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1. Introduction

The Boundary Element Method (BEM) is often the method of choice for the solution of

problems in unbounded domains, when those problems can be described using a boundary

integral equation. It is especially attractive for the solution of problems in acoustic radiation

and scattering since the boundary condition at infinity is automatically satisfied, and the

only discretization required is the meshing of the scattering surface rather than of the fluid

domain in which the acoustic wave propagates. This advantage is diminished somewhat by

the dense solution matrices which arise in the algorithm, but when acceleration techniques

such as the Fast Multipole Method (FMM) [1,2] or Multipole Expansion Approximation [3]

the BEM is capable of handling complex geometries with many thousands of degrees of

freedom. An introduction to use of the BEM in acoustics, with associated code, is freely

available [4] and describes all of the essential features required to make use of the method

in applications. The general approach is solve an integral equation for a surface potential,

with the surface and the potential represented by discrete elements and the integral equation

applied at a set of points on those elements.

A central part of the BEM is then the evaluation of potential integrals, to compute the

contribution of an element to the potential field, or to the entries of the solution matrix. It

is thus a key factor in the accuracy and efficiency of any implementation, and one which

has attracted great interest over many decades. In this paper we develop a method for the

evaluation of integrals which arise in the three-dimensional BEM for acoustics, where the

1
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acoustic potential φ external to a surface A, is given by the integral formulation:

φ(x) =

∫
A

∂φ1

∂n
G(x,x1)− ∂G(x,x1)

∂n
φ1 dA, (1)

where x indicates position, subscript 1 variables of integration on the surface A, and n the

outward pointing normal to the surface. The Green’s function G is:

G(x; x1) =
ejkR

4πR
, (2)

R = |x− x1|,

where k is acoustic wavenumber, and the exp[−jωt] convention is adopted throughout.

Given the surface potential φ and gradient ∂φ/∂n, the potential, and, after differentiation,

its gradient(s), can be evaluated at any point in the field. Also, given a boundary condition

for φ and/or ∂φ/∂n on A, the integral equation can be solved for φ(x) and/or ∂φ/∂n(x),

x ∈ A.

If the boundary integral equation is solved using a collocation method, the surface A

is divided into elements, here taken to be plane triangles, and suitable shape functions are

used to interpolate the potential on these elements. The integral equation is transformed

to a linear system in the element potentials, with the influence coefficients determined by

the potential generated by each element at each node of the surface mesh. This leads to the

requirement to evaluate integrals I and ∂I/∂n where:

I =

∫
Ae

f(ξ, η)G(x,x1(ξ, η)) dAe, (3)

with Ae the surface of an element and (ξ, η) a coordinate system local to Ae. The requirement

then is to evaluate integrals of exp[jkR]/R and its derivatives over a triangular element. This

is especially challenging when the field point x is on, or near, the element, and the 1/R

singularity must be accommodated in the integration scheme.

There are numerous numerical schemes for the evaluation of the surface integrals, which

mainly vary in their approach to dealing with the singularity, or near-singularity. When a

field point is well-separated from the element, standard Gaussian quadratures for a trian-

gle [5, for example] are perfectly adequate since there is no singularity, or near-singularity,

in the integrand.

For field points on the element, a transformation to polar coordinates centered on the

field point is sufficient to remove the singularity in 1/R and such an approach is also used

to deal with near-singularities, often in combination with a further transformation as in

the PART methods of Hayami [6], the self-adaptive scheme of Telles [7, 8], or asymptotic

expansions [9]. With regard to a different application of the BEM, Huang and Cruse [10]

summarize approaches for singular integrals, including analytical and semi-analytical meth-

ods, degenerate mapping, special quadrature rules, and, in the case of singular integrals,

finite-part methods. It is accepted that there is no truly analytical solution for the potential

from an element in the acoustic BEM.
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It is desirable to develop analytical methods for the evaluation of the potential from

a panel for two main reasons. The first is that in the singular or near-singular case, an

analytical method may be more efficient than a numerical approach which requires a large

number of function evaluations or the use of transcendental functions in a coordinate trans-

formation. Clearly, for field points which are far from the element, a low-order numerical

quadrature is the correct approach and suffers no loss of accuracy. The second reason for

developing analytical methods is their ease of handling: an explicit formula for the integral

can be manipulated, for example to compute derivatives or to take limits, without loss of

accuracy or the risk of introducing singularities which are not properly handled by whatever

numerical quadrature rule may be in use.

