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Protein sequence stores the information relative to both functionality and stability, thus making
it difficult to disentangle the two contributions. However, the identification of critical residues for
function and stability has important implications for the mapping of the proteome interactions,
as well as for many pharmaceutical applications, e.g. the identification of ligand binding regions
for targeted pharmaceutical protein design. In this work, we propose a computational method to
identify critical residues for protein functionality and stability and to further categorise them in
strictly functional, structural and intermediate. We evaluate single site conservation and use Direct
Coupling Analysis (DCA) to identify co-evolved residues both in natural and artificial evolution
processes. We reproduce artificial evolution using protein design and base our approach on the
hypothesis that artificial evolution in the absence of any functional constraint would exclusively lead
to site conservation and co-evolution events of the structural type. Conversely, natural evolution
intrinsically embeds both functional and structural information. By comparing the lists of conserved
and co-evolved residues, outcomes of the analysis on natural and artificial evolution, we identify the
functional residues without the need of any a priori knowledge of the biological role of the analysed
protein.

Introduction

The combination of the residues along the protein se-
quence allow for the stability of the structure and for the
biological functionality.

More precisely, it has been shown that for a protein
to function, e.g. for the catalytic activity of enzymes,
the sequence must contain explicit interacting spots and,
simultaneously, show a balance between structural sta-
bility and flexibility. Despite the intuition might lead
to concluding that structure and function evolved inde-
pendently and, as a consequence, each residue can be
classified as strictly functional or strictly structural, sev-
eral studies showed that there is an overlap between the
two categories and the interdependence is essential for
the protein activity [1, 2].

A detailed characterisation of protein structural and
functional residues is essential for the advancement in
proteome mapping, protein engineering, as well as for
the developing of new pharmaceutical applications based
on targeted protein design [3, 4, 5, 6, 7].

The experimental identification of the residues directly
involved in the biological process is expensive and time
consuming. It requires large scale mutation assays for
high-throughput screening [8, 9], while in-silico screening
has a much lower cost.

Most computational methods [10, 11, 12, 13, 14, 15,
16, 17] analyse the large amount of protein sequence evo-
lution data, searching for conservation or co-evolution
patterns. The significance of amino acids co-evolution
is based on the hypothesis that mutations of interact-
ing residues are correlated. Hence, despite single point

mutations might not conserve protein stability, multiple
alterations must occur simultaneously among interact-
ing residues [18, 19]. Co-evolution events could involve
residues that are crucial for the protein activity (e.g. cat-
alytic site residues), for the stability of the native struc-
ture (e.g. hydrophobic core residues) or, in some cases,
for both. In other words, two functional residues par-
ticipating in the ligand binding site of an enzyme must
co-evolve to keep the efficiency of the catalytic reaction
high, while two structural residues in the core of a pro-
tein or at the interface between two binding proteins can-
not evolve independently without negatively affecting the
protein stability or the binding affinity. Residue conser-
vation is can be a straight forward analysis using the
method of Casari et al. [20] based on a principle compo-
nent analysis (PCA) of the sequence alignments. On the
other hand Direct Coupling Analysis (DCA) is one of the
most promising [15, 16, 21, 22, 23, 24, 25, 26, 27, 28, 29,
30, 31, 32, 33, 34, 35, 36, 37] tool to infer the direct cor-
relations between the residues of a protein domain that
arise from either functional (e.g. catalytic site residues)
or structural (e.g. hydrophobic core residues) constraints
optimised during natural evolution. Currently, DCA cor-
relation maps have been used to infer the structure of
a single protein or even the binding regions of protein
pairs [23, 32]. In other words, the correlation informa-
tion has been employed mainly to identify the structural
amino acids and predict the folded structure. However,
from DCA it is still not possible to a priori distinguish be-
tween structural and functional residues. This is because
the two type of co-evolution events give DCA correlation
signals of the same kind. Conservation and co-evolution
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have separately been successfully used to identify many
protein structural and functional properties but never
combined int a single analysis scheme.

In this work we propose an approach combining con-
servation and co-evolution analysis to identify residues
that are key for stability and functionality, and to
further distinguish between either strictly functional
(F)/structural (S) ones from the one that are involved in
both (OFSR, overlapping-functional-structural-residue,
according to the naming scheme adopted in Ref. [1]). By
strictly structural we mean that such residues are respon-
sible of the protein stability regardless of the set of func-
tions. Clearly, destabilising the folded structure could
have devastating effect on the protein function. On the
other hand the strictly functional residues can be altered
without affecting the folding capability of the protein.

The methodology that we propose is based on the hy-
pothesis that an artificial evolution process aimed at op-
timising the amino acids sequence of a specific target
backbone conformation, in the absence of any functional
constraints, would lead exclusively to co-evolution events
of the structural type.

A possible way to construct artificial evolution path-
ways with such characteristics is the inverse protein fold-
ing, better known as protein design [7, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48]. Protein design consists in iden-
tifying sequences specific for a given backbone structure
that at equilibrium would spontaneously adopt the tar-
get conformation. Generally, many different sequences
can be identified for the same target in the same ways as
there are thousands of sequence fragments that fold into
the same domain.

Here we consider three testing case domains, we eval-
uate the site entropy (the single site conservation), and
perform a DCA analysis to calculate pairwise couplings
(a measure of the correlation due to co-evolution) on both
the artificially evolved pool of sequences generated with
protein design and on natural sequences found with stan-
dard protein Multiple Sequence Alignment (MSA) meth-
ods.

