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ABSTRACT
This paper describes the StyleGestures entry to the GENEA (Genera-
tion and Evaluation of Non-verbal Behaviour for Embodied Agents)
challenge 2020. The GENEA challenge is a recent initiative designed
to benchmark and compare systems for gesture generation by pro-
viding a common dataset and evaluation. For this first edition of
the challenge, we submitted our recently published probabilistic
gesture synthesis system based on normalising flows. Only minor
adjustments were made to the published system. The method takes
speech audio as input and generates new gesture poses in a con-
tinuous fashion. As the method is probabilistic, a large variety of
gestures can be sampled from the same speech audio. The system
can be trained end-to-end and requires no manual annotation. We
were pleased to see that our system ranked as one of the top two
systems in both challenge evaluations, even though we only used
audio as input and did not exploit the text transcriptions.

CCS CONCEPTS
• Computing methodologies→Motion capture; Animation;
Neural networks.
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1 INTRODUCTION
In the GENEA 2020 challenge we participated with a system called
StyleGestures, based on our recent publication [2]. StyleGestures
was developed at the division of Speech, Music and Hearing at KTH
Royal Institute of Technology, with a long tradition of research in
speech technology and multimodal communication.

One of the difficulties for speech driven gesture generation comes
from the weak coupling between speech and gestures. During nat-
ural speech, any same utterance will typically be accompanied by
very different gestures from time to time. Deterministic methods
fail to capture this variation and tends to collapse to some average
gesture. StyleGestures tackles this challenge by adapting a novel
probabilistic modelling technique called MoGlow [5]. MoGlow is
an autogregressive sequence model that uses normalizing flows
to model the probability distribution of the next pose in a pose-
sequence. Once initialised, new poses are generated sequentially
by random sampling from the model. While MoGlow is completely
general and makes no assumption of the nature of the motion or
control, StyleGestures was developed to investigate the specific case
of speech-driven gesture synthesis. As described in [2], StyleGes-
tures allows for generation of full-body gestures (including stepping
motion and stance shifts) and also supports an optional control over
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Figure 1: System overview. Green elements are inputs, blue
outputs.

Figure 2: Structure of the normalising flow during inference.
During synthesis the arrows are reversed.

gesturing style (involving e.g. gesture speed, spatial extent or sym-
metry). In this entry, we restricted the method to synthesising upper
body motion without style control.

2 SYSTEM OVERVIEW
The architecture behind our GENEA entry follows closely that of
[2]. In this section we give a brief overview of the architecture and
its general concepts. We encourage interested readers to delve into
the details in the original paper, as well as the underlying MoGlow
publication [5].

2.1 Network architecture
An overview of our system is shown in Figure 1. Green elements
are inputs and blue outputs. The idea is to treat motion as a sto-
chastic sequence of poses and to model the next-step probability
distribution conditioned on an autoregressive context of past poses
and an external control signal. In our case, the control signal is a
time slice of past and future speech, and the probability distribution
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is modelled with a normalising flow. During synthesis, the condi-
tioning information is concatenated to a single vector and fed into
the normalising flow together with a drawn random sample from a
latent Gaussian distribution. These inputs are transformed by the
flow into the next-step pose, and synthesis proceeds to the next
time-step.

Normalising flows are invertible neural networks capable of
transforming a complex distribution 𝒙 to a simple base distribu-
tion 𝒛 through a series of invertible non-linear transformations,
so called flow-steps, see Figure 2. As the transformations are in-
vertible, samples from the complex distribution can be generated
by reversing the flow. Each flow-step consists of three sub-steps:
activation normalisation, a linear transform and an affine coupling
layer. While the first two operations are linear and acts to normalise
and permute variables between flows, the affine coupling layer is
non-linear and passes variables through a neural network (in our
case an LSTM). When multiple flows are stacked, these operations
can yield very powerful transformations. The trick to make the
coupling layer invertible is to affinely transform only half of the
variables based on the second half, which are passed unchanged
(Figure 2 right). Upon inversion, the unchanged variables can be
used to reverse the transformation. The conditioning information is
fed into the affine coupling layer. During training, the normalizing
flow is optimised by maximising the likelihood of 𝑧.

3 DATA PREPARATION AND TRAINING
We used the supplied challenge data for model training and synthe-
sis [3]. The data contains motion capture and audio recordings of
a single actor talking spontaneously on different topics. The actor
moves freely around the motion capture space, taking small steps
back and forth and changing stance. We used the data in its original
form without manual annotation or cleaning. Although allowed by
the challenge, we did not explore the possibilities of pre-training
our model on external data.

We extracted 27 mel-spectrogram features from the audio as
input to our system, and 45 joint angle features from the motion
data as output. The joint angles were expressed as exponential maps
[4].

3.1 Networks and training
In addition to our base StyleGestures implementation1, we prepared
two systems for comparison and possible improvements. In the
first system, we replaced the LSTM in the affine coupling layer
with a GRU. This was made in attempt to speed up training time
and reduce the amount of parameters. In the second system, we
changed the latent 𝒛-distribution from a Gaussian to a t-distribution,
turning the flow into a studentising flow [1]. This was in attempt
to make the model training robust to outliers arising from noisy
motion capture data or uncommon movements. For this system,
we omitted gradient clipping, and set the degrees of freedom of the
𝑡-distribution to 𝜈 = 50.

All systems were trained using the same hyperparameters. We
used 𝐾 = 16 flows and 𝐻 = 512 units in the recurrent networks
(each containing 2 layers). The models were trained using the Adam
optimizer [6] and a Noam learning rate scheduler [9] with 3k steps
1https://github.com/simonalexanderson/StyleGestures

of warm-up and peak learning rate 15−3. The number of past con-
text frames was set to 5 (0.25s) for both motion and speech, and
the number of future frames to 20 (1s) for the speech. These hy-
perparameters differs slightly to those in [2]. Most notably, 𝐻 was
decreased from 800 to 512, which is consistent to the full-body (FB)
systems in the paper. We have found that the lower value of H
leads to a more diverse gesture behaviour. We held out one of the
sessions ("Recording 1") for network tuning.