There do exist a number of analytical schemes for the equivalent integral in the Laplace

equation [11–16, for example], some of which can be used to deal with the singular terms

in the acoustic problem and thus ease numerical integration, but there are few analyti-

cal methods for the Helmholtz problem. Clearly, given the absence of an exact analytical

solution for the retarded potential from a plane element, any closed-form solution is an ap-

proximation, but it should be possible to approximate the integral to any required accuracy,

in a form amenable to analytical manipulation, so that the result can be used as if it were

an analytical formula for the potential. This is especially important for the case of a field

point on or near the element, where the ability to handle singularities analytically offers an

advantage over purely numerical schemes.

To the author’s knowledge there are two published methods for closed-form or analytical

evaluation of the Helmholtz potential from a planar element [17,18]. These use two different

approaches to the problem. In one [17], an expression is derived in the Fourier domain

resulting in an expression based on a series of terms defined by integrals of Hankel functions.

These integrals can be evaluated analytically in terms of Struve functions, yielding a closed-

form solution for the potential from a planar element, but at the expense of using special

functions not routinely available in numerical libraries.

The second approach [18], which is similar in spirit to the method of this paper, makes use

of results derived for the Laplace problem [13] and approximates exp[jkR] as a polynomial

over the element. This is justified by noting that in order to properly resolve the solution

the element size is already limited by the requirement to avoid aliasing in the representation

of the surface potential, so that a relatively low-order approximation containing five or six

terms of the Taylor series for exp[jkR] is adequate for evaluation of the integrals to the

tolerance specified.

The method of this paper uses a similar approach, in that it replaces the exponential

with an approximation of controlled error, and uses results from an analysis of the Laplace

problem [11] to compute the terms in the resulting expansion. It differs in the form of Laplace

solution used, and in the choice of expansion for the exponential, to give a systematic control

on quadrature accuracy optimized to require a minimum number of terms. Additionally,

a criterion is provided for choosing when, and when not, to use the analytical approach

or a purely numerical method, based on an error analysis of integration using a polar

coordinate transformation. To the author’s knowledge, this error analysis is novel and may
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Fig. 1. Integration of Laplace potential over a triangle

have applications more generally.

2. Integration of the 1/R Potential

In order to motivate the development of the closed-form expression for the acoustic potential,

we begin by analyzing the numerical evaluation of the Laplace potential, which corresponds

to the leading-order, singular, part of the Helmholtz potential, which gives rise to the

difficulties in numerical integration.

The model problem is shown in Figure 1 and consists of the evaluation of

I =

∫
A

r

R
dr dθ, (4)

R2 = r2 + z2,

over the area of the triangle shown, which lies in the plane z = 0, with the usual transfor-

mation to polar coordinates (r, θ) for the integration.

The error in the evaluation of this integral, especially at small values of z arises from the

singular, or near-singular, term 1/R. Here we develop an approximate error analysis for the

evaluation of this term, which can be used in determining the required order of integration

for r/R and when to switch to some other quadrature approach, such as that in the next

section. An error analysis for integration using the polar coordinate transformation has been

published previously [19] but the analysis presented here appears to be novel and is simple

enough for use as an a priori estimator in determining quadrature order in applications.

The analysis depends on an error estimate for the 1/R term in a numerical polar in-

tegration, such as (19a). If such an integration is performed using Gaussian quadrature,

the integrand is being approximated by a polynomial over the interval of integration and

the accuracy of the approximation is determined by the number of terms required to ap-

proximate the integrand accurately. We perform the analysis by estimating the error in the
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Fig. 2. Notation for error analysis of 1/R expansion

polynomial expansion of 1/R and use it to give an approximation of the order of polynomial

required to approximate 1/R to a given tolerance. Given this polynomial order, a Gaussian

quadrature of sufficiently high order can be selected, or if the order required is too great,

the analytical method of the following section can be used.

From (2), we write

r = rmid − trmid, rmid = rmax/2, −1 ≤ t ≤ 1, (5)

R2 = r2 + z2 = R2
mid

[
1− 2 cos2 φt+ (t cosφ)2

]
, (6)

R2
mid = r2

mid + z2, cosφ = rmid/Rmid, (7)

and neglect the case of φ = 0 as in this case r/R ≡ 1 and the polynomial representation of

the integrand raises no difficulties.

