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Abstract Context. JavaScript is a popular programming language today
with several implementations competing for market dominance. Although a
specification document and a conformance test suite exist to guide engine
development, bugs occur and have important practical consequences. Imple-
menting correct engines is challenging because the spec is intentionally incom-
plete and evolves frequently. Objective. This paper investigates the use of
test transplantation and differential testing for revealing functional bugs in
JavaScript engines. The former technique runs the regression test suite of a
given engine on another engine. The latter technique fuzzes existing inputs
and then compares the output produced by different engines with a differen-
tial oracle. Method. We conducted experiments with engines from five major
players–Apple, Facebook, Google, Microsoft, and Mozilla–to assess the effec-
tiveness of test transplantation and differential testing. Results. Our results
indicate that both techniques revealed several bugs, many of which confirmed
by developers. We reported 35 bugs with test transplantation (23 of these bugs
confirmed and 19 fixed) and reported 24 bugs with differential testing (17 of
these confirmed and 10 fixed). Results indicate that most of these bugs af-
fected two engines–Apple’s JSC and Microsoft’s ChakraCore (24 and 26 bugs,
respectively). To summarize, our results show that test transplantation and
differential testing are easy to apply and very effective in finding bugs in com-
plex software, such as JavaScript engines.
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1 Introduction

JavaScript (JS) is one of the most popular programming languages today [72,
67], with penetration in various software development segments including, web,
mobile, and, more recently, the Internet of Things (IoT) [69]. The interest
of the community for the language encourages constant improvements in its
specification [78]. It is natural to expect that such improvements lead to sen-
sible changes in engine implementations [42]. Even small changes can have
high practical impact. For example, in October 2014 a new attribute added
to Array objects resulted in the MS Outlook Calendar web app to fail under
Chrome [19,28].

Finding bugs in JS engines is an important problem given the range of
applications that could be affected with those bugs. It is also challenging.
Specifications are intentionally incomplete as to enable development flexibility.
In addition, they evolve frequently to accommodate the pressing demands
from developers [77]. An official conformance test suite exists for JS [75], but,
naturally, many test scenarios are not covered in the suite. In addition, we
noticed that a significant fraction (5 to 15%) of the tests in that suite fail
regularly in the most popular engines, reflecting the struggle of developers in
keeping up with the pace of spec evolution (see Table 3).

This work, which is empirical in nature, reports on a study to evaluate the
ability of two testing techniques to expose bugs in JavaScript engines.

– Test transplantation. This technique evaluates the effect of running test files
written for a given engine in other engines. The intuition is that developers
design test cases with different objectives in mind. As such, replaying these
tests in different engines could reveal unanticipated problems.

– Cross-engine differential testing. This technique fuzzes existing test in-
puts [55] and then compares the output produced by different engines using
a differential oracle. The intuition is that interesting inputs can be created
from existing inputs and multiple engines can be used to address the lack
of oracles for the newly created inputs.

We selected these two techniques because they can take advantage of ex-
isting test suites and reuse them — in a semi-automated way as we propose
here — to enhance the coverage of the engine under testing. Cross-engine dif-
ferential testing is semi-automated as developers need to decide if alarms are
manifestations of real bugs. Test transplantation is also semi-automated and
developer intervention may be required to ensure that a test case from one
engine can be performed on another engine without adaptations; or to verify
that alarms are manifestations of real bugs and not the result of an unsup-
ported feature or an obsolete specification. This study measures the ability
of these techniques in finding bugs and the human cost associated with each
technique.

Related Ideas. Differential Testing [13] (DT) has been applied in a variety
of contexts to find bugs [85,18,9,17,65,71,87]. It has shown to be specially
practical in scenarios where the observation of difference gives a strong signal
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Fig. 1 Summary of bug reports.

of a real problem. For example, Mozilla runs JS files against different configu-
rations of a given build of their SpiderMonkey engine (e.g., trying to enable or
not eager JIT compilation1). A positive aspect of the approach is that it can
be fully automated—as only one engine is used, the outcomes of the test in
both configurations are expected to be identical. The Mozilla team uses this
approach since 2002; they have been able to find over 270 bugs since then [58],
including security bugs. Cross-engine differential testing, in contrast, has not
been widely popularized because the reported differences are more unlikely to
be false alarms. In this context, a number of legitimate reasons exist, other
than a bug, for a test execution to manifest discrepancy (see Tables 5 and 8).
As consequence, humans need to inspect the reports.

Results. We considered the following engines–ChakraCore (Microsoft),
JavaScriptCore (Apple), V8 (Google), SpiderMonkey (Mozilla), and Hermes
(Facebook). Figure 1 shows the breakdown of bug reports per engine (1a) and
per technique (1b). Each stacked bar breaks down the bugs per status (e.g.,
“1-New”). The prefix number indicates the ordering that status labels are as-
signed. Several of these reports have the label “3-Fixed”, indicating that bug
fixes have been incorporated into the code already. Note that most of these
bugs affected two engines–ChakraCore2 and JavaScriptCore (JSC). We also re-
ported five bugs in V8 (four confirmed), four bugs in Hermes (two confirmed),

1 These files are created with the grammar-based fuzzer jsfunfuzz [57]. Look for option
“compare jit” from funfuzz.

2 Microsoft announced in December 2018 that the Edge browser will be based on
Chromium and ChakraCore development would be discontinued [40].
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and one bugs in SpiderMonkey (one confirmed). Our results show that both
techniques revealed several bugs, most of which confirmed by developers. Test
transplantation revealed 35 bugs (of which, 23 were confirmed and 19 were
fixed) whereas differential testing revealed 24 bugs (of which, 17 were con-
firmed and 10 were fixed). Overall, results indicate that both techniques were
successful at finding bugs. The number of confirmed or fixed bugs are similar.
Most bugs we found are of moderate severity.

Key Findings. To sum up, we found that 1) Differential testing and Test
Transplantation are practical and effective techniques to find bugs on real,
complex, and widely used software systems and 2) Even for problems with
fairly clear specifications, as in JavaScript, there is likely (a lot of) variation
between different implementations, which brings intrinsic challenges to devel-
opers that work on them. Section 8.4 expands and elaborates our key findings
and lessons learned.

Contributions. The most important contribution of this work is empir-
ical: we provide a comprehensive study analyzing the effectiveness of test
transplantation and differential testing in revealing functional bugs in pop-
ular JavaScript engines. Additional contributions include: 1) A number of
bugs found and fixed. We reported a total of 59 bugs. Of these, 39 bugs were
confirmed and 29 bugs were fixed. 2) An infrastructure for performing test
transplantation and differential testing. The source code produced and the
generated data sets of tests and bugs are publicly available online at the fol-
lowing link:

https://github.com/damorimRG/entente/.

To summarize, this paper provides initial, yet strong evidence that test
transplantation and differential testing are simple and effective techniques to
find functional bugs in JavaScript engines and should be encouraged.

2 JavaScript

JavaScript engines are virtual machines that parse source code, compile it in
bytecodes, and run these bytecodes. These engines implement some version
of the ECMAScript (EcmaScript), which emerged with the goal to standard-
ize variants of the language, such as Netscape’s JavaScript and Microsoft’s
JScript3. The EcmaScript specification is regulated by Ecma International [25]
under the TC39 [75] technical committee. Every year, a new version of the Ec-
maScript specification is released with new features and minor fixes [77,78].

The specification of JavaScript is incomplete for different reasons. Certain
parts of the specification are undefined; it is the responsibility of the com-
munity to regulate the evolution of the language. The JavaScript spec uses
the label “implementation-dependent” to indicate these cases, where behavior
may differ from engine to engine. One reason for such flexibility in the spec is
to enable compiler optimizations. For example, the JS for-in loop construct

3 The name JavaScript still prevails today, certainly for historical reasons.
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Table 1 Engines selected.

