In our work we aim to explore also how our proposed models perform on this task,
wherein the device to be modeled has no tractable mathematical representation,
and we are limited to using only the relatively small number of training examples
provided in their dataset, which totals around 20 hours of recordings.

4.3 Architectures

From the machine learning viewpoint, the task of modeling the audio effect can
be seen as sequence modeling task, where the input is a sequence that we aim to
modify in order to create a new sequence. The traditional framework for modeling
sequential data within the deep learning paradigm has been the recurrent neural
network (RNN), which extends feed-forward neural networks for sequential data
with the ability to utilize past states to influence current predictions (Goodfellow
et al., 2016). While early RNNs presented a number of challenges during the training
process, such as exploding and vanishing gradients (Hochreiter, 1998), improved
formulations such as long short-term memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997) and the gated-recurrent unit (GRU) (Cho et al., 2014) have
addressed many of these challenges. With these improvements, more modern RNNs
have demonstrated impressive performance on many sequence modeling tasks like
machine translation (Wu et al., 2016) and speech recognition (Graves et al., 2013).

While modern RNNs exhibit a number of desirable characteristics, such as the abil-
ity to capture long-term temporal structure, they cannot be parallelized due to
their autoregressive nature, meaning they tend to be significantly slower than feed-
forward approaches. More recently, convolutional neural networks (CNNs), which
traditionally have been employed in computer vision tasks, performing convolution
in the spatial domain, have been demonstrated to outperform comparable RNNs
on a range of sequence modeling tasks, with greater efficiency (Bai et al., 2018).
For this reason, in our investigations we opt to employ CNNs for the modeling task
instead of RNNs.
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Figure 9: High-level view of the TCN architecture for the effect modeling task.

4.3.1 Temporal convolutional network

While CNNs have traditionally been employed for processing visual data, originally
proposed for handwritten digit recognition (LeCun et al., 1998) and further popu-
larized by their early success in image recognition (Krizhevsky et al., 2012), interest
has grown in the application of these models for sequential data. In this formula-
tion, instead of learning stacks of two dimensional kernels in the spatial domain, one
dimensional kernels are learned that search for patterns in the input across time.

The temporal convolutional network (TCN) formalizes the application of CNNs to
time series data, and includes a number of key components such as one dimensional
kernels, convolutions with exponentially increasing dilation factors, as well as resid-
ual connections (Bai et al., 2018). Generally, the TCN formulation includes causal
convolutions in which only past information is used to preform prediction, since such
assumptions are useful for time series forecasting. For cases where the entire signal is
available, as is the case in many audio signal processing tasks, this condition can be
relaxed and non-causal convolutions can be employed taking advantage of “future”
information, which often enables better performance.
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While the TCN formalized the application of CNNs for time series data, there were
applications that employed components of this model architecture previously in the
literature. The WaveNet architecture, a generative model for speech synthesis op-
erating in the time domain, was one of these early examples (van den Oord et al.,
2016a). While it employed an autoregressive formulation that proved slow and diffi-
cult to train, one of the core components of this architecture was the use of dilated
convolutions. Dilated convolutions enable a larger receptive field in a parameter ef-
ficient manner by inserting zeros between values in the kernels, effectively increasing
their size. In the case of WaveNet, this was critical in order to produce a model with
a receptive field large enough to capture temporal dependencies in speech signals,
where a single second of audio was composed of 16,000 individual time steps.

Following the initial success of WaveNet, interest in the application of CNNs with
dilated convolutions for processing audio signals in the time domain increased. In
tasks where the goal is to process an audio signal (e.g. speech de-noising) instead
of synthesizing a new signal (e.g text-to-speech), researchers realized that the au-
toregressive formulation of WaveNet could be eschewed in favor of a feed-forward
formulation. This resulted in a TCN-like architecture with dilated convolutions,
residual and skip connections, and a non-causal structure, which was applied first
for speech de-noising (Rethage et al., 2018), and later for music source separation
(Lluís et al., 2019), with some success compared to previous approaches.

In our formulation of the TCN for the task of audio effect modeling we adapt the ar-
chitecture introduced in Rethage et al. (2018), but make a number of modifications.
In a similar manner, we construct a network by creating stacks of convolutional
blocks, with exponentially increasing dilation factors, such that the nth convolu-
tional block within a stack has a dilation factor of 2n. Each block within a stack
has a residual connection as well as an additive skip connection to the output. We
create a single stack with the connection of 10 convolutional blocks, producing a
series of layers with dilations d = 1, 2, 4, ..., 512, as shown in Figure 9. We further
extend the receptive field of the model by repeating this stack structure multiple
times, each time using this same dilation pattern. We then construct three different
TCN models, each with an additional stack of ten convolutional blocks, which we
denote TCN-10, TCN-20, and TCN-30.

While the convolutional blocks employed in their implementation more closely follow
the original WaveNet, we make a number of modifications as shown in Figure 10.
Each convolutional block is composed of a standard formulation that features a one-
dimensional convolution, batch normalization (Ioffe and Szegedy, 2015), an affine
transformation to inject conditioning via the FiLM mechanism (to be addressed
in greater detail in Section 4.3.3), and finally a parameterized rectified linear unit
(PReLU) activation, which generalizes the LeakyReLU activation by making the
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slope a trainable parameter (He et al., 2015). Following the original FiLM imple-
mentation, we use batch normalization as shown in Equation 4.10, without its own
affine transformation, such that γ and β are applied as a result of FiLM (Perez
et al., 2018).

y = x− E[x]√
Var[x] + ε

∗ γ + β (4.10)

Additionally, we employ convolutions with larger kernel sizes (15) compared to those
used in previous works (3), which further helps to increase the receptive field.

To compute the final output of the block, a residual connection is included, with
a learned scaling coefficient, (denoted gn in Figure 10). We opt to apply no zero
padding throughout the network, which causes the output of each convolution to
be smaller than the input. We make this choice since as the depth of the network
increases a significant portion of the computations will be computed on the padded
part of the activations, which ultimately do not provide additional information, and
simply increases the number of computations. To rectify the shape discrepancy
between the output and the residual connection, we simply center crop the input
activations to the same size as the output of the convolutional layer. In addition
to the residual connections at each layer in the network, we also include additive
skip connections which aggregate information from each layer at the output of the
model.

Conv1d

PReLU

BatchNorm

FiLM
gn

+

cglobal

Linear

Figure 10: Single convolutional block in the TCN architecture.

An important characteristic of the TCN as implemented in our work, is that the
activations throughout the network are never downsampled or pooled along the tem-
poral dimension. As a result, information about the high frequency components of
the signal are not lost, as is the case in architectures that employ an autoencoder
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Padding none (valid)
Dilation pattern 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
Kernel width 15
Stride 1
Residual gain init 1.0
Residual gain clamp [0, 1]

Table 3: TCN model hyperparameters

with downsampling and upsampling pathways (Goodfellow et al., 2016). This choice
to avoid temporal downsampling comes as a cost though, both in the memory re-
quired to store all of the intermediate activations for backpropagation, as well as in
the models inability to operate on the latent representations in a lower dimension
space, as is often the main motivation for employing an autoencoder style architec-
ture, as we will see in the following section. Complete details of the TCN based
model hyperparameters are shown in Table 3.

4.3.2 Wave-U-Net

In addition to the TCN architecture, we also investigate the Wave-U-Net style ar-
chitecture, another approach that also operates in time domain, but follows different
design principles. Originally introduced in Stoller et al. (2018), it adapted the orig-
inal U-Net architecture (Ronneberger et al., 2015), for the task of music source
separation in the time domain. The concept of the U-Net architecture is to im-
plement an autoencoder, which includes an encoder that downsamples the input
progressively through each layer, increasing the depth, ultimately building a lower
dimensional representation of the input signal. This lower dimensional represen-
tation, or latent representation, can be operated on to produce a modified latent
representation. Conceptually, it is often considered “easier” to perform complex
operations in this lower dimensional space, compared to the original space, whether
that be the pixel space for images, or the sample space for audio signals. With this
modified latent representation, it can then be passed to the decoder, which through
upsampling, restores the signal to its original dimensionality. The U-Net architec-
ture improves upon this original autoencoder formulation with the introduction of
skip connections, like those shown in Figure 11, which shuttle the activations from
the encoder at each decimated resolution, to the upsampling layer in the decoder
with the corresponding resolution. These connections were shown to greatly speed
up convergence, and enable better reconstruction of the desired outputs.

The major contribution of the Wave-U-Net work was adapting this original U-Net
architecture to operate on waveforms for the source separation task, including some
new approaches to incorporate additional input context, and address the well-known
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Encoder1

Encoder2

...

Encoder6

Decoder6

...

Decoder2

Decoder1

FiLM Generator

Parameters Waveform

Processed waveform

Figure 11: High level overview of the modified Wave-U-Net architecture.

problems with using strided transposed convolutions for upsampling (Odena et al.,
2016). Recently, this original formulation was extended with the Demucs architec-
ture by Défossez et al. (2019), which retained the time-domain convolutions and
skip connections, but adapted the internal structure of the encoder and decoder for
improved performance in the music source separation task.

As in the original Wave-U-Net, the core operation of each block in the encoder is
composed of a 1-dimensional convolution. In the encoder, as shown in Figure 12,
the activations at the output of this operation are then modulated by the condi-
tional FiLM operation, to be outlined in the following section, and then followed
by the PReLU activation. Another convolutional layer is used to double the num-
ber of channels, which are then passed to the Gated Linear Unit (GLU) activation
(Dauphin et al., 2017), which is a modified version of the gated activations employed
in the original WaveNet, and have been shown to bring about better performance in
effectively handling contextual information throughout the network. The output of
this activation is then saved and passed to the corresponding layer in the decoder.

