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Abstract—In this paper we present an approach for performing
object classification and segmentation in satellite images for the
Maritime domain. We employ neural network architectures for
object classification and segmentation tasks in order to identify
different classes of objects in satellite imagery for the maritime
domain, such as vessels, land (e.g., port terminals), clouds,
etc. We compare the accuracy of different neural network
architectures and present the results of our experimental
evaluation.

1. Introduction

Maritime Situational Awareness (MSA) is the systematic
monitoring of the maritime domain in order to detect mar-
itime activities and events that impact safety and navigation.
In order to be able to obtain an up-to-date picture of the
maritime domain, various systems have been developed
aiming at monitoring the activities of vessels. These systems
are distinguished into two broad categories: cooperative and
non-cooperative systems.

Cooperative vessel reporting systems require for the
collaboration of the vessels’ crews to transmit reports on
the position of the vessels, along with other information
depending on which system is used (e.g., navigational sta-
tus, speed, etc.). The most common cooperative reporting
system is the Automatic Identification System (AIS) that
was established as mandatory for all commercial vessels
over 299 Gross Tonnage (GT) and for all passenger vessels
regardless of their GT that travel internationally. AIS relies
on VHF communication. AIS receivers are installed aboard
vessels in coastal (and satellite) stations in order to be
able to receive AIS messages. Transceivers, i.e., devices
that are able to transmit and receive AIS messages are
installed board the vessels. Vessels are obliged to send AIS
messages frequently. The duration of time intervals between
two consecutive AIS transmissions from the same vessel
ranges from a few seconds to a few minutes and depends on
the navigational status of the vessel (e.g., the speed, change
in heading, etc.). Although AIS is an undoubtedly valuable
source of information for the maritime domain, it comes
with the following drawbacks: (i) there are places with
limited or no coverage, (ii) malfunctions in AIS transponders
may happen, and (iii) it is common for vessels that engage
in illegal activities to turn their transponder off.

In contrast to collaborative vessel reporting systems,
non-cooperative systems do not rely on the collaboration
of a vessel’s crew in order to receive updates regarding
its navigational status. Using these systems, vessels can be
monitored independently. An example of such a source is
a satellite constellation that produces images that enable
the detection of vessels. Although the temporal and spatial
coverage of satellite data is nowhere near the respective ones
for AIS, using data from satellite images fused with AIS
data is valuable. For example, if a vessel “goes dark” by
switching off its transponder, it is possible that it can be
tracked using a high resolution satellite image.

In this paper we present an approach that implements
data fusion and AI techniques in order to perform object
identification in satellite data. The contributions of our
approach to the state-of-the-art are the following: (i) Our
approach fully exploits the capabilities of optical images,
contrary to related approaches that consider SAR images.
More specifically, we use ESA Sentinel 2 images. (ii) Re-
lated publications focus in the detection of a certain type
of features that can be extracted from a satellite image,
especially vessels. However, more than one type of features
can be observed such as offshore facilities, clouds, etc.
Most related frameworks employ AI techniques such as
Convolutional Neural Networks to identify one of these
categories (iii) Most related efforts rely either on image
processing techniques or on AI and Machine Learning tech-
niques. We develop a hybrid approach that uses both image
processing and machine learning techniques. We employ
machine learning techniques, such as Convolutional Neural
Networks (CNNs) in order to classify the detected objects
(e.g., identify the type of vessel, clouds, etc.) and we use
image processing to detect objects in the sea and extract
attributes (e.g., location, dimensions, etc.).

2. Background and Related work

In this section we present some background and related
work in the area of classification and semantic segmentation
in satellite imagery, and we also describe state-of-the-art
CNN architectures that can be employed for these tasks.