Team Name URL # Stars DOB

Apple JSC (WebKit) [84] 3300+ Jun 2001
Google V8 [20] 9800+ Jun 2008

Microsoft ChakraCore [52] 7200+ Nov 2009
Mozilla SpiderMonkey [59] 1100+ Mar 1996

Facebook Hermes [35] 5400+ Jul 2019

does not clearly specify the iteration order of elements [73,41] and different
engines capitalize on that for loop optimizations [14]. As another example, the
specification states that if the Number.toPrecision() function is called with
multiple arguments then the floating-point approximation is implementation-
dependent [26]. Various other cases like these exist in the specification. Added
to that, given the speed the specification changes and the complexity of the
language some features are not fully implemented as can be observed by the
Kangax compatibility table [42]. It is also worth noting that, as in other lan-
guages, some elements in JS have non-deterministic behavior (e.g., Math.random
and Date). A test that makes decisions based on these elements could, in prin-
ciple, produce different outcomes on different runs. Carefully-written test cases
should not manifest this kind of flaky behavior. As previously mentioned, all
those aspects make testing JS engines challenging, albeit very important given
the its tremendous popularity.

3 Engines Studied

We selected JS engines according to the following criteria: 1) Released latest
version after Jan 1, 2018, 2) Contains more than 1K stars on GitHub, and 3)
Uses a public issue tracker. We looked for highly-maintained (as per the first
criterion) and popular (as per the second criterion) engines. As we wanted to
report bugs, we also looked for project with public issue trackers. We initially
selected four JS engines: JSC, V8, ChakraCore, and SpiderMonkey. Later, we
included Hermes in the list of studied engines. The main reason was to inves-
tigate how our approach would work on a recently introduced JS engine. More
about Hermes on Section 7. Table 1 lists the engines we analyzed. It is worth
noting that we used Google Chrome Lab’s JSVU tool [32] to automatically
install and configure versions of different JS engines in our host environment.
This is important as we aim to use the most recent stable versions of each
engine as to avoid reporting old and already-fixed bugs to developers.

4 Mined JS Files

Obtaining good sets of JS test cases is imperative to evaluate the techniques
in this paper. For that, we looked for JS files from various sources: 1) test files
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Table 2 Number of test files. Dashed rectangle under column “type-in-all” shows the tests
used for test transplantation whereas the rectangle under column “no-fail-in-all”—a subset
of the “type-in-all” tests—shows the tests used in cross-engine differential testing.

Name Source
# JS files

total pass-in-par. type-in-all no-fail-in-all

Test262 [74] 31,276 - 29,846 17,639

JSC [84] 1,265 1,130 1,122 1,054
SpiderMonkey [83] 3,122 2,155 2,103 1,837

V8 [20] 1,084 482 478 426
Hermes [35] 1,728 680 661 632

Duktape [23] 1,195 1,195 921 915
JerryScript [39] 1,951 1,951 1,878 1,837

JSI [38] 99 99 63 63
Tiny-js [82] 49 49 37 37
Babel [10] 9,953 - 2,198 1,745

BlogEngine.NET [11] 954 - 24 18

52,676 7,741 38,209 26,203

from the Test262 [75] conformance suite of the ECMA262 specification [78],
2) test files from the test suite of our selected engines; these files are accessible
from the engine’s official repositories, 3) test files from the suites of other public
engines (i.e., Duktape, JerryScript, JSI, Tiny-js, Babel, and BlogEngine.NET),
and 4) test files mined from issue trackers of these engines.

Table 2 shows the breakdown of tests. Column “Name” and “Source” show
the origin of the test suite. Column “total” shows the number of test cases
associated with a given source of JS files. Column “pass-in-par.” shows the
number of test cases that pass in the corresponding engine. We discarded
tests that fail in their engine as we could not reliably indicate the reason for
the failure, so we assumed the test could be broken. We removed 63 test cases
that fail for that reason–6 tests from JSC and 57 tests from SpiderMonkey.

Column “type-in-all” shows the number of test cases whose executions
do not throw dynamic type errors in any of the engines because of an un-
defined variable or property. These cases were captured by looking for the
presence of ReferenceError and TypeError on the output. A ReferenceError

(respectively, TypeError) is raised when test execution attempts to access an
undefined variable (respectively, property of an object). We discarded those
tests to avoid noise in the experiments as they indicate some missing feature
in the implementation of the engine as opposed to bugs. For example, some
tests use non-portable names (e.g., JSC’s drainMicrotasks() and SpiderMon-
key’s Error.lineNumber) or use functions that, albeit part of the spec, not
all engines currently support. Similarly, the ChakraCore project does not use
common assertions available used in JS program, which other JS engines sup-
port. Instead, it uses its own testing framework, WScript. In such cases, we
are unable to reproduce the ChakraCore unit tests in other engines—it raises
a ReferenceError. Also, updating the other engines to use WScript would re-
quire a non-trivial manual effort. This is why ChakraCore does not appear in
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Table 2. For the evaluation of test transplantation, we used the 9,485 tests
included in the dashed rectangle under column “type-in-all”, i.e., all tests un-
der that column but the Test262 tests. We did not consider tests from the
conformance suite as they are more likely to indicate missing features as op-
posed to bugs. In addition, engine developers have access to these tests and are
encouraged to run them. Column “no-fail-in-all” shows the tests for which all
engines pass. The tests in this set are used as fuzzing seeds in the evaluation
of differential testing. The guarantee that tests pass in all engines assures that
discrepancies are related to the changes in the input produced by fuzzers.

Cleansing We noticed that some of the tests we found depend on external
libraries, which not all selected engines support. We decided to discard those.
For example, we found many tests based on Node.js [81] that require libraries
to be installed before running the test and different tests require different sets
of libraries. Supporting those tests would require an extra setup step and would
slow down the execution of our experiments. Also, as already mentioned, we
did not consider tests from the ChakraCore repository because they depend
on non-portable objects.

Test Harness We noticed that some engines use a custom shell to run
tests, including a harness with specific assertions. For example, tests provided
by Mozilla contain a lot of custom functions (e.g., assertThrowsInstanceOf,
assertEqArray, and getPromiseResult) and those are included in the shell to
make the test run correctly. For that, we needed to make minor changes in the
testing infrastructure to be able to run the tests uniformly across all engines.
More precisely, we needed to mock non-portable functions, which are only
available in certain engines. Since we had to transplant more than 40k test
files, we tried to mock the minimum amount of code possible to make the test
file work in the other engine. For instance, if a test had a statement such as
print(1==1); we manually refactored that statement to assert(1==1)
which should throw an assertion violation if the condition returns false. If we
found the change would require substantial manual work, we opted to discard
the test instead.

Dedup The number of tests in V8 is low because we discarded duplicate tests
with Mozilla and JSC. The rationale is to avoid inflating results and giving
credit where it is due. We also wrote a script that compares each pair of tests
from different suites for similarity. We did not find identical tests, although it
is possible there are equivalent tests modulo renaming.

4.1 Mining Tests From Issue Trackers

Test cases embedded in issue trackers are an important source of data as they
may have already shown useful to reveal problems in some engine. For exam-
ple, a developer may have found a corner case that a given engine did not
handle properly. Therefore, it is possible that some other engine does not han-
dle that case as well. For that reasons, we thought that we should not ignore
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issue trackers. By manually analyzing a sample of issues, we observed that
developers either 1) add test cases as attachments of an issue or 2) embed the
test cases within the textual description of an issue. The test cases in attach-
ments are longer compared to the test cases embedded in issue descriptions
whereas the latter are more common. Consequently, we thought we should
handle both cases.

