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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 

Keywords: Assembly; Design method; Family identification

1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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1. Introduction 

Manufacturing industry faces enormous challenges 
worldwide. The complexity of supply networks is increasing 
due to their global distribution, changing structures and fast 
changing demands. This is enforced by the change from a 
seller's market to a buyer's market and decreasing 
manufacturing volumes with a simultaneously increasing 
number of variants [1, 2]. The market environment in which 
manufacturing companies operate is, therefore, becoming 
increasingly complex, volatile, uncertain and ambiguous [3]. In 
order to achieve a high level of delivery reliability and thus 
meet the growing importance for customer satisfaction, it is 
essential for manufacturing companies to react quickly to 
events in the supply network [4–6]. 

Consequently, new partnerships are established to address 
these challenges. For example, German automobile 
manufacturer Volkswagen has announced a collaboration with 
cloud computing provider Amazon to develop a cloud-based 
platform for the efficient networking of all machines, plants, 

factories and, in the future, also suppliers [7]. The focus is put 
on new perspectives for comprehensive process optimization in 
the overall production process. The basis for this is the vision 
of a horizontal and vertical integration of the supply network, 
i.e. the integration of all relevant events, with significant 
expected cost savings [1]. Due to the high level of automation, 
the semiconductor industry, for example, has been working on 
the integration of the supply network since the early 2000s [8]. 

Current technological developments in digitalization, such 
as cyber-physical systems, big data, machine learning and 
artificial intelligence, are driving the development towards 
autonomy, especially in complex systems [9]. Approaches to 
transfer control engineering principles to production planning 
and control (PPC) for the creation of robust processes are also 
receiving increasing attention [5].  

As a contribution to the integration of supply network and 
manufacturing, this paper presents an adaptive, learning control 
loop for efficient operative reaction to events of the supply 
network in manufacturing contributing to the approach of 
supply chain event management [10, 11]. 
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2. State of the Art 

2.1. Closed-Loop Control 

Closed-loop control, also referred to as feedback control, is 
a process in which the controlled variable x is continuously or 
sequentially measured, compared to the reference variable w 
and influenced by the manipulated variable y in order to adapt 
it to the reference variable [12, 13]. One or several disturbance 
variables z can also be implemented. A distinction can be made 
between continuous feedback control and sampling control as 
well as between non-adaptive and adaptive control [13]. The 
principle of closed-loop control has been successfully used for 
many years in manufacturing processes and has also received a 
great deal of attention in PPC [5, 14]. Here, the principle of the 
control loop is transferred to the elements of the PPC to achieve 
a continuous adaptation of manufacturing.  

2.2. Control Loops in Manufacturing 

An overview and classification of existing approaches for 
control loops in PPC is given in [15]. Table 1 shows a 
characteristic concept for each category supplemented by an 
industry standard concept for process control. 

Table 1. Classification of control loops in manufacturing. 

Category according to [15] Characteristic representative 

(1) Control of Inventory Wiendahl [16] 

(2) Control of Capacity Begemann [17] 

(3) Control of Load Scholz-Reiter et al. [18] 

(4) Control by Rescheduling Brackel [19] 

(5) Knowledge-based Control Philipp et al. [20] 

(6) n.a. Sachs et al. [21] 

 
According to [15], categories one to three are closely related 

by the manufacturing system’s load as their controlled variable. 
However, they can be distinguished by the method of 
determining the load. This is achieved by either measuring the 
inventory level, which can be controlled by order releases (1), 
or by capacity adjustments (2), or by a complex setup of 
multiple controlled and manipulated variables (3). Since 
categories four and five build on a terminated production plan, 
their control activities are only performed in case of deviations. 
The controller type can be distinguished between rescheduling 
the entire production plan (4) and knowledge-based and 
predefined procedures to react in current manufacturing 
situation (5). This is complemented by an approach from 
discrete, model-based process control (6). 

2.3. Machine Learning 

If a decision problem cannot be solved mathematically in an 
exact manner, in complexity theory of computer science it is 
called non-deterministic polynomial-time hard (NP-hard) [22]. 
In PPC, this is already the case for problems involving more 
than two machines or non-predefined order sequences [23]. In 

practice, heuristic methods are therefore mainly used for 
optimization in PPC [22, 23]. 

