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ABSTRACT
In this paper, we explore a novel data-driven approach which is
to synthesise continuous body gesture from speech with a fully
connected neural network and a periodic activation function. To
produce realistic gestures that follow the context of the conversa-
tion, wemake use of both low-level and high-level semantic features
obtained from the speech, namely the mel spectrogram and BERT
features. We participate in the Generation and Evaluation of Non-
verbal Behaviour for Embodied Agents (GENEA) challenge 2020
which provide the dataset to train the proposed system and perform
crowdsourced evaluation to compare different gesture generation
approches performance.

CCS CONCEPTS
•Computermethodologies→Artificial intelligence;Machine
learning; Computer graphics.
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1 INTRODUCTION
Automatic synthesis of the 3D body gesture from the speech is
a challenging problem that researchers in psychology, computer
graphics and computer vision have been tackling. Most classic ap-
proaches are either rule-based approaches where the corresponding
gesture for each context are carefully designed based on observa-
tion, or make use of low-level features of speech such as prosody
to produce movements that are well synchronized with the speech
simply. We wish to go beyond such carefully designed architectures
and learn a mapping from speech to the body gesture automatically
from a large amount of data.

However, there are various difficulties to learn the task of body
gestures synthesis from the speech. First of all, this is a cross modal-
ity learning problem that requires a significant amount of training
data for producing a proper mapping. Secondly, the correlation be-
tween the speech and the gesture is rather weak. Simply regressing
the low-level speech features to the gesture may easily fail due to
the ambiguity of the mapping.

In this paper, we investigate a novel deep learning approach
to produce the speaker’s 3D body gesture from speech. For cop-
ing with the difficulty of cross modality learning, our idea is to
encode each modality by low-level and high-level representations
and enable the system to learn a mapping between the provided
feature representation and the desired motion. More specifically,
we use the mel spectrogram to describe the low-level information

and depict the high-level information with contextualised BERT
feature [8]. The proposed approach learns the mapping from the
given speech to body gesture in an end-to-end manner, so that the
model is capable to produce realistic human motion. Moreover, we
propose a novel module to address the weak correlation between
the speech and gesture which is to perform random sampling in
latent space to produce a different gesture.

We participate in the GENEA 2020 challenge which aims to
have a better understanding and compare methods for gesture
generation and evaluation since the variant dataset embodiment,
and evaluation methodology may lead to a different conclusion [18].
Besides, both our proposed system and other gesture generation
approaches were evaluated in a large user study during GENEA
2020 challenge.

2 RELATEDWORKS
Speech-to-Gesture. The correlation of speech and gesture has

been a long term interest in the area of psychology [3, 25, 29].
Kendon [17] analyzes the synchronization of the speech and ges-
ture, and find that the gesture appears even earlier than speech.
McNeill [25] insists that gesture and speech are occuring from a
common source. Reiter et al. [7] claims that gesture and speech are
complementary to each other to convey the speaker’s intention.

It has also been an area of interest in the computer animation
community, where researchers are interested in animating the ges-
ture of virtual characters during their speech. Earlier, researchers
used to define rules that produce the head and body motion ac-
cording to the acoustic information and the text contents [4, 5].
These further evolved into probabilistic models [26] where the mo-
tion type was sampled among a number of potential movements
according to the probability. Levine et al. [20] propose a model
that selects a motion unit by an HMM using the speech prosody
as the feature. This idea is later enhanced to use reinforcement
learning to select an optimal series of gestures [19]. Marsella et
al. [23] combines the prosody with the text information for deciding
which gestures to animate. Chiu et al. [6] precompute a motion
manifold using GPLVM and produce a mapping from the speech to
the latent space of gestures by conditional random fields. Our work
is similar in sense we also produce a latent space, but we do this
in an end-to-end fashion. Among these works, many researches
emphasize the strong correlation of the semantic context of the
speech to the body gestures [4, 5, 23, 26], which we also pursue in
this paper, but in a machine learning context. Ferstl et al. [10] use
deep neural networks with adversarial loss for training a network
that maps the speech to gesture, but the features that are used are
limited to low level prosody.
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Figure 1: System Overview