To obtain test files included as attachments, we wrote a crawler to visit
the issue trackers of all engines listed in Table 1 and we were able to retrieve a
total of 490 files. To mine tests from the textual descriptions we proceeded as
follows. First, we broke the text describing the issue in paragraphs and used
a binary classifier to label each paragraph as “code” or “not code” (i.e., text
written in natural language). Then, based on that information, we merged
consecutive paragraphs labeled as “code” and used a JS parser to check well-
formedness of the retrieved code fragment. Using that method we were able to
retrieve a total of 1,240 additional files. All those files were included in Table 2.

For the classification of “code” vs. “nocode”, we used popular techniques
for solving NLP classification problems [45]. First, we used word2vec [54], a
popular NLP technique to produce word embeddings. A word embedding is
a mapping of words to vectors of real numbers. Then, we used a multi-layer
perceptron [68] to infer the probability of the input belonging or not to the
class based on the distance between sentences (i.e., the distance from an input
sentence to a code example or to a nocode example) as induced by the distance
of comprising words computed with word2vec. The classifier labels the input
as code if the predicted probability of the input being code is 0.7 or higher.
We used a corpus with 25K samples of English paragraphs and 25K snippets
of JS code to train and test the classifier and obtained an accuracy of 98%.
This classifier is publicly available from our website as a separate component.

5 Cross-Engine Differential Testing

This section describes the infrastructure we used for cross-engine differential
testing. Figure 2 illustrates the workflow of the approach. It takes on input a
list of JS files and generates warnings on output. Numbered boxes in the figure
denote the data processors and arrowed lines denote data flows. The cycle icons
indicate repetition–the cycle icon close to the cylinder icon indicates that each
file in the input list will be analyzed in separate whereas the other cycle icon
shows that a single file will be fuzzed multiple times.

The bug-finding process works as follows. First, for a given test input, the
toolchain produces new inputs using some off-the-shelf input fuzzer (step 1).
Section 5.3 describes the fuzzers we selected. Then, the oracle checks whether
or not the output produced for the fuzzed file is consistent across all engines
(step 2). In case the test passes in all engines or fails in all engines (i.e., the
output is consistent), the infrastructure ignores the input. Otherwise, it con-
siders the input as potentially fault-revealing; hence, interesting for human
inspection. Finally, to facilitate the human inspection process, the infrastruc-
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Fig. 2 The workflow of the referred differential testing approach.

ture prioritizes warnings and clusters them in groups (step 3). We describe
these features in Sections 5.1 and 5.2. Note that a number of reasons exist,
other than a bug, for discrepancy to arise (see Tables 5 and 8) and there is no
clear automatic approach to precisely distinguish false and true positives. As
such, a human needs to inspect a warning to classify the issue. As mentioned
earlier, this justifies why differential testing is challenging to automate at the
functional level. Existing techniques that use differential testing deal with false
alarms differently. For example, Mozilla varies the configurations of their Spi-
derMonkey engine, but the implementation is the same [60]. Non-determinism
is therefore more likely to be associated with the variations across version
as these version use the same core implementation. CSmith [86] addresses the
problem by trying to avoid generating C files that produce undefined behavior.
Mapping all sources of undefinedness in JS is impractical.

For step 2, we considered using the open-source tool eshost-cli [12], also
used at Microsoft, for checking output discrepancy. However, we noticed that
eshost-cli does not handle discrepancies involving crashes. Our tool supports
the execution of the binaries themselves to obtain these fatal errors. It is
important to note that our checker does not support the case where the test
fails in all engines with a different kind of failure as it is unclear how to
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properly relate those failures. Currently, our infrastructure does not report
discrepancy on that case. We left that as future work as we already found
several discrepancies even without that.

5.1 Prioritization

We prioritized warnings based on their likelihood of manifesting a real bug.
We defined two types of warnings based on empirical evidence we obtained
while analyzing bugs. The types “hi” and “lo”. Warnings of the kind “hi” are
associated with the cases where the test code executes without violating any
internal checks, but it violates an assertion declared in the test itself or its har-
ness. The rationale is that the test data is more likely to be valid in this case
as execution does not raise exceptions in application code. Warnings of kind
“lo” cover the remaining cases. These warnings are more likely to be associ-
ated with invalid inputs. They reflect the cases where the anomaly is observed
during the execution of application functions as opposed to assertions. We ob-
served that different engines often check pre-conditions of functions differently.
It can happen, for example, that one engine enforces a weaker pre-condition,
compared to another engine, on the inputs of a function and that is acceptable.
In those cases, the infrastructure would report a warning that is more likely
to be associated with an invalid input produced by the fuzzer, i.e., it is likely
to be a “bug” in the test code as opposed to a bug in the engine. Recall that,
for differential testing, we only use seed tests that pass in all engines.

var buffer = new ArrayBuffer(64);
var view = new DataView(buffer);
view.setInt8(0,0x80);
assert(view.getInt8(-1770523502845470856) === -0x80);

Message from Engines (1:V8, 2:JavaScriptCore, 3:SpiderMonkey):
1. RangeError: Offset is outside the bounds of the DataView
2. RangeError: byteOffset cannot be negative
3. RangeError: invalid or out-of-range index

Fig. 3 Example of a “lo” warning that led to a confirmed bug report in ChakraCore.
The bug is caused by a required precondition check in the implementation of function
ToIndex [79], which is indirectly called by the test.

Despite the problem mentioned above, “lo” warnings can reveal bugs. Fig-
ure 3 shows one of these cases. In this example, the test instantiates an
ArrayBuffer object and stores an 8-bit integer at the 0 position. According
to the specification [79], a RangeError exception should be thrown if a nega-
tive value is passed to the function ToIndex, indirectly called by the test case
from the function call getInt8(). In this case, however, the ChakraCore en-
gine did not throw any exception, as can be confirmed from the report that
our infrastructure produces starting with text “Engine Messages” at the bot-
tom of Figure 3. This is a case of undocumented precondition. It was fixed by
developers and is no longer present in the most recent release of the engine.
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5.2 Clusterization

Clusterization is complementary to prioritization. It helps to group similar
warnings reported by our infrastructure. We only clustered “lo” warnings as
“hi” warnings produce messages that arise from the test case, which are typ-
ically distinct. Figure 3 shows a test that was originally available in the JSC
suite. The radamsa fuzzer mutated the test. It introduced the negative long
-1770523502845470856 as a parameter of the view.getInt8() method. Before
the mutation, the view.getInt8() method received zero as parameter. At the
bottom of this figure, there is a sequence of three elements that we use to char-
acterize a warning: 1) the identifier of an engine, 2) the exception it raises,
and 3) the message it produces on a “lo” warning. This sequence of triples
defines a warning signature that we use for clustering. It is worth mentioning
that we filter references to code in messages as to increase ability to aggregate
warnings. Any warnings, including this one, that has this same signature will
be included in the same “bucket”. Considering this particular example, the
signature for that cluster will be [(JavaScriptCore, “RangeError”, “byteOffset
cannot be negative”), (SpiderMonkey, “RangeError”, “invalid or out-of-range
index”), (V8, “RangeError”, “Offset is outside the bounds of the DataView”)].

5.3 Fuzzers

Fuzzers are tools for generating inputs for a given input format [51]. Different
fuzzing strategies exist. We analyzed generational and mutational fuzzers.