Using the generating function for Legendre polynomials [20, 8.921],

1

R
=

1

Rmid

∞∑
q=0

(t cosφ)qPq(cosφ). (8)

If the expansion is truncated at q = Q, the error at any value of t is given by the remainder

εQ =
1

R
− 1

Rmid

Q∑
q=0

(t cosφ)qPq(cosφ) =
1

Rmid

∞∑
q=Q+1

(t cosφ)qPq(cosφ), (9)

which can be rewritten using the large-order asymptotic form of the Legendre polyno-

mial [20, 8.918],

Pq(cosφ) ∼
(

2

πq sinφ

)1/2

cos [(q + 1/2)φ− π/4] , (10)

so that

εQ ≈
1

Rmid

1

(π sinφ)1/2

∞∑
q=Q+1

tq
cosq φ

q1/2
[cos(q + 1/2)φ+ sin(q + 1/2)φ] . (11)

An upper bound for the sum can be found by replacing q1/2 with (Q + 1)1/2 and, upon
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rearrangement,

εQ ≈ =
1 + j

Rmid

ejφ/2

[π(Q+ 1) sinφ]1/2

∞∑
q=Q+1

(
t cosφejφ

)q
,

= =1 + j

Rmid

ejφ/2

[π(Q+ 1) sinφ]1/2

(
t cosφeφ

)Q+1

1− t cosφejφ
. (12)

As will be seen, this is an accurate estimate of the remainder in the polynomial expansion

of 1/R but it is oscillatory as a function of q, so we adopt the more convenient measure of

the magnitude rather than the imaginary part,

EQ =
1

Rmid

(
2

π sinφ

)1/2 |t|Q+1

(Q+ 1)1/2

cosQ+1 φ[
(1− t)2 cos2 φ+ sin2 φ

]1/2 . (13)

We note that (12) could be integrated over t to give an estimate of the total error in the

integral of r/R but this gives an unwieldy expression with little advantage in implementa-

tions. Instead we adopt as error criterion the absolute value given by (13) with the value of

t given by the nearest point on the element. In particular, when the projection of the field

point lies on the element, i.e. when the triangle in Figure 1 encloses the origin, t = 1 and

the error estimate for 1/R is

EQ =
1

Rmid

(
2

π sin3 φ

)1/2 cosQ+1 φ

(Q+ 1)1/2
. (14)

From the form of the error estimate, the reason for the difficulty in evaluating near-singular

integrals is clear: near the element plane where φ → 0, approximation of the integrand by

a polynomial, implicit in the use of Gaussian quadratures, incurs a very large error, even

for quite high order quadratures with large Q.

To minimize the computational burden of using the criterion, it is applied in the fol-

lowing manner. Given the transformation into coordinates based on the element plane, the

minimum distance rmin from the origin to the triangle can be determined using (5) with

rmin ≡ 0 when the triangle encloses the origin. The maximum distance to a vertex rmax

is found similarly. Then we set rmid = rmax/2, t = (rmid − rmin)/r and other quantities as

above. The criterion is then applied by computing EQ for Q = 1, 2, . . . until EQ falls below

some specified tolerance, and returning the resulting value of Q, the order of polynomial

required to compute 1/R to the specified tolerance over the range of the integral. We note

that the error measure here is the maximum error in 1/R at any point in the range of

integration, which is quite a stringent, though conservative, measure, but it will be found

that EQ is a useful assessment of the accuracy of quadrature.

Figure 3 shows the error estimates as a function of z for a test case with a 32nd order

polynomial, equivalent to a 16 point Gaussian quadrature. The error estimate εQ is seen

to be very reliable, and the magnitude EQ does indeed match the envelope of the error

quite closely. Figure 4 shows the error as a function of Q for fixed z and again the error

behavior is accurately captured by the estimators. Despite the relative simplicity of the error
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Fig. 3. Error in polynomial approximation of 1/R, Q = 32, rmid = 1/2, t = 1: solid line exact error; dots
estimate from (12); dashed line absolute value from (13)
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Fig. 4. Error in polynomial approximation of 1/R, rmid = 1/2, z = 0.1, t = 1, 7/8, 3/4: solid line exact error;
dots estimate from (12); dashed line absolute value from (13)

measures, they give reliable indicators of the accuracy of the quadrature or of the order of

quadrature required for a given tolerance. We note finally that the quantities used in the

error measure are typically computed as part of the geometric transformations required in

generating a quadrature on an element, so that there is very little overhead in applying the

error estimate.