Machine learning (ML) aims at generating knowledge from 
data by developing a complex heuristic model from training 
data. This makes ML a key technology for the development of 
intelligent systems, which are often referred to as artificial 
intelligence [24]. The automated development of models from 
data is also the main difference to earlier approaches of 
artificial intelligence, which were based on manually 
constructed knowledge bases [24, 25]. As ML allows 
generalization to unknown data, it differs from mathematical 
optimization [26].  

The use of ML is therefore particularly worthwhile when, 
due to the complexity of the problem, not all potentially 
possible situations and all changes over time can be anticipated. 
This is also the case when it is unclear what the algorithmic 
solution to the problem must look like [27]. Experience has 
shown that ML is much more suitable than conventional 
methods of data analysis, especially for more than 15 
dimensions in the data sets [28]. 

ML methods can be categorized per type of feedback into 
unsupervised, supervised and reinforcement learning 
(cf. Fig. 1). In practice, however, the first two cannot always be 
clearly distinguished [24, 27]. Each of the methods is suitable 
for different learning tasks. 

 

 

Fig. 1. Methods of machine learning (adapted from [24, 27]). 

In the manufacturing environment, ML is already used, 
among others, for pattern recognition, process control, fault 
detection and classification, and predictive maintenance [29]. 
Furthermore, adaptive control based on reinforcement learning 
is used for order dispatching [30], process control [31] as well 
as in robotics [32, 33]. An overview of suitable agorithms is 
given by [34]. 

2.4. Architecture to Apply Machine Learning 

Transaction data in PPC is generated in large quantities by 
sensors and IT systems in a diverse and heterogeneously 
structured manner and must be processed and analyzed in 
minimal computing time [5, 35]. In addition, reliability of the 
data must be ensured, as they are crucial for the success of the 
company. These challenges are also known as the 5V of big 
data (variety, volume, velocity, veracity, value) [35, 36]. If ML 
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procedures are used in PPC, these challenges must be 
considered. 

Lambda architecture is a well-known concept for addressing 
such challenges in data analytics [37]. It structures data 
processing into three layers. They are defined as batch, speed 
and serving layers, which differ in particular in their latency 
during data processing [37, 38]. This is due to the technical 
impossibility to evaluate all historical data in acceptable 
computing time after the occurrence of events. For this reason, 
the large amounts of data that are made available through the 
serving layer are pre-processed in the batch layer. Because of 
their close connection, batch and serving layer are often 
referred together as batch layer [37–39]. These layers are 
always supplemented by speedy near-real-time analysis 
efficiently and quickly carry out analysis of data when a 
decision must be made because of an event. Exemplary 
implementations of a lambda architecture with diverse software 
components [38] and performance analysis [39] can be found 
in the literature. 

Transferred to ML, models are developed and trained in the 
batch layer using algorithms. These models are applied to 
events in the speed layer in near real-time computing time. 

3. Analysis of Control Loops in Manufacturing 

To analyze control loops in manufacturing, requirements 
must first be defined. Then existing concepts are compared and 
analyzed based on these requirements. 

3.1. Requirements 

The following requirements were synthesized from the 
introduction and state of the art. First, the control loop must be 
suitable for the application, meaning it must allow control of 
manufacturing with the aim of improving key performance 
indicators regarding the supply network (e.g. delivery 
reliability) and taking its influences into account. The necessity 
of this requirement results from the motivation to transfer 
control engineering principles [5] to the interface between 
supply network and PPC. For this purpose, it is also necessary 
to consider external events from the supply network in the 
control loop and that appropriate measures can be taken in 
response to the former. Therefore, the control loop must be 
designed in the sense of an adaptive control [13] in such a way 
that its data-driven model is not only oriented to predefined 
situations, but also dynamically adapts with unknown data. The 
learning capability [40] follows on from this and should 
enable the controller to develop new decisions from data sets. 
For this, it is necessary that data-based decisions can be 
abstracted and transferred to unknown data sets. In 
combination with a high degree of automation [41], the 
learning capability allows for controlling and adapting all result 
variables to changed environmental conditions enabling to 
correct defined and undefined errors. The system limits can 
thus be continuously extended. For this purpose, the controller 
must be able to determine multi-dimensional parameters and 
their dependencies as manipulated variables. The complexity 

of the problems in PPC [23] alone determines this complex 
controller design with multi-dimensional manipulated 
variables. 

