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ABSTRACT 
In this paper we address the problem of on-line enumeration 
and classification of an audio mix of spectrally overlapping 
sound sources using a single microphone. We assume that 
the mix is composed of a subset of realizations of sound 
sources that belong to an a-priori known set of classes. Each 
class is represented by a Gaussian mixture model (GMM) 
probabilistic density function trained from available re-
cordings of each sound class. The approach is based on 
forming multiple hypotheses on the composition of the mix 
set that are propagated through time and tested against the 
likelihood of having produced the audio mix. The likelihood 
acts as a switch that deletes or reinforces hypotheses. The 
hypothesis generation and evaluation process is set under a 
unifying particle filtering framework that estimates the car-
dinality of the set of sources composing the mix under the 
maximum a-posteriori (MAP) criterion as well as the 
sources themselves. The experimental part tests and evalu-
ates the algorithm on  real composite environmental sound-
scenes and on simulations involving rapid changes of cardi-
nality of a set of Gaussian sources. 

1. INTRODUCTION 

Automatic pattern recognition of general acoustic events is a 
suitable diagnostic tool for applications involving acoustic 
surveillance [1], environmental monitoring and biodiversity 
assessment [2], as well as audio context categorization [3]. 
However, much of the reported research work is more or less 
laboratory-based focusing on deriving suitable features [1], 
[2], and investigating classifiers [1-3], on the problem of 
classifying sound events that are dominated by sounds be-
longing to a single acoustic class out of a set of classes. The 
present work reports results towards extending generalized 
sound recognition to field applications by considering the 
case of composite sound scenes, that is, simultaneous sound 
sources that their number and combination may vary in time 
(e.g., recognition of a dog barking while a bird is singing and 
a car is passing by).  
The automatic recognition of a particular sound event in a 
soundscene is not a trivial task as the sound sources usually 
have the same statistical properties and their spectrum may 
overlap significantly. We consider a soundscene to be an au-
dio mixture that is produced by a process that switches in 
time between distinct sound events while combining a num-

ber of them. The particular sources that constitute the audio 
mix are thought to be properly gain-scaled realizations out of 
a-priori known sound classes. 
In the case of a single microphone the recognition of the 
sources becomes even more complicated since: 
• There is lack of availability of different versions of the mix-
ture picked-up from many microphones that would allow the 
construction of an unmixing matrix as in the case of inde-
pendent component analysis [4] or a receptive beam as in the 
case of beamforming in microphone arrays [5]. 
• The number of sources maybe time-varying (e.g. a car is 
passing by in a soundscene therefore, the number of sources 
is increased by one and then reduced by one as it leaves, or in 
a vivid conversation the number of speakers is time-varying 
and unknown. 
The latter complication inflicts many restrictions as most 
statistical approaches on the problem of source separation 
assume a known and fixed number of sources composing the 
audio mix which holds in practice only in specific scenarios. 
The purpose of this work is towards building an automatic 
recognition system of an unknown and time-varying number 
of general sound events in composite soundscenes (i.e. sound 
events that overlap in the spectral domain).  
The approach is based on having available a set of trained 
classes of sounds that are supposed to span the audioscene 
and a search process that locates the combination of classes 
that best explains the observation of the mixture in terms of 
the likelihood. The statistical properties of each sound class 
are represented by a GMM trained on audio corpora of dif-
ferent instances of each sound class. The aim of the GMM is 
to represent, hopefully, all possible realizations of a particular 
class and, therefore, the particular realisation taking part in 
the audio mix. A soundscene is thought to be created by re-
alizations of a subset of the classes. The cardinality of the 
subset of sources as well as the combination of the sources 
used to compose the mix is unknown. The cardinality of the 
sound sources is estimated by first taking the MAP over the 
posterior pdf of the cardinality. From this optimal cardinality 
the set of sources that explains better in terms of likelihood 
the observed mixture is selected. The estimation of the cardi-
nality is based on generating a large number of hypotheses 
concerning the number and identity of the sources composing 
the audio mixture and a death/birth/update process for the 
generation of hypotheses. The whole process is set under the 
general framework of particle filtering.  
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2. PROBABILISTIC SINGLE-CHANNEL 
SOURCE ENUMERATION 

We present the mathematical formulation for probabilistic 
enumeration and recognition of a mixture combination of up 
to M sources. 
 