In the decoder, as shown in Figure 13, we add the corresponding activations from
the encoder, and then pass this signal through the first convolution, which again, as
in the encoder, doubles the number of channels, before passing the activations to the
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Conv1d

PReLU

FiLM

cglobal

GLU

Conv1d

skip
connection

Linear

Figure 12: Convolutional encoder block in the Wave-U-Net architecture with De-
mucs modifications.

GLU operation. We then employ a strided transposed convolution, which upsamples
the signal by a factor of 4 at each layer. Full details of the model hyperparameters
as shown in Table 4. After this upsampling, but before applying the final PReLU
activation, we again apply the feature modulation operation of FiLM. While previous
works with autoencoder style architectures found success in using FiLM conditioning
only in the encoder (Meseguer-Brocal and Peeters, 2019), we choose to apply FiLM
conditioning in both the encoder and the decoder, and find that this provides good
results, with limited additional computation cost, since in our application there is no
clear intuition about the ideal placement for this conditioning signal. In our informal
experiments we tried also placing the FiLM conditioning in only the encoder and
only the decoder, but did not observe a clear difference in performance.

Conv1d

PReLU

FiLM

cglobal

GLU

ConvTranspose1d

skip
connection+

Linear

Figure 13: Convolutional decoder block in the Wave-U-Net architecture with De-
mucs modifications.
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Encoder
Kernel width 8
Stride 4
No. channels 16

Decoder

Kernel width 8
Stride 4
No. channels 16
Context kernel 3

Weight scaling 0.1
Bottleneck No LSTM
Upsampling Transposed Conv.

Table 4: Wave-U-Net-8 model hyperparameters

4.3.3 Conditioning

Since we aim to model the behavior of the audio effect over a continuous range
of user-controlled parameters, we can condition the outputs of the model on the
values of these parameters. This then easily facilitates dynamic behavior of the
feed-forward, deterministic models, with the use of a single model. Traditionally, in
time domain audio models like WaveNet (van den Oord et al., 2016a), conditioning
is applied by the means of the modified gated activation, originally introduced with
PixelCNN (van den Oord et al., 2016b). This activation is given by

z = tanh(Wf,k ~ x + V T
f,kh)� σ(Wg,k ~ x + V T

g,kh), (4.11)

where h is a latent vector representing global conditioning (speaker identity for
example), ~ represents the convolution operator, � represents the element-wise
multiplication operator, σ(·) is the sigmoid function, andWf,k andWg,k are learnable
filters for the filter, f , and gate, g. Additional linear projections, Vf,k and Vg,k, are
applied to the latent vector, h, with the resultant vectors, V T

f,kh and V T
g,kh, broadcast

across the timesteps. This approach was then used by a number of previous TCN-
like models (Rethage et al., 2018, Lluís et al., 2019, Damskägg et al., 2019b).

In our work, we employ FiLM, or feature-wise linear modulation, a method of condi-
tioning introduced in (Perez et al., 2018). Inspired by earlier instance normalization
techniques (Huang and Belongie, 2017), FiLM formalizes the these techniques as a
learned, affine transformation that is performed on intermediate features of a CNN.

We define two functions, which produce outputs, γi,c and βi,c, respectively, as a
function of the input xi. The FiLM operation, F is then performed on the cth

feature at the ith layer of the network,

F (zi,c, γi,c, βi,c) = γi,czi,c + βi,c. (4.12)
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In practice, the functions are implemented as a single neural network, called the
FiLM generator, which generates jointly the vectors γ and β. We adjust this for-
mulation with the addition of adaptor layers, where an additional learned, linear
transformation is applied to the global conditioning vectors, (γ,β), to adapt the di-
mensionality and produce a unique affine transformation at each layer in the network
given by,

F (zi,γ,β) = (γW T
i,γ + bi,γ)zi + (βW T

i,β + bi,β). (4.13)

In the context of waveform based models, the FiLM operation performs a conditional
scaling and shifting of activations without regards for the temporal dimension, hence
making this method scalable and memory efficient in fully convolutional networks
operating on long sequences, like those in our work. In the case of the audio effect
modeling task, the conditioning information passed to the FiLM generator is simply
the current parameter values of the effect, which are randomized during training.
Since these parameters have varying ranges, each parameter is normalized between
−1 and 1 based upon the minimum and maximum possible values. For the case
where there are multiple effects present in the signal chain, we concatenate the
vector from each effect to create a single vector containing all of the normalized
parameters.

4.3.4 Receptive field

It is often useful to quantify the receptive field for convolutional models, which
defines the number of input samples used in computing a signal sample at the output
of the model. In the case of audio signals, in order to model behavior that requires
some long term consistency, for example modeling the reverberation characteristics
of the room, the receptive field must be large enough so as to fully capture these
time dependencies. In a convoltuional model the receptive field is a function of the
kernel size, stride, dilation factor, and the total number of layers in the architecture.
It can be solved as a recursion, as the receptive field at each layer in the network is
a function of the previous layer, with the receptive field growing as the depth of the
network increases. This recurrence equation for the ith layer of the network is

ri = ri−1 + di × (si × (ki − 1)), (4.14)

where ri−1 is the receptive field of the previous layer, ki is the kernel size, si is the
stride, and di is the dilation factor. The receptive field of the first layer of the model
is the same as the kernel size of that layer.
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Both the TCN and Wave-U-Net architectures attempt to construct a model with
sufficient receptive field, but they do so using different approaches. In the case of
the TCN, we take advantage of exponentially increasing dilation factors to achieve
a receptive field that also increases exponentially as the depth is increased. In
contrast, the Wave-U-Net architecture uses downsampling or decimation, which is
akin to using a strided convolution. This is another efficient method for achieving a
large receptive field, but it comes at the cost of needing a powerful enough decoder
to reconstruct the original resolution output, whereas the use of dilated convolutions
in the TCN achieves a comparable receptive field without the need for upsampling.
Both models use relatively large kernel sizes (greater than 3, as is often used in
computer vision tasks), in order to increase the effective receptive field.

4.4 Dataset
To train all of our channel-bsaed audio effect models we utilize the unprocessed
monophonic audio samples from the SignalTrain LA2A Dataset4. We then design
an online data generation pipeline that enables us to generate an effectively limitless
number of training examples. To achieve this, we construct examples by first ran-
domly sampling small patches (0.37, 0.74, 1.48 seconds depending on the receptive
field of the model) of audio from the training set. With this sample, we then apply
at random a number of simple augmentations such as scaling the amplitude, invert-
ing the polarity, mixing two samples together, adding white noise, randomly zeroing
samples, and randomly zeroing a contiguous block of samples. With this augmented
sample, we then set up the signal chain, consisting of the equalizer, compressor, and
reverb, by sampling values from a uniform distribution over the range of each of the
parameters of each processor. Then we pass this augmented sample through the
signal chain to produce the target signal, and create also a conditioning vector of
the normalized parameters from the signal chain.

Things are simpler in the case of the of the analog dynamic range compressor, since
we are unable to generate our own ground truth targets while training. We utilize
the target outputs provided by the SignalTrain LA2A dataset for training, instead
of generating our own on-the-fly. This means we are limited to roughly 20 hours of
training data, 4 hours of validation data, and 0.7 hours of testing data, with different
processor parameterizations split across the three sets.

To address the limited amount of training data for this case, as well as the challenging
split of the train and test splits, in which there is no overlap in the parameterization
of the compressor, we employ the mixup technique (Zhang et al., 2018a) during
training. This is a simple technique, to generate new input/output pairs (x̃, ỹ),

4https://zenodo.org/record/3824876
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x̃ = λxi + (1− λ)xj, (4.15)
ỹ = λyi + (1− λ)yj, (4.16)

by taking a linear combination of two random input/output pairs from the training
set, (xi, yi) and (xj, yj). This linear combination involves scaling the input and
output examples by a factor, λ ∈ [0, 1], which we sample from a beta distribution
(generally with β = α ≤ 0.4). This process is intended to encourage the model to
better interpolate between training examples, and hence improve generalization.

4.5 Training
In the training process, optimization of all models is performed using the Adam
optimizer (Kingma and Ba, 2015) with a learning rate of 3e−4. Simple plateau
learning rate scheduling is employed, which halves the learning rate when the vali-
dation loss has not improved for 15 epochs. Additionally, we employ early stopping,
which completes the training process after the validation loss has not improved for
40 epochs. Full details on the training runs for each model are shown in Table 8.

With regards to the loss function, we utilize the mean absolute error (MAE) or L1
loss in training all of the audio effect models. This loss is defined as the absolute
difference in the sample space between the predicted and ground truth signals, as
shown in Equation 4.17. Since this loss attends closely to the exact sample-by-sample
structure of the ground truth, the calculated error may not align with perception.
For this reason, the MAE or L1 distance is often considered a “phase” loss. Since
we are largely interested in modeling these effects as accurately as possible, such a
loss function, even if it does not completely agree with perceptual tolerances, seems
to be a good choice.

`MAE(ŷ, y) = 1
n− 1

n−1∑
i=0
|ŷi − yi| (4.17)

4.6 Evaluation
For our evaluation we use audio samples from the test set of the SignalTrain LA2A
dataset, which is comprised of audio samples that have not been seen during train-
ing. Similarly to the generation process employed during training, we randomly
sample parameterizations of the signal chain from a uniform distribution, to most
effectively evaluate the performance across the range of possible configurations. We
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then compute the following metrics, comparing the outputs of the models to the
generated ground truth signals.

