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Abstract—For the nonlinear power flow problem specified with
standard PQ, PV, and slack bus equality constraints, we premnt
a sufficient condition under which the specified set of nonliaar
algebraic equations has no solution. This sufficient conditn is
constructed in a framework of an associated feasible, conxeop-
timization problem. The objective employed in this optimization
problem yields a measure of distance (in a parameter set) tche
power flow solution boundary. In practical terms, this distance is
closely related to quantities that previous authors have poposed
as voltage stability margins. A typical margin is expressedn
terms of the parameters of system loading (injected powers)
here we additionally introduce a new margin in terms of the
parameters of regulated bus voltages.

Index Terms—Power flow, Power flow solution existence, Max-
imum loadability, Solution space boundary

I. INTRODUCTION

may in general have a very large number of solutions; for
example, the work of [3] establishes cases for which the
number of solutions grows faster than polynomial with respe
to network size. For cases having multiple solutions, each
solution has a set of initial conditions that converges to
that solution in Newton-Raphson iteration. Characteiorat
of Newton-Raphson regions of attraction was the subject of
[4], which demonstrated cases for which the boundaries of
these attractive sets were factual in nature. So despitiathe
that very large-scale problems (10's or 100’s of thousarfds o
unknowns) are solved in power engineering practice, asypara
eters move outside of routine operating ranges, the behakio
these equations can be highly complex. Failure of convesen
for a Newton-Raphson-based commercial software package is
far from a reliable indication that no solution exists.

The properties of the Newton-Raphson iteration guarantee

OWER flow studies are the cornerstone of power systefiinder suitable differentiability assumptions) that ttezation
analysis and design. They are used in planning, opefaust converge to the solution for an initial condition sedelc

tion, economic scheduling, transient stability, and auggincy

in a sufficiently small neighborhood about that solution. [5]

studies [1]. The power flow equations model the relationshiowever, when a selected initial condition (or some set of
between voltages and active and reactive power injectionsphultiple initial conditions) fails to yield convergencégt user

a power system. The nonlinear power flow equations may nstta Newton-Raphson-based software package is left with an
have any solutions (the power flow equations are said to fprieterminate outcome: does the specified problem have no
insolvable). That is, it is possible to choose a set of poweslution, or has the initial condition(s) simply failed tallf
injections for which no valid corresponding voltage profilgithin the attractive set of a solution that does exist?

exists. Practical cases that may fail to have a solutiorudel

Conditions to guarantee existence of solutions to the power

long-range planning studies in which the studied system magw equations has been an active topic of study. For example,
not be able to support projected loads and contingencyeudig] describes sufficient conditions for power flow solution
for which the loss of one or more components may yielgxistence. However, as sufficient conditions, these arenoft
a network configuration that is similarly inoperable for theonservative: a solution may exist for a much larger range
specified injections. This paper presents a practically -cof operating points than satisfy the sufficient conditions.

putable sufficient condition, that, when satisfied, rigatgu

Other work on sufficient conditions for power flow solvalyilit

classifies a specified case as insolvable. This method ajgéludes [7], which focuses on the decoupled (active power-

provides controlled voltage and power injection margirest thyoltage angle, reactive power-voltage magnitude) powav flo

characterize a distance to the power flow solvability boupdamodel. Reference [8] describes a modified Newton-Raphson
In engineering practice, large-scale nonlinear power floiération tailored to the type of ill-conditioning that cappear

equations are typically solved using iterative numerieght

in power systems problems. In more recent work, [9] provides

niques, most commonly Newton-Raphson or its variants [#yo necessary conditions for saddle-node bifurcation dase
These rely on an initial guess of the solution voltage magnes reaching their static transfer stability limits; hewer, this
nitudes and angles and are only locally convergent. Th@ork does not yet provide a test for power flow solvability or

generally do not converge to a solution from an arbitrargahi

define a distance to the power flow solvability boundary.