3.2. Comparison and Analysis 

In the following step, the defined requirements are used to 
compare the concepts classified in section 2.2. Table 2 shows 
the resulting comparison and assessment of the individual 
concepts. The rating for each requirement ranges from not in 
scope (0) to very well suited (++++). 

Table 2. Assessment of concepts for control loops in manufacturing. 

Requirement [16] [17] [18] [19] [20] [21] 

Application + ++ ++ ++ ++ 0 

External 
Events 0 0 0 0 0 0 

Adaptivity ++ ++ ++ ++ ++ ++ 

Learning 
Capability + + + + + + 

Degree of 
Automation + + + + + ++ 

Multi-dim. 
Parameters + ++ +++ ++++ ++ ++ 

 
These concepts focus primarily on the internal optimization 

of manufacturing and not on the integration with the supply 
network. Consequently, external events are not considered. The 
concepts are also designed adaptively for known parameters 
only and not as learning systems. Furthermore, the degree of 
automation is mainly less and only a few concepts intensively 
consider multi-dimensional parameters as manipulated 
variables. 

4. Concept 

The requirements are implemented with the concept of the 
adaptive control loop for an integrated supply network 
(ACSN). The ACSN is a discrete, event-based, adaptive and 
learning control loop that integrates the supply network with 
the PPC (cf. Fig. 2, blue control loop). This complements 
existing approaches for control loops in manufacturing 
(cf. Fig. 2, green control loop) to form a cascade control, 
whereas state of the art forms the inner control loop and the 
ACSN the outer control loop. 

The ACSN consists of a controller as well as manufacturing 
control and manufacturing as controlled system. More 
precisely, the controller interacts with sequence deviation [42] 
in manufacturing control. Additionally, operating and machine 
data acquisition serves as the measuring element. 

The reference variable for the control loop is the production 
plan, which - adapted by the controlling element - also serves 
as manipulated variable. This influences the controlled 
variable, namely the expected delivery dates of the 
manufacturing orders. However, since different use cases can 
aim at different objectives (cf. section 5) the controlled variable 
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can be replaced. Events from supply network, such as 
deviations between forecasts and actual customer behavior, are 
considered. These events can either be detected when they 
occur using established technologies such as statistical process 
control [43] or be predicted in advance [44]. For effective 
processing, events are then classified [45], before incorporating 
them into the controlling element’s decisions. 

 

 

Fig. 2. Adaptive control loop for an integrated supply network. 

The ACSN becomes adaptive and learning fusing 
reinforcement learning in the controlling element. The status 
information (cf. Fig. 1) is reflected in the controlled variable. If 
the deviation between planned and expected delivery date is 
smaller, this is used as reinforcement during learning. If the 
deviation becomes larger, this is used as so-called punishment. 
This approach makes it possible to adjust even complex 
manipulated variables with many dependencies automatically 
and with better results with increasing duration. 

To be able to work with the heterogeneous data from supply 
network and PPC, the concept can be implemented based on 
the lambda architecture (cf. Fig. 3). Input data for this are then 
the production plan (reference variable), the adjusted 
production plan (manipulated variable), the expected delivery 
dates (controlled variable) and events from supply network 
(disturbance variable). Subsequently, these data are used to 
train a model in the batch layer with reinforcement learning. 
This takes place periodically, for example at night or on 
weekends. In the speed layer, shown here via the controlling 
element, the model is applied to the data set when an event 
occurs to decide on corrective measures such as order 
prioritization and thus adjust the production plan (especially 
after manufacturing has started). 

5. Application and Expected Benefits 

Since the concept of ACSN is still under research and 
development, only preliminary experiments have been 
conducted to date. However, to elaborate the expected benefits 
of the approach, two applications based on the concept and the 
preliminary findings have been discussed in expert workshops. 

 
 

 

Fig. 3. Implementation of the adaptivity and learning capability of the control 
loop according to the lambda architecture. 

5.1. Preliminary Experiments 

For preliminary experiments, the ACSN was implemented 
in a simplified form and combined with a simulation model of 
a semiconductor production as its globally distributed and 
complex supply network with complex manufacturing suitably 
reflects an application for the ACSN [6, 46]. 