4.6.1 Metrics

In order to evaluate the performance of models in their task of emulating audio
effects we desire to utilize objective metrics that enable a method for determining
how closely a model is able to capture the behavior of the original processor or chain
of processors. An important consideration for all objective metrics employed in the
evaluation of signals that are perceived by humans, such as audio, is to understand
the perceptual relevance of these metrics.

Due to the realities of human perception, subtle changes in the underlying signal
may be completely undetectable by listeners. This causes a problem, as it is often
the case that objective metrics, ones that compare two signals by performing an
operation to measure their distance, will penalize subtle differences in the signals
that would be otherwise imperceptible to listeners. Since our goal is to produce
audio signals that will be auralized and consumed by listeners, we are ultimately
not concerned with the absolute performance, but only to what degree is perceptible.
The most effective manner in performing this kind of evaluation is to ask listeners to
manually listen and evaluate content to compare the results, but this process is time
consuming and expensive. Therefore, we utilize a collection of objective metrics to
provide a general impression about the performance of our systems.

Mean absolute error

The mean absolute error (MAE) is the absolute value of the distance in the sample
space between the predicted and ground-truth signal, as introduced previously in
Equation 4.17. Since this error is computed in the time-domain it enforces strict
adherence to the not only the magnitude response, but also the phase of the ground-
truth signal, which may attend to differences that are not perceptual. While this
metric provides some information about the performance with regards to directly
matching the ground truth signal, it is known to not agree with perception, and in
our informal listening, we often found outputs with lower MAE that sounded worse
than other outputs with higher MAE. For that reason, we can use this measure only
as a single metric among many in our evaluation.

Error-to-signal ratio

The error-to-signal ratio (ESR) is a straightforward extension of the mean squared
error (MSE), where the squared error is computed between each sample value in the
sequence, as shown in Equation 4.18. The ESR adjusts this error by normalizing



48 Chapter 4. Audio effect modeling

by the sum of the square of the ground truth signal, which represents its energy, as
shown in Equation 4.19. This metric therefore attempts to penalize more equally
errors when the signal is lower in absolute amplitude. Previous works focused on
modeling audio effects have also employed the ESR as both a loss function and
evaluation metric (Damskägg et al., 2019b). Nevertheless, since this metric attends
also to a distance in the sample space, it is likely to have distances that do not agree
with perception.

`MSE(ŷ, y) = 1
n− 1

n−1∑
i=0
|ŷi − yi|2 (4.18)

`ESR(ŷ, y) = 1
n− 1

∑n−1
i=0 |ŷi − yi|

2∑n−1
i=0 |yi|2

(4.19)

Mel cepstral distortion

The mel cepstral distortion (MCD) was first introduced for the evaluation of speech
signals produced by text-to-speech systems (Kubichek, 1993). This metric differs
from the previous sample-based metrics, since this operation is performed on features
extracted from the signals in the frequency domain, instead of the time domain.
Frequency domain metrics are often considered to be more perceptually relevant,
as they often attend to differences in the allocation of energy across the frequency
spectrum, and hence are less likely to penalize small differences in the time domain
signal. This is largely a result of using the magnitude of the frequency domain
representation, and ignoring the differences in the phase components of the signals.

To compute the MCD, we first must compute the mel-frequency cepstrum coeffients
(MFCCs). This requires that we start by computing the STFT across both signals,
and then map the power across the frequency spectrum onto the mel scale, and
further log scale these values. Then we take the discrete cosine transform (DCT) of
these mel scaled log powers, as if it was a signal, which will produce the (MFCCs).
Once the MFCCs have been computed for the ground truth and predicted signal, we
select N of these coefficients, and then measure the distance between the two signals
in this MFCC space. The specific implementation we employ follows that of the
method from Sahidullah and Saha (2012), which follows an earlier implementation
from Kominek et al. (2008). This metric is computed between the target signal, C,
and the predicted signal, Ĉ, with k − 1 coefficients and n − 1 MFCC frames, as
shown in Equation 4.20. Additionally, this metric includes a scaling factor α, shown
in Equation 4.21 and based upon Mashimo et al. (2001), which has be retained
largely for historical reasons. In our evaluation, all values are reported with k = 25.
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`MCD(Ĉ, C) = α

n− 1

n−1∑
i=0

√√√√√k−1∑
j=0

(Ĉi,k − Ci,k)2 (4.20)

α = 10
√

2
ln 10 ≈ 6.14185 (4.21)

Multi-resolution STFT

The multi-resolution STFT is a simple extension of the STFT, where we compute
STFT frames with multiple different frame sizes across the entire signal (Yamamoto
et al., 2020). The use of multiple frame sizes is motivated by the inherent trade-
off between greater resolution in the time domain and greater resolution in the
frequency domain, as a function of the frame size. By utilizing multiple frame
sizes and aggregating the information across all resolutions, we can capture a more
realistic representation of the signal. This measure is conceptually similar to the
MCD, but provides greater detail by directly utilizing the STFT frames, instead of
computing the MFCCs as intermediate features.

`sc(ŷ, y) = ‖|STFT(y)| − |STFT(ŷ)|‖F
‖|STFT(y)|‖F

(4.22)

`mag(ŷ, y) = 1
N
‖log(|STFT(y)|)− log(|STFT(ŷ)|)‖1 (4.23)

`MR-STFT(ŷ, y) = 1
M

M∑
m=1

`sc(ŷ, y) + `mag(ŷ, y) (4.24)

The multi-resolution STFT is computed by first computing multiple STFT frames
for the ground truth signal y, and the predicted signal ŷ with varying window
and FFT sizes. We then compute two intermediate measures, first the spectral
convergence, shown in Equation 4.22, where ||·||F is the Frobenius norm, and second
the log magnitude error, shown in Equation 4.23, where N represents the number
of STFT frames, M represents the number of different FFT sizes, and || · ||1 is the
L1 norm. Finally, we compute the complete multi-resolution STFT error, shown
in Equation 4.24, by averaging the spectral convergence and log magnitude errors
across all of the different M frame sizes. The utilized frame sizes, along with the
related hop size and window lengths, are shown in Table 5. These values are adopted
from Yamamoto et al. (2020) and Yang et al. (2020). The optimal number of bands,
and their parameters, for a particular task remains an open research question.
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Band FFT size Hop size Window length
1 512 50 240
2 1024 120 600
3 2048 240 120

Table 5: Multi-resolution STFT bands

4.6.2 Channel signal chain

To begin our evaluation, we investigate the performance of our TCN and Wave-U-
Net based models on the channel modeling task. In this task, the model is passed an
audio signal, as well as randomly generated parameters for the channel processors.
All of the audio used for this evaluation has not previously been seen during training,
and is sourced from the test set of the SignalTrain LA-2A dataset. The parameter
values for the processors are sampled randomly from the same distribution and
ranges as those used during training. We use the same set of audio examples and
randomly sampled parameters to evaluate each model, and we report the four metrics
introduced in the section above, as shown in Table 6.

Model Params R.f (ms) Task MAE ESR MCD MR-STFT

TCN-10 290k 324.8

equalizer 0.015 0.156 577.8 2.449
Compressor 0.005 0.100 545.5 1.895
Reverb 0.021 0.129 443.9 1.931
Combined 0.035 0.430 592.2 2.701

TCN-20 528k 649.5

equalizer 0.017 0.189 597.3 2.608
Compressor 0.006 0.140 618.1 2.123
Reverb 0.011 0.038 309.2 1.340
Combined 0.027 0.292 495.6 2.315

TCN-30 764k 974.3

equalizer 0.017 0.203 578.8 2.668
Compressor 0.006 0.132 544.1 2.075
Reverb 0.011 0.041 253.1 1.212
Combined 0.024 0.252 496.6 2.210

Wave-U-Net-6-8 23M 216.6

equalizer 0.009 0.140 592.7 2.417
Compressor 0.004 0.102 762.6 2.319
Reverb 0.020 0.144 1037.2 3.808
Combined 0.026 0.305 933.7 3.995

Wave-U-Net-6-16 9M 464.3

equalizer 0.009 0.206 633.0 3.025
Compressor 0.004 0.108 712.2 2.637
Reverb 0.034 0.378 1117.1 4.746
Combined 0.038 0.481 1026.2 4.890

Table 6: Overview of results for modeling the channel effects (static order) with the
TCN and Wave-U-Net architecture across varying receptive fields.
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In order to better understand the performance of the models across the entire chan-
nel modeling task, which involves modeling three different processors in a series
connection, we have four test cases for each model. The first three test cases involve
sampling parameters such that only one of the three processors, equalizer, compres-
sor, and reverb, are active at any given time, such that the other two processors
are effectively bypassed. This helps to demonstrate the performance of each model
for the different processors, each which present their own challenge. The fourth test
case involves sampling parameter values such that all three processors are active at
the same time. This presents the most challenging case, and is the case that we are
most concerned with, as it gives an indication of how the model might perform when
employed later in our mixing task. For this reason, we mark in bold the model with
the lowest error for the Combined task across each metric.

In addition to the evaluation across all the models, we are also interested in the po-
tential for this model to capture the behavior of the signal chain, when the ordering
of the processors in the chain is another parameter. We are interested in this task,
as it would potentially provide the ability for the controller network to modify the
order of the processors in the signal chain when determining the optimal mix. While
the order of elements in the signal chain may not always be critical, due to nonlinear
processors like the compressor, there are cases wherein the desired behavior can only
be achieved by ordering the processors in a specific configuration.