guess [1], and may show very high sensitivity and highly A measure of the distance to the solvability boundary (the

complex behavior with respect to initial conditions for teén

set of operating points where a solution exists, but small

study cases. Itis well recognized that the power flow eqoatioperturbations may result in the insolvability of the powenfl
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equations [10]) is desirable to ensure that power systems ar
operated with security margins. If a solution does not exist
for a specified set of power injections, a measure of the



distance to the solvability boundary indicates how close tiSpecifically, in this optimization problem, the voltageslkaick
power flow equations are to having a solution. If a powemd PV buses are not fixed, but instead have a one-dimensional
flow solution exists, desired margins indicate distances degree of freedom (i.e., they are allowed to change in cohsta
solution non-existence at the solvability boundary. Hngst proportion). In Section Ill, we prove that the extra degrée o
work in this area uses a Newton-Raphson optimal mulfireedom guarantees that the modified power flow equations
plier approach [11] to find the voltage profile that yieldfiave at least one solution. In an idealized lossless case, on
the closest power injections to those specified [12], [13hay interpret this as follows: a sufficiently high voltagefile
The method described in [12] and [13] forms a non-convetlows the system to meet any specified power injections.
optimization problem, solved by an iterative algorithmtthaBy continuity from the lossless case, we argue that this will
may Yyield only a locally optimal solution, dependent on aoontinue to hold for modest losses, as is typical of models
initial condition. In particular, the method of [12] and [[13 for bulk transmission. With the relaxed problem feasible fo
is only guaranteed to find a locally optimal voltage profilesome (sufficiently high) voltage profile, we establish a non-
yielding the power injections closest (in a Euclidean norm®mpty feasible set for the optimization problem.
to those specified. Moreover, the approach of [12] and [13]With a non-empty feasible set established, the optimiza-
as presented does not seek to obtain security margins fion problem then seeks to minimize the slack bus voltage
solvable sets of power injections (though one might postulanagnitude (using the one-degree-of-freedom in the voltage
modifications of its algorithm that could do so). For soheablprofile), subject to the active and reactive power injection
sets of power injections, iterative techniques for findingd constraints of the power flow equations. Importantly, we wil
margins comprised of the locally optimal minimum distanze tshow that a relaxed version of this optimization problem
the power flow solvability boundary are detailed in refencis a convex semidefinite programming problem, and hence
[14] and [15]. An algorithm that combines continuation antlas a practically computable global minimum. If the global
non-linear optimization techniques to either solve the @owminimum slack bus voltage obtained from this optimization
flow equations, when possible, or calculate a measure of poypeoblem is greater than the originally specified slack bus
flow insolvability is presented in reference [16]. Referefit7] voltage, there can be no solution to the originally specified
describes an optimization problem that applies interianpo power flow equations. However, due to the nature of the
methods to minimize the load shedding necessary to obta@taxation, one may not draw a firm conclusion from the
solvable power flow equations. The minimum amount of loacbnverse: if the minimum slack bus voltage is less than or
shedding is used as a measure of power flow insolvabiliggual to the specified slack bus voltage, the power flow
Investigating the worst-case load shedding necessaryfeep equations may or may not be solvable.
flow solvability is also discussed in references [18] and.[19 The ratio of the specified slack bus voltage to the minimum
Reference [20] summarizes and compares some of these poslack bus voltage gives a “controlled voltage margin” to the
flow insolvability measures. power flow solvability boundary. For a provably insolvable
In common industry practice, static voltage stability miasg case, this margin is the multiplicative factor by which tloa¢
are determined using repeated power flow calculations to fitrdlled voltages must be increased to allow for the posdsgibil
the “nose” point of a power versus voltage (“P-V”) curveof power flow solution existence.
Closely related methods trace this curve while monitoring The power flow equations are quadratic in the complex
“reactive margins” on generators (i.e., the margin betwtben voltage vector when these voltages are expressed in rectan-
generator's reactive power output at a given operatingtpoigular form. Exploiting this fact, an analogous power injeat
and its maximum reactive output). Descriptions of relevamargin can also be calculated; here the new, one degree
industry standards can be found in such works as [21]-[230f freedom introduced represents a constant power factor
In this paper, we present a sufficient condition under whiahange in injections at each bus in proportion to the specifie
the power flow equations are guaranteed to be insolvable. Byjections. When the power flow equations do not have a
products of the computation are controlled voltage and powsolution, the power injection margin provides the factor by
injection margins to the power flow solvability boundary. Inwhich the power injections must be decreased to admit the
contrast to existing techniques that are almost universaflossibility of power flow solution existence.
Newton-based, local solution methods, the semidefinite pro These margins are non-conservative bounds. Thus, for an
gram in the method proposed here yields a global solutionittsolvable set of specified values, a change in voltage by
the optimization problem that is formulated from the orajlp  at least the amount indicated by the voltage margin (or a
specified power flow. This global optimum enables the guarathange in power injections by at least the amount indicated
tee of solution non-existence upon satisfaction of a seffici by the power injection margin) is required for the power
condition. No such guarantee can be made with existifigw equations to beotentially solvable. More precisely, the
Newton-based methods whose conditions for convergence arargin identifies the shortest distance (as measured iag®lt
inherently local in nature. Furthermore, rather than reqgi setpoint changes for the controlled voltage margin and powe
repeated power flow calculations, the proposed method usesjaction changes for the power injection margin) to a point
single evaluation of a semidefinite optimization problem. at which the sufficient condition for power flow insolvahjlit
The sufficient condition for power flow insolvability is fails to be satisfied; equivalently, this is the smallestatise to
based on an optimization problem that includes a relaxatiarpoint at which the associated necessary condition for powe
of certain equality constraints in the power flow equationfiow solvability is first satisfied.