Strong signals in the artificial conservation and corre-
lation analysis corresponds to residues that are key for
the structural stability, while strong signals in the natu-
ral sequences analysis might have both structural and/or
functional role. We classify as S the set of residues that,
combining the information from both conservation and
co-evolution, have a strong signal in the artificial pool
and appreciably lower in the natural one, F the residues
that, vice versa, have high natural and appreciably lower
artificial signal and OFSR the residues which posses high
and comparable signals in both natural and artificial se-
quences.

As testing cases we chose three domains belonging to
well studied and well known protein families, namely
the PDZ, FKBP and Response reg. PDZ [49, 50, 51,
52, 53, 54] domains (to which has been previously re-

ferred to as DHR or GLGF domains) are present in sig-
nalling proteins and regulates many cellular pathways.
FKBPs [55, 56, 57] have peptidyl prolyl cis-trans iso-
merase activity and the smallest member of the fam-
ily, FKBP12, is the target of an immunosuppressant
molecule, FK506, effectively used after transplant oper-
ation and to treat patients suffering from autoimmune
disorders. Finally, Response reg [58, 59, 60] are proteins
that regulate the cell’s functioning according to environ-
mental changes. The choice of the families was based
mainly on two fundamental parameters: all selected fam-
ilies have a large number of members, and reliable exper-
imental data is available on the functional residues.

Methods

Protein Model

We employ the Caterpillar coarse-grained protein
model that reduces the complexity of the amino acids
to the backbone atoms: C, O, Cα, N , H. Although the
full Hamiltonian of the Caterpillar model, as described in
Ref. [61, 62] (see SI for details), explicitly depends on the
specific orientation of the backbone atoms, in the design
procedure we only consider the energy terms that are
directly affected by the amino acid identities, since the
protein conformation is not varied during the simulation.

Design

Protein design consists in the exploration of the vast
sequence space, searching for the ensemble of sequences
that would spontaneously fold into a specific target struc-
ture. Our main assumption is that artificially designed
sequences will not show on average any biological func-
tion except of folding into the target structure. This
assumption rests on the fact that the artificial sequences
generated via our design algorithm have little overlap
with natural sequences. In fact, a blast alignment did not
find any scoring. Hence, if there was any functional re-
gion in the design it would have resulted in a blast scoring
alignment. The second argument is that without any ex-
ternal selection pressure for a specific function, different
”accidental” functional would average out and be indis-
tinguishable from the noise. On the other the structural
residues will leave a measurable signal since all the artifi-
cial sequences fold into the target. We artificially design
three single domain proteins, chosen as representative of
PDZ domain, FKBP-type peptidyl prolyl cis-trans iso-
merase, and Response reg. We selected the structures
corresponding to the PDB IDs: 1WI2, 2PPN [63] and
1NXW [58] respectively. It is important to notice that
we opted for the crystal structure 1NXW, where the Re-
sponse reg is in complex with an acetate molecule, rather
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than the native 1NXO, because of the disordered nature
of some residues in the latter structure [58].

Firstly, we relax the crystallographic structure to the
caterpillar protein model by discarding the side chain
atoms. As fully described in Ref.s [61, 62], the Caterpillar
model, in combination with Virtual Move Parallel Tem-
pering (VMPT), that includes adaptive umbrella sam-
pling technique [64, 65], is capable of producing a large
number of sequences that should fold into realistic pro-
tein target structures (see SI for details). We extensively
verified the latter hypothesis in our previous studies (e.g.
Figure 4 of [61]) but also from the Random Energy model
[39, 66, 67] predicting that two sequences with the same
energy on the target structure are equivalent solutions to
the folding problem. Hence, to guarantee foldability, we
considered sequences with equivalent energy in the target
structure. It is important to stress the sequences might
have different folding rates, but this is true also for the
natural ones.

Therefore, we employ VMPT performing Monte Carlo
(MC) Parallel Tempering simulations, running in par-
allel 16 replicas of the system differing in temperature:
T=(10.000; 5.000; 2.000; 1.000; 0.500; 0.333; 0.250;
0.200; 0.167; 0.143; 0.125; 0.111; 0.100; 0.091; 0.083;
0.077) in units of KB and attempting temperature swaps
between adjacent replicas. Additionally, for each tem-
perature, we recover statistics from all the replicas, em-
ploying the virtual move scheme of Ref. [64].

It is important to stress that we want to generate se-
quences that have pair correlations induced by the tar-
get structure. Hence, the sequences generated with our
methods must fold computationally but are not required
to fold experimentally. The caterpillar model fulfils such
a requirement [61, 62]. This property means that also
that any model or force field capable of generating se-
quences and refold them into the natural backbone struc-
ture would be usable for the purpose of our analysis. The
first evidence to support our claim comes from our pre-
vious work on heteropolymer design including the Cater-
pillar design Our work on design showed that provided
that a heteropolymer chain is designable (we defined the
rules to identify such property) then the 3D structures
can be designed with high accuracy independently of the
interaction matrix used to define the amino acid inter-
actions [68, 69]. In fact, the same design strategy works
for lattice and off-lattice proteins with implicit or ex-
plicit solvent, plus the above mentioned patchy poly-
mers [68, 69, 70, 71]. This result is the first indica-
tions that the key correlations that determine the folding
do not depend on the particular model used to repre-
sent the residue interactions. The only requirement, of
course, is that the protein structural space is correctly
represented and for that, we can bring not only the evi-
dence produced by the Caterpillar model it-self but also
made with its close cousins: the tube model of Mari-
tan et al. [72, 73, 74, 75] and the CamTube model [76].