3. Analysis

The problem to be considered is evaluation of the Helmholtz single- and double-layer poten-

tial integrals on a planar triangular element. Integration is performed after transformation

of coordinates such that the triangular element is defined by vertices (xi, yi, 0) and the field

point lies at (0, 0, z). The triangle is then decomposed into up to three triangles each having

a vertex at (0, 0, 0). The process is shown in Figure 5. The approach is similar to that taken

in a previous analysis for the Laplace potential [11], though some changes are required to
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Fig. 5. Integration over a general triangle (left) by subdivision into three triangles centred at the origin (right).
The triangle shown dashed in the exploded view on the right has negative orientation and its contribution
is subtracted from that of the others. The distance rmin is used in applying the criterion of Section 2.

make it suitable for the Helmholtz problem.
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Fig. 6. Reference triangle for integration

Figure 6 shows the basic triangle which is used for the evaluation of the contributions

from the subtriangles of Figure 5. It has one vertex at the origin, i.e. at the projection of

the field point onto the element plane, and is defined by the lengths of the two sides which

meet at the origin, r1 and r2, and by the angle Θ between them.

In developing the analysis, we assume that the triangular element conforms to some

reasonable standards of quality, in particular that the edge length is no greater than some

specified fraction of a wavelength, typically between one sixth and one eighth. This translates

into a limit on k`, where ` is a typical edge length. Taking into account the need to deal

with triangles which are larger than the element proper, such as triangle 023 in Figure 5,
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we assume that k` < π/2, which allows us to limit the size of the expansions which will

be employed in evaluating the potential integrals, while retaining the required accuracy. If

necessary, this limit can be increased, at the expense of extra computational effort and a

small increase in stored data.

3.1. Basic integrals

Integration is performed on the reference triangle of Figure 6, using the polar coordinate

system (r, θ). Geometric parameters are defined,

φ = tan−1 r1 − r2 cos Θ

r2 sin Θ
, r(θ) =

s

cos(θ − φ)
, (15)

s = r1 cosφ, S2 = s2 + z2, (16)

and auxiliary variables used in performing the integrations are

α2 = z2/S2, R =
(
r2 + z2

)1/2
= S∆/ cos θ, ∆2 = 1− α2 sin2 θ. (17)

The integrals to be evaluated are the zeroth and first order derivatives with respect to

z of

I0 = ejk|z|I ′0, Ix = ejk|z|I ′x, Iy = ejk|z|I ′y, (18)

where the basic integrals are

I ′0 =

∫ Θ−φ

−φ

∫ r

0

ejk(R−|z|)

R
r dr dθ, (19a)

I ′x =

∫ Θ−φ

−φ

∫ r

0

ejk(R−|z|)

R
r2 dr cos θ dθ, (19b)

I ′y =

∫ Θ−φ

−φ

∫ r

0

ejk(R−|z|)

R
r2 dr sin θ dθ, (19c)

withR =
(
r2 + z2

)1/2
,

and correspond to the zero and first order source terms required for linear shape functions

on a plane element. The normal derivatives are given by differentiation with respect to z,

for example,

∂I0

∂z
= ±jkejk|z|I ′0 + ejk|z|∂I

′
0

∂z
= −∂I0

∂n
(20)

where the element is oriented such that the normal lies in the positive z direction, and the

upper (lower) signs are taken for positive (negative) z.

The integrals are evaluated by expanding the complex exponential in a polynomial

approximation, and evaluating term-by-term using analytical formulae defined by recursion
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relations, as in previous work [11]. The form of the approximation for exp[jkx] will be

considered in Section 3.3, but for now we write

ejk(R−|z|) ≈
Q∑
q=0

eqk
q(R− |z|)q, (21)

eq = cq + jsq,

where sinx ≈
Q∑
q=0

sqx
q, cosx ≈

Q∑
q=0

cqx
q.

Expanding in powers of k(R−|z|) has the advantages of ensuring that the expansion remains

valid for large values of z as (R− |z|)→ 0 as z →∞, and providing a natural reduction in

the number of terms in (21) for increasing z.