Model Proc. ordering Params Cond. size Task MAE ESR MCD STFT

TCN-10

Static 290k 25

Equalizer 0.015 0.156 577.8 2.449
Compressor 0.005 0.100 545.5 1.895
Reverb 0.021 0.129 443.9 1.931
Combined 0.035 0.430 592.2 2.701

Variable 291k 31

Equalizer 0.022 0.316 725.5 3.142
Compressor 0.010 0.435 716.8 2.684
Reverb 0.024 0.171 494.3 2.241
Combined 0.060 3.846 785.5 4.917

Table 7: Overview of results with the TCN-10 model for the static or dynamic
ordering of the processors in the channel.

For this evaluation we follow the same methodology as above. This time we compare
the performance of the TCN-10 model with another TCN-10 model, with the differ-
ence that it has been trained with examples that involve not just a static order of
the processors, but a dynamic ordering, where the ordering of the processors is also
passed as conditioning information to the model. Given that there are 3 processors
in the signal chain, there are then N = 3! = 6 permutations of these processors, so
we simply concatenate a one-hot encoded vector with these 6 values at the end of
the original parameter values.



52 Chapter 4. Audio effect modeling

We report the results of this evaluation in Table 7 following the same structure as
before. Here we see that across all the metrics, the model with dynamic ordering
performs worse than the model with a static ordering, as we would expect, given that
both models have nearly the same capacity. It appears that in the single processor
cases the performance of the dynamic ordering model is more comparable, albeit
still less performant, yet in the combined case there is an even larger disparity.

These results agree with our informal listening, which showed an inability for the
dynamic ordering model to accurately capture the underlying processing of the signal
chain for some more challenging parameter configurations. For simpler cases, the
model was able to generate plausible results. It is possible that increasing the
model capacity would improve performance, as these results indicate that the model
is capable of capturing some aspects of the dynamic ordering case. Nevertheless,
these results indicate that it is in fact possible for the model to capture details about
the ordering of the processors in the signal, although it presents a more significant
challenge than the fixed ordering case.

Model Steps Time (hr.) Time (days)
TCN-10 235 87 3.6
TCN-10 variable order 116 32 1.3
TCN-20 310 186 7.8
TCN-30 290 262 10.9
Wave-U-Net-8 457 46 1.9

Table 8: Channel based effects training runs details.
(All runs use one NVIDIA RTX 2080 Ti)

4.6.3 Analog dynamic range compressor

In addition to the the complete channel modeling task, we also examine the per-
formance of a number of models on the analog dynamic range compressor modeling
task, with the results shown in Table 9. We perform the evaluation using examples
from the test set of the original SignalTrain LA-2A dataset, and compare the perfor-
mance across the original implementation presented in Hawley et al. (2019), along
with 8 our own models. This set contains settings of the compressor that were not
seen during training of any of the models, and therefore requires the models to have
sufficient ability to interpolate between the training examples seen during training.

In the first section we report the same metrics using the implementation5 provided
by the authors of Hawley et al. (2019). We do not retrain their model, but simply
use a checkpoint provided by the authors of their model for this task. The second

5https://github.com/drscotthawley/signaltrain
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Model Params R.f (ms) MAE ESR MCD MR-STFT
SignalTrain 4M 5015.5 7.97e-3 (2.66e-3) 0.023 (0.009) 809.6 (219.7) 1.657 (0.216)
TCN-8 167k 80.0 8.11e-3 (2.49e-3) 0.024 (0.010) 392.9 (87.6) 0.808 (0.104)
TCN-10 202k 324.8 4.95e-3 (1.05e-3) 0.012 (0.007) 339.4 (74.8) 0.754 (0.073)
TCN-10-mixup 202k 324.8 4.60e-3 (1.23e-3) 0.009 (0.006) 350.2 (99.1) 0.748 (0.100)
TCN-20-mixup 377k 649.5 4.24e-3 (1.36e-3) 0.008 (0.004) 263.0 (64.6) 0.606 (0.066)
TCN-30-mixup 552k 974.3 5.53e-3 (1.80e-3) 0.013 (0.006) 297.1 (78.2) 0.679 (0.083)
Wave-U-Net-6-8 5M 216.6 1.30e-2 (6.39e-3) 0.157 (0.100) 260.0 (158.1) 0.502 (0.079)
Wave-U-Net-6-16 8M 464.3 1.13e-2 (6.43e-3) 0.046 (0.029) 259.5 (165.5) 0.599 (0.416)
Wave-U-Net-6-16-mixup 8M 464.3 1.14e-2 (5.32e-3) 0.084 (0.057) 455.3 (232.2) 0.987 (0.206)

Table 9: Results for modeling the analog LA-2A compressor on the SignalTrain test
set. Standard deviation across all of the test set examples is shown in parentheses.

section shows the results from the TCN based models, with varying stacks of di-
lated convolutions, as well as models trained with and without the mixup technique.
The final section shows a few different Wave-U-Net based models. Early on in our
investigations, we found that the results from the TCN based models sounded sig-
nificantly better than the Wave-U-Net models, so for much of our work we focused
more of our effort on evaluating the TCN based models, and hence the evaluation
of different Wave-U-Net models is less exhaustive.

As expected, there is a bit of disagreement between the different metrics. We find
that the time domain based metrics (MAE and ESR) tend to agree with each other,
as do the frequency domain metrics (MCD and MR-STFT), but these groups often
do not agree with one another. It is clear that the TCN based models perform the
best with respect to the time domain metrics, but the Wave-U-Net models appear
to the surpass the the best TCN model in the MCD and MR-STFT. Although,
it should be noted that these differences in the frequency domain errors may not
be significant, since the standard deviation values show that the TCN-20-mixup
and Wave-U-Net-6-16 model are within one standard deviation. For this reason,
we conclude that the TCN-20-mixup model is the best performing model overall,
which agrees with our informal listening. We found that while the Wave-U-Net
models match the underlying signal, they tend to impose high frequency ringing
artifacts, which we posit may not be adequately penalized in the frequency domain
based error metrics. In the case of the SignalTrain model, it falls behind in both
the time domain and frequency domain metrics, and this result is confirmed by
our information listening, with the outputs from this model containing a significant
amount of consistent broadband noise in nearly all the test examples.

We first investigated the performance of the TCN-10 with and without mixup, since
this model was faster to train than the larger models, and since we found that mixup
improved slightly the performance without additional cost, we opted to use mixup
in training the remaining TCN models. While we did see some performance gains
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Model Steps Time (hr.) Time (days)
TCN-8 106 27 1.1
TCN-10 102 29 1.1
TCN-10-mixup 218 81 3.4
TCN-20-mixup 216 112 4.7
TCN-30-mixup 241 145 6.0
Wave-U-Net-8 343 8 0.3
Wave-U-Net-16 557 15 0.6
Wave-U-Net-16-mixup 151 5 0.2

Table 10: Analog compressor training runs details. (All runs use one NVIDIA RTX
2080 Ti)

when using mixup, its not clear that there was a significant improvement based upon
the standard deviation values. Further work on tuning the α hyperparameter of this
technique may bring about more insight into the efficacy of this method.

We found that the TCN based models with larger receptive field performed the best,
with performance degrading only once the receptive field approached 1 second. We
noted that the training loss was noisier when training the TCN-30-mixup model and
this could have contributed the early stopping ending the training before the model
had fulled converged, even though this model trained for longest as shown in Table
10. There is some indication that at some point, further increases to the receptive
field beyond that required to model most of the compressor’s behavior makes training
more unstable, since the TCN-30 model appears to perform somewhat worse than
the TCN-20, although the standard deviation values indicate this difference may not
be significant. Overall, it is clear that both the Wave-U-Net and the TCN models
are capable of modeling the nonlinear behavior of the LA-2A compressor using the
limited training data available. Not only are these models proficient at this task,
they surpass the performance of the previously proposed SignalTrain model.

4.7 Summary
Through our evaluations we demonstrated that both the Wave-U-Net and TCN
based models were able to capture the behavior of the signal chain containing a se-
ries connection of signal processors. In addition, we also found that the these models
were capable of modeling some aspects of the dynamic ordering of the processors
in the signal chain, albeit it is clear this is a more difficult task than with a static
ordering. We also extended our results beyond the channel case, which modeled a
connection of digital processors, with a nearly limitless number of training exam-
ples, to the task of modeling an analog dynamic range compressor, with a limited
number of training examples. In these experiments we demonstrated that our pro-
posed models not only performed well on this task, but also exceeded the current
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state-of-the-art approach in modeling this compressor. Ultimately, we extended the
performance of previous neural audio effects implementations, and now intend to
apply these findings in the design of our differentiable mixing console, in an effort
to build a model that is able to learn to perform multitrack mixing directly at the
waveform level.



Chapter 5

Mixing system implementation

In this chapter we will apply the findings from our work on neural audio effects in
order to construct a system that is capable of learning directly from the waveforms of
multitrack mixes, without the need for the original mix parameters. In addition, we
aim to address many of the challenges in this mixing task, such as the large variance
in the number of input recordings, the inability to define a holistic taxonomy of
input classes, permutation invariance with respect the input recordings, as well as
the ability to learn to utilize the stereo field with a specialized loss function.

5.1 Baselines

5.1.1 Deep learning baseline

The deep learning baseline we introduce here represents a canonical approach for pro-
cessing audio in the time domain, based upon the Wave-U-Net architecture (Stoller
et al., 2018). In this formulation, the input to the model is a two dimensional ten-
sor, with each input source stacked along the channel dimension. The output of
the model is a two dimensional tensor with two channels, representing the left and
right signals. We adapt our earlier implementation of the Wave-U-Net architecture
with Demucs modifications for the mixing task by extending the number of input
channels from one to eight. In our experiments we also greatly increase the capacity
of the model by adding additional convolutional filters at each layer.