Generational fuzzers create inputs anew, typically following a language de-
scription, typically context-free grammars. Intuitively, those fuzzers implement
a traversal of the production rules of a grammar to create syntax trees, which
are then pretty-printed and used as a fresh input. Such strategy to create
inputs produces inputs that are syntactically valid by construction. We ana-
lyzed four grammar-based fuzzers–Grammarinator [36], jsfunfuzz [57], Lang-
Fuzz [37], and Megadeth [33]. Unfortunately, none of those were effective out-
of-the-box. For example, we produced 100K inputs with Grammarinator and
only few inputs were semantically valid. With Megadeth, we were able to pro-
duce more valid inputs as it contains some heuristics to circumvent violations
of certain typing rules. Nonetheless, running those inputs in our infrastructure
we were unable to find discrepancies. Inspecting those inputs, we realized that
they reflected very simple scenarios. To sum up, a high percentage of inputs
that Grammarinator and Megadeth generated were semantically-invalid that
we needed to discard whereas the valid inputs manifested no discrepancies.
Considering jsfunfuzz [57], which has been developed by the Mozilla team, we
noticed that, in addition to the issues mentioned above, it produces inputs
that use functions that are only available in the SpiderMonkey engine. We
would need either to mock those functions in other engines or to discard those
tests. Considering LangFuzz [37], the tool is not publicly available. Another
fundamental issue associated with generational fuzzers in our context is that
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the tests they produce do not contain assertions; to enable the integration of
this kind of fuzzers in our infrastructure—we would need to look for discrep-
ancies across compiler error messages as opposed to assertion violations. All
in all, although grammar-based fuzzers have been shown effective to find real
bugs [37], we did not consider those fuzzers in this study for the reasons above.

Mutational fuzzers modify inputs files provided as seeds. Gray-box muta-
tional fuzzers use coverage information to guide the mutation process. Amer-
ican Fuzz Loop (AFL) [1] and libFuzzer [3] are the most popular coverage-
guided fuzzers of today. These fuzzers run tests inputs against instrumented
versions of the programwith the typical goal of finding universal errors, like
crashes and buffer overflows. The instrumentation adds code to collect branch
coverage and to monitor specific properties4. AFL and libFuzzer work very
similarly. They use coverage to find inputs that uncover a new branch and
hence should be fuzzed more. These tools take as input a program binary (say,
a JS engine), which is instrumented to collect coverage information and to
capture runtime violations (e.g., illegal memory accesses), and one seed input
to that program (say, a JS program) and produces on output fault-revealing
inputs. We chose to use AFL and instrument V8. Unfortunately, we found that
most of the inputs produced by AFL violate the JS grammar. We would need
to translate production rules of Python to the AFL format to circumvent that
issue. We found that the fuzzing task can take days for a single seed input
and there is no clear way to guide the exploration. That happens because the
fuzzer aims to explore the entire decision tree induced from the engine’s main
function, including the branches associated with the higher layers of the com-
piler (e.g., lexer and parser). One way to mitigate that problem is by writing
fuzzing targets (a.k.a. targets) for specific program functions. Although that
approach has shown to be effective at Google [4,2], it requires domain knowl-
edge to create the calling context to invoke the fuzz target. For that, we decide
not to consider coverage-based in this study.

We used two black-box mutational fuzzers in this study: radamsa [34] and
quickfuzz [70]. These fuzzers require no instrumentation and domain knowl-
edge. They mutate existing inputs randomly. The strength of the approach is
limited by the quality of the test suite and the supported mutation operators,
which are typically simple. We chose these specific fuzzers because, concep-
tually, one complements the other. quickfuzz creates mutations like radamsa.
However, in contrast to radamsa, quickfuzz is aware of the JS syntax; it is able
to replace sub-trees of the syntax tree [33] with trees created anew. Notwith-
standing, since radamsa performs simpler syntactic source code modifications,
it also produces a higher number of valid inputs.

4 There are options in the clang toolchain to build programs with fuzzing instrumenta-
tion [3]. clang provides several sanitizers for property checking [50].
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6 Results

The goal of this paper is to assess ability of test transplantation and differential
testing to find functional bugs in JavaScript engines. Based on that, we pose
the following three questions:

RQ1. How conformant are the engines to the Test262 suite?
RQ2. How effective is test transplantation to find bugs?
RQ3. How effective is cross-engine differential testing to find bugs?

The first question focuses on the conformance of our selected engines to
the official Test262 suite [74] (Section 6.1). In the limit, bugs would have
low relevance if the engines are too unreliable. The second question focuses
on the effectiveness of test transplantation (Section 6.2). The rationale for
using inputs from different engines is that developers consider different goals
when writing tests—suites written for a given engine may cover scenarios not
covered by a different engine. The third question evaluates the effectiveness
of cross-engine differential testing to find bugs (Section 6.3). The rationale for
this question is that fuzzing inputs may explore scenarios not well-tested by
at least one of the engines.

6.1 Answering RQ1 (Test262 Conformance)

The ECMA Test262 [74] test suite serves to check conformance of engines to
the JS standard. It is acceptable to release engines fulfilling the specification
only partially [42]. We expect that the pass rate on this suite provide some
indication of the engine’s maturity. In the limit, it is not desirable to flood
bug reports on engines at early stages of development. For this experiment,
we ran the suite once a day for seven consecutive days and averaged the passing
ratios. We performed seven consecutive executions because, since the studied
JS engines release new versions on a daily basis, we wanted to make sure if the
failing tests raised by the Test262 suite were rapidly fixed by the maintenance
team. If errors were quickly fixed, this would suggest that a given engine
would be closely aligned with the ECMAScript specification. Table 3 shows
the average number of passing tests over this period. The variance of results
was negligible; for that reason, we omitted standard deviations. We noticed
that all engines but ChakraCore used some variant of the Test262 suite as part
of their regression process. We used the same version in this experiment [74].

Results show that there are still many unsupported scenarios as can be
observed from the percentages in the table. The number of passing tests is
high and similar for JSC, V8, and SpiderMonkey. Moreover, one can also
note that Hermes and ChakraCore have a low passing ratio in this test suite.
Interestingly, ChakraCore is also the one we were able to find more bugs (as
per Figure 1). Although it is plausible to find correlation between the passing
ratios and reliability as measured by the number of bugs found, we do not
imply causality. As discussed above, it is important to note that failures in
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Table 3 Percentage of passing tests on the Test262 conformance suite.

engine % passing

V8 95%
SpiderMonkey 93%

JSC 92%
ChakraCore 75%

Hermes 26%

this conformance test suite indicates missing features as opposed to bugs.
Finally, since Hermes has a very low adherence to the Test262 conformance
suite, we opted to conduct a case study with them. Therefore, we will only
discuss Hermes data at Section 7.

Summary: Most of the engines seem to adhere well to the JS standard.
Except for Hermes and ChakraCore, the passing ratio of all engines is
above 90%.

6.2 Answering RQ2 (Test Transplantation)

This section reports results of test transplantation. More specifically, we an-
alyzed the failures observed when running a test suite original from a given
engine in another engine. Intuitively, we want to assess how effective is the
idea of cross-fertilization of testing knowledge among JS developers.

6.2.1 Methodology

In this experiment, a developer with experience in JS analyzed each test fail-
ure, affecting a particular engine, and classified that failure as potentially
fault-revealing or not. The authors supervised the classification process to val-
idate correctness. For the potentially fault-revealing cases, one of the authors
inspected the scenario and, if agreed on the classification, reported the bug to
the issue tracker of the affected engine.

Table 4 Number of failures with Test Transplantation.

test suite\engine JSC V8 SpiderMonkey ChakraCore

JSC - 10 10 59
V8 41 - 3 5

SpiderMonkey 218 107 - 281
Duktape 0 4 4 1

JerryScript 23 25 22 23
JSI 0 0 0 0

Tiny-js 0 0 0 0

total 282 146 39 369
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6.2.2 Results

Table 4 shows the number of failures observed for each pair of test suite and
engine. The first column shows the test suites and the first row shows the
engines that run those tests. We use a dash (“-”) to indicate that we did not
consider the combinations that run the test suite of an engine in itself. Failures
in those cases would either indicate regressions or flaky tests as opposed to
unknown bugs for that engine. As explained in Section 4, we used a total of
9,485 tests in this experiment. These tests are included in the dashed rectangle
under column “type-in-all” on Table 2. Running those tests we observed a total
of 836 failures manifested across 612 distinct files (9.2% of total). Table 4 shows
that SpiderMonkey was the engine that failed the least whereas ChakraCore
was the engine that failed the most. The SpiderMonkey test suite also revealed
more failures than any other, perhaps as expected, given that it is the suite
with more tests (see Table 2).