Substituting (21) into (19), yields

I ′0 ≈
Q∑
q=0

eqKq,0, (22a)

I ′x ≈
Q∑
q=0

eqKq,x, (22b)

I ′y ≈
Q∑
q=0

eqKq,y, (22c)

where

Kq,0 = kq
∫ Θ−φ

−φ

∫ r

0
(R− |z|)q r

R
dr dθ, (23a)

Kq,x = kq
∫ Θ−φ

−φ

∫ r

0
(R− |z|)q r

2

R
dr cos θ dθ, (23b)

Kq,y = kq
∫ Θ−φ

−φ

∫ r

0
(R− |z|)q r

2

R
dr sin θ dθ. (23c)

The integrals of (23) can be evaluated analytically using a combination of recursions and
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tabulated integrals. The inner integrals are given by,

kq
∫ r

0
(R− |z|)q r

R
dr =

kq(R− |z|)q+1

q + 1
=
S(kS)q

q + 1

(
∆

cos θ
− α

)q+1

, (24)

kq
∫ r

0
(R− |z|)q r

2

R
dr =

kqr

q + 2

(
R− |z|

)q+1
+

2|z|
q + 2

Jq,

=
sS(kS)q

q + 2

(
∆

cos θ
− α

)q+1 1

cos θ
+

2|z|
q + 2

Jq, (25)

Jq = kq
∫ (R+|z|)

1/2

(2|z|)1/2

(
t2 − 2|z|

)q+1/2
dt.

The integral Jq can be evaluated using the recursion

Jq =
kqr

2(q + 1)

(
R− |z|

)q − k|z|2q + 1

q + 1
Jq−1,

=
s

2

(kS)q

q + 1

(
∆

cos θ
− α

)q 1

cos θ
− k|z|2q + 1

q + 1
Jq−1, (26)

J0 =
r

2
− |z|

2
log

R+ r

|z|
,

=
s

2

1

cos θ
+
|z|
4

log
∆− α′

∆ + α′
, (27)

so that all required terms are written in a form suitable for the application of standard

formulae for trigonometric integrals [20, 2.58],

Kq,0 =
S(kS)q

q + 1

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1

dθ, (28a)

Kq,x =
sS(kS)q

q + 2

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1

dθ +
2|z|
q + 2

Iq,c, (28b)

Kq,y =
sS(kS)q

q + 2

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 sin θ

cos θ
dθ +

2|z|
q + 2

Iq,s, (28c)

Iq,c =

∫ Θ−φ

−φ
Jq cos θ dθ, Iq,s =

∫ Θ−φ

−φ
Jq sin θ dθ.

The normal derivatives of the integrals can be evaluated by differentiating terms, yield-
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ing,

∂Kq,0

∂z
= ∓(kS)q

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 cos θ

∆
dθ, (29)

∂Kq,x

∂z
= ∓s(kS)q

q + 1

q + 2

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 cos θ

∆
dθ ± 2

q + 2
Iq,c +

2|z|
q + 2

∂Iq,c
∂z

, (30)

∂Kq,y

∂z
= ∓s(kS)q

q + 1

q + 2

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 sin θ

∆
dθ ± 2

q + 2
Iq,s +

2|z|
q + 2

∂Iq,s
∂z

. (31)

All integrals can then be evaluated using the results of Appendix A. This gives a means of

evaluating all required expressions for the integrals on the triangular element, which can

then be summed to give the integral over the initial general triangle.

3.2. Hypersingular integral

The results of Section 3.1 may be used to solve boundary integral problems using a standard

Helmholtz equation. It is often desirable to employ a Burton and Miller approach [21]

to avoid the well-known problem of fictitious resonances when the wavenumber k in the

exterior problem coincides with an eigenvalue of the interior problem. In this approach, the

Helmholtz equation is combined with its normal derivative to yield a formulation which is

numerically valid for all real wavenumbers, at the expense of requiring the evaluation of

hypersingular integrals of the form

∂2

∂n2

∫∫
Ae

f(ξ, η)G(x,x1(ξ, η)) dξ dη. (32)

In order to meet continuity requirements, the collocation points in a hypersingular method

must lie strictly within elements, though discontinuous elements offer a way around this [22],

and so we give a result for the zero-order (constant) element only:

∂2Kq,0

∂z2
=

(kS)q

S

[
α

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 cos3 θ

∆3
dθ (33)

+(q + 1)

∫ Θ−φ

−φ

(
∆

cos θ
− α

)q+1 cos2 θ

∆2
dθ

]
.