This formulation presents a number of challenges. Since the model directly predicts
the stereo mix, it is not possible to directly inspect the processing applied to each
input source. Therefore, it does not provide a method for adjusting the resultant
mixture, such a adjusting the relative levels, or processing. In addition this model
cannot adapt to more channels than the number set at training time. While fewer
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channels can be used during inference by filling unused input channels with zeros,
this will still impose the same number of operations regardless of the number of input
recordings. While this may be relatively insignificant when the maximum number of
tracks is small and there is little variance in the number of tracks across the dataset,
most real-world datasets contain songs with a wide range of input recordings, from
1 to over 100, making this formulation highly inefficient. Furthermore, it is likely
that this model will struggle to handle learning from examples that have varied
instruments that do not follow a consistent input ordering or structure.

5.1.2 Naive baseline

To further aid in our evaluation, we also would like to compare the performance of
these deep learning methods to more conservative and simplistic baselines. For this
purpose we employ two different baseline methods for producing a mix given a set
of input recordings. The first is a monophonic sum of the input recordings, which
is potentially the most conservative method for generating a mix. This method is
likely to produce a mix in which many of the elements are audible and it is unlikely
to produce artifacts, but the resultant mix will contain no stereo content, and the
mix may appear very cluttered for cases in which there are a large number input
recordings. The second method is a randomized gain and panning mix, where each
input recording is first scaled by a random gain (bounded between -12 dB and +12
dB), and then panned randomly across the stereo field.

In informal listening tests, we found that the random baseline often produced more
desireable mixes than those from the mono baseline when the number of input
recordings was small (≤ 8 inputs). This is likely due to the reality that panning
sources across the stereo field reduces potential masking interactions, and helps to
increase intelligibility of elements within the mix. We also observed that this method
occasionally produced lower quality mixes in cases where critical elements, such as
the vocals, were panned heavily to one side. By performing formal evaluations of
the deep learning methods compared against both of these baseline methods, we
hope to gain a better picture of the relative performance of these methods.

5.2 Differentiable mixing console

5.2.1 Architecture

As addressed in Chapter 3, we introduce the differentiable mixing console (DMC),
which aims to address many of the shortcomings of the deep learning baseline. The
underlying challenge in the multitrack mixing task comes from the requirement that
the model must operate on a group of signals with complex interactions.
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Figure 14: (A) The pre-trained CNN encoder architecture operating on melspec-
trograms following the VGGish implementation. (B) The post-processor network,
which is a simple MLP that takes the latent vector from the current channel along
with the context vector. (C) The pre-trained TCN based transformation network
that processors waveforms given a set of appropriate parameters. (D) The complete
architecture showing the interconnection of all the subsystems.

To overcome these challenges, we propose the following key aspects in the design of
our the architecture:

(i) Weight sharing across all input channels.

(ii) Specialized pre-training of the encoder and transformation networks.

(iii) The use of context embeddings capturing information about all input channels.

These design characteristics are shown in Figure 14, which outlines the inner struc-
ture of the three core subsystems (A - encoder, B - post-processor, and C - trans-
formation network), as well as their connection within the complete system (D).
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Figure 15: Composition of the blocks within the VGGish (Hershey et al., 2017)
architecture. (A) Conv block A, with a single 2D convolution followed by max
pooling. (B) Conv block B, with two convolutions followed by max pooling. (C)
FC block, with a series of linear layers and ReLU activations.

Encoder

As previously introduced, the role of the encoder is to extract useful information
from the input recordings. This information will then be passed on to the post-
processor in order to make a judgement about how to set the parameters of the
transformation network for the input in question. In our implementation, we apply
the same encoder to each input recording to produce a separate latent representation,
which will then be passed on to the post-processor.

To design this network, we adopt the popular VGGish CNN architecture from Her-
shey et al. (2017), that has been demonstrated to be successful on audio classification
tasks. As shown in partA of Figure 14, the VGGish architecture takes as input a log
power melspectrogram representation of the audio signal, which is first downsampled
to 16 kHz. The network is then composed of a series of convolutional blocks which
employ max pooling in order to downsample further along the time frequency axes,
while the depth is increased with the growing number of convolutional kernels at
each layer. There are two different arrangement of the convolutional blocks, which
are shown in Figure 15. After the final convolutional block, the resultant activations
are passed to a fully connected block, which features a series of linear layers and
ReLU activation functions, ultimately producing a 128 dimensional vector for each
one second of input audio. Since the model can receive input frames of arbitrary
length, we apply mean pooling to produce a single 128 dimensional embeddings for
each input recording.

In order to strengthen the inductive bias of the model, and facilitate the train-
ing of the post-processor network, we utilize the pre-trained weights provided from
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their original implementation1, which has been trained on AudioSet, an expansive
dataset that sources 10 second audio clips from YouTube videos to create and on-
tology of 632 audio event classes with over 2 million human annotations (Gemmeke
et al., 2017). We found also that fine-tuning these weights during the training of
the post-processor helped to improve performance, enabling the encoder to learn
representations optimized for the different instruments seen during training. During
training, we use input patches of 5 seconds of audio to provide sufficient context
about the mix, in order to make better mixing predictions. Informally, we found in
our pre-analysis that patches of less than 5 seconds provided a challenge in general-
izing to the examples in the validation set.

Post-processor network

The post-processor forms the core decision making subsystem of the mixing system.
Its role is to analyze the information provided by the encoder in order to make choices
about how the respective transformation network should operate on the input. It
is important to note that the decision making process in setting the parameters for
a single channel is dependant upon the content of the input as well as the content
of all the other inputs. This presents a challenge in our formulation, in which we
share weights across the inputs, so that we decouple any processing across the input
channels. So to address this we introduce the context embedding, which is created
by computing the mean embedding across all of the inputs. Then when the post-
processor is tasked with predicting a set of parameters for a given input, it will look
both at the individual embedding for the respective input, along with the context
embedding that contains information about all of the input recordings.

While it may appear as if the mean embedding does not capture sufficient infor-
mation about the other recordings, recall that we also fine-tune the weights of the
encoder during the training of the post-processor, hence the encoder additionally has
the ability to adjust its behavior such as to maximize the information presented by
this context embedding. During training, the input to the controller network is the
simple concatenation of the input latent representation with the content embedding,
which results in a 256 dimensional vector.

The network structure of the post-processor is a straightforward fully connected
network, as shown in part B of Figure 14. It is composed of three hidden layers
with 2048 units, PReLU activations, and Dropout with p = 0.1 (Srivastava et al.,
2014). This is followed by a output layer that maps the final activations to the 25
parameters of the full channel. In the case of the DMC-basic model, where only
the gain and panning is predicted, this model will produce just 2 outputs. A tanh

1https://github.com/tensorflow/models/tree/master/research/audioset/vggish
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activation is used at the output to bound the parameters between -1 and 1, which
correspond to the scaling that was used to normalize the parameters when training
the transformation network.

Transformation network

Based on our findings from Chapter 4, we choose to use the TCN-20 architecture as
the transformation network. The pre-trained weights from the channel modeling task
are then used in this complete mixing system, and due to the high memory overhead
required for using this model during backpropagation, we freeze the weights, and
instead only update the weights of the controller network.

In order to condition each TCN model, the output from the post-procesor, which
generates the normalized parameters, is connected to the FiLM generator. Then the
waveform from the respective input is passed to the TCN as well. In our implementa-
tion, we perform the processing of an N channel mix by placing each input recording
along the batch dimension. This enables us to produce all of the processed inputs
in parallel, which are simply summed to create the final mix. In order to simulate a
larger batch size to improve the estimate of the gradient during training, we employ
gradient accumulation, where we simply perform multiple forward passes through
the network with different training examples, before performing backpropagation.

We also found it useful to design two different versions of the DMC model. The first
we call DMC-basic, where the controller network produces only gain and panning
values, which are directly applied to the input recordings in order to create a mix.
This enables us to bypass the TCN, and hence save a significant amount of memory
and processing time during training. The DMC-basic model then enables the train-
ing of models with a larger number of inputs, and we train a model using all of the
samples in MedleyDB that have 16 or less input recordings.

The second model we call DMC-full, and it features the complete transformation net-
work, with gain, polarity inversion, panning, and the three processor of the channel
(EQ, compression, and reverb). Due to memory constrains imposed by the TCN-20
model, we were restricted in the number of input recordings we could use during
training, so we train using samples in MedleyDB that have 5 or less input recordings.
The memory impact of the TCN model is clearly a limiting factor in the scalability
of this complete architecture design, but we leave the optimization of this imple-
mentation to future work. In both DMC-basic and DMC-full the controller network
is identical, only the presence of the TCN model is changed.
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5.3 Datasets
To train the controller network we require a dataset comprised of both the origi-
nal, individual input recordings, along with a mix of these tracks produced by a
skilled audio engineer. As mentioned previously, there are no standardized datasets
specifically for the automated mixing task, but other datasets have been developed
in the study of other MIR tasks, such as MedleyDB, or for general study of mixing
practice, such as the Open Multitrack Testbed. In our work we employ two dif-
ferent datasets in order to investigate the ability of our proposed model to handle
both a simpler mixing task, involving just elements from the drum kit, as well as
a more realistic task involving mixing a larger number of input recordings with no
pre-defined taxonomy across a range of different genres and styles.