In particular, we were not able to reuse the SpiderMonkey tests on the
Hermes engine. This happened because SpiderMonkey has its own assertion
framework, but Hermes did not interpret these assertions, resulting in failures
in all test executions from this engine. These failures did not happen when the
SpiderMonkey tests were transplanted to the other engines, though.

The sources of false positives found in this experiment are as follows:

Undefined Behavior. False positives of this kind are manifested when tests
cover implementation-dependent behavior, as defined in the ECMA262
specification [78]. For example, one of the tests from JerryScript uses the
function Number.toPrecision([precision]), which translates a number to
a string, considering a given number of significant digits. The floating-point
approximation of the real value is implementation-dependent, making that
test to pass only in ChakraCore.

Timeout/OME5. False positives of this kind typically manifest when the
engine that runs the test does not optimize the code as the original engine
of the test. As result, the test fails to finish at the specified time budget or
it exceeds the memory budget. For example, a test case from JSC defines
a function with a tail-call recursion. The test fails in all engines but JSC,
which implements tail-call optimization.

Not implemented. False positives of this kind manifest when a test fails
because it covers a function that is part of the official spec, but is not
implemented in the target engine yet. For example, at the time of writ-
ing, ChakraCore did not implement by default various properties from the
Symbol object. These properties are only available activating the ES6 ex-
perimental mode with the flag -ES6Experimental.

Non-Standard Element. These cases manifest when a function or an object
property is undefined in the execution engine but we were unable to capture
that by looking for error types like ReferenceError and TypeError.
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Other. This category includes other sources of false positives. For example,
it includes the cases where the test was valid for some previous version of
the spec but is no longer valid for the current spec.

Table 5 Distribution of False (FP) and True Positives (TP).

source #

FP

Undefined Behavior 204
Timeout/OME 23

Not Implemented 54
Non-Standard Element 122

Other 174

TP
Duplicate 11

Bug 24

Table 5 shows the distribution of False Positives (FPs) and True Positives
(TPs). The sum of the numbers in this table corresponds to the number of
files that manifested failures, i.e., 612. Considering false positives, “Undefined
Behavior” was the most predominant source. Considering true positives, we
found a reasonable number of duplicate reports, but not high enough to justify
attempting to automate the detection of duplicates.

Table 6 lists all bugs we found with test transplantation. The first column
shows the identifier we assigned to the bug, column “Engine” shows the af-
fected engine, column “Status” shows the status of the bug report at the time
of the writing. The status string appears in bold face for status “Confirmed”
or higher, i.e., “Assigned” and “Fixed”. Column “Severity” shows the severity
of confirmed bugs, and, finally, column “Suite” shows the name of the engine
that originated the test. Considering severity levels, we found that JSC [8]
and SpiderMonkey [60] developers use five levels, whereas ChakraCore [53]
and V8 [80] developers use only three. As usual, the smallest the number the
highest the severity of the bug. We use a dash (“-”) in place of the severity
level for the cases where the bug report is pending confirmation. Of the 35 bugs
we reported in this experiment, 23 were promoted from the status “New” to
“Confirmed”. Of these, 16 are severity-2 bugs. Although we did not find any
critical bugs, most of the bugs are seemingly important as per the categoriza-
tion given by engineers. Analyzing the issue tracker of ChakraCore, we found
that severity-1 bugs are indeed rare. Considering the number of bug reports
confirmed by developers, ChakraCore was the engine with the highest num-
ber: 12, with 3 bugs fixed. Considering the remaining engines, V8 developers
confirmed the three bugs we reported, fixing two. Curiously, Google engineers
confirmed the issued bug reports in a few hours. Likewise, we reported only
one bug on Mozilla’s SpiderMonkey, which was quickly fixed. Overall, we found
that development teams of other engines, specially JSC, took much longer to
analyze bug reports as can be observed in the JSC stacked bar from Figure 1a.
However, once the team confirmed those bugs they were then quickly fixed.
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Table 6 List of bugs reports from Test Transplantation.

# Engine Version Status Severity Suite

1 JSC 606.1.9.4 New - JerryScript
2 ChakraCore 1.9 Confirmed 2 SpiderMonkey
3 ChakraCore 1.9 Fixed 2 SpiderMonkey
4 ChakraCore 1.10-beta Confirmed 2 SpiderMonkey
5 JSC 606.1.9.4 New - SpiderMonkey
6 JSC 606.1.9.4 New - SpiderMonkey
7 JSC 606.1.9.4 Fixed 2 SpiderMonkey
8 ChakraCore 1.10-beta Fixed 3 SpiderMonkey
9 ChakraCore 1.10-beta Fixed 2 JSC

10 ChakraCore 1.10-beta Fixed 2 SpiderMonkey
11 ChakraCore 1.11-beta Fixed 2 JSC
12 ChakraCore 1.11-beta Confirmed 2 JerryScript
13 ChakraCore 1.10.1 Fixed 2 SpiderMonkey
14 JSC 233840 Duplicated 2 JerryScript
15 ChakraCore 1.10.1 Fixed 2 JerryScript
16 ChakraCore 1.10.1 Fixed 3 JerryScript
17 JSC 234555 Fixed 2 JerryScript
18 ChakraCore 1.10.1 Fixed 3 JerryScript
19 JSC 234654 Fixed 2 JerryScript
20 V8 7.0.181 Fixed 3 JerryScript
21 JSC 234689 New - JerryScript
22 V8 7.0.237 WontFix 2 Duktape
23 ChakraCore 1.10.2 Fixed 2 SpiderMonkey
24 JSC 235121 Fixed 2 SpiderMonkey
25 JSC 235121 Fixed 2 SpiderMonkey
26 V8 7.0.244 Fixed 2 SpiderMonkey
27 ChakraCore 1.10.2 Fixed 2 SpiderMonkey
28 JSC 235121 New - SpiderMonkey
29 ChakraCore 1.11.19 Confirmed - Babel
30 JSC 262693 New - Babel
31 JSC 262693 New - Babel
32 SpiderMonkey 77.0b9 Fixed 3 Hermes

Summary: Test transplantation was effective at finding functional bugs.
Although the cost of classifying failures was non-negligible, the approach
revealed several non-trivial bugs in three of the four engines we analyzed.

6.3 Answering RQ3 (Differential Testing)

This section reports the results obtained with cross-engine differential testing.

6.3.1 Methodology

The experimental methodology we used is as follows. As explained on Sec-
tion 5.3, we used Radamsa [34] and QuickFuzz [70] for fuzzing. To avoid ex-
perimental noise, we only fuzz test files that pass in all engines–a total of
26,203 tests satisfy this restriction. Those tests appear under the column “no-
fail-in-all” on Table 2. We want to avoid the scenario where fuzzing produces
a fault-revealing input based on a test that was already revealing failures on
some engine. This decision facilitates our inspection task; it helps us establish
cause-effect relationship between fuzzing and the observation of discrepancy.
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We configured our infrastructure (see Figure 2) to produce 20 well-formed
fuzzed files per input file, i.e., the number of fuzzing iterations can exceed the
number above as we discard generated files that are syntactically invalid.