3.3. Approximation of exponentials

In order to efficiently evaluate the formulae of Section 3.1, we require a means of selecting the

polynomial approximation to the exponential, (21). The most obvious choice is to truncate

the Taylor series for ex at some point where the estimated remainder is smaller than a

specified tolerance ε. For reasons of efficiency, however, we adopt an “economized” series

which replaces the truncated Taylor series with a polynomial approximation with minimum

deviation and a minimized error over the range where the polynomial is used. Given that

the integral terms are evaluated using recursion relations, by reducing the number of terms,

we also reduce the chance of numerical error accumulating in moving from term to term.
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Fig. 7. Sample triangle and field points

The economization algorithm is that given by Acton [23, p291–296] and is used to

generate a set of polynomial approximations of sinx and cosx over a range 0 ≤ x < ∆x,

to a tolerance ε where ε is the maximum difference between exp[jx] and the polynomial

approximation over the range 0 ≤ x < ∆x. For the calculations of this paper, ∆x =

π/16, π/8, π/4, π/2, and ε = 10−n, n = 3, 6, 9, 12, 15. In the implementation, a polynomial

approximation is chosen which has the required maximum error less than ε and k` < ∆x. In

the case of ∆x = π/2, for example, this gives a reduction in the number of terms required

from fifteen for the truncated Taylor series to eight for the economized polynomial when

ε = 10−9.

3.4. Summary of method

The quadrature method of the previous sections can be summarized as follows, for a triangle

(x1,x2,x3) which has been rotated into the plane z = 0 and field point x = (0, 0, z), Figure 5:

(1) determine the closest and furthest points on the triangle boundary and their radial

distances rmin (Figure 5) and rmax;

(2) compute the required order of quadrature Q for polynomial approximation of 1/R,

Section 2;

(3) if Q falls below the set limit:

(a) evaluate the integrals numerically and terminate;

otherwise

(a) decompose the triangle into up to three sub-triangles centered at the origin;

(b) for each sub-triangle compute the contribution using the formulae of Section 3.1

and accumulate, taking account of sub-triangle orientation.

4. Numerical Testing

As a numerical test of the performance of the method, we use the same test case as Pourah-

madian and Mogilevskaya [18], Figure 7. Four points are selected in the element plane,
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as indicated, and we evaluate I0 for k = 1 as a function of z, vertical displacement from

the element; results for Ix and Iy are similar. As a reference for error estimation, we fol-

low Pourahmadian and Mogilevskaya and use a polar transformation and a 50 × 50 point

Gaussian quadrature, which is accurate to eight significant figures [18]. The reported error

is

ε(z) = |I(a)
0 (z)− I(c)

0 (z)|, (34)

with superscripts ‘a’ and ‘c’ denoting ‘analytical’ and ‘computed’ values respectively. Error is

evaluated by specifying the required tolerance ε(a) in the analytical method and computing

the resulting ε. A second set of error calculations are presented by fixing ε(a) = 10−12,

varying the order of numerical quadrature in the polar transformation, and computing the

resulting error ε(c). Figure 8 gives ε as a function of z for varying ε(a), and ε(c) for varying

order of Gaussian quadrature, plotted with Q computed for varying values of EQ. Figure 8

shows error data for the evaluation of I0 and Figure 9 for the normal derivative ∂I0/∂z.

The left-hand column of Figure 8 shows the error estimate for points 1, 2, 3, and 4 in

Figure 7 which correspond respectively to field points whose projections lie on a vertex, in

the interior, on an edge, and outside the element. The reference integral I
(c)
0 for points 1–3 is

computed using the 50×50 Gaussian quadrature after transformation to polar coordinates,

and that for point 4 using the 175 point symmetric quadrature of Wandzura and Xiao [5].

Errors are computed with a requested tolerance ε(a) = 10−3,−6,−9,−12 and the computed

errors reflect both the accuracy of the analytical method and the conformity to the requested

tolerance. In applications, there is reasonable confidence that the error will be approximately

equal to that requested, without excessive computation.