5.3.1 ENST-drums

The ENST-drums dataset is composed of a number of professionally recorded drum
passages, in a number of different styles, as performed by three different drummers
(Gillet and Richard, 2006). Each example contains the input sources from eight
different microphones placed around the drum kit, as well as two mixes made by an
engineer, one that includes only setting the gain and panning of these microphones,
as well as mix that includes gain setting, panning, equalization, compression, and re-
verberation. While this dataset was originally proposed for applications in automatic
drum transcription and processing, since it includes both the original, unprocessed
input recordings, as well as mixes, we aim to use it for training the controller network
in the task of automated multitrack mixing. The complete dataset contains around
3 hours of recordings, with each of the three drummers comprising about 1 hour in
length. The configuration of the microphones used in each recording is consistent,
including the snare, kick drum, left overhead, right overhead, hi-hat, high tom, mid
tom, and optionally a third tom.

This dataset has been used previously for the automatic mixing task (Moffat and
Sandler, 2019a), but they considered only gain setting of the input recordings to
create mono mixes. We create a training (80%), validation (10%), and test split
(10%), with each set including passages from all of the drummers, which we believe
follows the approach taken by previous works. Additionally, we question the validity
of the drum mixing task, as it may not be an ecologically valid task. It is not
common for an audio engineer to be tasked with mixing the element of the drum kit
on their own, and these drum recordings will nearly always be accompanied by other
elements of the complete song, which will have an impact on the decision that the
mixing engineer makes in the process of the create the final mix. Nevertheless, we
investigate this basic mixing task as a manner to test the operation of our system.
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5.3.2 MedleyDB

On the other hand, MedleyDB (Bittner et al., 2014, 2016) features a significantly
more diverse and more realistic multitrack mixing task. In total, the dataset features
196 songs with around 7 hours of recordings, with a wide range of instrument types,
styles, and number of input recordings. While this dataset was originally designed
for use in classic MIR tasks, such as melodic analysis, instrument identification,
and genre classification, we propose to use it for the multitrack mixing task, as it
includes complete unprocessed input recordings, as well as stereo mixes of all tracks
in the dataset. To our knowledge, MedleyDB has not been applied to multitrack
mixing task, and we present this dataset as a challenging task representative of many
real-world use cases.

5.4 Stereo loss function
With the use of the L1 loss in time or the multi-resolution STFT loss, we found
that on the more challenging mixing task of MedleyDB dataset, the models tended
to always pan all elements of the mix to the center. Curiously, this was not a
problem in the case of the ENST-drums dataset. The major difference between
these datasets is that the ENST-drums dataset contains mixes all produced by the
same engineer, and all of the passages contain an identical input layout (kick, snare,
hi-hat, etc.). What we realized was that in the case of the ENST-drums dataset, the
model was able to take advantage of the identity of the source (e.g. hi-hat), in order
to determine the proper panning, since across the dataset, nearly every passage had
each element of the drum kit panned to the same position.

In the case of the MedleyDB dataset, this breaks down completely. Since each song
is mixed by different engineers and is composed of different elements, there is no
consistent structure to the panning of the elements. For example, in one mix the
acoustic guitar may be panned strongly to the left, but in another mix the acoustic
guitar is panned strongly to the right. Therefore, when the model is tasked with
predicting the panning location of an acoustic guitar, it cannot know a priori, the
panning location of this element in the ground truth mix. This means that using a
traditional distance based metric on the stereo signal, like the L1 in time of multi-
resolution STFT loss, the model will be encouraged to place the element in the
center, since this minimizes the error when there is uncertainty. Unfortunately,
this behavior is highly undesirable, While the model has minimized its risk, we
know that panning elements to the center is quite perceptually distant from the
alternative, which would be panning the element to the opposite side than the side
in the ground truth mix. This finding motivated the design of a specialized loss
function that provides invariance to the absolute orientation of the stereo field, but
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maintains the overall stereo balance of the elements in the mix.

To address this we introduce the stereo loss function, based upon the previously
introduced multi-resolution STFT loss. This loss is based upon the concept of the
sum and difference signals, which are often used in the analysis and processing of
stereo signals (Streicher and Burden, 1985). To generate the sum signal, we take the
sum of the left and right channels, and to generate the difference signal we take the
sum of the left channel and the inverse of the right channel, as shown in Equation
5.1 and 5.2. These two signals fully retain the stereo information of the original left
and right signals, but represent the spatial information in a different manner.

ysum = yleft + yright (5.1)
ydiff = yleft − yright (5.2)

But this transformation is not enough to ensure invariance between the stereo ori-
entation that we desire. That is because the phase of these signals encodes infor-
mation about the absolute stereo orientation between the left and right channels,
and therefore using a time domain loss like the L1, will not address the behavior we
have observed. The final step involves applying the multi-resolution STFT loss to
these sum and difference signals, to compute a distance between the ground truth
and predicted sum and difference signals in the magnitude STFT space, as shown
in Equation 5.3. By attending to differences in the magnitude across the frequency
range, and ignoring the phase information, we achieve a distance function where
swapping the left and right channels will result in the same distance. We found that
by applying this loss we our model was able to achieve realistic stereo panning on a
diverse real-world dataset like MedleyDB.

`Stereo(ŷ, y) = `MR-STFT(ŷsum, ysum) + `MR-STFT(ŷdiff, ydiff) (5.3)

5.5 Training

To train all of the multitrack mixing models we follow a fairly standard method
where we employ the Adam optimizer (Kingma and Ba, 2015) with a learning rate
of 3e−4. We use a simple plateau learning rate scheduler that halves the learning
rate when the validation loss has not decreased for 200 epochs. We then additionally
train until the validation loss has not decreased for 500 epochs. Full details on all
the models we train are shown in Table 11.



5.6. Evaluation 65

We train two different models on the ENST-drums mixing task, which requires at
most 8 input recordings. The ENST-drums dataset provides two mixes for each
passage, the dry mix with only gain and panning, and the wet mix that features
gain, panning, equalization, compression, and reverb. In our experiments with this
dataset, we train using the dry mix using the DMC-basic and Wave-U-Net models.
Some samples in this dataset have only 7 input recordings, so to address this for
the Wave-U-Net model, which expects 8 inputs, we simply pass an input with zeros.
This is not a consideration for the DMC-basic model, since it can adapt to process
any number of input recordings, only ever processing the inputs it is passed.

As previously indicated, the drum mixing task is likely not highly realistic, and serves
mostly as a strong test case for our models. After observing acceptable performance
on this task from both the Wave-U-Net and DMC-basic models, we decided to
focus our efforts on the significantly more challenging task of learning from the
MedleyDB dataset. We trained models with all samples in MedleyDB with 8 input
recordings or less (DMC-basic-8), as well as all samples with 16 input recordings or
less (DMC-basic-16). And finally we train a complete modeling using the complete
signal processing chain, with all samples in MedleyDB with 5 input recordings or
less (DMC-full-5). We also attempted to train a Wave-U-Net model with both 8
and 16 inputs using samples from MedleyDB, but we found that neither of these
models were able to converge, and the output was heavily distorted and noise-like.
We claim that this is due to the challenges previously discussed.

Model Parameters Dataset Steps Time (hr.) Time (days) GPU
Wave-U-Net 83M ENST-drums 6.1k 30 1.3 RTX 2080 Ti
DMC-basic-8 89M ENST-drums 1.0k 24 1.0 RTX 2080 Ti
DMC-basic-8 89M MedleyDB 1.2k 24 1.0 RTX 2080 Ti
DMC-basic-16 89M MedleyDB 1.1k 42 1.8 RTX 2080 Ti
DMC-full-5 89M MedleyDB 1.8k 125 5.2 V100

Table 11: Multitrack mixing system training runs.

5.6 Evaluation

5.6.1 Objective metrics

While the objective evaluation of multitrack mix quality has been studied (Wilson
and Fazenda, 2015, 2016, De Man and Reiss, 2017, Colonel and Reiss, 2019), there
is still a lack of agreed upon models or metrics for accessing the perceived quality of
mixes. For this reason, the gold-standard for evaluating mix quality remains formal
listening tests, conducted with trained audio engineers (Jillings et al., 2016).

The desire for perceptually grounded, objective metrics for accessing the perceived
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quality of audio content extends beyond the realm of multitrack mixing. There is
great interest in such metrics across a number of different audio signals, with speech
signals likely of greatest interest. Objective metrics prove invaluable in the assess-
ment of text-to-speech, noise reduction, and voice conversion systems, for example,
since the process of collecting evaluations from human listeners is often time con-
suming and costly. A number of metrics have been proposed for speech, such as
PESQ (Rix et al., 2001), STOI (Taal et al., 2010) and SI-SDR (Le Roux et al.,
2019), which have shown to have some correlation to the evaluations from human
evaluators, but they still fall short in many cases with respect to human percep-
tion. For this reason, there has been a growing interest in the development of more
sophisticated methods for perceptual quality metrics.

Furthermore, interest in perceptual metrics extend beyond audio signals, they are
also of great interest in the visual domain as well. With the rapidly expanding in-
terest in image generation, there has also been great focus on objective metrics for
image quality. One of the most notable ideas in this domain, the Fréchet Inception
Distance (FID), was introduced in Heusel et al. (2017), and proposed the idea of
comparing the distance between multivariate Gaussian distributions of the embed-
dings generated from a pre-trained Inception network (Szegedy et al., 2015) on real
and synthesized images.

