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Abstract—Recent applications of a semidefinite programming optimality guarantee of the SDP relaxation. We propose a
(SDP) relaxation to the optimal power flow (OPF) problem offes  sufficient condition derived from the Karush-Kuhn-Tucker
a polynomial time method to compute a global optimum for a  (kKT) conditions for optimality of the SDP relaxation of

large subclass of OPF problems. In contrast, prior OPF soluibn . . .
methods in the literature guarantee only local optimality for the the OPF problem [6]. A candidate solution obtained from

solution produced. However, solvers employing SDP relaxan @ Mmature OPF solution algorithm that satisfies the KKT
remain significantly slower than mature OPF solution codesThis  conditions of complementarity and feasibility is guaraui¢o
letter seeks to combine the advantages of the two methods. Inpe globally optimal. However, satisfaction of these cdodi
particular, we develop a SDP-inspired sufficient conditiontest ; ;

for global optimality of a candidate OPF solution. This testmay is not necessary for global optimality.

then be easily applied to a candidate solution generated by a

traditional, only-guaranteed-locally-optimal OPF solve. 1. SUFFICIENT CONDITION FOR GLOBAL OPTIMALITY
Index Terms—Optimal power flow, Global optimization Consider am-bus power system, wher¥ is the set of all
busesg is the set of generator buses, afids the set of all
|. INTRODUCTION lines. Ppy, + jQpr is the load demand and, = Vi, + 7 Vo

T HE optimal power flow (OPF) problem determines afy the voltage phasor at busésc N. Por. + jQax IS the

. . ) : .generation at busek € G. S, is the apparent power flow
optimal operating point for an electric power system i ; ; :
o o . ) on the line(l,m) € L. Lines are modeled aH-equivalent
terms of a specified objective function, subject to both oektw .~ . . e
. . . . . circuits (see [4] for more flexible models). Superscriptaih
equality constraints (i.e., the power flow equations, whic

. . " 7and “min” denote upper and lower limit& = G + jB is
model the relationship between voltages and power injes}io h K admi ix_ Defi dratic obiecti
and engineering limits (e.g.. inequality constraints oft the network admittance matrix. Define a quadratic objective

o AE ¢ inction associated with each generafore g, typically

magnitudes, active and reactive power generations, and flow . . . .
S representing a variable operating cost. The OPF problem is
on transmission lines and transformers).

Recent research has applied semidefinite programmin 2 )
(SDP) to the OPF problem [1]. Using a rank relaxation, thré191 ,%:g (ck2FGx + ei1 P + exo) subject to (a)
OPF problem is formulated as a convex SDP. If the relaxgghin < p, < pmax Vkeg (1b)
problem satisfies a rank condition, a global optimum of th@&n < Qax < QE VEEG (10)
OPF problem can be determined in polynomial time. No priof ™ .o 2
OPF solution method guarantees calculation of the globat so {Vkmm> < Vi + VA < (i) VEeN  (1d)
tion in polynomial time; SDP thus has a substantial advantagfim| < S - V(l,m) e L (le)
over other solution techniques. However, the rank conditios, _p . — vy, i(Gikai ~ By Vi) + Vi i(Bikai 4 GV
is not always satisfied, so the SDP relaxation does not give i=1 i=1
physically meaningful solutions to all OPF problems [2]. )
The SDP relaxation of the OPF problem is computationally, ¢, _. i(Gikai BV Vs i(Bikai GV
limited by a positive semidefinite constraint on2a x 2n =1 =1
matrix, wheren is the number of buses in the system. Thus, (19)

despite being provably polynomial time, the SDP relaxation A solution to (1) consists of vectors of voltage phasidrs-

is computationally challenging for large systems. Withergic V;; + jV,, power injections” + j@Q, and Lagrange multipliers.

work in matrix completion decompositions that speed com¥e denote the Lagrange multipliers associated with thegelt

putation by exploiting power system sparsity, solution loé t magnitude equation (1d) as those associated with the active

