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Purpose of the Talk
Objective
This presentation is supposed to provide you with

selected challenges that arise in the financial industry,
an introduction to how these challenges can be tackled by means of
machine learning techniques.

Disclaimer
This introduction does not provide a comprehensive overview of how
machine learning techniques are applied in the financial industry.
The presented topics may grant an essential competitive advantage.
However, please be aware of inherent risks.
This talk does not disclose any profitable investment strategies.
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1 Challenges
Asset Management
Pricing and (Over-)Hedging

2 Neural Networks

3 Machine Learning
Supervised Learning
Reinforcement Learning

4 Applications
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Valuation and (Over-)Hedging
What is a fair price P(0,T ) of getting one monetary unit at time T > 0 as
seen from t = 0?

naive approach:
P(0,T ) = 1

issues: inflation risk, credit risk, liquidity risk

static approach:

P(0,T ) =
1

(1+ r)T

for some interest rate r

Risk-Adjusted Valuation

P(0,T ) is the minimal cost to (super-)replicate the desired payoff.
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Valuation and (Over-)Hedging
Monte-Carlo
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Monte-Carlo
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Valuation and (Over-)Hedging
Monte-Carlo
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Valuation and (Over-)Hedging
Option Pricing

strike K

payoff max
{
K − St , 0

}
price of the European option
price of the American option

sup
τ∈Tt,T

EQ

[
e−

∫ τ
t

ru du max
{
K − Sτ , 0

}∣∣∣Ft

]

price of the underlying St
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Valuation and (Over-)Hedging
Dynamic Programming

t = 0 t = 1

price of underlying: 100

110

90

Discrete World: K = 110, r = 5%

76%

24%
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Valuation and (Over-)Hedging
Dynamic Programming

t = 0 t = 1

price of underlying: 100
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Valuation and (Over-)Hedging
Dynamic Programming

t = 0 t = 1

price of underlying: 100

110

90

Discrete World: K = 110, r = 5%

76%

24%

payoff: 0

payoff: 20

present value: 10 = max
{
10, 24%× e−0.05 × 20

}
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Valuation and (Over-)Hedging
Flaws of Classical Valuation Approaches

Monte-Carlo-techniques or dynamic programming tend to be
computationally intensive.
The level of sophistication remains limited.
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Valuation and (Over-)Hedging
The Curse of Dimension

Discretisation of
No. of Underlyings Space and Time Runtime Scale Unit

1 1 000 1 millisecond
2 1 000 000 1 second
3 1 000 000 000 17 minutes
4 1012 12 days
5 1015 32 years
6 1018 317 centuries
...

...
...

...

Longstaff-Schwartz (2001): 20 underlyings
Becker-Cheridito-Jentzen (2018): 500 underlyings below 10 minutes
with techniques inspired from machine learning
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Valuation and (Over-)Hedging
Investment in a Stock
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Valuation and (Over-)Hedging
Derivatives
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Valuation and (Over-)Hedging
Capital Protected Note

Notional Amount NA = CHF 1 000
Issue Date today (t = 0)
Maturity T = 1y
Underlying S&P500 index (St)0≤t≤T
Coupon 5%
Payoff NA× (100% plus Contingent Payoff)
Issue Price 100%

Contingent Payoff (Down-and-Out Barrier Option): Provided that the
underlying does not touch the knock-out barrier 94%× S0 during the lifetime
of the contract (continuous observation), you will participate in the
underlying’s outperformance by getting

max
{
ST/S0 − 105%, 0

}
.
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Valuation and (Over-)Hedging
A derivative is a financial instrument whose price is derived from
underlying market prices.
Typical underlyings are commodities, currencies, equities, indices and
rates.
The payoff-diagram depicts the conversion of financial market
scenarios into payoffs; see also the SVSP Swiss Derivative Map.
According to Maringer et al., roughly 4% of the managed assets in
Switzerland are invested in structured products.
Reasons for their popularity:

They offer the possibility of high returns in every market
situation.
They facilitate bespoke hedging and speculation.
The provide market access at relatively low cost.