The right-hand column of Figure 8 presents data relevant to the error estimate EQ
and the accuracy of Gaussian quadrature in this problem. The darker curves show an

error estimate computed as the difference between the analytical method with a requested

tolerance of 10−12 and numerical quadrature of varying order. As expected the low-order

methods, e.g. 4× 4 points, give a larger error and the high-order approach, 32× 32 points,

gives accuracy comparable to the analytical technique, except for small values of z. In each

case, the breakdown of the polynomial approximation for 1/R is apparent in the increase of

error as z → 0, most clearly for the 16× 16 quadrature where the error increases markedly

from z ≈ 0.3. Of interest here is the value of EQ as a criterion for selecting quadrature

rules. The lighter curves show the value of Q found from (13) with varying values of EQ.

The curves do indeed predict quite well the point at which the polynomial approximation

to 1/R is no longer accurate and the Gaussian quadrature begins to fail, confirming the

reliability of the measure as a criterion for the selection of quadrature rules.

Figure 9 gives similar results but for the evaluation of the normal derivative of the layer

potential, also required in BEM calculations. The results are similar to those in Figure 8

and the discussion of those data carries over to here, but it is worth noting that though

the error behavior of the Gaussian quadratures is different from that in Figure 8 (compare

the results for point 3, for example), the curves of Q still function as a reliable criterion for

selecting a quadrature method.
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Fig. 8. Error for I0(k, z) as a function of z on element of Figure 7 at points 1–4 (top to bottom); left-hand

column: |I(a)0 −I(c)0 | for ε(a) = 10−3,−6,−9,−12 (solid line, dots, dashed line, crosses, respectively) and 50×50

point polar quadrature; right-hand column |I(a)0 −I(c)0 | for ε(a) = 10−12 and 4×4, 8×8, 16×16, 32×32 polar
quadrature (solid line, dots, dashed line, crosses, respectively); gray curves: polynomial order Q required for
EQ = 10−3,−6,−9,−12
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Fig. 9. Error for ∂I0(k, z)/∂n on element of Figure 7 at points 1–4 (top to bottom), notation as in Figure 8

5. Conclusions

An analytical method for the evaluation of potential integrals in boundary element codes

for the Helmholtz equation has been presented and tested. An error estimator for purely

numerical quadrature has been derived and used to establish a criterion for quadrature
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method selection. The quadrature method has been tested and found to be accurate and

reliable; the error criterion is a reliable technique for quadrature selection. We believe that

the quadrature method proposed is a suitable plug-in replacement in BEM codes for the

wave equation where an a priori error estimate for element integrals and an economical

integration are required.
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Appendix

A. Basic Integrals

The evaluation of the potential integrals requires a number of elementary integrals which can

be computed using results from standard tables combined with recursions. This appendix

contains the results required for the evaluation of the trigonometric integrals of the main

paper, written in terms of the parameter α, 0 ≤ α < 1, and ∆2 = 1− α2 sin2 θ. The results

are given as the indefinite integral, with a separate result where necessary for the in-plane

case α = 0.

The first basic term is∫ (
∆

cos θ
− α

)q ( ∆

cos θ

)−s
dθ =

q∑
u=0

(
q

u

)
(−α)q

∫ (
∆

cos θ

)q−s
dθ, (A.1)

where s = 0, 1, 2, 3. The terms in the summation are pseudo-elliptic integrals which can be

evaluated using elementary functions and recursion relations [20, 2.58].

Using the transformation u = tan θ and noting that ∆/ cos θ = (1 + α′2 tan2 θ)1/2∫ (
∆

cos θ

)n
dθ = α2

∫ (
∆

cos θ

)n−2

dθ + α′
2
∫ (

1 + α′
2
u2
)(n−2)/2

du, (A.2)

with α′ = (1− α2)1/2.

The integral term can be evaluated using the recursion∫ (
1 + α′

2
u2
)(n+2)/2

du =
u

n+ 3

(
1 + α′

2
u2
)(n+2)/2

+
n+ 2

n+ 3

∫ (
1 + α′

2
u2
)n/2

du,

(A.3)
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seeding the recursion with∫ (
1 + α′

2
u2
)−2/2

du =
tan−1(α′u)

α′
, (A.4)∫ (

1 + α′
2
u2
)−1/2

du =
1

α′
log

[(
1 + α′

2
u2
)1/2

+ α′u

]
, (A.5)

and using

∫ (
∆

cos θ

)−3

dθ = −α
′2

α2

sin θ

∆
+

sin−1(α sin θ)