Exploratory Phase For the first three months of the study, our inspection
process was exploratory. In this phase, we wanted to learn whether or not
black-box fuzzers could reveal real bugs and how effective was the hi-lo warn-
ing classification. We expected the number of warnings to increase dramati-
cally compared to the previous experiment and, if we realized that the ratio
of bugs from lo warnings was rather low, we could focus our inspection efforts
on hi warnings. To run this experiment, we trained eight students in analyzing
the warnings that our infrastructure produced. The students were enrolled in a
graduate-level testing class. We listed warnings in a spreadsheet and requested
the students to update an “owner” column indicating who was working on it,
but we did not enforce a strict order on the warnings the students should in-
spect. Recall from Section 5.2 that we clustered lo warnings in buckets. For
that reason, we only listed one lo warning per representative class/bucket in
the spreadsheet. First, we explained, through examples, the possible sources
of false alarms they could find and then we asked the students to use the
following procedure when finding a suspicious warning. Analyze the parts of
the spec related to the problem and, if still suspicious, look for potential du-
plicates on the bug tracker of the affected engine using related keywords. If
none was reported, indicate in the spreadsheet that that warning is potentially
fault-revealing. We encouraged students to use lithium [5] to minimize long
test cases. A bug report was filed only after one of the authors reviewed the
diagnosis. Each student found at least one bug using this methodology.

Non-Exploratory Phase Results obtained in the exploratory phase con-
firmed our expectations that most of the bugs found during the initial period
of investigation were related to hi warnings. For that reason, we changed our
inspection strategy. This time, some of the co-authors inspected the bugs using
a similar discipline as before. However, the set of warnings inspected and the
order of inspection changed. We restricted our analysis to hi warnings and,
aware that we would be unable to analyze each and every warning reported,
we grouped those warnings per engine, analyzing each group in a round-robin
fashion. At each iteration, we analyzed five warnings in each group. A warning
belongs to the group of a given engine if only that engine manifests distinct
behavior, i.e., it produces a distinct output compared to others. We separated
in a distinct group the warnings for which two engines diverge. The rationale
for this methodology was to give attention to each engine more uniformly,
enabling more fair comparison across engines.

6.3.2 Results

Table 7 shows statistics of hi warnings. The table breaks down hi warning by
the affected engine, i.e., the engine manifesting distinct output among those
analyzed. Column “+1” shows the cases where more than one engine disagree
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Table 7 Number of hi warning reports per engine.

fuzzer\engine JSC V8 ChakraCore SpiderMonkey +1

radamsa 151 50 331 94 528
quickfuzz 83 63 351 21 403

total 234 113 682 115 931

Table 8 Distribution of False (FP) and True Positives (TP).

radamsa quickfuzz

FP

Undefined Behavior 42 16
Timeout/OME 30 15
* Invalid Input 46 55

* Error Message Mismatch 41 12

TP
Duplicate 36 28

Bug 16 7

on the output. Note from the totals that the ordering of engines is consistent
with the one observed on Table 4, with ChakraCore and JSC in first and
second places, respectively, in number of warnings.

Table 8 shows the distribution of false positives per source. The sources
of imprecision are as defined in Section 6.2 with the addition of two new
sources, which we did not observe before. These new sources are marked with
a “*” in the table. The source “Invalid Input” indicates that the test input
violated some part of the specification. For example, the test indirectly invoked
some function with unexpected arguments; this happens because fuzzing is
not sensitive to function specifications. Consequently, it can replace valid with
invalid inputs. The source “Error Message Mismatch” corresponds to the cases
where the fuzzer modifies the assertion expression (e.g., some string expression
or regular expression).

Table 9 shows the list of bugs we reported. The table shows the fuzzing
tool used (“Fuzzer”), the JS engine affected (“Engine”), the status of the
bug report (“Status”), the severity of the bug report (“Sev.”), the priority
that we assigned to the warning that revealed the bug (“Priority”), and the
test suite from the original test input (“Suite”). So far, 16 of the bugs we
reported were confirmed, ten of which were fixed. Note that one bug report that
we submitted was rejected on the basis that the offending JS file manifested
an incompatibility across engine implementations that was considered to be
acceptable. As of now, we did not find any new bugs on SpiderMonkey; the
bugs we found were duplicates and were not reported. For V8, we reported 2
bugs, all of them confirmed, with 1 fixed.

Summary: Cross-engine differential testing was effective at finding JS
engines bugs, several of which have been fixed already.
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Table 9 List of bugs reports from Differential Testing.

# Fuzzer Engine Version Status Sev. Priority Suite

1 radamsa ChakraCore 1.9 Fixed 2 lo JSC
2 radamsa ChakraCore 1.9 WontFix - hi JSC
3 radamsa JSC 606.1.9.4 New - hi JSC
4 radamsa ChakraCore 1.9 Fixed 2 hi JerryScript
5 radamsa JSC 606.1.9.4 Fixed 2 hi JerryScript
6 radamsa ChakraCore 1.10-beta Confirmed 2 hi TinyJS
7 radamsa JSC 606.1.9.4 New - hi TinyJS
8 radamsa JSC 606.1.9.4 Fixed 2 lo SpiderMonkey
9 radamsa ChakraCore 1.10-beta Confirmed 3 hi JerryScript

10 radamsa ChakraCore 1.10-beta Fixed 2 hi V8
11 radamsa JSC 606.1.9.4 Fixed 2 hi JSC
12 radamsa JSC 606.1.9.4 Fixed 2 hi JerryScript
13 quickfuzz JSC 606.1.9.4 Fixed 2 hi JerryScript
14 quickfuzz ChakraCore 1.11-beta Confirmed 2 hi JerryScript
15 radamsa ChakraCore 1.10.2 Fixed 3 hi Test262
16 radamsa V8 7.0.244 Fixed 2 hi Test262
17 quickfuzz JSC 235121 New - hi Test262
18 quickfuzz V8 7.0.244 Confirmed 2 hi Test262
19 quickfuzz ChakraCore 1.10.2 Confirmed 2 hi Test262
20 quickfuzz JSC 235318 New - hi Test262
21 quickfuzz JSC 235318 New - hi Test262
22 radamsa ChakraCore 1.11.6.0 Confirmed - hi SpiderMonkey
23 radamsa ChakraCore 1.11.19 Confirmed - lo Hermes

Data Availability. The data, including the tests, warning reports, and di-
agnostic outcomes, is publicly available from a preserved repository https:

//github.com/damorimRG/entente/.

7 Case Study: Hermes

This section describes the experiment we conducted to evaluate the effective-
ness of the techniques we studied to find new bugs in Hermes, a JavaScript
engine that has started development very recently. Hermes is a JavaScript
engine introduced by Facebook in 2019. According to its website, Hermes is
“a JavaScript engine optimized for fast start-up of React Native apps on An-
droid” [35]. Currently, Hermes is used as a beta component of the react-native
framework, which is also maintained by Facebook. The goal of Hermes at Face-
book is to increase the performance of Android applications, such as startup
time, to reduce memory consumption and application size [30].

As a preparatory step to apply test transplantation and differential testing
to Hermes, we ran the Test262 conformance suite on the most recent version of
Hermes, 0.5.0. We observed that only 26% of the Test262 tests passed. When
taking a closer look, we noticed that this high percentage of failing tests was
due to the high number of features not yet supported by Hermes6. For instance,
in its most recent release, Hermes still does not support for features such as
Proxy, Promise, and Async calls. For this reason—low coverage on Test262—,
we opted not to include Hermes with other JavaScript engines. Since we only

6 See https://github.com/facebook/hermes/blob/master/doc/Features.md
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fuzz test files that pass in all engines, this would require us to significantly
reduce the number of tests used in the experiments, affecting overall results.