SDP relaxation is feasible for large systems [3], [4]. power balance equation (1f) as those associated with the
However, solution of the SDP relaxation is still signifidgnt reactive power balance equation (1ghasand those associated

slower than mature OPF algorithms, such as interior poiwith the apparent power line flow equation (1e)¢as

methods [5]. It would be beneficial to pair the solution In order to reformulate the standard OPF problem into a

speed of mature OPF solution algorithms with the globatructure that allows it to be solved as a SDP, it is necessary

o ) . . ) to define several matrices that embed the network's bus

University of Wisconsin-Madison Department of Electricaand

Computer  Engineering:  molzahn@wisc.edu,  lesieutre@aisgredu, admittance matrix information into larger arrays. Follnyi
demarco@engr.wisc.edu the development of [1], lek, be the k" standard basis



vector in R™. Define the matriced), = ekefY and Y, = The second regards feasibility of tN& and A matrices. These

jbém + Yim ) e16F — (yim) e1eT, whereb,, is the line’s shunt matrices are feasible in the SDP relaxation if they are pesit

susceptancey,, is the line’s series admittance, and superscn@?m'def'”'te; The matritW = zz" is positive semidefinite
T indicates the transpose operator. Define matrices y construction. Thus, the relevant feasibility conditisn

v, _ L [Re (Ve +YT) Im (YT -Y) 2a) A=0 (7)
P72 m (Y —YT)  Re (Vi +Y/T)
- 1 {Im (Y, +YT) Re(Yr—-Y7) I1l. DIscUssION
== 2b
T2 [Re (W k) Im (Vi +Y)T) @ satistaction of both (6) and (7) implies global optimal-
exef 0 ity regardless of the rank characteristics of thAe matrix
Me=1"4 erel (20) (i.e., dim (null (A)) < 2 is not required). Non-zero branch

1 [Re (Vi +¥2)  Im (YT, — Yim) resistances, as necessary in [1], are not required. However
Yim == m fm T (2d)  enforcing small minimum branch resistances may resulttin sa
2 |Im (le'm_yvlm) Re ()/277L +}/}m) . . -
isfaction of (6) and (7) for problems that would not othemvis
5 1 {Im (Yim +Y7,)  Re (Yim — Y1) ti th diti
= — = Ty 1 (Yieo + Y7 ) (2¢) sa |sf¥ ese conditions. o o
2 |Re (Vg = Yim)  Im (Yim + Y5, If either (6) or (7) is not satisfied, global optimality is
Define the matrix variableW = zz7 where x = indeterminate. Failure to satisfy these conditions mayltes
[le o Van Vi - an]T_ Formulate OPF problem (1) when the semidefinite relaxation does not satisfy the rank

in terms of W as in [1]: busk active and reactive power injec-condition [2], in which case the solution may still be gldial
tions aretrace (Y, W) andtrace (Y, W) and squared voltage optimal but is not guaranteed to be so. Alternatively, falto
magnitude istrace (M;W); active and reactive flows onsatisfy (6) and (7) may indicate that a better solution exist
line (I, m) aretrace (Y, W) andtrace (Y;,,W). The SDP  When applied to the IEEE test systems [7] without mini-
relaxation is formed by replacing the constraWf = zz” mum resistances, global optimality of solutions from MAT-
with W > 0, where> 0 indicates positive semidefiniteness. POWER'’s interior point algorithm [5] was verified for the
The A matrix of the dual SDP problem requires Lagrangé4, 30, and 57-bus systems, but not for the 118 and 300-
multipliers in terms of the square of voltage magnituddaus systems due to non-satisfaction of (7). With a minimum
(denoted ag) rather than the voltage magnitudes themselvdsranch resistance of x 10~ per unit, the solution to the

Use the chain rule of differentiation for the conversion 118-bus system (but not the 300-bus system) was verified to
be globally optimal. Note that tight solution toleranceg ar
€k = i 1 ©) often needed to obtain satisfactory numerical results.
2V,
where V;,, is the solution’s voltage magnitude at bus V. CONCLUSION

Additionally, the solution to (1) gives line-flow limit Lagnge  ysing the KKT conditions of a semidefinite relaxation of the
multipliers ¢ in terms of apparent power (MVA), but the dualopf problem, this letter has proposed a sufficient condition
SDP problem requires separate multipliers in terms of actiyest for global optimality of a candidate OPF solution.

and reactive power flows (denoted @asand 3, respectively).
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A matrix is then

trace (AW) = 0 (6)