The dual of the optimization problem used in the sufficiem@nforce only the active power equation (1). The associated
condition can be written as a semidefinite program (SDP). Theactive powei); may be computed as an “output quantity,”
optimal power flow problem (i.e., finding the optimal opengti via (2). Finally, a single slack bus is selected, with itscified
point for a power system subject to physical and engineerifigandd; (typically chosen to b@°). The active powel; and
constraints) was recently formulated as a SDP [24], [25]. heactive power); at the slack bus are determined from (1) and
prior work, the authors created a SDP formulation of the powg€2); network-wide conservation of complex power is thereby
flow equations in an attempt to calculate multiple solutiorsatisfied.
to these equations [26]. In contrast to the non-convex grima Note that for many problems of interest, generator reactive
optimization problem [27], the feasible region of the dugbower limits are relevant to power flow solvability since non
problem formulated as a SDP is convex. The optimal objectiesistence of power flow solutions may result from limit-
value obtained from the dual SDP formulation is a lowanduced bifurcations [30], [31]. Generator reactive polimr
bound on the objective function value. Thus, if the suffitierits change the qualitative behavior of the power flow equnstio
condition holds based on the lower bound from the dual SDFhen a generator reaches its upper reactive power limit, the
formulation, one can be assured the originally formulatadactive power output is fixed at the upper limit and the bus
power flow equations admit no solution. voltage is allowed to decrease (i.e., the bus behaves like a

The organization of this paper is as follows. In SectioRQ bus with reactive power injection determined by the upper
II, we give an overview of the power flow equations. Idimit). Similarly, when a generator reaches its lower react
Section lll, we provide the existence proof that shows thgower limit, the reactive power output is fixed at the lower
feasibility of the optimization problem used by the propbsdimit and the bus voltage is allowed to increase.
condition. In Section IV, we describe the sufficient coratiti
for power flow insolvability and define voltage and power 1. SOLUTION EXISTENCE PROOF

injection margins. A numeric example is provided in Section The sufficient condition for power flow insolvability re-

V. We then cc_)nclude .W'th a dl_scuss!on Of. future work. ArE{1uires the evaluation of an optimization problem in which
extended version of this paper is available in [28]. the feasible set is defined by a modified form of the power
flow equations. The modification introduces one new degree
Il. POWERFLOW EQUATIONS OVERVIEW of freedom, allowing voltage magnitudes at the slack and PV
The power flow equations describe the sinusoidal steadyses to vary; this variation is restricted to a one-degree-
state equilibrium of a power network, and hence are formof-freedom “ray,” with all voltage magnitudes changing in
lated in terms of complex “phasor” representation of circugonstant proportion to their base-case values. We prove tha
guantities (see, for example, Ch. 9 of [29]). The underlyinipe feasible space is non-empty for any lossless powerrayste
voltage-to-current relationships of the network are Iméat (i.e., all line conductances are zero) without generatactree
the nature of equipment in a power system is such thabwer limits. Using standard results of basic circuit tlyeor
injected/demanded complex power at a bus (node) is tygicadnd continuity, we argue that the problem retains a non-gmpt
specified, rather than current. The relation of interestds bfeasible set when perturbed with small line conductances, a
tween the active and reactive power injected at each bus aud typical in bulk transmission.
the complex voltages at each bus, and hence the associatethe proof of solution existence may be outlined as follows.
equations are nonlinear. Using the standard polar represi@fe first establish that a solution must exist for any lossless
tation for complex voltages and rectangular “active/rizatt system with zero power injections without generator reacti
representation of complex power, the power balance equatipower limits. We then use the implicit function theorem to
at busi are given by establish that solutions continue to exist for injectiorithim
small ball around zero. Hence, within this ball must exist a
n ) ray that aligns with the originally specified vector of nosra
P=V Z Vi (Gir, cos (0 — k) + Bisin (0 — k) (1) power injections. We exploit the quadratic nature of the gow
’“Zl flow equations to “scale up” voltage magnitudes along our
v i (5 N s one-degree-of-freedom, observing that the power injastio
@i= Vl;vk (Gatsin (95 = 9) = Bu cos (0 = &) (2) must likewise move along the previously identified ray. It

. . .. follows that there exists a scaling of voltages such that the
where P; and@); are the active and reactive power 'nJeCt'onSSpeciﬁed power injections are realized, yielding a sohutio
respectively, at bus Y = G + jB is the network admittance our modified power flow equations '

matrix, andn is the number of buses in the system. With
G # 0, this paper considers lossy networks. ] o .