The caterpillar refolding resolution is between 2 and 3
ÅRoot mean square displacement. Hence, the design is
not sensitive to limits in the experimental resolution be-
low 3Åwhich for X-ray structure prediction is feasible.
The second indication that prediction does not depend
on the particular choice of the amino-amino acid inter-
actions (provided that are heterogeneous for instance ac-
cording to a Gaussian distribution [68, 69]) is given by the
DCA it-self. In fact, the direct couplings are nothing else
then specific residue-residue interactions that reproduce
the correlations functions measured over the evolution
process. Hence, there are several sets of direct couplings
that can give the same correlation pattern and lead to
the same folding. The remarkable structure prediction
power of the DCA methodology indicates that optimised
couplings are enough to connect sequence to structure.
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FIG. 1: Classification of functional F, structural S and over-
lapping functional-structural residues OFSR. Firstly, we cal-
culate single site entropy Su(i) (red box) from MSA and
co-evolution FAPC(i, j) (blue box) from DCA analysis. We
prune for highly conserved or strongly coupled residues.
Therefore we select signals with entropy lower than the aver-
age one, Su(i) < Su, and coupling strength higher than the

average, FAPC(i, j) > F
APC

. To refine the selection and iso-
late the outliers, we perform a Principal Component Analysis
(PCA) and construct a dendrogram on the Euclidean dis-
tance in the eigenvector space. For Su(i) we select the signals
corresponding to points not belonging to the largest cluster,
S∗
u(i). Given the increasing complexity of the dendrogram

relative to FAPC(i, j), we select for the 3N signals corre-
sponding to higher values in the dendrogram, F ∗APC(i, j).
Moreover, we reduce the pair signal F ∗APC(i, j) to single
site signal, by counting the Co-Evolution Signals per residue:
CES(i) =

∑
j

F ∗APC(i, j). We perform it on both natural

and artificial families (right upper panels), and we identify
SNAT/CAT and CESNAT/CAT as relevant signals (according
to the selection in the relative panels). We separately anal-
yse conservation and co-evolution, and subtract the artificial
information from the natural one, according to the idea that
artificial evolution does not select for function, while natural
for both function and structure. We assign a score and sum
up the outcome of the two analysis (on Su and CES) and
use it to categorise each residue as S (orange, if the natural
character prevails on the artificial one), F (green, vice-versa)
and OFSR (yellow, if the natural and artificial signals are
comparable).
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DCA couplings and site entropy

DCAs are global statistical models for large MSA of
evolutionarily related protein sequences. DCA repro-
duces the statistics of correlated amino acid mutations
and allows to isolate the direct correlation existing be-
tween two positions in a protein sequence, ignoring the
effects arising from all other positions. Single site en-
tropy, instead, can be derived by the empirical frequen-
cies from MSA.

In the present work, we are interested in deriving a
measure of the coupling between amino acids in dif-
ferent positions and single site conservation. For each
system, we both evaluate single site entropy and per-
form DCA analysis on the set of caterpillar designed
sequences (containing M cat sequences) and on the nat-
ural sequences (with Mnat entries). For DCA, we
use the open source software available on the platform
http://dca.rice.edu/portal/dca/home [27, 32]. The anal-
ysis on natural sequences will intrinsically capture both
structural and functional constraints conserved across
the families of homologous proteins, while artificial se-
quences reflect structural constraints relevant in folding
thermodynamics only.

We compute site entropies Su(i) (see Eq. ?? in the SI)
and the Average-Product Correction (APC) FAPCij (see
Eq. ?? in the SI) from the DCA modelling to score sites
according to their conservation and co-evolution. Com-
paring the signal from natural sequences and caterpillar
sequences, we should be able to spot functional signa-
tures. It is important to stress that the APC product
does remove phylogenetic correlations only if they are
present within the sets of sequences present. Phyloge-
netic correlations are not necessarily present also in the
set of natural sequences.

Results

We consider three protein domains, and for each of
them we select a pool of natural sequences and a sin-
gle domain representative protein structure: PDZ do-
main, 38522 sequences from the Pfam [10] protein fam-
ily PF00595, structure from PDB 1WI2; FKBP domain,
19610 sequences corresponding to the family PF00254,
structure PDB 2PPN; and Response reg domain, 1000
sequences taken from a BLAST [77] alignment on the
sequence of the protein 1NXW from PDB (in order to
reduce the enormous variability of functions and biolog-
ical pathways in which Response reg are involved) also
taken as a reference for the structure. To identify residues
essential for functionality and stability and further cat-
egorise them as S, F or OFSR, we need to generate an
artificial protein family that, by construction, contains
only structural information. To this end, we employ a
protein design procedure based on the caterpillar protein

model [61, 62], which has been tested on several natural
protein structures, producing a large number of different
sequences capable of folding into the target conformation.
Each target PDB is firstly adapted to the coarse-grained
caterpillar representation, removing the side chains. The
protein design method consists in exploring the sequence
space with a point mutation, and swap moves along the
sequence with a frozen target backbone in an MC simu-
lation. We enhance the sampling with the Virtual Move
Parallel Tempering (VMPT) scheme. We denote the
∼ 105 most probable sequences (best candidates for the
folding) as an artificial family. Such sequences possess
low energy and high variability of amino acids. We then
perform the DCA analysis (blue box sketched in Fig. 1)
on natural (NAT) and artificial (CAT) sequences, as well
as evaluate single site entropy from MSA (red box of
Fig. 1). We identify two ensembles: the most conserved
residues SNAT/CAT and the strongest Co-Evolution Sig-
nals CESNAT/CAT (upper panels). For further details,
see Strong signal selection appendix. The DCA is par-
ticularly useful in inferring the contact map of the na-
tive family structure (see Fig. 3a and in the SI Fig. ??).
When applied to the artificial families, one might ex-
pect that the predicted contact maps from DCA would
be much more precise and dense of strong signals, com-
pared to the natural ones. This expectation originates
from the hypothesis that the design algorithm highly op-
timises the sequences for the target structure. However,
the solution space of folding sequences is large and het-
erogeneous a number of contacts similar to the native
predictions have strong DCA signals (compare Fig. 3a,b
and in the SI Fig. ??). The presence of such variability is
non-trivial because it indicates that during the design op-
timisation the fluctuations of the residues resembles the
one observed in the natural evolution. Comparing the
contact maps obtained from natural and artificial fami-
lies, we observe a similar distribution of data indicating
that the design sequences have natural correlation pat-
terns that are inherent in the target structure. Moreover,
the differences in the predicted contacts are the first di-
rect evidence of the different roles of the residues (i.e. S,
F or OFSR).