2.1 Parametric model of mixture synthesis 
Let kX denote the complex domain of the STFT of the audio 
mixture and k the frequency-bin index for a fixed-length time 
window. Let ,i kS  [ ]1,..,i M∈  be an independent signal 
source and t is the time-frame index. Then 

, , ,

( )  sources

..t t t t
k i k j k n k

M t

X S S S= + + +

���������

          (1) 

where ( ) ,  M t M t≤ ∀ . One should note that at t+1 sources 

may appear or disappear thus changing the cardinality of 
the set of sources composing the mixture as well as the 
identity of the set of sources that are needed to construct the 
mix. Even if the cardinality does not change over time the 
composition of the mixture set under the same cardinality 
may change (e.g. from [s1, s3, s5] to [s2, s4, s5]). 

A common approximation of the power spectrum of the 
mix can be obtained from (1) by ignoring the cross-terms:  

( )2 2

,
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i
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Subsequently, a Mel-scale filter-bank is applied to the 
audio mix observation. The Mel-scale filters apply a linear 
transformation on the power spectrum by multiplying the 
power spectral coefficients with positive weights l

kW  [6] 
and then (2) becomes: 
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where, l = 1,2,..,L denotes the filter bank channel and  
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Let ,  ix s  be the Mel-scale filterbank power vectors. Then, 
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and (3) becomes 
( )M t

t t
i

i
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In this work we use the Bayesian statistical framework and 
we incorporate the a-priori information we have for the 
sources in probability density functions of mixture models 
for each  si. Therefore: 

( ) ( ), , ,; ,i i m i i m i m
m

p w N µ= Σ∑s s ,  

where , 1i m
m

w =∑  and the subscripts i, m are indices run-

ning over the sources (i = 1,..,M) and the mixtures (m=1,..,mi) 
of each source respectively.  
Let { }1 ( ),..,t

M t=S s s be the set of sources that compose 

the observation vector at time t according to (4) (e.g. at frame 

t=10, { }10
1 4 5, ,t=

=S s s s ) and { }( )1, 1 ( ),,..,
M t

t
m m M t m=S s s  

the set of mixtures of the corresponding set of sources that 
compose the observation vector at time t (e.g. at frame 

t=10, { }1,12 4,6 5,2, ,t
m =S s s s where the second index is the 

Gaussian mixture index of the corresponding source). If 
t
mS was known, then from (4): 
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However, neither tS  nor t
mS are known. In section 3.2 we 

describe the process of locating the correct  t t∀S . It is 
based on evaluating against (5) all possible combinations of 
sources.  
 
2.2 Construction of the propagating hypotheses 
A power vector observation of a set of a known cardinality 

( ) ,  M t M t≤ ∀ is thought to be created by first selecting with 
uniform probability a source si out of M sources and a mix-
ture ( ), ,; ,i i m i mN µ Σs with probability ,i mw and then pro-

ducing an observation. The same procedure is followed for 
the rest of the sources up to M(t) and the produced observa-
tions are added according to (4) to produce the observed au-
dio mix. We have assumed that the subset of sound sources 
composing the audio mix belongs to a trained set of M mod-
els. However, we do not know which and how many of them 
are combined to create the observed sound mixture at time t. 
The approach we adopt is to evaluate a number of H hy-
potheses where H holds all possible combinations of M 
classes, that is H=∑kM!/(k!(M-k)!).  
Each hypothesis is a subset of cardinality k. For each source 
combination we select a mixture according to the prior prob-
abilities of the corresponding source. The indices of the 
sources and the corresponding selected Gaussian mixtures 
form a 2-dimensional matrix (see Fig. 1). This matrix consti-
tutes a full hypothesis for the generation of a sound mix and 
will be set in section 3 under the probabilistic framework of 
particle filtering. In Fig.1 Hypothesis 1 for example assumes 
that the observed power mixture is produced by 4 sources. 
The observation is produced by source 2 - mixture 1, source 
5 - mixture 13, source 4 - mixture 32 and source 2 - mixture 
9. Hypothesis 2 (note that this hypothesis has different cardi-
nality), assumes that the observation is produced by 2 
sources (source 1 - mixture 5, source 3 - mixture 8). There 
are N such hypothesis that are evaluated in each time-step 
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against the likelihood (5). Hypotheses achieving almost zero 
likelihood are eliminated while hypotheses scoring high like-
lihood are reproduced and propagated through time (see sec-
tion 3). The computation of St is possible since we take all 
combinations of sources. However, the evaluation of 