The topic has recently attracted researchers in the computer
vision community due to the availability of pose estimation tools
with high precision. Shlizerman et al. [27] trains an LSTM to map
the sound to the body gesture. Ginosar et al. [11] proposes an
adversarial training model for mapping the speech features to the
gestures using the in-the-wild videos. The model is trained using
144-hour person-specific video dataset of 10 speakers, where the 2D
poses are automatically predicted by OpenPose [2]. There has been
little deep learning based research that focuses on the synthesis of
3D human movements from the speech data. The main difficulty
is in the access to a data that contains both the speech and the 3D
human motion.

Generative Models. Despite both LSTM and Temporal Convo-
lutional Network (TCN) achieve reasonable performance in time-
series problem, they are still the deterministic model which princi-
pally lack the ability to solve the ambiguity between speech and ges-
ture. Since the determinisitc model learns the one-to-one mapping
but speech to gesture synthesis problem suppose to be many-to-
many. One possible approch is to improve the determinisitc model
to a generative model. Recently, one of the successful and powerful
generative approach is generative adversarial networks (GANs)
[12]. GANs have already produced impressive results in the com-
puter vision, such as image generation, image editing, and video
future prediction [16, 21, 31]. The key idea of using GANs is the
adversarial loss which is to encourage the generated sample to be
hardly distinguished with the real one.

In this paper, we make use of state-of-the-art features in nat-
ural language processing, speech processing and human motion
synthesis for achieving this task. In addition, we use the genera-
tive adversarial network to enable the generated motion could be
diverse which won’t have the one-to-one mapping restriction.

3 PROPOSED SYSTEM OVERVIEW
Here, we describe the details of the proposed speech to gesture
system. As illustrated in the fig 1, the entire system consists of

feature extraction, motion generation, and motion discrimination.
For simplicity, we synchronise pose, audio, and word for every
frame in 20 fps so that the length of cross-modal data could be
consistent. In training time, given all available inputs, we firstly
extract the audio features with log scale mel-spectrogram and the
contextualised word feature from BERT [8]. Then, the generator
is modelled as an auto-regressive fully connected neural network
which takes a sequence of future audio, word, and 3D previous
motion as the input and output of the next frame of the pose. Finally,
the discriminator receives a stack of poses to classify whether the
poses are the real or generated sequences. Ideally, the generated
sequences are supposed to be hardly distinguished by a human.

More specifically, we represent the generator as 𝐺 and the se-
quences of audio, words, and pose as 𝒂𝑡→𝑡+𝜏 , 𝒘𝑡→𝑡+𝜏 , 𝒙𝑡−𝜏→𝑡 re-
spectively, where the feature of every frame is defined as 𝒂𝑡 ∈ R𝐷𝑎 ,
𝒘𝑡 ∈ R𝐷𝑤 , 𝒚𝑡 ∈ R𝐷𝑦 . Then, the generator will take the vec-
torised features as the input and output the next frame of pose
𝒚𝑡+1 = 𝐺(𝒂𝑡→𝑡+𝜏 ,𝒘𝑡→𝑡+𝜏 ,𝒚𝑡−𝜏→𝑡 ;𝜔). Thus, we are learning the
dynamics of predicting the future frame by conditioning on the
future audio, word signal and the past motion.

3.1 Pre-processing
To extract the speech features, we use the librosa library to con-
vert the raw audio to mel frequency power spectrogram with 27
channels [1, 24] and transform the extracted spectrogram feature
with logarithm function. For the contextualised word features, we
merged every single word into a sentence and extract the contextu-
alised word feature from the BERT model’s hidden space. Since the
original size of the BERT representation is relatively larger than
the current mel-spectrogram feature, we perform dimensionality
reduction with PCA to reduce the word feature size from 512 to
32. Some frames do not cover by a word would be padded a zero
vector.

To process the motion data, we use a 6 degrees of freedom rep-
resentation which can contain the joint rotation information. We
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Figure 2: State-Regularized Residual Module. Orange:
State.⊕ is addtion operation. ⊗: is element-wise multiplica-
tion operation.

first compute the 3 × 3 rotation matrix and use the first two-row
as the representation for every joint individually 𝒚𝑡 ∈ R6𝐷𝑦 . The
third vector could be obtained via the cross product.