To more accurately compare the natural and artificial
ensembles, we consider site conservation (SNAT/CAT )
and co-evolution (CESNAT/CAT ) separately and assign
a score to each of the identified residues (for SNAT/CAT
highlighted in Figs. 7 and 8). Since natural signals bear
functional and structural information, while artificial
ones encode only for structure, we compare the residues
conserved in the artificial evolution with the naturally
conserved ones. Therefore, the complement of SNAT en-
code for function only (green, score 1), the one of SCAT ,
vice-versa, only for structure (orange, score −1) and the
intersection SNAT

⋂
SCAT has function-structure over-

lapping character (yellow, score 0). Similarly, we com-
pare the co-evolution signals of each residue in the nat-

http://dca.rice.edu/portal/dca/home
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FIG. 2: Identification of critical residues (green, yellow and orange) for protein function and structure. The sequences are
relative to the PDBs used as representative of each analysed family, namely 2ppn for FKBP (top), 1wi2 for PDZ (centre) and
1nxw for Response reg (bottom), visualised on the right-hand side. The purple bar specifies the location of the domain. We have
excluded the first and last five residues from our analysis, as they are often a source of the noise. We further classify the identified
residues in three classes. Functional residues F, in green, have a natural signal that prevails on the artificial one. Vice-versa,
structural residues S, in orange, are highly conserved and co-evolved in the artificial evolution, but poorly in the natural ones.
Residues with a comparable signal between natural and artificial analysis are classified as overlapping-functional-structural-
residues OFSR and visualised in yellow. At this point we want to focus only on the F and the S residues because of their strong
signal compared to the one of the OFSR. The latter, can be refined by improving the definition of the cluster algorithm [78].
We use the information found in literature (both experimental and from predicting software) to mark the residues important
for functional processes and/or for structural stability [51, 52, 53, 54, 58, 59, 60, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89]. Given
that information, we highlight in blue the residues that show a match with our prediction, while in red the ones identified as
key by literature but missing in our analysis. Over the three investigated families, our prediction has an agreement of 100%,
61% and 96% (top to bottom) in the identification of essential residues for functionality and structural stability.
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FIG. 3: Contact maps from crystallographic structure of the Response regulator and predicted from a) FAPC
NAT (i, j) natural

correlations and b) FAPC
CAT (i, j) artificial correlations: a pair is in contact if at distance ≤ 8 Å in the crystal (black points) and

is predicted to be in contact if the FAPC
NAT (i, j) correlation is among the 100 strongest ones and at a distance on the chain larger

than 5th neighbours (coloured points). Blue squares are true positives, i.e. contacts both predicted and present in the crystal
structure, while red ones are false positives, that is predicted contacts not present in the crystal.

ural and artificial evolution, and we classify as purely functional the residues with the natural signal prevail-
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ing on the artificial one, function-structure overlapping
if they are comparable and purely structural if the arti-
ficial signal prevails (see Fig. 1). The raw data relative
to such analysis are listed in Fig. 6 of SI, and is evident
from such figure that the majority of signals come from
the co-evolution data, thus stating the importance of in-
cluding both site conservation and co-evolution events in
the evolutionary related statistical methods.

Finally, for each residue, we sum the scores sepa-
rately obtained in the site conservation and co-evolution.
Therefore, we classify as purely functional (F) residues
with score≥ 1, purely structural (S) those with score≤
−1 and overlapping (OFSR) if score= 0.

αB

βB

βC
NC

FIG. 4: PDZ domain complexed with a peptide ligand, (PDB
1tp3). In cyan is represented the ligand; in red, residues 28-
35, 42-49 (both identified by the analysis as function related
patches along the sequence) and 78,81,85,88 (identified as key
for structure and function). We correctly identify the regions
involved in the PDZ main function, namely βB, βC and we
partially recover the αB stabilisation effect through our anal-
ysis.

In Fig. 2 we list the residues as functional (green), over-
lapping (yellow) or structural (orange) (FOS annotation)
according to our analysis. We compare the outcome of
our analysis with the experimental and computational
literature available and encode the matching in colour
assigned to each residue along the sequence: blue posi-
tions are identified as relevant for protein function and/or
stability both in nature and in our prediction, while red
ones are key in literature but not predicted.

Our results show that for the FKPB family we cor-
rectly identify the 100% of residues previously assigned as
key for the isomerase activity and the binding of FK506
related drugs [79, 80, 81, 82]: residues=26; 36; 37; 56;

59; 82; 99. In particular, from our study, we categorise
residues=37; 59; 82; 99 as strictly functional (green),
matching what has been previously found in numerous
computational and experimental studies. The remain-
ing listed functional residues, based on their location in
the folded structure, arrange around the binding pocket
(see right-hand side of Fig. 2). Hence, the strictly func-
tional are 60% of the 7 experimentally identified func-
tional residues. Overall the residue annotated on the
natural sequence where 71% of the total protein length
giving little information above a random identification.
It is the comparison with the artificial set proposed here
that leads to the further FOS annotation that point the
attention to key residues for further study.