t
mS may not be practically possible due to the enormous 

number of combinations. The approach of constructing St 
and subsequently evaluating random subsets of t

mS  achieves 
its goal due to the fact that Gaussian mixtures of each class 
represent clusters into the feature space. Therefore if the cor-
rect St is located out of all possible combination of sources, 
this will produce a higher likelihood compared to an incor-
rect combination of St even if t

mS is not exact. 
We subsequently describe the selection process of the source 
and mixtures as well as their rules for the propagation of the 
hypotheses in time. 

At t=1 N hypotheses are generated as follows: 
H=∑kM!/(k!(M-k)!) hypotheses are set to all binomial com-
binations of the sources. The rest of the hypotheses up to N 
are repetitions of these combinations. For example if M=4 
then the set H, the collection of all finite subsets of the k=4 
sources is composed of 15 possible combinations:  
 
H = { [1], [2], [3], [4], 

[1 2], [1 3], [1 4], [2 3], [2 4], [3 4], 
[1 2 3], [1 2 4], [1 3 4], [2 3 4], 
[1 2 3 4]} 

 
If N =150 then the initial set of hypotheses (represented in 
the particle filtering framework in Section 3) will be com-
posed of 10 times H. As they are propagated through time 
these initial repetitions will become different as their mix-
tures indices will be resampled (see step (a) below). 

For each source of member of H, we select a mixture 

( ), ,; ,i i m i mN µ Σs with probability ,i mw . Therefore, at step 

t=1 the N generated hypotheses are represented by a 2-D 
matrix of integer indices as e.g.: 

1 3 2 3 1 2 3 4
,  ,  ,  

12 8 32 11 20 10 6 4
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

Notice that each 2-D matrix holds only indices and not the 
actual values of the means and variances of the sources. 
 
 

 
 
 
 
 
 
 
 
 
 
 

The actual values of the means and variances of the 
GMMs of the sources are only needed during the evaluation 
of the likelihood (5). The true combination of sources that 
created the observed mixture is definitely included in H be-
cause H is composed of all possible combinations of the M 
sources that are a-priori assumed to span the acoustic space 
of the audio-scene. At each time step t in the algorithm we 
randomly select one of the following updates for each hy-
pothesis of the H set: 
(a) Resample the mixtures of all hypotheses. This step allows 
exploring the mixture combinations that maximize the likeli-
hood under a fixed source set. 

  

2 3 2 3

old hypothesis new hypothesis

⎡ ⎤ ⎡ ⎤
→⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦32 11 12 11
����� �����

 

(b) Birth of a source in a hypothesis (only allowed when M(t) 
< M) with probability pBirth=0.01. A source and a corre-
sponding mixture are added to the current hypothesis. The 
source to be added is selected with uniform sampling from 
the set M excluding the sources of the current hypothesis. Let 
si be the selected source. A mixture out of the set of mixtures 
of si is selected with probability wi,m. For example: 

  

2 3 2 3
32 11 32 11

old hypothesis new hypothesis

⎡ ⎤ ⎡ ⎤
→⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

1
8

����� �������

 

(c) Death of a source in a hypothesis (only allowed when 
M(t)>0) with probability pDelete=0.01. A source and its cor-
responding mixture are deleted from the current hypothesis. 
The source to be deleted is selected with uniform sampling 
out of the set of the previous hypothesis. For example: 

  

1 2 4 1 2 4
20 10 4 20 10 4

old hypothesis new hypothesis

⎡ ⎤ ⎡ ⎤
→⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦

3
6

������� �������

 

(d) Update of a hypothesis with probability pUpdate=0.98. 
The set of sources remains the same. The probability of this 
step denotes that most of the time the cardinality is expected 
to hold a fixed value in a soundscene corresponding to the 
steady state of an acoustic event. Steps (b) and (c) focus on 
the transition from one steady state to another steady state 
with probably different cardinality.   
(e) Injection of set H in the set of hypothesis at random posi-
tions selected uniformly out of N. Since it is known that the 
best combination is inside the set of combinations the initial 
combinations are re-injected in the pool of hypotheses be-
cause some of them may have been eliminated through time. 
This step is helpful in the case of a jump in cardinality after a 
long time of stability.  
(f) Calculation of the likelihood of all hypotheses according 
to (5) and resampling of the hypothesis set according to their 
likelihood score. Hypotheses are deleted or duplicated ac-
cording to the likelihood they score (see section 3). 