We subjectively assessed the output of the three systems by in-
specting random samples from the three models. Unfortunately, we
did not have time to perform a full-scale perceptional study. As we
could not identify any salient differences between the systems, we
chose to use the base model as our final system. We re-trained it
using all sessions (including the one previously held out) and em-
ployed it to generate gestures from the challenge test data. During
synthesis we initialized the poses in the autoregressive context with
a static mean pose, and padded the audio features with one second
of silence in the end. This was done to be able to generate the last
second of gestures. Note that these actions causes the beginning
and end of each generated gesture sequence to be of lesser quality.
We did not apply any smoothing or other post-processing to the
generated motion.

4 RESULTS
The challenge organization conducted a detailed subjective evalua-
tion comparing all submitted systems. The evaluation comprised a
human likeness study to assess motion quality, and an appropriate-
ness study to assess how well the gestures match the speech. The
evaluations were performed on an online crowd sourcing platform
(Prolific), where the participants were asked to rate video stimuli on
a 100-point scale. All systems showed the same 3D avatar. Submit-
ted systems were presented page-wise side-by-side along with two
baseline systems [7, 10] (labeled BA and BT) as well as a system
with natural recordings (labeled N) and a systemwithmiss-matched
natural gesture and speech (labeled M). StyleGestures is labeled SC.
For more details about the evaluation studies, please refer to the
challenge paper [8].

4.1 Human likeness study
In the humans likeness study, the participants were presented with
muted video stimuli and asked to consider the question “How
human-like does the gesture motion appear?”. StyleGestures re-
ceived a median score of 57 (mean 55.8), which ranked second
among the participating systems. The difference to the higher
ranked entry (SD) was not significant, nor were the differences
to the two lower ranked systems (BT and SB). Bar plots and signifi-
cance comparisons are shown in Figure 3.

4.2 Appropriateness study
In the appropriateness study, the participants were shown video
stimuli accompanied with speech audio. Ratings were based on
the question “How appropriate are the gestures for the speech?”.
Unlike the human likeness study, this study contained the system
with miss-aligned speech and gestures (labeled M).

https://github.com/simonalexanderson/StyleGestures
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Figure 3: Boxplots (top) and significance of differences (bot-
tom) for the human likeness study. In the latter, white
means that system y rated significantly higher system x,
blackmeans the opposite, and greymeans no significant dif-
ference (at the 0.01 level after Holm-Bonferroni correction).

StyleGestures received a median score of 50 (mean 50.6) which
was highest among the participating systems. The statistical analy-
sis showed that the ratings were significantly above all participating
systems but system SD. Interestingly, the miss-matched system M
was higher ranked than all synthesis systems. Thismay be explained
by the high gesture rate and low amount of pauses in the dataset
in combination with the known fact that the temporal alignment
between speech and gesture is not exact. Our system was the only
one not rated significantly lower than M. Bar plots and significance
comparisons are shown in Figure 4.

4.3 Joint visualisation
A comprehensive visualisation comparing all systems is shown in
Figure 5. Here, each system is represented as an ellipse, and ordered
according to median rating. Overlapping ellipses means that the
conditions were not statistically significantly different at the 0.01
level after Holm-Bonferroni correction.

A
p
p
ro
p
ri
at
en
es
s
ra
ti
n
g

N M SC SD SE SB BA BT SA
0

20

40

60

80

100

...over system x, in terms of appropriateness

S
ig
n
ifi
ca
n
t
p
re
fe
re
n
ce

fo
r
sy
st
em

y
..
.

N M SC SD SE SB BA BT SA

N

M

SC

SD

SE

SB

BA

BT

SA

Figure 4: Boxplots (top) and significance of differences (bot-
tom) for the appropriateness study. In the latter, white
means that system y rated significantly higher system x,
blackmeans the opposite, and greymeans no significant dif-
ference (at the 0.01 level after Holm-Bonferroni correction).
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Figure 5: Significance of differences between conditions in
the two studies.

5 DISCUSSION
Even though we did not make use of the text transcriptions pro-
vided with the challenge, we can observe that our system compares
favourably to most of the others. Regarding that the challenge data
consisted of spontaneous monologues with a high proportion of
beat gestures, we think that our model in its current form is well
suited. We stress that nothing in our model prevents the use of
semantic features in future experiments.

A benefit that may contribute to our high naturalness ranking is
our system’s ability to generate other motion than hand-gestures,
for example head motion and arm swinging. As our model does
require any labels to differentiate gestures from other types of
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motion, such movements are naturally replicated from the training
data.

Taking a closer look at data quality, we think that improve-
ments could be made by data cleanup. Especially, we found that
the skeleton in the GENEA dataset has more raised shoulders in
some sessions than others. We have previously found that incon-
sistencies in data severely affects model training and generation.
For example, discontinuities in joint angles representation due to
a poor choice of reference pose caused early models to generate
very jerky motion. In this regard we hoped our experiments with
robust model training using studentising flows would have given a
clearer result. Although the results showed better likelihood scores
on held-out validation data (similar to the training curves seen in
[1]), it was hard to assess any improvements visually. In lack of a
conclusive result, we chose to use our base model as our challenge
entry.

6 CONCLUSIONS AND FUTUREWORK
We have described our entry to the GENEA challenge 2020, which
closely followed our recent publication [2]. We look forward to
improving the system for future GENEA challenges, for example by
pre-training the model on external data, or exploiting text features
and language models.
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