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ABSTRACT

The establishment of the Automatic Identification System
(AIS) was revolutionary for Maritime Situational Awareness,
as it allowed for the tracking of vessels carrying an AIS
transponder, which is mandatory for, and not limited to, the
majority of the commercial fleet. Despite the benefits of the
widespread use of AIS for navigational safety and global
maritime security, one cannot depend only on AIS sources in
order to obtain the complete maritime situational awareness
picture. In this paper we describe a multistage data-centric
workflow that integrates satellite optical imagery and AIS
data for automatic vessel detection that builds on (i) image
processing techniques and (ii) Convolutional Neural net-
works. The experimental evaluation of our approach shows
that our framework achieves an accuracy greater than 95%.

Index Terms— Convolutional Neural Networks, MSA

1. INTRODUCTION

The establishment of the Automatic Identification System
(AIS) was revolutionary for Maritime Situational Awareness
(MSA), as it allowed for the tracking of vessels carrying an
AIS transponder. In particular, vessels above 300 gross ton-
nage that are engaged on international voyages, cargo ships
above 500 gross tonnage and passenger ships are obliged
to have AIS transponders and transmit messages reporting
their location and navigational information in intervals that
vary from a few seconds to a few minutes depending on their
navigational status and speed (e.g., underway using engine
at high speed, stopped, etc.). Although the initial aim of the
development and establishment of AIS as a standard was to
avoid collisions between vessels, it proved to be a very useful
source of information regarding the navigational status of the
global fleet, especially for commercial vessels, raising the
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Maritime Situational Awareness. Soon after the establish-
ment of AIS, a lot of applications started to emerge that make
use and analyse AIS data, eventually making available the
enriched information to the users. An example of these ap-
plications is the MarineTraffic website1, which presents live
information about the navigational status of the global fleet,
together with other, arbitrary information, such as weather
data, piracy zones, port data, etc.

Tracking a vessel that has AIS installed might not always
be possible, however, due to (i) limited AIS coverage, (ii)
transponder malfunction, and/or (iii) intentional switch-off
of the AIS transponder. More often than not, vessels that
are about to engage in illegal activities switch off their AIS
transponder intentionally and switch it back on when the
activity is over or decide to spoof the information sent (i.e.,
transmit false location).

Therefore, the motivation of the work described in this
paper is to use medium resolution satellite imagery in order to
identify vessels that might have their transponders switched-
off. The framework that we present relies on the processing
of multi-spectral (MS) Sentinel-2 data.

The contributions of the work described in this paper to
the state-of-the-art are the following: First, We describe a
fully automatic large-scale analysis pipeline for data process-
ing combining on-the-fly AIS data processing and compute
insensitive satellite imagery processing tasks. Second, we de-
velop a hybrid approach in the sense that it employs image
processing and learning techniques at the same time. Image
processing is used for (i) the extraction of features that will be
classified by the trained CNN, (ii) the calculation of metrics,
such as heading, width, length, speed class (low/high), loca-
tion (coordinates). The estimation of these metrics makes the
correlation with AIS more accurate (instead of using the time
and location of vessels as the only criteria to match vessels de-
picted in a satellite image with their respective AIS signals).

This paper is structured as follows. In Section 2 we dis-
cuss related approaches in literature. In Section 3 we describe
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the architecture of our framework that builds on (i) image
processing techniques, and Convolutional Neural Networks,
described in Section 4. In Section 5 we describe the experi-
mental evaluation of our approach and, last, in Section 6 we
conclude the paper and we also discuss future extensions.