Create your own structured product: Credit Suisse my Solutions,
Leonteq Constructor, UBS Equity Investor Marketplace, Vontobel
Deritrade
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https://www.svsp-verband.ch/wp-content/uploads/2019/01/SVSP_Faltblatt_205x297_2019_DE.pdf
https://www.credit-suisse.com/microsites/mysolutions/en.html
https://services.leonteq.com/constructor/c2/public
https://eqi.ibb.ubs.com/equityinvestor/de/UBS/index.html
https://www.deritrade.com/en-ch/
https://www.deritrade.com/en-ch/


Valuation and (Over-)Hedging
Lifecycle of Structured Products
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Valuation and (Over-)Hedging
Hierarchy of financial assets from the accounting and pricing viewpoint
(according to FASB 157):

Level 1: Quotes are readily observable in the market.
Level 2: Prices can be inferred through models and observable
quantities.
Level 3: Valuations involve complex models and subjective
assumptions.

A professional and well-calibrated valuation platform must meet the
following requirements:

The model reprices level 1 products.
The model features generally observed market phenomena.
The model accounts for the significant risk drivers in a realistic
manner.
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Valuation and (Over-)Hedging

Risk-Adjusted Valuation

What is a fair price π0 of getting h(S) at time T > 0 as seen from t = 0,
where S = (St)0≤t≤T is a d-dimensional underlying risk factor and h some
payoff function?

Finding realistic dynamics is almost impossible due to the statistical
uncertainty.
The (super-)replication strategy is often not known explicitly.
Trading off complexity, mathematical tractability and inherent
model risks is very challenging.
Analytically, it is very hard to deal with transaction cost.
Maintaining and automating a suitable, efficient and well-calibrated
valuation platform (e.g., stochastic local volatility models) for several
thousand derivatives is tough.

21INew Frontiers in Quantitative Risk Management Autumn 2020



The Game Has Changed
In 2017 a research group of DeepMind published the following results:

White Black Wins3 Draws Losses
AlphaZero1 Stockfish 25 25 0
Stockfish2 AlphaZero 3 47 0

1 AlphaZero is an algorithm that learns to play chess from scratch solely by smart
self-play.

2 Stockfish is a powerful open-source chess engine and TCEC world champion 2016.
3 Outcome as seen from AlphaZero’s perspective.

This result stimulates the imagination that quantitative methods for
finance enter a new era.
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The Game Has Changed

Paradigm

Regarding the presented challenges, what would a clever1 financial agent
with a lot of experience2 and a decent risk appetite3 do?

1 The trained artificial agent has super-human skills in the specific task with respect
to a given performance measure.

2 The trained artificial agent has gained super-human experience in the considered
task, e.g., a wealth of experience over 100 000 years acquired within as little as
30 minutes. Furthermore, the agent is unforgetful and demonstrates a consistent
performance.

3 The trained artificial agent can perfectly weigh up the benefits of a restructured
portfolio and the costs to be borne. Its behaviour and performance can be
validated almost instantaneously for arbitrary base and stress scenarios.
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The Game Has Changed
Selected Milestones

1943

Artificial Neurons
(McCulloch-Pitts)

Development of Artificial
Neural Networks

2000 2015 2018

Necessary computational power
becomes affordable

Google makes TensorFlow
publicly available

Deep Hedging
(BGTW)

1847

Gradient Descent
(Cauchy)
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4 Applications
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Neural Networks

Input Output

Hidden Layers

Machine Learning from the Mathematical Viewpoint

Simply put, it is the approximation of a high-dimensional non-linear
function in terms of a (deep) neural network (DNN).
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Neural Networks
Perceptron
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Neural Networks
Mathematical Properties

Universal Approximation Theorems: Provided that they are
sufficiently large, neural networks can approximate complex functions
arbitrarily close.
Computing the derivative of the network output with respect to the
weights is straightforward. Therefore, an incremental learning
process becomes feasible.
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Neural Networks
Business Problem