Subsequently, the time step is increased by one and the 
stages (b)-(f) are repeated until the end of all observations. 

Cardinality 1 
Cardinality 2 
Cardinality 3 
Cardinality 4

H
y
p
o
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e
s
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 1

H
y
p
o
th
e
s
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 2

Figure 1 - Illustration of two out of N hypotheses. Each hypothesis 
is represented by a 2-D matrix of indices. The first row is com-
posed of the source indices proposed to create the mixture and the 
second row the mixture indices of the corresponding sources re-
sponsible for generating the mixture observation. 
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3. HYPOTHESES FILTERING & RECOGNITION 

The previous description can be actually set under the um-
brella of particle filtering. 
For our problem a particle represents the cardinality of the 
set of sources and i=1 to N is the particle index. 

( )i ~ t
t tc p k x . 

Let as assume that we are able to simulate N independent 
particles { }it  1,..,c i N=  from ( )t tp c x . Then if we find 

the maximum of the mode of ( )t tp c x we can estimate the 

cardinality of the set using the MAP criterion, that is, 

( )ˆ arg max t
t tc p c= x . 

The initial set of sources H at t=0 is composed of all sources 
combinations. We introduce a drift in the cardinality of all 
hypotheses at each time-step as: 

i i
1t tc c c
−

= + ∆ for i=1,..,N 
where 

-1 death of source, pDeath=0.01
0 update of cardinalty, pUpd=0.98
+1 birth of source, pBirth=0.01

c
⎫⎧

⎪ ⎪
∆ = ⎨ ⎬

⎪ ⎪
⎩ ⎭

 

Using the Birth/Death/Update of sources according to sec-
tion 3 we construct an hypothesis on set of sources ,

t
i mS  

(see section 2.1 for the definition of t
mS ) for each particle 

i=1,..,N. Note that ,
t
i mS  evolved from 1

,
t
i m
−S .  

Particle filtering approximates the density with a sum of 
Dirac functions centred on the particles. 

For i=1,..,N we evaluate the different hypotheses by ap-
plying a weight on them given by (5), that is: 

( )t t t
i mw p∝ x S  

that is, the weight is proportional to the likelihood function 

and we subsequently normalize it so that
t

t i
i t

j
j

ww
w

=

∑
 

Finally, we resample with replacement N samples according 
to the importance weights, therefore,  

( ) { },
t t t

t i i mp c w=∑x S  

Once we have acquired the MAP estimate of the cardinality 
we investigate which sources compose the sets that achieve 
the optimal cardinality and therefore achieve in parallel the 
recognition of the sources. This is performed by taking the 
histogram of all sources from all hypotheses having the 
MAP cardinality and selecting the first kMAP sources having 
the maximum number of occurrences. 
The algorithm is real-time even for a reasonably large num-
ber of particles since only the Gaussian mixture indices of 
the sources are propagated through time and not the actual 
means and variances. The means and variances are only 
calculated once per cycle of the algorithm in (5). 

4. NUMERICAL STUDIES AND EXPERIMENTS 

In this section we study the recognition performance of the 
algorithm using both simulated and true data. Due to the 
unknown cardinality of the set of sources that produces the 
observed audio mixture there can be two sources of error. 
There can be errors in the estimated cardinality (e.g. the true 
set composing the mixture is [2 3 1] and the estimated set is 
[1 2 3 4]) and errors in the estimated composition of the set 
(e.g. sets [1 4 5] and [1 2 5] have the same cardinality but 
different composition). In order to capture both sources of 
error we follow [7] and we establish two measures of recog-
nition accuracy: The accuracy of the recognized cardinality 
( )1: 1:ˆt tp c c= and the conditional recognition accuracy of 