2.1. Classification in satellite imagery

In related work, [1] presents a comparison study for
vessel detection in SAR imagery. [2] introduces an approach
for fusing SAR and AIS data for vessel detection. [3] de-
scribes an approach that uses Sentinel-1 imagery to estimate
the size of vessels. [4] proposes an technique for ship
classification in high-resolution SAR imagery using deep
learning. [5] presents data fusion techniques for maritime
surveillance. [6], [7] and [8] describe more approaches that
perform fusion of AIS and SAR data for ship detection. All
aforementioned approaches use SAR imagery, while in the
work described in this paper we use optical imagery. Optical
imagery is also used in [9] recently proposed a CNN net-
work architecture for ship classification using multi-spectral
imagery. Our approach deviates from the methods described
in these publications in that (i) fully exploit optical imagery
as opposed to SAR imagery, (ii) we do not only perform
vessel detection but also segmentation, and we also include
other classes that can be found in optical imagery such as
land (e.g., terminals) and clouds. Another related work is
described in [10], in which a state-of-the-art method that
heavily relies on CNNs is employed to distinguish sea and
land parcels. For land parcels, we additionaly employ land
masking techniques, so that we mask out the biggest part of
an image that that corresponds to land, leaving only coastline
parcels and new-built structures that have not been mapped
yet (i.e.g, and included in the dataset that we use for land
masking).

2.2. Convolutional Neural Networks

Some of the state-of-the art CNN architectures for image
classification and segmentation are the following:

• Resnet. Resnet [11] is a CNN which is particularly
useful for carrying out challenging image classifica-
tion tasks (e.g., a lot of different objects appearing
in scenes, detailed scenes, objects of the same class
appearing in different positions and dimensions,
colours, etc.). It contains a large number of layers
but achieves very good accuracy.

• VGG-16. VGG-16 [12] is one of the most
widespread CNN for image classification. VGG-
16 contains less layers than Resnet, which makes
it more lightweight, faster but less accurate than
Resnet.

• UNet. UNet has been reported to achieve very good
results for image classification and segmentation and
it is known for its widespread application in the
medical domain [13] due to its proved accuracy
in the classification and segmentation of medical
imagery where details are important.

• Segnet. Segnet [14] follows an Encoder-Decorder
architecture similarly to U-net, but Segnet does not
include skip connections as U-net does. Segnet does
not include any skip connections and one of the
main characteristics of its architecture is that the

maxpooling indices of the encoder layers are used
by the corresponding decoder layers in whiche the
upsampling operation is performed.

• Fully Convolutional Network (FCN) [15]. FCN is
a typical CNN architecture used for semantic seg-
mentation. It is built by transforming a typical CNN
(e.g., VGG-16) into fully convolutional and using
transposed convolutions for upsampling.

3. Approach

In this section we describe our approach. Section 3.1
describes the training workflow and Section 3.2 predication
describes the classification/segmentation workflow.

3.1. Training

The training workflow appears in Figure 1. It comprises
the following steps:

• Image acquisition. The Satellite images are auto-
matically downloaded through the Python API1 of
the Copernicus Open Access Hub Hub2.

• Image transformation. The satellite image is trans-
formed from its source Coordinate Reference Sys-
tem to the WGS84. The reason for this is to be
able to perform the land masking operation that is
described below. To retrieve the source CRS of the
image, the metadata file of the image is used. In
the context of this work, we use Sentinel-2 images.
These are optical images that come in three different
resolutions: 10m, 20m and 60m resolution. We use
the 10m resolution images.

• Land Masking. Land masking is an operation that
masks out the land part of an image. To be able to do
this, we use a global coastline shapefile that contains
the geometries of the coastlines of all countries in
the world. We combine this file with the satellite
image using a Python GDAL library and the result
is an image where the pixels that correspond to
land appear with black colour. However, not all land
parcels are masked. This might be either because of
the resolution of the coastline file, or by the fact that
some new land parcels such as terminals and other
port facilities are built. For this reason, we also train
our models to include a ”land“ class so that we are
able to identify the new structures.

• Tiling. Since satellite images are large files, tiling
them into smaller tiles, as for example in 256× 256
tiles facilitates image processing operations.

• Annotation. Image annotation is twofold. First, we
use AIS data as ground truth in order to spot the
vessels that appear on the image. Then, we manually
annotate the rest of the vessels that do not have
registered AIS signals, if any, and the rest of the

1. https://sentinelsat.readthedocs.io/en/stable/api.html
2. https://scihub.copernicus.eu/dhus



classes appearing in the scene (e.g., land parcels,
clouds) using the tool labelme3. For the segmenta-
tion task, all vessel instances need to be manually
labeled (even those identified through AIS).