2. RELATED WORK

Due to the fact that AIS data is not always available, sev-
eral approaches that fuse satellite data with AIS data have
been proposed in literature. However, the majority of these
approaches use SAR imagery. For example, the approach in-
troduced in [1] uses SAR data matched with AIS data via a
simulated annealing process. The authors of [2] used a Con-
stant False Alarm Rate (CFAR) algorithm to detect ships and
oil platforms in TerraSAR images. The CFAR algorithm was
also used in the case described in [3], for detecting ships in
Sentinel-1 SAR imagery, as well as in the case of [4]. An-
other approach that uses both AIS and SAR satellite data is
described in [5], which also targets the problem of the time
difference between the acquisition time of the satellite im-
age and the timestamp of the AIS signals by performing a
spatiotemporal interpolation of the vessels to the image ac-
quisition time and taking into account historical data and a
similar problem was also addressed in [6]. [7, 8] presents
an approach for multi-class vessel detection in VHR satellite
images. We differentiate from this approach in that (i) we pro-
duce the training dataset automatically using AIS data, (ii) we
employ a CNN only once, and (iii) we do not use VHR satel-
lite imagery, which the approach proposed in [7] is suitable
for. The solution described in [9] is also very relevant to our
approach, as it performs image segmentation and calculation
of metrics of the derived features. However, it does not use
neural networks to perform classification of features.

In some of the aforementioned approaches, AIS data is
used as ground truth, as in our case. Although the approach
that we present in this paper works also for SAR data (e.g.,
Sentinel-1 data), in the context of this paper we emphasize
in the use of multi-spectral optical imagery (i.e., Sentinel-2
data). The majority of documented approaches rely on semi-
automatic data investigation and processing methods. Our
approach relies on data-driven methods to accelerate the full
path of data use, with data-stream workflows orchestrating
on-the-fly data processing and analysis tasks. Also, in all of
the discussed solutions employ either image processing algo-
rithms or learning approaches (i.e., neural networks are used).
In this paper we present a hybrid approach that uses both im-
age processing and neural networks.

3. ARCHITECTURE

The workflow of our approach is depicted in Figure 1 is de-
scribed as follows: First, we download a Sentinel-2 image

Fig. 1. Architecture overview

of the area of interest. The boundaries of the area are pro-
vided as a Well-known-text polygon. To perform this step we
use the Python API for the Copernicus Open Access Hub2,
named SentinelSat3. Then, we perform land masking. We
use an external source that contains the coastline geometries
and we mask out the pixels of the image that intersect with
these geometries. This step is performed so that we minimise
the land parcels contained in the extracted features. Next, we
split the land masked image into tiles, so that each tile is pro-
cessed separately and concurrently. For each tile, we employ
thresholding in order to distinguish the background (i.e., the
sea), from the foreground (i.e., features). Best results were
observed using a combination a variation of the Otsu filter
(i.e., producing multiple thresholds) [10] and the Yen filter
[11]. This process results in producing an initial pool of fea-
tures for each tile. For each feature, we calculate a number
of metrics using pixel-level calculations: width, length, head-
ing, and the existence of waves (used to estimate the naviga-
tional status). Then, we classify the feature using the trained
model of the CNN presented in Section 4. The reason why
we use a CNN is because convolutional neural networks have
significant results in image classification tasks [12]. If it is
a vessel, we correlate it with the closes AIS signal spatially
(vessel location), as well as temporally (e.g, taking into ac-
count AIS signal received around the acquisition time of the
image). Apart from the spatio-temporal criteria, we also take
into account the heading and the dimensions of the vessel, as
calculated above. If the vessel depicted in the satellite image
cannot be associated with an AIS message, then it is marked
as a possible dark target.

For the training phase we use a labelled dataset automat-
ically created by correlating MarineTraffic AIS daata with
satellite imagery.