the source composition given the correct cases of cardinality 
of the sources. In order to have a full picture of the system 
one should view both figures of error patterns. 
4.1 Simulation experiments 
In Table 1-2 we present simulation results for the recognized 
cardinality and composition of sources. The simulation is 
based on 100 Monte Carlo runs involving mixtures of up to 5 
sources. Each source is a 1-D Gaussian mixture of 8 compo-
nents having random means, weights and variances. The cor-
rect cardinality undergoes jumps every 10 time steps. Each 
experiment is based on 20 sections of 10 time steps (200 
time-steps). One should not that this would be an extreme 
scenario for real audio mixtures as it would correspond to 
changes in the composition of the mix every 10 frames that 
is, in a fraction of every second. In Figure 2 – top we present 
a typical single run and in Figure 2 – bottom the average er-
ror in each time step over 100 Monte Carlo runs. This figure 
demonstrates that an error is more probable to appear as the 
mixture undergoes a change of cardinality. This is to be ex-
pected as most of the particles during a time period with a 
fixed cardinality will represent the same cardinality and in an 
abrupt jump the new cardinality will lead to elimination of 
most particles. Therefore, the most probable position of an 
error is during a cardinality jump. However the particle filter 
quickly recovers and the errors in cardinality are isolated 
with no consistent loss of track.  

pUpdate=0.98 No birth/death # particles 
Mean Std Mean Std 

50 77.41 0.05 77.57 0.05 
100 91.16 0.03 91.01 0.04 
150 92.20 0.03 91.44 0.03 
1500 92.20 0.03 91.42 0.04 

Table 1. Mean and standard deviation results on the estimated car-
dinality over 100 Monte Carlo runs for the 5 sources case. We in-
vestigated the cases of different number of particles as well as the 
case of having no birth/death moves (probUpdate=1). 

pUpdate=0.98 No birth/death # particles 
Mean Std Mean Std 

50 94.74 0.02 94.34 0.02 
100 98.12 0.02 98.29 0.01 
150 98.29 0.01 98.41 0.01 
1500 98.44 0.02 98.51 0.01 

Table 2. Mean and standard deviation results on the recognized 
sources given the correct cardinality over 100 Monte Carlo runs.  
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4.2 Real audio sources experiment 
In Fig. 3 we performed an experiment with real audio data 
sampled at 8000 kHz. An audio mixture is constructed with a 
dog barking while a bird is singing. The classes of sounds are 
4: barking dogs, singing birds; cicadas (an insect species) and 
rain recordings. 10 recordings of 15 seconds each are taken 
from the BBC Sound Effects Library. The dimensionality of 
the STFT is reduced through a filterbank (from 256 to 23 if 
we apply a 512 samples FFT and a filterbank of 23 bands) 
allowing the training of more efficient models. The overlap 
of the window of the short-time Fourier transform is 50%. 
The mixture model is composed of 16 diagonal covariance 
mixtures. Figure 3 is produced by using 1000 particles. The 
models are initialized using 5 iterations of the K-means algo-
rithm and trained using a standard version of the expectation-
maximization algorithm. 
The segmentation results are very promising as the correct 
order of the mixture is predicted correctly most of the times 
(see Fig. 3). There are no algorithms, at least to the knowl-
edge of the author that can be applied to a similar task so as 
to perform comparative experiments.  
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Figure 3 – A dog is barking until frame 55 (manual segmentation). 
A bird is singing in frames 55-100. From frame 100-142  a dog is 
barking and a bird is singing. From frame 142-205 a dog is bark-
ing. Top: Predicted cardinality of the audio event. Bottom: Spec-
trogram of the sound mixture. 

5. CONCLUSIONS 

In this paper we address the problem of on-line enumeration 
and classification of the sound sources composing complex 
sound mixtures using a single microphone. We assume that 
the audio mix is produced by a subset of realizations of 
sound sources that belong to a known set of classes. Each 
class is represented by a Gaussian mixture model (GMM) 
probabilistic density function trained from available re-
cordings of each sound class separately. The approach is 
based on forming multiple hypotheses on the cardinality and 
composition of the set of sound sources that is propagated 
through time and tested against the likelihood of having pro-
duced the power spectrum of the audio mix.  
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Figure 2 – Top figure: Tracking the cardinality of the mixture set 
over time. The mixture set is composed of mixtures of up to 5 
sources that undergoes a random cardinality jump every 10 time 
steps.  
Bottom figure: Mean error over 100 Monte Carlo runs. Most of the 
errors occur when the cardinality undergoes a jump. The error sig-
nificantly drops in the steady state. 
 

16th European Signal Processing Conference (EUSIPCO 2008), Lausanne, Switzerland, August 25-29, 2008, copyright by EURASIP



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