To represent typical behavior of equipment in a powd} EXistence of a Zero Power Injection Solution
system, each bus is classified as PQ, PV, or slack, accomling tConsider a generic lossless power system with all active
the constraints imposed. PQ buses, which typically comedp and reactive power injections at PQ buses set to zero and all
to loads, treaf?; and@); as specified quantities, and enforce thactive power injections at PV buses set to zero. As our goal
active power (1) and reactive power (2) equations at that biss accomplished if we can establish existence of one saiutio
PV buses, which typically correspond to generators, specifie restrict attention to candidate solutions in which alds
a voltage magnitudé/; and active power injectior?;, and have the same voltage angle of zero.



First, since zero power injection at a PQ bus implies Vslack £ 0deg . Vpy /8 deg
zero nodal current injection, such buses have only branch jb
admittances incident (i.e., from a circuit perspectivegsth
are nodes with no independent source connected). They can
be eliminated from the network, and the network admittance %P
matrix algebraically reduced via standard results of linea PV
circuit theory. We generically assume that the reduced ortw Fig. 1. Two-Bus System
does not result in any zero impedance lifes.

Next, the substitution theorem [29] guarantees that at any
PV bus that has an associated non-zero reactive power injadmittance ig+;b; note that in this admittance representation,
tion, there must exist a shunt admittance of appropriateevalthe conductive terny and the susceptance terih appear as
such that, when substituted in place of the reactive imectin parallel branch elements between the two buses. The voltage
identical solution for bus voltages is preserved. The iiges at the slack bus is denoted B%,,., and the voltage at the
replaced are purely reactive, ensuring that the associaf®d bus is represented Bypy with angled.
admittances will be purely imaginary; i.e., susceptanadg.0  The power injection at the PV bus is

With PQ buses eliminated and reactive injections at PV
buses replaced by equivalent susceptances, the resuéitng n Ppy = gVEy — Vey Viaek (gcos (0) + bsin (6))  (5)
work has the property that active and reactive power injesti
at all non-slack buses are identically zero. This allowsaus 5
write the remaining network constraints of interest asdine
voltage/current relationships:

The two-bus system has a zero power injection solution for
given set of parameteysd, Vpy, andVy if a value off,
exists such thaPpy (0y) = 0. The existence of such a value
of 6y depends on the ratio dfpy to Vi, and the ratio of
b to g. A zero power injection solution to this system exists
Tgack jb1 jbo when line resistances are small relative to line reactaands
0 = 76T | B3 + jdiag (Ad) @) \slsgggrﬁ ir:?:g?gitlide differences are small; specifically, tfer

where Ad is is a vector of shunt element susceptances,

V;lack
Vev

diag (Ad) denotes the diagonal matrix with elements /o ( Vpy )2 <14 (Q)Q ©)
. bl b2 . ‘/slack -
on the diagonalB = is the bus susceptance . , i i i
by | Bs Since voltage magnitudes differences and line resistance t

matrix, and superscripf’ indicates the transpose operatoreactance ratios are typically small in realistic powelteyss,
Vsiaer @nd Ig4.1 are the voltage and current injection at theve expect that typical systems must have zero power injectio
slack bus, respectively, antpy is the vector of PV bus solutions. Consistent with this observation, all the |IEE&vpr
voltages. Note that the lossless assumption implies that flow test cases of [32] have zero power injection solutions.
network admittance matrix is purely imaginary. However, (6) confirms that the two-bus example will fail to

Solving (3) for Ad yields have a zero injection solution when the conductance values

relative to the susceptances are sufficiently large.
Ad = (diag (Vev)) " (—b2Vatack — BsVev) (4)

' ) i . B. Implicit Function Theorem
Because the voltage profile solution we seek is restricted

to have the same voltage angle at all buses and a non-zerd/e Next aPF_"V Fhe |mpI|9|t functlo.n theorem [33]_ at ,th,e
voltage magnitude at the slack bus, it follows that the \gsita 2670 _POWer injection solution. Application of the implicit
at every bus must be non-zero afig (Vey) is invertible. function theorem requires a non-singular Jacobian at the ze