We followed the same methodology described in previous sections to eval-
uate Hermes. When experimenting with test transplantation, we noted many
errors when replaying the test suite of SpiderMonkey on Hermes. This hap-
pened because SpiderMonkey has its own assertion framework, but Hermes
was unable to interpret those assertions (because of missing features), result-
ing in failures in all test executions from. These failures did not happen when
the SpiderMonkey tests were transplanted to the other engines, though. Over-
all, we reported three issues to the Hermes bug tracker as result of using test
transplantation7. One of them was confirmed by the Hermes maintainers by
the time of this submission. For another, the maintainer explained the issue
was related to a feature not yet supported—a return statement outside the
scope of a block. For the third issue, developers disagreed on the proper im-
plementation of one particular part of the specification involved in the issue
(i.e., whether a numeric escape character (non-octal-eight, \8) should be al-
lowed or not in strict mode. The issue was closed, but the maintainers opened
a new one to discuss this matter. By following the discussion, it was inter-
esting to observe that maintainers are aware that this feature is implemented
by other engines such as V8, ChakraCore, and SpiderMonkey. Yet, they were
unsure how they should treat it in Hermes. Considering differential testing,
we found and reported one bug on Hermes using radamsa. As of this writing,
this particular bug report was not yet addressed by any Hermes maintainer.

Overall, we noted that test transplantation and differential testing were
effective techniques in revealing potential bugs in non-trivial JavaScript en-
gines of varying degrees of maturity. We found bugs both in extremely robust
and largely adopted engines and also in recently developed engines. The is-
sue diagnosis of developers seem to differ though. Issues reported to stable
engines are more likely to be real bugs—as lots of problems have been al-
ready scrutinized—whereas issues reported to new engines are more likely to
be inconsistencies related to influx development as opposed to real bugs.

8 Discussion

This section discusses bug reports, threats to validity, and key findings and
lessons learned.

8.1 Bug Reports

We issued several bug reports as result of this work. For space, we are unable
to discuss all of them. We sampled some bug reports to discuss in the following.
The selection criteria we used was:

7 https://github.com/facebook/hermes/issues/<id>, with id 265, 266, 267.
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1. to cover all engines we found bugs–ChakraCore, Hermes, JSC, SpiderMon-
key, V8 (see Figure 1);

2. to cover each technique–test transplantation and differential testing;
3. to cover a case of rejected bug report;
4. to use short tests (for space).

Issue #19, Table 6. The code snippet below shows the test input we used
to reveal a bug in JSC version 234555.

var obj = {}; var arr = [];
try { arr.sort(obj); assert(false);}
catch (e) { assert(e instanceof TypeError); }

This is a test case of the JerryScript suite. The bug was found during
the test transplantation experiment. According to the EcmaScript spec [76],
the parameter to the Array.sort function should be a comparable object or
an undefined value, otherwise it should throw a TypeError. In this case, JSC
incorrectly accepts a non-callable object as argument to sort and the test fails
in the subsequent step. The other engines raise a TypeError as expected.

Issue #32, Table 6. We reported the snippet "use strict" 010 to the Spi-
derMonkey development team as a bug and the bug was confirmed in a few
hours. This is a test case originally from the Hermes suite using test trans-
plantation. According the specification, in strict mode, the engine must use
the prefix ’0o’ or ’0O’ to represent octal numeric literals. This is an issue that
explores a deprecated octal token after ASI (Automatic Semicolon Insertion).
The other engines throw a SyntaxError due to the missing of the octal token,
but SpiderMonkey returns an integer 8 that represents 010 in octal.

Issue #2, Table 9. We reported the code snippet below to the ChakraCore
development team as a bug, but they did not accept.

function test() {
return typeof String.prototype.repeat === "function"
&& "foo".repeat(657604378) === "foofoofoo"; }

This is a test case original from the JSC suite that the radamsa fuzzer
modified. The original test used the integer literal 3 as argument to repeat(),
i.e., the expression produced a string with three repetitions of the string “foo”.
The new test uses a long integer instead as parameter to repeat(). As result,
the engine crashes. The team answered that this was an incompatibility by
design8 as the function was not expected to receive such a long value.

Issue #4, Table 9. The code snippet below shows a test that reveals a bug
in ChakraCore.

8 We interpreted as a violation of an undocumented precondition
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{ var a = {valueOf: function(){ return "\x00"}}
assert(+a === 0) }

The object property valueOf stores a function that returns a primitive
value identifying the target object [6]. The original version of this code re-
turns an empty string whereas the version of the code modified by the radamsa
fuzzer [34] returns a string representation of a null character (NUL). The unary
plus expression “+a”, used in the assertion, is equivalent to the operation
ToNumber(a.valueOf()) that converts a string to a number, otherwise the op-
eration returns NaN (Not a Number) [7]. This test fails in all engines but
ChakraCore. For all three engines the string cannot be parsed as an hexadeci-
mal. As such, they produce a NaN and the test fails as expected. ChakraCore,
instead, incorrectly converts the string to zero, and the test passes. As Table 9
shows, the ChakraCore team fixed the issue soon after our report.

Issue #18, Table 9. The snippet eval(function b(a){break;}); revealed a
bug in V8 version 7.0.244. This code snippet was obtained by fuzzing a Test262
test with quickfuzz. In its original version, a string (omitted for space), passed
as argument to the eval function, encoded the actual test. The fuzzer re-
placed the string argument with a function whose body is a break statement
outside a valid block statement. Section B.3.3.3 from the EcmaScript spec [24]
documents how eval should handle code containing function declarations. Ac-
cording to the spec [27], the virtual machine should throw an early error–in
this case, a SyntaxError–if the break statement is not nested in a loop or
switch statement. All engines, but V8, behave as expected in this case.

Bug reported on Hermes. The snippet b+/v/a represents a bug confirmed
in Hermes engine with differential testing using radamsa. The original test
case contains a string concatenation. This is a case of validation of RegEx
flags. The fuzzer mutates the file with a regular expression /v/ after the plus
operator. In this case, the plus operator turns into a flag of the RegEx +/v/, but
this flag is not valid. The expected behavior is to throw an early SyntaxError
due to the invalid regular expression flag, but Hermes seems not to treat the
early validation of the regexp flags as explained by one of their developers.

8.2 Threats To Validity

As it is the case of most empirical evaluations, our findings are subject to
internal, external, and construct threats to validity. Considering internal va-
lidity, conceptually, it is possible that the authors of this paper made mistakes
in the implementation of the scripts supporting the experiments. To mitigate
this threat, we carefully inspected the implementation and results, looking for
inconsistencies whenever possible. As for external validity, our results might
not generalize to other test inputs and engines. We though carefully selected
inputs from various sources according to a well-defined criteria (Section 4).
Likewise, we selected the engines by using using a documented criteria (Sec-
tion 3) and found that the engines selected were associated, certainly not by
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coincidence, with the browsers informally considered the most popular in the
market. A reader might argue that since we mined files from other JS engines,
such as Duktape, JerryScript, JSI, and Tiny-js, we could also have ran test
transplantation on them. We decided not to do so for different reasons: JSI
was deprecated, TinyJS is not actively maintained. Finally, at the time we
started this work, Duktape and JerryScript did not provide support to ES6.
We checked this information again in Jun 2020, and they are still only partially
supporting ES6. In terms of construct validity, we used standard metrics to
determine the effectiveness of the testing techniques we studied (e.g., number
of bugs confirmed and fixed and severity). Engine developers were responsible
for determining the labels of the bug reports and their severity. Consequently,
these metrics originate from a trusted source.

8.3 Key Findings

The main findings of this study are as follows.