P(x) =
1
3
x3 − 10.1x2 + 91x
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Machine Learning
Supervised Learning

Training: Minimise a Loss Function

input prediction

DNN

sample

data

sample
output
data

lossupdate weights

Validation: Check Accuracy of Prediction on Concealed Data
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 0
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 1 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 2 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 3 000

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

4

3

2

1

0

1

Y=
f(X

)

goodness-of-fit

35INew Frontiers in Quantitative Risk Management Autumn 2020



Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 4 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 5 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 6 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 7 000

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

4

3

2

1

0

1

Y=
f(X

)

goodness-of-fit

39INew Frontiers in Quantitative Risk Management Autumn 2020



Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 8 000

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
X

4

3

2

1

0

1

Y=
f(X

)

goodness-of-fit

40INew Frontiers in Quantitative Risk Management Autumn 2020



Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 9 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 10 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 25 000
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Machine Learning
Supervised Learning
Number of Nodes: 1–30–30–10–10–1
Number of Epochs: 25 000
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Machine Learning
Observations

The learning process evolves in small and random steps.
The update of the weights results from the backpropagation
algorithm. It can be seen as a very smart way of combining
Monte-Carlo techniques and dynamic programming.
Choosing suitable hyperparameters for the learning process might be
tricky.
Computing power is crucial.
Neural networks can be evaluated efficiently by using pertinent
software libraries, e.g., TensorFlow.
Storing neural networks requires comparatively little storage space.
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Machine Learning
Reinforcement Learning

Training: Maximise a Reward Function

DNN

rewardupdate weights

DNNDNN

t = 0 t = 1 t = 2 t = 3 t = n

DNN

Validation: Check Performance of Decisions on New Scenarios
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Machine Learning
Reinforcement Learning
Scenarios, Features and States
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Machine Learning
Experiment on Deep Hedging

Exposure: We issue a call option with payoff max{ST − K , 0}, strike
K = 100 and maturity T = 30d .
Market Environment:

bank account
underlying

Rules:
Investment strategies must be self-financing.
Re-allocations are possible once a day and may involve
proportional transaction cost.

Objective: We aim to minimise the quadratic discrepancy between the
due payoff and the value of the hedge.
Training: 10 000 scenarios
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Machine Learning
Deep Hedging (without Transaction Cost)
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Machine Learning
Deep Hedging (without Transaction Cost)
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Machine Learning
Deep Hedging (without Transaction Cost)
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Machine Learning
Deep Hedging (without Transaction Cost)

96 98 100 102 104
price

0.56

0.57

0.58

0.59

0.60

he
dg

e
Hedging Strategy at Time 2

52INew Frontiers in Quantitative Risk Management Autumn 2020



Machine Learning
Deep Hedging (without Transaction Cost)
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Machine Learning
Deep Hedging (without Transaction Cost)
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Machine Learning
Deep Hedging (with Transaction Cost)
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Machine Learning
Deep Hedging (with Transaction Cost)
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Machine Learning
Deep Hedging (with Transaction Cost)
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Machine Learning
Summary

Traditional Programming: The algorithm/recipe is specified line-by-line.

data + program −→ output

Supervised Learning: The instructors know and reveal the correct
solution but not the approach (e.g., detection of counterfeit money).

data + output −→ program

Reinforcement Learning: The instructors do not know the «best»
approach themselves; however, they can appraise the quality of a trial (e.g.,
quest for an optimal trading strategy).

rules + scenarios −→ convincing strategy
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Machine Learning

Hypothesis

Techniques inspired from reinforcement learning pave the way for a new era
in quantitative risk management from various viewpoints.

1. It is a disruptive technology; high-dimensional optimisation
problems of this kind were not accessible until only recently.

2. It is a very efficient and powerful technology with
super fast requests-on-demand,
instantaneous validation (model risk management).