Hence, for a lossless system under the assumptions speci er injection solution. We prove in [28] that the Jacobian

(4) yields a unique solution for the shunt susceptance salj8" @ l0Ssless power system is non-singular at a zero power

whose existence follows from the substitution theorem Injection solution, provided that all lines are inductivada
‘/slack

_ - that the network is connected (i.e., no islands). Although t
provides a zero power injectionthese assumptions are required for this proof, non-simigyla

solution to the reduced network that resulted from elimorat of the Jacobian at a zero power injection solution typlcally
holds for more general systems (e.g., lossless systems with

of PQ buses; voltages at PQ buses can be trivially recon- A :
Q g Q y ome capacitive lines, and for systems with modest losses).

structed. We conclude that any lossless system is guadhntgé . . : X
L . singular Jacobian would imply a zero eigenvalue for the
to have a zero power injection solution. . g . -
) . linearization of any reasonable dynamic model describing
To illustrate that this need not be the case for systems wi : o )
ehavior away from equilibrium, and hence may be judged not

large conductive elements in their bus admittance mat, i of interest for steady state operation. We note that all IEEE

high transmission losses), consider the two-bus systein avit qwer flow test cases [32] display non-singular Jacobians at

slack bus and a PV bus shown in Fig. 1. The transmission line S .
Z€ro power injection solutions.

1Such a zero impedance line outcome can be eliminated by tnagitp If the Jacobian of the power ﬂOW equations |5.n.0n'5mg.U|ar
small perturbation to the underlying line parameter data. at the zero power injection solution, the implicit function

Thus, the vecto




theorem indicates that a solution must persist for all pawer
jections in a small ball around the zero power injection. §hu

there exists some voltage magnitude and angle perturbatiol??in Vstack (9a)
AV /A6 such that subject to
F(V+AVZAS) = AP + jAQ @) Ve Vi(Gukcos (8 — &) + Buysin (6 — 6;)) = Py
=1

Vke{PQ, PV} (9b)
for any smallAP and AQ, whereV is the voltage profile n
for the zero power injection solutiodd P and AQ are small v, Z Vi (G sin (8 — 6;) — Big cos (0 — 6;)) = Qg
perturbations to the active and reactive power injectiamsl im1 vk e PO (9¢)
f represents the power flow equations relating the voltages

and power injections. Vi = g Valack Vke Py (9d)

wherePQ is the set of PQ buse®V is the set of PV buses,
C. Scaling Up Voltages and V.1 is the slack bus voltage magnitude, represents

We complete the solution existence proof by expanding tﬁ%e specified ratio of the PV buk and slack bus voltage

C : . magnitudes. The minimum achievable slack bus voltage (i.e.
small ball around the zero power injection solution to abtai ; o ! .
: i . e .. the optimal objective value of (9)) is denoted &3} .
voltage profile that yields the originally specified poweget: oo e ac
. ; : o The optimization problem (9) is in general non-convex [27],
tions. Since the power flow equations are quadratic in veltag

. : . nd hence solution for a global optimum is not assured. A
magnitudes/, scaling all voltage magnitudes also scales th o . . . .

C . ; . obal minimum is required in order to ensure the validity of
power injections. That is, scaling the voltage magnitudes

. he sufficient condition on power flow solution non-existenc
(7) by the scalay gives We therefore formulate in (10) the semidefinite dual of (9).

) . SDP algorithms can assure that we find the global solution to
f(BV +AVZLAG)) =B (AP + jAQ) (8) the convex dual formulation (10).

Choose AAP+;jAQ that is in the direction of the specified . Z (\Pi) + Z (76 Qr) (10a)
power injections and obtain a corresponding voltage profile
V+AV ZAS. Then increasg until the power injections given
by f (8 (V + AV ZA¢)) match the specified power injections.
The voltage profile3 (V + AV ZA4) then yields the specified
power injections.

ke{PQ, PV} kePQ
subject to

ANy = [Maak — Y (MY +7Y5%)
kePQ

IV. SUFFICIENT CONDITION FOR POWER FLOW = > (M Yk A+ ke (Mg — af Mgiaer)) | = 0
INSOLVABILITY kepPy
(10b)

where free variablesy, v, and u; are the Lagrange multi-
The proof in Section Il shows that there exists a voltaggliers for active power (equation (9b)), reactive poweru@q
profile satisfying the power injection equations. We depedo tion (9c)), and PV bus voltage magnitude ratio (equation
sufficient condition for power flow insolvability by determi (9d)) equality constraints, respectively, associatech vitis
ing whether any such voltage profile could match the specifiéd The symbol> indicates that the corresponding matrix is
slack bus and PV bus voltages. No solution exists if it isonstrained to be positive semidefinite. The maximum lower
impossible to obtain a voltage profile that yields the spedifi bound on the minimum achievable slack bus voltage (i.e., the
power injections while also matching the specified voltagsuare root of the optimal objective value of (10)) is dedote
magnitudes at slack and PV buses. asymin..