During the training and inference, our system also learns to
predict the finger joints since we believe the correlation between
the fingers and wrist representation is strong. In the workshop
challenge, we remove the fingers’ motion during the visualisation
since the challenge is mainly to evaluate and analyse the quality of
the torso and body gestures.

3.2 Sinusoidal Activation Function
Similar to the previous research [28], we investigate the perfor-
mance of the sinusoidal activation function with fully connected
neural network in the time-series problem. We define a series of
non-linear transformation as

Φ(𝑋 ) = 𝜔𝑛(𝜙𝑛−1 ◦ 𝜙𝑛−2 . . . ◦ 𝜙0) + 𝑏𝑛, (1)
𝑥𝑖 → 𝜙(𝑥𝑖 ) = sin(𝜔𝑖𝑥𝑖 + 𝑏𝑖 ) (2)

where 𝜙𝑖 : R𝑀𝑖 ↦→ R𝑁𝑖 consist of the affine transform with the
parameter matrix 𝜔𝑖 ∈ R𝑁𝑖×𝑀𝑖 , biases 𝑏𝑖 ∈ R𝑁𝑖 and a sinusodial
activation function sin.

3.3 State-Regularised Residual Module
Inspired by the recent research to regularise the latent state tran-
sition in recurrent networks [30], we propose a stochastic state-
regularised residual module for the fully connected network (SR-
RFC). The SRRFC is a module to combine vanilla fully connected
layer, stochastic state transition, and residual operation. The vanilla
fully connected layer learns a fixed mapping between the input
and output. As stated above, we also use the sinusoidal activation
function for every fully connected layer in the module. Regarding
the stochastic state transition, we defined a set of 𝐾 states as learn-
able parameters 𝒔𝑖 ∈ 𝑑 × 𝐾 where 𝑑 is the size of the 𝑖−th hidden
layer. The stochastic state transition will take the output 𝒙𝑖 from
the last fully connected layer and compute the probability 𝜶 for
every state.

𝜶𝑖 = 𝜓 (𝒔𝑖 , 𝒙𝑖 ) (3)

To select the state randomly, we apply the Gumbel softmax [15] to
be a differentiable approximation of the arg max operation which

enables the module and network could be trained in an end-to-end
manner,

𝛼𝑘𝑖 =
exp((𝒙𝑖 · 𝒔𝑘𝑖 + 𝑔𝑘 )\T )∑
𝑘 exp(𝒙𝑖 · 𝒔𝑘𝑖 + 𝑔𝑘 )\T )

(4)

where 𝑔1, 𝑔2, . . . , 𝑔𝐾 are i.i.d drawn from the Gumbel(0,1) distrbu-
tion and T is the temperature of the softmax distribution. Here, we
define the new states 𝒔new

𝑖
as the probability mixtures of the states:

𝒔new𝑖 =
∑
𝑘

𝛼𝑘𝑖 𝒔
𝑘
𝑖 (5)

After we get the new states, we are using the residual operation
[13] to get the new output

𝒙𝑛𝑒𝑤𝑖+1 = 𝜙𝑖+1(𝒙𝑖 + 𝒔new𝑖 ) (6)

The whole state-regularised residual fully connected module is illus-
trated at the fig 2. The intuition of the stochastic state-regularised
residual module is regularising latent space should be partially sim-
ilar to the during the training time so that the generated gesture
should also be similar to the motion in the training set.

3.4 Entire System
We now combine all techniques described above in the whole sys-
tem. For the generator, we use 1 fully connected layer with tangent
activation function to rescale the data range into [−1, 1]. Then, we
stack 5 SRRFC modules and 1 fully connected layer so that we
can map the multi-modal inputs to the desired size of the pose.
Regarding the discriminator, there are 3 fully connected layers with
sinusodial activation function which takes the vectorised stack of
poses as the input and output the label whether the given sequence
is real or fake. We denote the gesture distribution as 𝑝data and the
joint distribution of audio and word as 𝑝𝑎𝑤 . Since we are using
the Gumbel softmax which already include noise from the uniform
distribution 𝑝𝑧 .