In the simplified implementation of the ACSN the 
information flows are not fully automated and in the controlling 
element a simplified classification by supervised learning is 
used instead of reinforcement learning. The simulation model 
is based on MIMAC Set 1, which is widely used in literature 
and describes a simplified semiconductor manufacturing 
process with two products and corresponding routings [47]. 
Resulting simulation runs can be divided in three sections 
(cf. Fig. 4). First a settling phase of about one month, in which 
production starts up. Second, a phase in which work in progress 
and capacity utilization converge to their limits. This also 
reduces delivery reliability, as queues now form at machines. 
Thirdly, a stable phase in which delivery reliability in particular 
also stabilizes. 

As shown in Figure 4, the corrective measures taken by the 
ACSN have a positive effect on delivery reliability, which has 
been increased by one to six percent. Furthermore, in the most 
imporant stable phase delivery reliability settles at around 70 
percent, while only around 66 percent without the ACSN. The 
concept of the ACSN therefore works in principle and an 
improvement in delivery reliability can be achieved.  

However, further research and development (cf. section 6) 
is necessary to transfer the concept and preliminary 
experiments to practice and to allow for validation in a real 
manufacturing environment.  

 

Fig. 4. Delivery reliability in preliminary experiment. 
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5.2. Application for Logistic Objectives 

The first scenario aims at the already mentioned 
improvement of delivery reliability in semiconductor 
manufacturing. The complex manufacturing process in this 
industry results in a lead time of up to three months [6]. 
However, with an increasing time horizon, planning accuracy 
decreases significantly [48]. For example, according to [49] 
research at Intel has shown a significant deviation between 
forecasts and actual demand. Within a time period of ten years 
they have only matched for 35 minutes. Deviations between 
forecasts and actual demands result in many events that require 
appropriate responses. 

Benefits of the ACSN in this scenario have been discussed 
in an expert workshop with a semiconductor manufacturer. 
Experts from the areas of supply network planning, PPC and 
manufacturing were involved. It is expected that by automating 
the entire process, the ACSN will enable a faster response to 
events from supply network and thus a more efficient process. 
The improvement in delivery reliability in the single-digit 
percentage range as shown by the preliminary experiments 
(cf. section 5.1) was considered realistic and promising. In 
addition, the ACSN will make the decision on corrective 
measures in PPC more robust by avoiding errors that occur 
when manual interventions are made in PPC. For example, due 
to its complexity, manufacturing can behave unexpectedly 
when manual interventions are made; under- or over-steering 
is also possible if parameters are manually incorrectly adjusted 
[6, 42]. With the expected improved delivery reliability 
customer satisfaction increases, which is of great importance 
with regard to the buyer’s market. In addition, the deeper 
integration of supply network and manufacturing and the 
subsequent increase in delivery reliability allows safety stocks 
to be reduced, which is expected to lead to significant cost 
reductions [43]. 

5.3. Application for Energy Objectives 

With the ongoing debate on climate change an increasing 
share of renewable energies becomes crucial to meet climate 
protection goals. Consequently, with the inherent volatility of 
renewable energies, energy supply will become more and more 
volatile [50]. Therefore, the second scenario aims at 
synchronizing volatile energy supply and demand by utilizing 
price signals as triggers in the ACSN in the sense of automated 
demand response [51].  

Benefits of the ACSN in this scenario have been discussed 
in an expert workshop with a manufacturing company. Experts 
from the areas of energy procurement, PPC and manufacturing 
were involved. Again, it is expected that by automating the 
entire process, the ACSN will enable a faster response to events 
representing deviations in energy price signals and thus a more 
efficient process. In addition, the ACSN will make the decision 
on how to react to price deviations more robustly by reducing 
human decisions in a complex environment such as the energy 
system with multi-dimensional parameters. Furthermore, the 
potential for demand response is increased by lowering the 

entry barriers for companies by incorporating energy targets in 
the manufacturing control loop. 

6. Summary and Outlook 

The implementation of control loops linking supply network 
and manufacturing is a key aspect for meeting global 
challenges. However, existing approaches for control loops are 
not suitable for this integration. Therefore, a concept for an 
adaptive control loop for the integration of supply network and 
manufacturing was developed.  

To extend knowledge in this research field, the authors are 
currently focusing on the following aspects. To be able to 
validate the concept in practice, suitable algorithms for the 
controlling element must be selected. Afterwards, the concept 
can be implemented and trained with data relevant for a real 
application. Prerequisites and limits can then be derived and, 
subsequently, the concept can be applied to further use cases. 
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