One way to determine if a valid voltage profile exists is Matrices employed in (10) are defined as
to find the voltage profile with the lowest possible slack bus

A. Condition Description

voltage. If the minimum possible slack bus voltage is greate 1 [Re(Ve +Y7) Im (Y —Y3)

than the specified slack bus voltage, no voltage profile will Yy = 2 | tm (Ve — YT) Re (v + YT) (11)
satisfy the power flow equations and thus the power flow m( k k ) e( k k

equations are insolvable. This condition thus indicatest th . 1 {Im (Y, +Y) Re(Y,—-YT)

no power flow solution exists when the minimum slack bus T2 |Re (Y - Vi) Tm (Y +Y/) (12)
voltage obtainable while satisfying the power injectiouaq p

tions (with PV bus voltage magnitudes scaled proportignall M, — [ekek 0 (13)
is greater than the specified slack bus voltage magnitude. An 0  exef

optimization problem with objective function minimizinhe

slack bus voltage and constraints on power injections and P{ieree; denotes thé:"" standard basis vector iR" and the
bus voltage magnitudes, as shown in (9), is used to evalut@trix Yi = exe{ Y. Notation is adopted from [25].

this condition.



The dual formulation (10) is always feasible since the poif®. Controlled Voltage Margin

Ai =0, =0, p; =0 for all 7 implies A = Mjqex > 0. The sufficient condition (14) is binary: the specified power
The semidefinite dual formulation (10) provides a lowefi,; equations either cannot have a solution or may have a
bound on the minimum slack bus voltage in (9). No solutiogy| sion. The sufficient condition can also be interpreted t
to the power flow equations exists if the lower bound froraive a measure of thelegree of solvability. We develop a
(10) is greater than the specified slack bus voltage. That isneaqure of the distance to the power flow solvability boupdar

vmin >V, (14) which we define as the set of solvable power injections where
L?l" solutions may vanish under small perturbations. Since

whereV} is the specified slack bus voltage, is a sufficient b ) .
not necessary condition for insolvability of the power ﬂovgperatlng a power system far from the power fiow solvability

equations. Note that this formulation does not enforce a ?ltmda“f[ |?hrequ||relcai_l_tto bensu(;e SFab'I'tyf’ laAmeasur(:moff the
requirements on the rank of the matrix in (10b); the solution stance to the solvabiiity boundary 1S Useiul. A measurie

to the convex problem (10) is only used as a lower bound &Hstance to the solvability bgundary also |nd|gqtes hovselo
). insolvable power flow equations are to solvability.

The converse condition does not necessarily hold: the powe_we introduce a controlled VOlta_ge margin measufer the
flow equations may not have a solution even if distance to the power flow solvability boundary. The coréabl
voltage margin is defined as the ratio between the specified
min < Vo (15) slack bus voltage and the lower bound on the minimum slack

Y _slac .
Thus, (15) is a necessary, but not sufficient, condition fct))rus voltage obtained from (10).

power flow solvability. However, satisfaction of (15) is ex- W
pected to often predict the existence of a power flow solution 7=
If the A matrix in (10b) has a nullspace with dimension
less than or equal to two, a solution with slack bus voltage
equal to V™" (and PV bus voltage magnitudes scale

~_slack
o is an upper (non-conservative) bound of the distance to
e power flow solvability boundary. For solvable power flow
proportionally) can be obtained (see [25] for further dejai equatlons,.we are gug_ranteed to be at or beyond the sotyabil
If a solution with slack bus voltage equal &, does not boundary if the specified slack bus voltage decreases by the
exist, the solution with lower slack bus voltage must disspp factor . For insolvable power ﬂO.W equat|ons, increasing thg
slgf:k bus voltage magnitude (with proportional increases i

as the controlled voltages increase. The disappearancep b | udes) b | f L dfiwith
a solution due to increasing controlled voltages does noy us voltage magnitudes) by at least a factog dwithout

typically occur. Thus, satisfaction of (15) by a solution(1®) changing t,h? power ipjections) is reguirgd for solvahility

with dim (null (A)) < 2 strongly indicates solution existence, | e Sufficient condition can be written in terms of the volt-
Note that the insolvability condition as formulated abov89€ margino <1 is a sufficient condition for insolvability.