PDZ domains usually bind to the C-terminus of other
proteins, or too small peptides, via beta sheet augmenta-
tion, therefore establishing inter-protein hydrogen bonds
and interactions that extend the PDZ beta sheet (involv-
ing βB and βC) [51, 52]. The binding partner further
packs against the PDZ C-terminal alpha-helix (αB).

In the present study, we correctly identify the major-
ity of the residues involved in such protein-protein inter-
action (see Fig. ). Remarkably, we identify two central
functional regions at positions 28 to 35 and 43 to 49, that
are the regions coinciding with βB and βC and mainly
involved in peptide binding. We partially recover also
the further stabilisation of the peptide binding involving
αB, since we identify the residues=78,81,85,88 as key.

On the overall, we correctly identify residues=23, 28,
29, 30, 32, 33, 34, 35, 46, 47, 49, 78, 85, 88, that is the
61% of the residues known from experiments and pre-
dicted by I-Tasser to be involved in either dimerisation,
peptide binding or hydrophobic core [49, 51, 52, 53, 54,
86, 87, 88]. It is interesting to notice that we categorise
as strictly structural only two of the residues=78,88, as
mentioned earlier.

Particularly interesting are the residues=23,29,33,46
categorised as OFSR, that is a mutation that might influ-
ence one of the activity as mentioned above. Our results
suggest that it would be interesting to test if such residues
are necessary to stabilise the protein and the effect of a
mutation is to destabilise the protein structure, which in
turns reduces the protein efficiency.

It is important to stress that the missing 39% of ex-
perimentally isolated residues did not give a strong DCA
signal from the natural alignment. Hence, it is not a lim-
itation of our methodology but of the alignment data.
Moreover, our lower resolution limit is comparable to the
one of other methods [90]. To improve upon this point,
we could try to include also the indirect couplings that
Cheng et al. [13] have demonstrated to be strongly con-
nected to functionality. In particular, we could include
higher order correlation than just pairs like in the DCA.
An other approach would be to try to divide the nat-
ural sequences into phylogenic groups and test for the
appearance of novel correlations.
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Additionally, if dimer structures were available or spec-
ulated, one could further refine the classification, identi-
fying among the functional residues the subgroup of sites
involved in protein-protein interactions (e.g. dimerisa-
tion or small-peptide binding). One could produce ar-
tificial families through our design algorithm using as a
target the structure of a dimer or the protein bound to
the peptide instead of the single protein one. The sites
that would change their classification from functional to
structural would be the one that is essential to stabilise
the bound configuration. In the case of the PDZ domain,
we expect that the missing functional residues should be-
come now classified as structural. We have not done this
analysis yet and is planned for future work.

Response reg domains are usually involved in several
biological pathways in the human body, thus, for the
sake of simplicity, we used the natural sequences col-
lected with a multiple sequence alignment with the pro-
tein 1nxw via BLAST, mainly analysing DNA-binding
response regulators. Previous studies show that the pro-
tein is activated through a phosphorylation event on
the residue 52. However, the DNA-binding activity oc-
curs also in the absence of phosphorylation, mediated by
the dimerisation of the domain [58, 59, 60]. Therefore,
dimerisation is here inherently connected to protein func-
tion.

We correctly identify the 96% of residues previously in-
dicated as involved in phosphorylation, dimerisation and
binding as key for protein function and structure. We
miss out only the position 110, that is a hydrophobic
patch mediating the dimer interface. The analysis on
the Response reg domain differs from the previous ones
since it shows large areas of strictly structural relevance
(patches at 6-8, 13-21 and 101-110).

Summarising, we were able to correctly identify the
vast majority of the residues experimentally proven to be
involved in protein functions and protein-protein interac-
tion. Moreover, as a further indication of the validity of
the method, in all cases, we find that the residues identi-
fied with our analysis fall within the domain of the family
(purple bar in Fig. 2). As a general remark, thanks to
the low computational cost of the design algorithms, the
same procedure could be performed by designing many
protein pairs bound to each other in different conforma-
tions. Again, from comparing the new analysis with the
single protein one, the function residues that would turn
into structural would be involved in unknown protein-
protein interactions.

It is important to stress that if we would have picked at
random the known functional residues with N trials (in
our caseN is the number of proposed residues), according
to the binomial distribution, we would have identified:1±
1 for the FKPB family 3±2 for the PDZ family and 4±2
for the Response reg. All the numbers are well below
the actual identified residues. Finally, it is important
to stress that the artificial sequences cannot be replaced

by random ones because they would not have shown any
annotation signal for the functional regions (see Fig. 8).

FIG. 5: Dimer form of a response regulator receiver domain,
(PDB 1pkx). The dimerisation occur through the α4-β5-α5
interface. α4-β5-α5 of chain A is highlighted in red, while
chain B shows the classification obtained with our analysis:
functional in green, intermediate in yellow and structural in
orange.

Conclusion

We have analysed three major protein families: FKBP,
PDZ and Response reg. From the natural sequences, we
extracted the information relative to highly conserved
sites and highly co-evolved residue pairs. The analysis
resulted in a long list of residues that could potentially
have a functional and/or a structural role for the pro-
teins.

For each protein family, we produced an artificial set
of sequences that are equivalent solutions to the folding
problem.

The researchers that are interested in using our
methodology at the moment need three tools all of which
are available as open software. The first information
necessary is the alignment of the target protein. Then
the target protein structure is stripped of the sequence
and redesigned using the protein package ViPS available
online[94]. At this point, the user will have two lists of
aligned proteins one natural and the other artificial. In
order to generate the Entropy and FAPC weight, the user
can use the Matlab DCA script, free for download [95],
and run it on both lists. Finally, the last step is to use the
Matlab script in the supplementary materials to compare
the weights of the two lists.