Adversarial loss. We use the adversarial loss for training both
generator𝐺 and its discriminator 𝐷 . The adversarial objective func-
tion is defined as

LGAN(𝐺, 𝐷) = E𝒚∼𝑝data [log𝐷(𝒚)]+
E𝒂,𝒘∼𝑝aw,𝒚∼𝑝𝑑𝑎𝑡𝑎,𝒛∼𝑝𝑧 [1 − log𝐷(𝐺(𝒂,𝒘,𝒚, 𝒛))] (7)

where 𝐺 is expected to generate the sequences of motion which
hardly distinguish between the real

Gesture Loss. In theory, the learned mapping 𝐺 is supposed to
generate reasonable poses by conditioning on the speech. However,
training such a mapping with adversarial loss alone cannot pro-
duce realistic result in practice [14, 31]. Here, we also introduce a
mean square error to encourage the generator to match the data
distribution and stabilise the training as well.

L𝑀𝑆𝐸 (𝐺) = E𝒂,𝒘∼𝑝aw,𝒚∼𝑝𝑑𝑎𝑡𝑎,𝒛∼𝑝𝑧 [(𝒚 −𝐺(𝒂,𝒘,𝒚, 𝒛))2] (8)

Entropy Regularisation. Moreover, the generated output is sup-
posed to vary when we are sampling from the generator with the
same input. We introduce the entropy regularisation on the state
selection probability 𝜶 . Thus, we maximise the entropy regularisa-
tion to encourage the probability 𝜶 to be more uniform. This means
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that the selected state is supposed to vary when we are sampling
from the state.

L𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝐺) = −
∑
𝑘

𝛼𝑘 log(𝛼𝑘 ) (9)

Finally, the final objective function used to train the GANs is:

𝐺∗ = arg min
𝐺

max
𝐷

LMSE − 𝜆1LEntropy + 𝜆2LGAN (10)

where the adversarial loss and entropy regularisation are balanced
by 𝜆1 = 0.01 𝜆2 = 0.01. The model is only trained with the Trinity
College Dataset [9] using the GENEA challenge release.

3.5 Post-processing
Though we use the sequence discriminator to smoothen the gener-
ated motion, the generated motion may still have a rapid change
from the last pose. We smooth every frame with fixed spacing

𝑦𝑡 = 0.5 ∗ (𝑦𝑡−1 + 𝑦𝑡+1) + 0.5 ∗ 𝑦𝑡 , 𝑡 = 2, 4, 6, 8, ...𝑇 (11)

4 EXPERIMENT AND ANALYSIS
In this section, we provide the detail of the experiment setting and
analyse the usefulness of the proposed system and illustrated the
finding of proposed sinusoidal activation function, state regularised
residual fully connected module and the adversarial training.

4.1 Experiment
Initialisation. We initialise both generator and discrminator pa-

rameters with Pytorch default setting and use 5 states for every state
regularised residual modules in the generator. All of the centroids
are initialised uniformly between the range [−0.5, 0.5]. During the
training, we use the AdamW [22] optimiser to optimise both genera-
tor and discriminator with learnining rate 5e-5 and 1e-5 respectively.
In addition, the weight decay is defined as 1𝑒 − 4 to regularise the
parameters and the centroids.

Training Details. We update the parameters of generator and dis-
crminator jointly for every iteration. The relatively larger learning
rate can provide a larger step of the generator so that the GANs
training will be stable and converge eventually. Then, the tempera-
ture of the softmax distribution initialised as T = 3 and using the
schedule T = max(0.5, 3 ∗ exp(0.1 ∗ 𝑒𝑝𝑜𝑐ℎ𝑠)) to anneal the tempera-
ture. These two networks are trained with 500 epochs and apply in
the test set directly.

4.2 Analysis
Training Performance. We compared the training performance

between sinusoidal and ReLU activation function with 3 differ-
ent architectures: fully connected networks, state regularised and
residual fully connected module, GAN.