α
, (A.6)∫ (

∆

cos θ

)−2

dθ =
θ

α2
− α′

α2
tan−1(α′ tan θ), (A.7)∫ (

∆

cos θ

)−1

dθ =
sin−1(α sin θ)

α
. (A.8)

For α = 0,

∫ (
∆

cos θ

)−3

dθ = sin θ − sin3 θ

3
, (A.9)∫ (

∆

cos θ

)−2

dθ =
sin θ cos θ

2
+
θ

2
(A.10)∫ (

∆

cos θ

)−1

dθ = sin θ. (A.11)

A second, similar, integral is

∫ (
∆

cos θ

)n sin θ

cos θ
dθ = α2

∫ (
∆

cos θ

)n−2 sin θ

cos θ
dθ +

1

n

(
∆

cos θ

)n
, (A.12)

which can be seeded with [20, 2.584]

∫ (
∆

cos θ

)−3 sin θ

cos θ
dθ =

cos θ

α2∆
− 1

α3
log (α cos θ + ∆) , (A.13)∫ (

∆

cos θ

)−2 sin θ

cos θ
dθ = − 1

α2
log ∆, (A.14)∫ (

∆

cos θ

)−1 sin θ

cos θ
dθ = − 1

α
log(α cos θ + ∆), (A.15)∫ (

∆

cos θ

)0 sin θ

cos θ
dθ = − log cos θ. (A.16)
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For α = 0,

∫ (
∆

cos θ

)−3 sin θ

cos θ
dθ = −cos3 θ

3
, (A.17)∫ (

∆

cos θ

)−2 sin θ

cos θ
dθ =

sin2 θ

2
, (A.18)∫ (

∆

cos θ

)−1 sin θ

cos θ
dθ = − cos θ. (A.19)

In an implementation of the method of this paper, when the required geometric pa-

rameters have been calculated for the reference triangle, and the appropriate expansion

for exp[jkx] has been selected, the first step is to compute the required elementary inte-

grals (A.2) and (A.12) using the initial values and the recursion relations. The computed

terms can then be used in the summations of (3.1) to evaluate the potential integrals.

For convenience, we define

Lc =

∫
cos θ log

∆− α′

∆ + α′
dθ = sin θ log

∆− α′

∆ + α′
+ log

∆ + α′ sin θ

∆− α′ sin θ
− 2

α′

α
sin−1(α sin θ),

(A.20)

Ls =

∫
sin θ log

∆− α′

∆ + α′
dθ = − cos θ log

∆− α′

∆ + α′
+ 2

α′

α
log(α cos θ + ∆), (A.21)

which are readily evaluated using integration by parts. Then,

Iq,c =

∫
Jq cos θ dθ, (A.22)

Iq+1,c =
s(kS)q+1

2(q + 2)

∫ (
∆

cos θ
− α

)q+1

dθ − k|z|2q + 3

q + 2
Iq,c, (A.23)

I0,c =
s

2
θ +
|z|
4
Lc, (A.24)

∂Iq+1,c

∂z
= ∓ s

2S
(kS)q+1 q + 1

q + 2

∫ (
∆

cos θ
− α

)q+1 cos θ

∆
dθ

∓ 2q + 3

q + 2
kIq,c − k|z|

2q + 3

q + 2

∂Iq,c
∂z

, (A.25)

∂I0,c

∂z
= ±Lc ±

s

2S

∫
cos θ

∆
dθ, (A.26)



July 31, 2019 15:49 WSPC/130-JCA jtca19-revision

Closed-form evaluation of potential integrals 21

and similarly

Iq+1,s =
s(kS)q+1

2(q + 2)

∫ (
∆

cos θ
− α

)q+1 sin θ

cos θ
dθ − k|z|2q + 3

q + 2
Iq,s, (A.27)

I0,s = −s
2

log cos θ +
|z|
4
Ls, (A.28)

∂Iq+1,s

∂z
= ∓ s

2S
(kS)q+1 q + 1

q + 2

∫ (
∆

cos θ
− α

)q+1 sin θ

∆
dθ

∓ 2q + 3

q + 2
kIq,s − k|z|

2q + 3

q + 2

∂Iq,s
∂z

, (A.29)

∂I0,s

∂z
= ±Ls ±

s

2S

∫
sin θ

∆
dθ (A.30)