does not consider systems with generator reactive power

limits; generators are modeled as ideal voltage sourcésneit C. Power Injection Margin

limits on reactive power output. However, more detailed mod The power injection margin developed here is a measure of

els of generators often include reactive power limits. Whenhow large of a change in the power injections in a certain

generator reaches its upper reactive power limit, the geltaprofile is required for the power injections to be on the

magnitude at the corresponding bus may decrease. (UpgéKability boundary. We consider the profile where power

limits on generator reactive power injections are the ®bicinjections are uniformly changed at each bus in order to take

mechanisms of limit-induced bifurcations.) A modified foofn advantage of the quadratic nature of the optimization gmbl

the optimization problem (9) bounds the effect of uppertmi (9) in the sufficient condition. The quadratic property tiat
on generator reactive power injections. Specifically, gganexploit can be written as

constraint (9d) from an equality to an inequality by enfogri o
h(n(P+3Q)) =n (Vi) (18)

Vi < agVilack Vke PV (16)
é/)\fhereP and @ are vectors of the active and reactive power

instead of (9d). The accompanying semidefinite dual . ) . ) L
this modified problem is formed by adding the constraié’t-”ect'on at each bug, is the function representing optimiza-

4. <0k € PV to (10). The modification in (16) accom- ion problem (9) relating the minimum slack bus voltage to

- . the power injections, angl is a scalar.
modates the possibility of reduced voltages, thus consiger (1%) descrjibes the Iindear relationship between the square
upper generator reactive power limits in the insolvabilit}/)f

condition. the voltages and the power injections. This relationskip

Satisfaction of the condition (14) using the minimum slact wdentt_ from égb) ar;d (90): SC"?"'.”gt‘.'*” voltages pyj scales
bus voltage obtained from this modified optimization prable ?ra((:j Ve lan tr:eac ve p_oyve;_mjec lons by forml le th
is sufficient to guarantee insolvability of the power flow aqu 0 develop the power injection margin, uniformly scaie the
tions with upper limits on generator reactive power injegs. power injections _u_ntll _the sufficient condition (14) mdﬂea__
Note, however, that these modified optimization problerr]itg"‘lt the power injections are (at least) on the solvability
may be more conservative than for cases without consideri?l%undary'
generator reactive power limits. 77( min )2 = (Vo)2 (19)

~slack



The power injection margim corresponding to the con-
dition in (19) gives an upper, non-conservative bound of 9
the distance to the solvability boundary in the direction of "% Z (Vk “’“)
uniformly increasing power injections. For a solvable skt o
power injections, the largest proportional increase in gow subject to

injections at each bus while potentially maintaining sbiity 1+ Z (PuAi) + Z (Qryk) =0 (22b)
is a factor ofy. For an insolvable set of power injections, a

(22a)
ke{PV, S}

. oe e ke{PQ, PV} kePQ
proportional change of all power injections by at legsts
required for a solution tg _be possmle. . . A= Z (Yk/\k i Yk'yk) " Z (M) | = 0
Note that the power injection margin can be rewritten in ke{PO. PV} ke(PV, S}
terms of the voltage margin. (22¢)

where free variablesy, %, and ;. are the Lagrange mul-
n= (0’)2 (20) tipliers associated with equality constraints (21b)-(2Tehe
optimal solution to (22) is equivalent to the power injeatio
marginyn developed in Section IV-C.

In contrast to the power injection margin defined in Sec-
tion IV-C, which is specific to a uniform, constant-power-
factor injection profile, this alternative formulation gests
a method for considering the impact of non-uniform power
injection profiles. Specifically, a semidefinite dual foratidn
D. Alternate Formulation for the Insolvability Condition Cal- €&n be written for any choice of the right hand side of the
culation power injection constraints (21b) and (21c) that is a linear

expression of active and reactive power injectioRs, and

The optimization problem (9) used to evaluate the powéh: the square of voltage magnitudg;, and the degree-of-
flow insolvability condition introduces a degree of freedom freedomn. For instance, with nominal power injectiot
the controlled voltage magnitudes. This formulation naltyr @ndQxo, choosing the expressions
yields a voltage stability margin in terms of controlledtegles
and a power injection margin is derived using the quadratic Pro+1 (232)
nature of the power flow equations. Next, an alternate formu- Qro + tan (¢Yi)n (23b)

lation IS Qevgloped t_hat introduces a degree of freedomen tPor the right hand sides of the active power constraint (21b)
power injections. This alternate formulation naturallglgs a and reactive power constraint (21¢), respectively, yiahts
power injection margin. ! !