3. It is a very flexible technology. In a few lines of code, one easily
accounts for

arbitrary path-dependent payoffs,
complex stochastic environments,
liquidity squeezes/transaction cost/price impacts,
regulatory constraints,
risk appetite.
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Outline
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Asset Management
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Applications
Machine Learning in Finance

Optimisation of business and hedging strategies
Asset-liability-management, quantitative risk management
Valuation of financial derivatives
Technology transformation (automation, digitisation)
Forecasts (e.g., client behaviour, credit migration and defaults, fraud
detection, marketing)
...

The optimisation potential is (still) immense.
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Applications
Hydro-electric Power Plant
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Applications
Hydro-electric Power Plant

-20

0

20

40

60

80

100

01.01.2018 02.01.2018 03.01.2018 04.01.2018 05.01.2018 06.01.2018 07.01.2018 08.01.2018

P
ri

ce
 in

 E
U

R
 p

er
 m

W
h

Date

Electricity Prices in CH

source: Bloomberg

63INew Frontiers in Quantitative Risk Management Autumn 2020



Applications
Hydro-electric Power Plant
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Applications
Hydro-electric Power Plant

Stochastics

Constraints

FrictionsTrade-offs

Complexity

• Electricity Rate
• Rainfall
• Insolation
• Temperature

• Gauge Height
• Production Capacity

• Operating Cost
• Maintenance

• Planning Security vs. 
Profit Opportunities

• Temporal Dependency
• High-Dimensional and 

Volatile Price Dynamics

Commodity: Energy
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Applications
Asset-Liability-Management of a Financial Enterprise

Stochastics

Constraints

FrictionsTrade-offs

Complexity

• Price Dynamics
• Term Structures
• Client Behaviour

• Risk Capacity
• Regulatory Environment

• Transaction Cost
• Negative Interest Rates

• Sufficient Liquidity vs. 
Risk-Adjusted Return-on-
Equity

• Large Scope of Action
• Investment Universe

Commodities: Credit, Liquidity, Money
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Applications
Balance Sheet of a Financial Enterprise

assets liabilities

debts
investment portfolio

equity, share capital

Objective
Maximise the expected utility of the return-on-equity over different time
instances while not exceeding a certain draw-down and while guaranteeing
the regulatory constraints with a high probability.
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Applications
Balance Sheet of a Retail Bank

assets liabilities
bonds (liquid, illiquid) deposits (FT, NM)
credit (FT, NM) interbank loans
RRR surplus central bank reserve
cash repos
equities

equity, share capital
swaps

Objective
Maximise the expected utility of the return-on-equity over different time
instances while not exceeding a certain draw-down and while guaranteeing
the regulatory constraints with a high probability.
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Applications
Balance Sheet Roll-Forward
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Applications
Model Ingredients for Reinforcement Learning

economic scenario generator
yield curves
credit migrations
stock prices
client behaviour
...

parameterisation of the states
rule book

constraints
eligible balance sheet restructuring
frictions

objective

70INew Frontiers in Quantitative Risk Management Autumn 2020



Applications

Deep Asset-Liability-Management

Simply put, one solves high-dimensional hedging problems with
constraints in the presence of frictions by means of techniques inspired
from reinforcement learning.
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Applications
Similar Use Cases

insurance company
pricing of contracts that accounts for insurance risks
optimised reinsurance programme
investment strategy that accounts for the necessary returns and
liquidity

production company
trading with pricing impact
optimal procurement under uncertainty and storage cost

power production
optimised production under uncertainty and constraints
pricing and hedging in an illiquid environment
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Applications
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Figure 3.
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Applications
Further Research

Reach a suitable level of complexity.
Deal with uncertainty of model assumptions.
Model choices and regulisations that promote robust solutions.
Corroborate that sophisticated approach and additional complexity is
profitable.
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Concluding Remarks
The difficulty of a problem is always relative; certain problems are
«difficult» for humans and «easy» for computers, and vice versa.
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