To calculate this metric a large number of features are extracted with the pre-trained
network from real images, as well as images generated by the model under evaluation.
This Fréchet distance can then be measured between the two multivariate Gaussian
distributions, Nb and Ne, following the derivations from Dowson and Landau (1982),

F(Nb,Ne) = ||µb − µe||2 + tr(Σb + Σe − 2
√

ΣbΣe),

where tr is the trace if a matrix. While this metric was proposed originally for
images, it has also be adapted for audio signals in Kilgour et al. (2019), which pro-
posed the Fréchet Audio Distance (FAD). This metric uses features extracted from
audio signals with the pre-trained VGGish network (Hershey et al., 2017), which,
similarity to the Inception network, was tasked with classifying sounds into a num-
ber of different categories. More recently, this work has been extended in Bińkowski
et al. (2019), which introduces the Fréchet DeepSpeech Distance (FDSD) that takes
advantage of features extracted from the pre-trained DeepSpeech2 network (Amodei
et al., 2016), a model trained on the speech recognition task.

We adopt this method of computing a distance in the feature space between two
distributions of audio examples in an attempt to evaluate the perceived quality of
multitrack mixes. To do so we utilize two pre-trained VGGish models from Pons
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and Serra (2019) that were trained on music auto-tagging tasks with the MagnaTa-
gATune Dataset (MTT-vgg) (Law et al., 2009) and Million Song Dataset (MSD-vgg)
(Bertin-Mahieux et al., 2011). To compute the scores for each method we first gen-
erate mixes of all the songs in the test set using each of the proposed methods, and
then we measure the Fréchet distance as defined above between the distribution of
features for each method and the target mixes.

ENST-drums

First, we report the results for the ENST-drums dataset, as shown in Table 12. Here
we show the mean multi-resolution STFT distance (our specialized stereo version
used during training), as well as the Fréchet distances with features from both
VGGish models. In this case, the Wave-U-Net and DMC-basic models were tasked
with recreating the dry mix, consisting of only gain and panning. In this case, we
find that that DMC-basic model outperforms the other methods across all three
metrics. We note additionally that the Wave-U-Net model outperforms the baseline
approaches as well.

Task Model MR-STFT Fréchet MTT-vgg Fréchet MSD-vgg

Dry mix

Mono mix 6.038 4.57 3.01
Random mix 3.403 4.63 2.89
Wave-U-Net 2.763 3.13 1.94

DMC-basic 1.825 2.24 1.16

Table 12: Objective metrics on the ENST-drums dataset with 8 input channels.
Here the DMC-basic model predicts only gain and panning values to generate the
mix.

MedleyDB

Things become more complicated when we move to the MedleyDB dataset. There
is significantly less homogeneity with regards to the content and style of the mixes
in this dataset in comparison to tne ENST-drums dataset, which includes drum
passages all mixed by the same engineer. In this more complicated case, there is
evidence that these objective metrics begin to break down. In Table 13, objective
metrics are shown for three different tasks using the MedleyDB dataset. In the first
part of the table, we compare models that were trained using songs in MedleyDB
that had 8 or less input recordings. These metrics indicate the the random mixes
on average produced mixes with the lowest error in STFT space and that the mono
mixes had the best Fréchet scores, although our informal listening indicates that the
mixes produced by the DMC-basic model far exceeded the quality of these mono



68 Chapter 5. Mixing system implementation

mixes. The results of the Wave-U-Net model do make sense though, as we were
unable to successfully train this model to converge, and even after extended training
the output of the model was heavily distorted and noise like. For this reason, we
refrained from training further Wave-U-Net models on the MedleyDB mixing tasks.

Moving on the second part of the table, where a new DMC-basic model was trained
using songs with 16 or less input recordings, the results appear quite similar to those
in the previous case. There are no clear trends or agreement among the metrics.
In the final section of the table, a third model, DMC-full, which includes not only
gain and panning, but also equalization, compression, and reverb, was trained using
songs in the MedleyDB that were comprised of 5 or less input recordings. Again, the
results are quite similar, with the mono mixes scoring most highly from the Fréchet
metrics, and the DMC-full model appears to perform worse with the addition of
multiple effects in the chain.

Channels Model MR-STFT Fréchet MTT-vgg Fréchet MSD-vgg

8

Mono mix 5.363 2.21 1.41
Random mix 3.018 2.66 1.48
Wave-U-Net 7.386 40.45 29.62
DMC-basic 3.024 2.91 1.64

16
Mono mix 5.840 2.34 2.92
Random mix 3.186 2.40 2.63
DMC-basic 3.341 3.00 1.65

5
Mono mix 5.300 2.89 1.67
Random mix 3.040 3.42 1.87
DMC-full 3.689 6.72 4.04

Table 13: Objective metrics on the MedleyDB dataset with 8 and 16 input channels.

From informal listening we determined that there was evidence to suggest that both
the STFT and Fréchet metrics are likely not to agree with perception of mix quality
when then underlying distributions of mixes in the reference set are diverse. In the
case of the ENST-drums dataset we find that the Fréchet distance metrics agree
with the STFT distance metric, but we know that the underlying distribution of
mixes in the training and test sets are quite similar, and therefore it is likely that
generated mixes based upon conventions in the training set will align closely with
those in the test. The case is quite different for MeldeyDB based models, since in
the case of complete songs there are a greater number of potential mix configura-
tions that would be considered of high quality, but are likely located very far apart
in STFT space. Ideally, the Fréchet metrics would address this disparity, but we
posit that the features learned in the auto-tagging task are more closely related to
the STFT features, as these models are concerned with identifying different musi-
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cal elements, like style, and are less so concerned with distinguishing small details
between different mixes of the same content with regards to quality. This finding
motivates the design of a task formulation for training a model that learns features
to differentiate mix quality among different mixes of the same underlying content,
but we leave this investigation to future work.

5.6.2 Subjective evaluation

Due to the apparent inadequacy of the proposed objective metrics in evaluating the
perceived quality of multitrack mixes, we must rely on the feedback from experienced
audio engineers. To do so, we design and conduct a perceptual evaluation using
the Web Audio Evaluation Tool (Jillings et al., 2016), using the APE test design
(De Man and Reiss, 2014). This test extends the traditional Multiple Stimuli with
Hidden Reference and Anchor (MUSHRA) test (mus, 2003), to instead use a series of
sliders placed on the same axis, one for each stimulus. This encourages comparative
ratings and relaxes the requirement for both anchor and reference stimuli. This
test was designed as a more flexible alternative to the MUSHRA test, with a focus
on providing a robust method for evaluating multitrack mixes, since unlike the
MUSHRA test which was designed for evaluating the performance of evaluating
codecs, there is often no known reference, and it may be possible for potential
anchor stimuli, such a simple monophonic sum of the inputs, to be rated higher
than competing mixes.

In our evaluation, we aim to determine the performance of the proposed deep learn-
ing methods, in comparison to the simplistic baselines we proposed. To achieve
this, we select a number of short passages (4 to 5) from the test set of each dataset,
and generate a mix with each method. During the test, participants are shown
an interface like the one shown in Figure 16, with each stimulus represented by a
green sliding bar. Clicking on each bar will play the mix for the associated method,
allowing listeners to quickly switch among the different methods, for more detailed
comparison. The listeners were then instructed to compare all the mixes, drag-
ging them along the scale based upon their perceived level of quality. Participants
were not informed of the underlying methods to generate the mixes, only that they
should attend to differences in the mixtures, and make judgments based upon their
internal preferences with regards to general qualities of music productions, such as
balance between the sources, spectral characteristics, and dynamics. Our evaluation
consisted of 16 participants, none of which indicated they had any hearing impair-
ments. Out of the 16 participants, all 16 reported having previous experience with
multitrack mixing. In the following sections we will perform an evaluation of these
results for all of the mix generation methods, across to the two different datasets.
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Figure 16: Screenshot of one of the pages from the test interface, where four different
mixes are presented to the listener, and they are tasked with rating each mix relative
to each other on the scale.

ENST-drums

In the evaluation, participants were presented with five different drum passages
from the ENST-drums set, each with a mix generated from one of the five different
methods (DMC-basic (ours), Wave-U-Net, Mono, Random, and Target). Individual
box plots for the evaluations of each of the five different passages are shown in
Figure 17. Additionally, Figure 18 shows the distribution of all scores for each
method across all the drums passages.
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Figure 17: Individual ratings of the five drum passages from the ENST-drums
dataset used in the perceptual evaluation.
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Across the five passages, it seems that the target mixes tend to be rated the highest,
with the mixes generated by the DMC-basic model following closely behind. In
passages B and D, the DMC-basic model even has a mean score greater than the
target mixes. The Wave-U-Net model appears to perform the worst across most
of the songs, and the mono and random mixes perform similarly across all the
songs, somewhere between the DMC-basic and Wave-U-Net mixes. These findings
are confirmed by the boxplot shown in Figure 18, which shows the aggregation of
ratings for all the passages together for each method. Feedback from participants
indicated that the low ratings for the Wave-U-Net model were likely due to the
artifacts that were present on some mixes caused by the transposed convolutions
used in the decoder portion of the network (Odena et al., 2016).
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Figure 18: Aggregation of all ratings for each of the five mix generation methods
for the ENST-drums dataset.

To formalize these results, we perform the Kruskal-Wallis H-test to test the null
hypothesis that the mean of the scores for mixes generated by each method are the
same. We opt to not perform the one-way analysis of variance (ANOVA), since
there is no evidence that our samples are normally distributed. We reject the null
hypothesis and find that there is a statistically significant difference in the means
of the five methods (F = 64.01, p = 8.0e−14). To continue our investigation, we
employ Conover’s test to compute a multiple comparison of means across all mix
generation methods. This test reveals that our proposed DMC-basic method and
the target mixes do not have a significant difference in their means (Padj = 8.03e−1),
indicating this method produces mixes on par with the ground truth mixes. There
is a significant difference between the means of the DMC-basic and mono mixes
(Padj = 2.34e−3), as well as random mixes (Padj = 1.71e−2). Unsurprisingly, we
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also find there is a significant difference between the means of the target mixes, and
those mixes generated with the mono (Padj = 1.55e−3), random (Padj = 1.25e−3),
and Wave-U-Net (Padj = 4.69e−9) methods, indicating that these methods produce
mixes of lower quality on average compared to the ground truth. The results largely
affirm the trends we observed in the aggregate box plots in Figure 18. We report
the complete test results in Table 14.