As stated in [28], training a model with sinusoidal activation
function could converge faster than the ReLU function. This phe-
nomenon is verified in our experiment, as well. According to fig 4,
the proposed sinusoidal activation function shows powerful learn-
ing ability which not only trains faster but also better on the train-
ing set. Apart from this, we also explore the state-regularised fully
connected module without residual operation, but this kind of net-
work tends to converge hardly. One of the reason is that the state

regularisation may be too strong for the generalisation of the la-
tent space, which leads the model to overfit the training set hardly.
Thus, it is necessary to include the residual operation into the state
regularisation fully connected module.

Results Observation. During the challenge, we explored the gener-
ated motion from the model mentioned above. Firstly, we compare
the generated motion of fully connected layers with ReLU and
sinusoidal activation function. The generated motion from ReLU
function tends to rotate the body more frequently than the one with
a sinusoidal function. This frequent body rotation is less realistic
since human may prefer facing the audience when they are speak-
ing or presenting. Secondly, we investigated the usefulness of using
discriminator. The models with using sequence discriminator tend
to generate over smooth motion. It sometimes makes the generated
motion less vivid since the motion may perform too slow.

Diverse Motion. Moreover, we also verify the stochasticity for our
system with the proposed stochastic module. We randomly draw
samples from the proposed model by giving the same sequences
of speech; most of the motion trajectories are different. As illus-
trated in fig 3, the coverage area of the generated gestures are not
precisely the same. This means that our system is able to generate
different motion when the system receives the same speech as the
input. However, the vanilla fully connected network without state-
regularised module will still be a deterministic model which can
only produce one sample during the training time. Even some of
the recent researches using the GANs framework for their prob-
lem, they still suffer from too low stochasticity in their generated
samples [31].

Crowdsource Evaluation. GENEA 2020 challenge conduct qualita-
tive researches to evaluate different gesture-generation approaches
and human gestures. The motion quality is evaluated into two as-
pects: human-likeness and the appropriateness. The human-likeness
is to answer the question “how human-like does the gesture motion
appear?" whereas the appropriateness is to respond "what extent
the gestures are appropriate for the speech?" [18].

According to the crowdsourced evaluation, our current generated
motion still has a large room to improve [18]. This could be raised
by the torso body moves too frequent, and the body motion is not
well aligned with the given speech. In future, we will focus on these
two aspects and improve the generated motion quality.

Discussion. In this challenge, we insist on using the deep model
architecture with fully connected layer rather than a convolutional
layer or recurrent unit for such a time series task. One of the largest
benefits of using a fully connected layer is run-time speed. Not only
the training become faster but also the inference could be more
efficient due to the parallel computing across the time dimension.
This will be helpful if the system is required to be real-time in future.
Besides, the recurrent unit may suffer from the initial and unseen
hidden state during the test time. Those two may heavily affect the
generated motion quality in an auto-regressive setting when the
time horizon becomes longer. Using the state regularised module
has the potential to prevent the appearance of an unseen state. This
may make the generated motion to be more stable.
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Figure 3: The generated motion trajectory with the same audio

Figure 4: The comparison between the activation functions
with various architectures. Sin: sinusoidal activation func-
tion. Sin+SR: the proposed framework without discrimina-
tor SRGAN: the proposed framework with discriminator

5 CONCLUSION AND FUTUREWORK
In this paper, we present a novel system to generate themotion from
speech stochastically. The proposed state regularised residual fully
connected module which consists of vanilla fully connected layers,
state transition, and residual operation. This enables the vanilla
fully connected layer to be stochastic during training and test time.
However, according to the crowdsourced evaluation result, the
current generated motion quality still has a large room to improve.
We are planning to further improve the motion quality in terms
of the human-likeness and the appropriateness since these are the
primary goals for the task of motion synthesis from speech. One
possible solution is adding timing information of the speech to the
proposed fully connected network so that the generated motion can
align with the speech frequency. Besides, we will also investigate
the relation between the state transition and the generated motion.
This could be another interesting angle for researchers to analyse
the relationship between the synthesised motion and the speech.
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