1. Both techniques we studied have shown to be practical and effective to find
bugs on real, complex, and widely used software systems;

2. Even for language APIs with fairly clear specs, as it is the case of
JavaScript, there is likely (a lot of) variation between different implemen-
tations, which brings intrinsic challenges to developers that work on them;

3. Even simple black-box fuzzers can create surprisingly interesting inputs;

The main findings of this study are as follows: 1) The techniques we se-
lected found, with relatively low effort, several bugs even in very robust en-
gines, such as Mozilla’s SpiderMonkey, 2) Even for software projects with
fairly clear specifications, as the case of JavaScript [78], there are lots of un-
defined implementation-specific behaviors whose implementation can inadver-
tently lead to interference in the well-specified parts of the spec, leading to clear
bugs. 3) Finding functional/non-crash bugs with differential testing is feasible
on real, complex, widely used pieces of software. Even black-box mutational
fuzzers revealed bugs. We do expected that other kinds of fuzzers (e.g., gray-
box fuzzers and black-box grammar-based generational fuzzers) could reveal
even more bugs

8.4 Key Lessons

The key lessons of this study are as follows:

1. The use of Mozilla’s SpiderMonkey and Google’s V8 engines should be
encouraged;

2. The cost of inspection of the warnings in differential testing should be
reduced;
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3. Finding bugs in large software is a very effective way to engage students in
contributing to open-source software and learning Software Testing prac-
tices.

1) When taking into consideration our bug finding campaign, Mozilla’s Spi-
derMonkey and Google’s V8 stood out as the most reliable engines. Therefore,
we recommend the use of these engine for running JS applications. 2) Further
reducing cost of inspection in differential testing is an important problem. Al-
though the inspection activity was not uninterrupted, it is safe to say that
each warning required a substantial amount of time to analyze for potential
false alarms. In fact, many hi warnings reported with differential testing were
not analyzed. We observed empirically that the cost of analysis was propor-
tional to (i) the JS specification covered by the original test (as developers
need to read and understand those parts) and (ii) the availability of alterna-
tive implementations. We prefer to see such problem as an opportunity for
future research. For example, applying learning techniques to prioritize the
warnings more likely to be faulty (in the spirit of the work of Chen and col-
leagues [16]) may be a promising avenue to explore. Recall that the rate of
true positives of the techniques we studied is rather small. 3) We learned that
reporting real bugs is a great way to train (and encourage) students in software
testing. Students praised the experience of diagnosing failures, understanding
part of the specs (as needed), writing bug reports, participating in discussions
on issue trackers, and observing the change of status. That was a relatively
self-contained hands-on activity that enabled students to engage in a real-life
serious industrial project.

9 Related Work

9.1 Differential Testing

Several different applications of differential testing have been proposed in re-
cent years. Chen and colleagues [15] recently proposed a technique to generate
X.509 certificates based on Request For Proposals (RFC) as specification with
the goal of detecting bugs in different SSL/TLS implementations. Those bugs
can compromise security of servers which rely on these certificates to properly
authenticate the parties involved in a communication session. Lidbury and col-
leagues [49] and Donaldson and colleagues [22] have been focusing on finding
bugs in programs for graphic cards (e.g., OpenCL). These programs use the
Single-Instruction Multiple-Data (SIMD) programming abstraction and typi-
cally run on GPUs. Perhaps the application of differential testing that received
most attention to date was compiler testing. In 1972, Purdom [66] proposed
the use of a generator of sentences from grammars to test correctness of au-
tomatically generated parsers. After that, significant progress has been made.
Lammel and Shulte proposed Geno to cross-check XPath implementations us-
ing grammar-based testing with controllable combinatorial coverage [46]. Yang
and colleagues [86] proposed CSmith to randomly create C programs from a
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grammar, for a subset of C, and then check the output of these programs in
different compilers (e.g., GCC and LLVM). Le and colleagues [47] proposed
“equivalence modulo inputs”, which creates variants of program which should
have equivalent behavior compared to the original, but for which the com-
piler manifests discrepancy. Differential testing has also been applied to test
refactoring engines [21], to test symbolic engine implementations [43], to test
disassemblers and binary lifters [62,44], and very recently to test JavaScript
debuggers [48]. All in all, it has shown to be flexible and effective for a wide
range of applications. Surprisingly, not much work has been done on differential
testing of JS engines. Mozilla uses differential testing to look for discrepan-
cies across different configurations of the same version of its SpiderMonkey
engine (using the “compare jit” flag of jsfunfuzz [57]) whereas we focus on dis-
crepancy across engines. Patra and Pradel evaluated their language-agnostic
fuzzing strategy using differential testing. Their focuses on finding differential
bugs across multiple browsers [64]. As such they specialized their fuzzer to
HTML and JS (see Section 9.3). In contrast to Patra and Pradel, we did not
propose new techniques; our contribution was empirical.

9.2 Testing JS Programs

Patra and colleagues [63] proposed a lightweight approach to detect conflicts
in JS libraries that occur when names introduced by different libraries col-
lide. This problem was found to be common as the design of JS allows for
overlaps in namespaces. A similar problem has been investigated by Nguyen
and colleagues [61] and Eshkevari and colleagues [29] in the context of PHP
programs, which are popular in the context of Content Management Systems
as WordPress. The focus of this paper is on testing JS engines as opposed to
JS programs. Our goal is therefore orthogonal to theirs.

9.3 Testing JS Engines

The closest work to ours was done by Patra and Pradel [64]. Their work
proposes a language-agnostic fuzzer to find cross-browser HTML+JS discrep-
ancies. The sensible parts of the infrastructure they built are the checks of
input validity (as to reduce waste/cost) and output correctness (as to reduce
false positives). Patra and Pradel work is complementary to ours–in principle,
we could use their fuzzer in our evaluation. The main difference of our work to
theirs is in goal–we aim at assessing reliability of JS engines and find bugs on
them using simple approaches whereas they aim at proposing a new technique.

Fuzzing is an active area of investigation with development of new tech-
niques both in academia and industry. Several fuzzing tools exist focused on
JS. Section 5.3 briefly explain different fuzzing strategies and tools. Existing
techniques prioritize automation with a focus on finding crashes; see the san-
itizers used in libFuzzer [31], for instance. In general, it is important for these
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tools that a warning reveals something potentially alarming as a crash given
that fuzzing is a time-consuming operation, i.e., the ratio of bugs found per
inputs generated is often very low. Our approach contrasts with that aim as we
focus on finding errors manifested on the output, which rarely result in crashes
and, consequently, would go undetected by current fuzzing approaches. It is
should be noted, however, that such problems are not unimportant as per the
severity levels reported in Tables 6 and 9.

10 Conclusions

JavaScript (JS) is very popular today. Bugs in engine implementations of-
ten affect lots of people and organizations. Implementing correct engines is
challenging because the specification is intentionally incomplete and evolves
frequently. Finding bugs in JS engines is challenging for similar reasons.

This paper reports on a study to evaluate two techniques for finding bugs
in JS–test transplantation and cross-engine differential testing. The first tech-
nique runs the test suite of one given engine in another engine. The second
technique fuzzes existing inputs and then compares the output produced by
different engines with a differential oracle.

We found that both techniques were very effective at finding bugs in JS en-
gines. Overall, we reported 59 bugs in this study. Of which, 39 were confirmed
by developers and 29 were fixed. Although more work is necessary to reduce
cost of manual analysis, we found that our results provide strong evidence that
exploring test transplantation and differential testing should be encouraged to
find functional bugs in JavaScript engines.

In the near future, we plan to explore techniques to prioritize the warnings
reported by these techniques and to continue involving students in the task
of diagnosing these warnings. Using learning techniques for prioritization [56],
similar to what Chen and colleagues [16] did to prioritize the warnings reported
by CSmith [86], seems a promising starting point for this improvement.

The scripts to run the experiments for this study will be available upon re-
quest. The data is publicly available https://github.com/damorimRG/entente/.
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