We applied the same conservation and co-evolution
analyses performed on the natural alignments, obtaining
a correlation pattern with many features in common with
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the natural ones. However, it is in the differences that we
find the main result of this work. The residues that have
a strong co-evolution signature only in the natural align-
ments are residues that do not have a structural role in
the protein because otherwise, they would show a similar
signature in the analysis of the artificial set. Hence, it
is reasonable to assume that if such residues where con-
served, they must have a role related to the function of
the protein or structural elements that were not included
in the design process. For instance, residues that are es-
sential for dimerisation would appear as functional when
the protein is designed alone and instead categorised as
structural when the dimer is designed as a whole.

The results demonstrate the validity of our automated
approach to identify functional residues in protein fam-
ilies. Large scale analysis of the whole proteome us-
ing an automated algorithm based on our methodology
could give an essential contribution to the identification
of functional protein regions. By designing protein com-
plexes, our method could also be used to classify func-
tional residues for their involvement in protein-protein
interactions. Retrospectively, the successful annotation
of the functional residues proves the validity of our ini-
tial hypothesis that has important implications on the
structure of the protein sequence space. It further fur-
ther supports the fundamental prediction that the exist-
ing proteins are indeed just a small fraction of all possible
proteins and the natural evolution has explored only spe-
cific sections with biologically relevant functions.

Outlook

As possible development of the here presented method,
one could combine the single site and pair information in
one signal, that is the conditioned entropy. Conditioned
entropy is an expression of the conditional probability of
finding the amino acid a at site i, given the amino acids
in all the other positions, therefore including not only the
single site statistics but also the pair conservation. This
approach would reduce the number of analysis needed for
the identification of protein’s essential regions. It would
be interesting also to test the DCA approach based on
the Hopfield-Potts method from Cocco et al. [21].

Recently, Possenti et al. [91] have presented a new
method to compute the entropic contribution of each
residue of several testing proteins, divided in two contri-
butions structural and all the potential functions further
classified in proteolytic cleavage, solubility, and function-
ality. The latter is extracted from experimental data.
The publication demonstrates that it is possible to sep-
arate the information contained in the protein evolution
process and it would be advantageous to combine such
methodology with the one presented here, where we can
extract the information about the functional term needed
for their analysis. It is also interesting to mention the re-

cent methodology Co-Factor by Zhang et al [90] that is
based on structural protein homology. Their work raises
the interesting question of whether protein function is en-
coded in the structure or the sequence or both. The fact
that both co-evolution signals and structural alignment
are capable of identifying structural residues suggests the
latter hypothesis. in fact, from our work and mutation
experiments, it is evident that it is possible to design pro-
teins to fold into a structure without its original function.
Again, this further confirms that proteins evolution re-
samples the same subset of solutions compared to the
overall protein space. This observation is fascinating and
opens the door to exciting speculation that deserves a
dedicated study beyond the scope of the present paper.

Finally, we think that our methodology could be used
as a starting point for further improvements in particu-
lar by reintroducing the information on the indirect cou-
plings measured in the natural alignments similarly to
what done by Cheng et al. [13]. Moreover, by redesigning
the proteins in known bound conformations (e.g. dimers
or larger complexes), it should be possible to reclassify
functional or missed residues as structurally crucial for
the stability of the dimer.
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Strong signal selection

Firstly, we evaluate single site and pairwise signals (Su
from MSA, Eq.s ??, and FAPC from DCA, Eq. ??) on
both the I) natural sequences and the II) artificial fam-
ilies. The results of this two analysis is then combined
in the last step, consisting in III) selecting residues with
overall high signals, both natural and artificial, as key
for structure and function, and further isolate S and F
residues from the overlapping OFSR ones by comparing
the intensity of their signals in the natural and artificial
analysis.

From the MSA we extract the empirical frequencies
for the conservation of each site, and evaluate the single
site entropy [92], Su(i), defined in Eq. ??. The DCA
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analysis is performed over the aligned sequences ignoring
the the first 5 and the last 5 residues of each sequence,
since they are source of noise. Moreover, to remove trivial
correlations, we neglect the couplings between first and
second neighbours along the chain. The main result of
the DCA analysis are the estimated couplings between
the residues pairs.

The DCA couplings are used to the Frobenius Aver-
age Product Correction [23, 93], FAPC(i, j), defined in
Eq. ??. The FAPC is a method to correct for the phylo-
genic relations between residues and correlates with pair
co-evolution events. FAPC is based on the idea that cor-
relation between pairs of amino acids is the sum of a true
statistical dependency and a background dependency due
to the phylogenic relationships. In the FAPC it is as-
sumed that the background dependency is a product of
independent factors associated with the two positions.

The FAPC(i, j) and the entropy Su(i) provide signals
for each residue pair and single residue respectively.

It is important to notice that, for the entropy distri-
bution, outliers that are larger than the average Sc cor-
respond to sites of high variability, but since we are in-
terested in the highly conserved ones we exclude such
points. Similarly we focus only on the outliers corre-
sponding to strong co-evolution events, hence we exclude
the FAPC(i, j) outliers below the distribution average

F
APC

.

We perform a standard Principal Component Analysis
(PCA), using residue index (indices) and conservation
(co-evolution) signals, implemented in the open-source
software Octave (see PCA source code section in SI for
the source). The residue index are used to map back the
strong signals into the protein sequence. Once the Su(i)
and the FAPC(i, j) are projected over their respective
principal components, we prune for the outliers. We plot
a dendrogram of the values where the distances are simple
euclidean distances between the points in the eigenvector
space. The outliers of Su(i) are identified by isolating
the sites that do not belong to the largest group at low
distances (see highlighted region in Fig. 7 and 8 ). We
denote the signals of the corresponding residues as S∗c (i),
and we label as SNAT the list outcome of the analysis on
natural signals and as SCAT the artificial one.