• Training. Finally, we use the annotated dataset to
train our Convolutional Neural Network. The work-
flow is orthogonal with respect to the CNN archi-
tecture used. We experimented with different CNN
architectures for the classification and segmentation
tasks, as shown in Section 4. The result of this task
is our trained model, which we will use for the
prediction phase.

Figure 1. Training workflow

3.2. Classification and Segmentation

The workflow for the classification and segmentation
tasks is illustrated in Figure 2. It consists of the following
steps:

• Image acquisition. The workflow is triggered by
a request to monitor a vessel. We retrieve its posi-
tion(s) within the time frame of interest (e.g., its
latest positions) from AIS data. This can be for
example a vessel that appears out of coverage in
the MarineTraffic website4. The goal is to locate

3. http://labelme.csail.mit.edu/Release3.0/
4. https://www.marinetraffic.com

Base model Segmentation model Accuracy
VGG16 Unet 0.7647

Vanilla CNN Unet 0.929211
Vanilla mini CNN Unet 0.99

Resnet50 UNet 0.9017
Vanilla CNN Segnet 0.87

TABLE 1. ACCURACY OF DIFFERENT CNN MODELS

the vessel of interest in satellite imagery, so that we
know its position while it was out of AIS coverage.
Therefore, we make a request to the Sentinel API
for all images acquired in the area of interest within
the given time frame and download the results.

• Transformation, land masking, and tiling. These
steps are the same as the ones of the training
phase. The downloaded images are transformed, land
masked and tiled.

• Classification and Segmentation. The land-masked
tiles that result from the previous step are then fed
as input to the trained CNN model in order to
perform classification and segmentation. The result
is a set of image tiles annotated with the instances
of the classes of interest (i.e., vessel, cloud, land).
The identified featured are then extracted (feature
extraction). Metrics calculation. Finally, we cal-
culate the metrics of the instances that have been
classified as vessels. We perform pixel level calcu-
lations to identify the dimensions of the vessel, its
position (georeferenced in WGS84), the direction
and the navigational status (i.e., underway using
high/medium speed, stopped/moving with very low
speed, etc.), considering the wakes. Given these
characteristics in place we are then able to match
the vessel of interest with the identified vessels
appearing on the Satellite image.

4. Experimental Evaluation

For the experimental evaluation we used a dataset con-
sisting of annotated Sentinel-2 image tiles. We tested differ-
ent combinations of CNN architectures as base and segmen-
tation layers using 5 epoch training and we evaluated their
accuracy for the segmentation task for vessel instances. For
the implementation and evaluation of the models we used
the keras-segmentation Python library5.

The results are shown below in Table 1.
The results shown in 1 show that, in our case, a simple

CNN as base layer combined with UNet for the segmen-
tation layer outperforms all other configurations. However,
Segnet combined with a vanilla CNN works also very good,
achieving 0.87 accuracy. One of the reasons for that is that
Sentinel-2 images have relatively low resolution, and fairly
few features per tile with fairly simple shapes, especially
taking into account the fact that we include a land masking
step that simplifies significantly the number and area of land

5. https://github.com/divamgupta/image-segmentation-keras



Figure 2. Prediction workflow

parcels that may be included in a tile. Also, taking into
account the height of the above which Sentinel satellites
operate, the same vessels have minimal changes in shape in
images taken from different angles, so more sophisticated
CNNs can be an overkill, at lease as base layers.

5. Conclusions

In conclusion, this paper presents a data-driven approach
that identifies objects in the maritime domain such as ves-
sels, land parcels (e.g., new terminals) and other objects that
might be seen in satellite imagery and can be considered as
noise, such as clouds. Our approach employs state-of-the-
art deep learning techniques to perform object classification
and segmentation against a dataset that consists of satellite

images fused with AIS data and is able to identify vessels
extracting also their characteristics, such as position, direc-
tion, heading, and vessel type. In the future, we plan to
continue our benchmarking work and release a benchmark
for testing different CNN algorithms for classification and
segmentation against satellite images.
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