2https://scihub.copernicus.eu/dhus/
3https://sentinelsat.readthedocs.io/en/stable/#



4. CONVOLUTIONAL NEURAL NETWORKS

Figure 2 shows the neural network used in this work to built
the ship target classifiers. In general, the network can process
input data coming from M different sources, or modalities,
and integrate information at the feature level by means of a
combination layer. Each branch of the system has a multi-
layer convolutional block followed by a dense layer entering
the combination layer. Dropout layers can be added to reg-
ularize the network. The combination layer is followed by a
multi-layered fully connected sub-net with K outputs, where
K is the number of target classes. These outputs provide
the probits to the final max-rule layer to choose the target
class having the maximum probability. A prior probability
can be associated to the weights of all the layers of the net-
work, or part of them, and the network is trained by using
a Bayesian variational inference method by maximizing the
evidence lower bound (ELBO) loss function [13].

Fig. 2. General structure of the CNN

The specific network used to classify ship targets from
MSI images has two branches, one for each resolutions,
∆R = 10m and ∆R = 20m, considered as two differ-
ent acquisition modalities. The image channels having the
same resolution are assigned to a branch of the network.
The system structure has a high degree of flexibility and can
be configured as needed by including or excluding branches,
depending on the available modalities, and considering differ-
ent channel combinations. In this work, the full multi-modal
structure is tested, while in future work, the performance of
different system configurations will be compared to evaluate
the minimum number of branches and channels needed to
achieve a given level of performance.

5. EXPERIMENTS

The results of the experiments on two classifiers are reported
below. In particular, the first classifier discriminate between
static and non-static ships while the second one classifies the
type of the ship. A third classifier, not reported in this paper,
has been trained to discriminate between ship and no-ship tar-
gets, achieving a performance similar to the other two.

A labeled data set of about 6000 ship target multi-spectral
images has been used to train the classifiers. Each image has

a size of 46x46 pixels and includes the MSI channels at 10m
and 20m of resolution. A set of attributes, such as ship type
and speed over ground (SOG), is associated to each ship to
select targets having given properties. The data set is repre-
sentative for targets of type ”Cargo” and ”Tanker” with about
3000 and 2000 contacts per type, respectively. Concerning the
navigational status, ships under way are roughly 3800 while
those observed at anchor are about 2000. The data set has
been automatically labeled by fusing image data with AIS
data, as described in [14].

5.1. Ship SOG classifier

The first classifier is trained to distinguish static or almost
static ships from sailing ships by learning the features asso-
ciated to the ship wake. The training data set contains 4042
ship images. The static class is obtained by considering ships
having SOG less than 1kn, while the ships having the SOG
greater than 2kn are included in the sailing ship class. The
number of samples of the first class is 1761 while the samples
of the second class are about 2281. The length of the ships
included in the training data set is greater than 100m. The
80% of the data set is used to train the classifier, while the
remaining 20% is used for the validation.

5.2. Ship type classifier

The second classifier discriminates the type of ship among
three broad classes: “cargo”, “tanker”, “other”. The ship type
attribute associated to a ship image is used to build the train-
ing data set from the initial one. The number of samples of
the three classes is 3066, 2071 and 1231, respectively, for a
total of 6368 samples. The data set is split in 80% training
set and 20% validation set. Figure 3 shows the scatter plots
of the features learned by the classifier and calculated on the
training set. Even in this case, the three classes are very well
separated allowing to reach a classification accuracy of about
97% for both the training and the validation sets.

Fig. 3. Ship type classifier scatter plots



6. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an approach for vessel detection
and classification in Sentinel-2 multi-spectral images. Our ap-
proach employs image processing techniques for image seg-
mentation, feature extraction and calculation of metrics for
all identified features. For the classification task, we con-
structed a Convolutional Neural Network and trained it us-
ing AIS data as ground truth. The produced model is able
to decide whether a feature illustrated in a satellite image is a
vessel or not. We evaluated our approach using a multi-modal
CNN trained by maximizing the variational ELBO, achieving
an accuracy that is greater than 95%. Future directions of the
proposed solution are the following: (i) definition of classifier
confidence metrics by using the learned CNN weight distri-
butions and (ii) benchmarking different configurations of the
network to evaluate the optimal combination of branches and
channels needed to achieve optimal performance.
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