Group 1 Group 2 Mean Diff. Padj Reject

DMC-basic Mono 0.142 3.24e-3 True
DMC-basic Rand 0.113 1.71e-2 True
DMC-basic Target -0.037 8.03e-1 False
DMC-basic Wave-U-Net 0.232 4.50e-7 True
Mono Rand -0.029 8.02e-1 False
Mono Target -0.179 1.55e-3 True
Mono Wave-U-Net 0.091 1.13e-1 False
Rand Target -0.150 1.25e-3 True
Rand Wave-U-Net 0.119 3.57e-2 True
Target Wave-U-Net 0.269 4.69e-9 True

Table 14: Results from Conover’s test of multiple comparison of means for different
mix generation methods on the ENST-drums dataset.

MedleyDB

In the case of MedleyDB, we train two different models, DMC-basic, which performs
only gain and panning, and DMC-full, which performs gain, panning, equalization,
compression, and reverb. In the evaluation, participants were presented with five
different passages from the gain and panning task, and six different passages from the
full mixing task, each with a mix generated from one of the four different methods
(DMC-basic (ours), Mono, Random, and Target). We chose to omit the Wave-U-Net
models from the perceptual evaluation since we found that this model was unable
to be trained for the MedleyDB task, as the output after training was noise.

We start our analysis with the gain and panning task, with individual box plots
for the evaluations of each of the five different passages are shown in Figure 19.
Additionally, Figure 20 shows the distribution of scores for each method across all
the passages. Similar trends to those present in the ENST-drums models are present
here, with the target mixes generally rated more highly than the other methods. The
means of the DMC-basic-16 mixes tend to be above the baselines for most mixes,
but they appear closer than in the drum mixing task.

We again perform the Kruskal-Wallis H-test to test the null hypothesis that the mean
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Figure 19: Individual ratings of the five passages from the MedleyDB dataset used
in the perceptual evaluation. In this evaluation the DMC-basic model predicts only
gain and panning values.

Group 1 Group 2 Mean Diff. Padj Reject
DMC-basic-16 Mono 0.111 2.15e-3 True
DMC-basic-16 Random 0.097 1.04e-2 True
DMC-basic-16 Target -0.265 3.92e-10 True
Mono Random -0.014 5.45e-1 False
Mono Target -0.376 6.77e-20 True
Random Target -0.362 4.53e-18 True

Table 15: Results from Conover’s test of multiple comparison of means for different
mix generation methods on the gain and panning task of the MedleyDB dataset.

of the scores for mixes generated by each method are the same. We find that there is
a statistically significant difference in the means of the four methods (F = 87.7, p =
6.6e−19). To continue our investigation, we employ Conover’s post hoc test, which
reveals that three methods present statistically significant difference in their means
in comparison to the target mixes, for DMC-basic-16 (Padj = 3.92e−10), mono mixes
(Padj = 6.77e−20), and random mixes (Padj = 4.53e−18). Nevertheless, we find that
the DMC-basic-16 has a mean that is statistically different in comparison to both
the mono (Padj = 2.15e−3) and random (Padj = 1.04e−2) baseline approaches,
indicating that the DMC-basic-16 model produces mixes of higher quality than the
baselines, but not quite on par with the target mixes on average. We report the
complete test results in Table 15.
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Figure 20: Aggregation of all ratings for each of the four mix generation methods
for the MedleyDB dataset on the gain and panning task.
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Figure 21: Individual ratings of the six passages from the MedleyDB dataset used
in the perceptual evaluation. In this evaluation the DMC-full model predicts gain,
panning, equalization, compression, and reverb values.

We carry out the same analysis for the final case, which involves the full mixing
task. Individual box plots for the evaluations of each of the six different passages are
shown in Figure 21. Additionally, Figure 22 shows the distribution of scores for each
method across all the passages. We perform the Kruskal-Wallis H-test to test the
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Figure 22: Aggregation of all ratings for each of the four mix generation methods
for the MedleyDB dataset on the full mixing task.

Group 1 Group 2 Mean Diff. Padj Reject
DMC-full-5 Mono -0.037 3.02e-1 True
DMC-full-5 Random 0.068 1.22e-1 True
DMC-full-5 Target -0.245 1.09e-9 True
Mono Random 0.105 1.15e-2 True
Mono Target -0.208 2.74e-7 True
Random Target -0.314 6.64e-15 True

Table 16: Results from Conover’s test of multiple comparison of means for different
mix generation methods on the full mixing task of the MedleyDB dataset.

null hypothesis that the mean of the scores for mixes generated by each method are
the same, and find once again that there is a significant difference among the means
(F = 48.1, p = 8.8e−10). We continue with Conover’s test and present the complete
results in Table 16. In this case, as we can observe in Figure 22, performance for
each of the methods, DMC-full, mono, and random mixes all preform worse than
the target mixes, and have largely similar distributions.

This is confirmed by our post hoc test that shows a significant difference between the
mean of the target mixes and the means of all the other methods. In our informal
listening this result was confirmed as well. While the DMC-full model produced
mixes that had clear equalization, compression, and reverb effects, with minimal
artifacts, these effects were often overly present, causing them to be perceived as
lower quality mixes. Furthermore, the individual boxplots in Figure 21 demonstrate
that for some passages the DMC-full model is nearly on par with the target mixes



76 Chapter 5. Mixing system implementation

(A and E), but in other passages this model performs quite poorly (B and C). In our
informal listening, there is evidence to suggest these failures come in cases where
the model fails to set the level of the lead vocal loud enough, which listeners often
use a main component in their evaluation.



Chapter 6

Discussion

6.1 Conclusions
In this thesis, we outline a number of challenges in applying deep learning methods
in the task of building an automated multitrack mixing system, many of which have
yet to be addressed in the literature. To address these new challenges, we proposed a
domain-inspired architecture along with a specialized stereo loss function. By lever-
aging a stronger inductive bias for the mixing task with pre-trained subnetworks,
along with extensive weight sharing throughout the system, we construct a model
that can be trained using a limited number of multitrack training examples, adapts
to variation among real-world multitrack projects, and ultimately was shown in a
perceptual evaluation to produce mixes that exceed our baseline approaches.

In the process of building this multitrack mixing system, we extend the state of the
art in neural audio effects. We show that a dense sampling of the control parameters
across a series connection of linear and nonlinear audio effects can be jointly modelled
by a neural network. Additionally, we demonstrated the ability of our methods to
generalize to the task of modeling an analog dynamic range compressor in the limited
data regime, exceeding the performance of the previously proposed approach.

Ultimately, we demonstrated we were able to leverage paired, yet unstructured mul-
titrack mixing data in the task of learning how to perform multitrack mixing across
both the drum mixing and complete mixing project datasets. And while there
remains a challenge for the system to create quality mixes consistently when con-
trolling all of the complex processors in the mixing console, positive results from
the simpler gain and panning mixes indicate that with additional training data it
is likely we can improve the generalization abilities of the model when controlling a
set of complex signal processors.

77
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6.2 Future work
As this thesis aimed to investigate the emerging research direction of applying deep
learning methods in the design automated of multitrack mixing systems, this work
is far from presenting a complete solution. Instead, our work was focused on the
development of a deep learning framework for building a system with the ability to
learn from the high dimensional, unstructured data common in multitrack mixing.
Therefore, our work leads into a number of open research directions that could have
significant impact in IMP by building upon the framework that we introduced.

One of the critical elements in designing effective mixing systems is the ability to
quickly and accurately evaluate the quality of the mixes they produce. Currently,
running time consuming evaluations with human listeners remains the only effective
method. While we investigated potential objective metrics for this evaluation, we ul-
timately found that further work is needed to develop metrics that align with human
perception. While we employed the Fréchet distance in the feature space of models
trained on general audio signals, it is likely that building new models pre-trained on
tasks related to multitrack mixing will produce more useful representations.

The next clear path towards improving these systems is in the use of larger and more
diverse training datasets. While we restrict our experiments in this thesis to only
the ENST-drums and MedleyDB datasets, there are additional sources of mixing
data, such as the Mixing Secrets Multitrack Library1, which contain many more
samples, but are less consistent in their structure. Most likely, in order to achieve a
significant step forward in the performance of these systems, we will need to leverage
non-parallel mix data with the use of an adversarial loss function. This will relax
the constraint of needing the original tracks as well as mix of those tracks in order
to learn about the mixing process, hence enabling the ability to use large collections
of produced music, such as the MTG-Jamendo (Bogdanov et al., 2019) or Million
song (Bertin-Mahieux et al., 2011) datasets. Further extending this adversarial
formulation to make the model generative would provide the ability to model the
mixing process as a one-to-many mapping, and provide a method for users to sample
from the latent mix space, providing further methods for user interaction.

Beyond these main directions, other directions include architectural extensions such
as incorporating additional context information in the controller network, the devel-
opment of more compute efficient transformation networks, extending the routing
capabilities of the differential mixing console to include auxiliary busses, as well
as the the application of attention mechanisms in order to more effectively take
advantage of the information within the input representations across time.

1https://cambridge-mt.com/ms/mtk/
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