The FAPC(i, j) outliers are isolated following a sim-
ilar procedure, but, after constructing the dendrogram
ordered according to the distance from the other points
in the eigenvector space, we take the 3N residue pairs at
higher values. The reason is that the FAPC dendrogram
is much richer than the entropy one and it is difficult to
isolate the clusters.

Currently, the procedure is fully automatic and we also
tested it against a simple quartile separation that pro-
duced similar selections. It would be interesting to ap-
ply machine learning algorithm or different cluster algo-
rithms [78], to further test the robustness and/or improve

the selection efficiency.

For each of the selected residues, we count the number
of pairs in which it is involved among the FAPC(i, j)
signals, and we name them as Co-Evolution Signals
CES(i) =

∑
j

F ∗APC(i, j), both for natural and artificial

analyses.

We then use the CES(i) value of each residue to con-
struct two lists: a natural and an artificial one. We
consider a residue natural if CES(i)NAT > CES(i)CAT
and CES(i)CAT < 10, while artificial if CES(i)NAT <
CES(i)CAT and CES(i)CAT ≥ 10, where the threshold
of 10 is used to filter the false positives of CES(i)CAT .

The CESNAT selection list of natural signals identi-
fied with the above mentioned procedure, according to
our hypothesis, intrinsically contains structural and func-
tional information, embedded among the predicted cou-
plings. Hence, potentially, some of the correlated residues
might be involved in a protein function.

In Fig. ?? (see section Contact maps of SI for further
information) we show the contacts predicted from the
analysis on natural sequences, together with total native
contacts. From the comparison we observe that we pre-
dict the majority of the native contacts (blue dots), while
we still have some false positive predictions that do not
correspond to natural structural contacts. The latter are
the most interesting for the present study and we spec-
ulate that should indeed hide specific conserved residues
necessary for the protein functionality but not for the
structural stability.

On the other hand, the list CESCAT outcome of the
artificial analysis contains only structural information,
therefore being effectively a list of the predicted strongest
bonds in the native structure of the domain.

The entirety of residues in the two lists are considered
as key for the protein structure and/or function.

We then operate a pre-classification step: we process
conservation and co-evolution independently, and the as-
sign a score (−1 for structure predominant character,
1 for function predominant and 0 in between) to each
residue. As for the conservation signal, we assign 1 if
the residue exclusively belong to the SNAT list, −1 if is
exclusively in SCAT and 0 if it is shared among the two.
Similarly, we subtract the natural CES(i) value to the ar-
tificial one for each residue of the CESCAT/NAT lists, and
we assign a score basing on the discrepancy gap. We set a
threshold and we consider functional (score= 1) a residue
whose natural/artificial gap is CESNAT −CESCAT ≥ 5,
structural (score= −1) one with CESNAT −CESCAT ≤
−5, and overlapping (score= 0) a residue whose signals
are comparable 5 > CESNAT − CESCAT > 5.

Finally, if in common, we sum the scores assigned to
each residue in the conservation and co-evolution lists
and we categorise as F the positions with a total sum
Σ ≥ 1, S the ones with Σ ≤ −1 and OFSR residues with
Σ = 0.
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The residues selected with the above mentioned proce-
dure, along with their classification, are listed in Fig. 6.
For each residue in the CESNAT/CAT lists, the relative
CESNAT and CESCAT values are written in the adja-
cent columns, so that we can compute the difference be-
tween them and assign a red colour (strong signal) if
the absolute value of such difference is ≥ 5. If the sig-
nal is strong for residues selected in the natural analy-
sis, we assign a green colour (score= 1, functional) to
the relative CESNAT column. Viceversa, if the signal is
strong in the caterpillar analysis, we assign the orange
colour (score= −1, structural). When the signal is weak,
i.e. the difference is smaller than 5, we assign the yellow
colour (score= 0, intermediate). For the entropy, we as-
sign green when the signal is present only in the SNAT
list, orange if present only in the SCAT list, yellow if in
common. For the final assignment, we combine the two
analysis, on entropy and CES, and we assign green if
score≥ 1, orange if score≤ −1 and yellow if score= 0. In
principle the intermediates should be classified as struc-
tural as well since are in common between the two en-
semble of sequences. However, they have small CES and
the value could be sensitive to the cluster algorithm used
to identify the strongest FAPC(i, j) signals. Hence, at
this stage we would like to focus on the functional and
structural ones for the analysis of the prediction power
of our methodology. Preliminary tests performed with
an independent cluster algorithm [78] identified the same
functional and structural residues as done here (data not
show).

Please note that the functional residues that we ulti-
mately identify do not depend on the particular choice of
the PDB taken as reference structure, since the domain
structure is conserved in the family and the alignment
guarantees the mapping of the functional residues on the
selected domain type of every member of the family.
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Snat final colour Scat final colour final colour CEScat(i) CESnat(i) diff(nat-cat) final colour CEScat(i) CESnat(i) diff(nat-cat)
9 0+0 1 -1+1 1 1-1 5 12 7 16 -1-1 11 2 -9

11 2 3 1-1 2 7 5 29 10 3 -7
76 1+0 3 -1+1 4 0-1 3 7 4 35 10 6 -4
83 4 -1+0 5 -1+1 3 8 5 53 11 5 -6
87 1+1 5 -1+1 6 0-1 5 6 1 61 14 0 -14
88 1+1 6 -1+0 7 0-1 4 5 1 69 10 9 -1
89 7 -1+0 9 0+0 4 7 3 72 13 3 -10
93 8 10 4 5 1 77 12 4 -8

113 1-1 9 0+0 14 0-1 5 6 1 85 12 5 -7
114 0+0 13 19 5 8 3 99 16 1 -15
115 0-1 14 -1+0 20 0-1 2 3 1 101 13 9 -4
116 0-1 15 24 0 2 2 102 -1-1 12 4 -8
117 0-1 16 -1-1 25 2 3 1 103 11 6 -5
118 1-1 17 26 0 3 3 104 11 6 -5

18 27 2 5 3 105 -1-1 17 7 -10
20 -1+0 30 5 8 3 106 11 6 -5
21 31 1 2 1 107 12 11 -1
41 -1+0 32 8 10 2 108 16 11 -5
59 33 4 5 1 109 25 10 -15
84 -1+1 34 0 3 3 111 12 11 -1
92 -1+1 37 1 6 5 112 14 10 -4
96 -1+1 38 1 7 6 113 -1+1 14 9 -5

102 -1-1 39 4 7 3 114 0+0 14 12 -2
105 -1-1 40 7 9 2 115 -1+0 22 12 -10
114 0-0 41 0-1 7 8 1 116 -1+0 20 6 -14
115 0-1 43 2 6 4 117 -1+0 13 7 -6
116 0-1 44 7 8 1 118 -1+1 25 10 -15
117 0-1 50 3 6 3

51 0 7 7
52 0 2 2
54 0 6 6
55 0 3 3
56 0 5 5
60 0 10 10
62 3 8 5
63 0 6 6
64 9 10 1
65 5 9 4
66 9 11 2
67 2 5 3
68 1 6 5
70 6 8 2
73 3 6 3
74 0 10 10
76 0+1 5 6 1
79 3 6 3
80 0 5 5
81 0 3 3
84 1-1 0 6 6
86 0 3 3
87 1+1 0 7 7
88 1+1 0 7 7
90 0 6 6
91 0 8 8
92 1-1 0 5 5
94 0 9 9
95 0 13 13
96 1-1 0 5 5
97 0 8 8
98 0 5 5

100 0 6 6

F=1 OFSR=0 S=-1

CESnat: res=i, CESnat>CEScat && CEScat<10 CEScat: res=i, CEScat>CESnat && CEScat>=10

Bold=common between Sx and CESx
Underlined=common between Sx and CESy 

Snat final colour Scat final colour final colour CEScat(i) CESnat(i) diff(nat-cat) final colour CEScat(i) CESnat(i) diff(nat-cat)
19 1+1 70 19 1+1 8 16 8
30 71 20 8 10 2
63 72 23 5 6 1
66 75 28 7 12 5
70 76 29 8 11 3
73 77 32 3 9 6
81 78 33 3 7 4
85 88 34 6 14 8
91 92 35 4 9 5
93 95 36 4 7 3
95 39 3 8 5

43 4 13 9
44 0 5 5
45 2 7 5
46 5 8 3
47 1 8 7
48 4 7 3
49 2 12 10
51 0 3 3
53 1 5 4
54 1 5 4
56 0 2 2
57 2 3 1
58 1 2 1
59 4 8 4

CESnat: res=i, CESnat>CEScat && CEScat<10 CEScat: res=i, CEScat>CESnat && CEScat>=10

Snat final colour Scat final colour final colour CEScat(i) CESnat(i) diff(nat-cat) final colour CEScat(i) CESnat(i) diff(nat-cat)
13 28 0+0 24 4 9 5 18 10 3 -7
14 32 -1+1 25 2 12 10 19 10 6 -4
15 38 26 0+1 7 9 2 45 10 6 -4
22 62 -1+0 28 0+0 6 7 1 46 10 2 -8
26 1+0 65 -1+1 30 7 9 2 52 10 4 -6
28 0+0 66 -1+0 31 5 6 1 74 11 9 -2
33 1+0 68 -1+0 32 1-1 2 8 6 76 0-1 10 8 -2
36 1+0 69 33 0+1 6 7 1 79 10 3 -7
37 76 -1+0 36 0+1 4 6 2 80 11 7 -4
48 78 39 8 9 1
51 85 -1+0 40 4 6 2
56 1+0 91 0+0 43 3 4 1
58 92 -1+0 56 0+1 6 7 1
63 1+1 93 59 2 8 6
69 94 60 5 10 5
82 104 61 2 6 4
83 1+0 62 0-1 5 8 3
91 0+0 63 1+1 1 6 5
97 64 4 7 3
99 65 1-1 1 6 5

101 66 0-1 3 7 4
103 67 4 10 6
104 68 0-1 2 6 4

70 5 7 2
71 4 7 3
72 5 10 5
83 0+1 3 4 1
85 0-1 5 8 3
88 2 5 3
90 5 6 1
91 0+0 3 7 4
92 0-1 2 5 3

CESnat: res=i, CESnat>CEScat && CEScat<10 CEScat: res=i, CEScat>CESnat && CEScat>=10

FIG. 6: Residues SNAT , SCAT , CESNAT and CESCAT .
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FIG. 7: Dendrogram of the entropy Su(i) calculated on the artificial sequences for: a) the PDZ, b) FKBP and c) Response
Regulator domains. In yellow we have highlighted S∗

c (i) = SCAT , that is the outliers that do not belong to the largest cluster.
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FIG. 8: Dendrogram of the entropy Su(i) calculated on the natural sequences for: a) the PDZ, b) FKBP and c) Response
Regulator domains. In yellow we have highlighted S∗

c (i) = SNAT , that is the outliers that do not belong to the largest cluster.
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