power injection margin for the injection profile with power
factor angles)y.
Note, however, that alternate choices for the right hand

The sufficient condition for power flow insolvability can be
rewritten in terms of the power injection margin:< 1 is a
sufficient condition for power flow insolvability.

max 7 (21a) sides of the constraints in (21) may not always yield feasi-

subject to ble optimization problems. For instance, consider the @hoi
of right hand sides where all buses except one are zero,

Vi Z Vi (Gik cos (0x — 6;) 4+ B sin (8, — 6;)) = Py with the one remaining bus allowing constant-power-factor

changes in active and reactive power. It is possible that
vk e{PQ, PV} (21b) no admissible value of power injections at that bus yields
T ey a feasible optimization problem, and thus the optimization
Vi Z Vi (Gigsin (3 = 0:) = By 03 (9 — 0i)) = Qin problem (21) cannot be evaluated. This is not a concern or th
VkePQ (21c)  uniform, constant-power-factor power injection profilehish
_ yields a feasible optimization problem as demonstratechby t
Vie = aiVo VkePy (21d) proof in Section lll. Further, although alternate rightadaside
expressions allow for calculating the power injection nirarg
for non-uniform injection profiles, the insolvability coitidn
wheres indicates the slack bus. In this alternate formulatios, < 1 iS not applicable for all injection profiles (e.g., a right
all voltage magnitudes are fixed sintg is a specified value. hand side specifying an injection profile with a non-uniform
The variabler introduced in the power injection equationgower factor angle); as in (23)).
(21b) and (21c) provides a single degree of freedom along the
uniform, constant-power-factor injection profile. V. NUMERIC EXAMPLE

The non-convexity of (21) makes it difficult to calculate We next apply the sufficient condition for power flow
the global optimum. The convex semidefinite dual of (2lipsolvability to the IEEE 14-bus system [32] using optimiza
is therefore used to calculate an upper bound on the powien codes YALMIP [34] and SeDuMi [35]. (Application to
injection margin. the IEEE 118-bus system is presented in [28].) The power

Vistack = VO VkeS (Zle)
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| Injection Multiplier | NR Converged | ymen IEEE 14-Bus Voltage Margina vs. Injection Multiplier

1.000 Yes 0.5261 ° ‘

4.000 Yes 1.0522

4.020 Yes 1.0548

4.040 Yes 1.0575

4.050 Yes 1.0588

4.055 Yes 1.0594

4.056 Yes 1.0595

4.057 Yes 1.0597

4.058 Yes 1.0598

4.059 Yes 1.0599

4.060 No 1.0601

4.061 No 1.0602

7,062 No 1.0603 o : 5 5 : :

5.000 No 1.1764 Injection Multiplier

TABLE | , _

SOLVABILITY CONDITION RESULTSFOR IEEE 14-BUS SYSTEM Fig. 2. IEEE 14-bus Voltage Margin

We next investigate the insolvability condition consideri
injections are uniformly increased at each bus at constdhe specified upper reactive power limits of the IEEE 14-bus
power factor until the sufficient condition indicates that nsystem at a power injection multiplier of 4.061. Imposing up
solutions exist. The sufficient condition results are coraga per limits on generator reactive power power outputs, the op
to power flow solution attempts using a Newton-Raphsanization problem modified using (16) yields);.",. = 1.0601
algorithm. (i.e., the same value as in Table 1). Since this value satisfie

Results from applying the sufficient condition to the IEEEhe insolvability condition (14), the power flow equationghw
14-bus system are given in Table I. The specified slack bupper generator reactive power limits are insolvable. This
voltage isVp = 1.0600 per unit. not surprising as optimization problem (9) minimizes treckl

To generate a sequence of study cases for which solvabilitys voltage with proportional scaling of the PV bus voltage
may be examined, the originally specified active and reactimagnitudes; further decreasing the PV bus voltage magsstud
power injections are increased uniformly at each bus. Tie fiis not likely to enable reduction of the slack bus voltage. In
column of Table I lists the multiple by which the injectionga other words, we don't expect that imposing reactive power
increased. No power flow solutions exist after a sufficienthmits will improve power flow solvability.
large increase (approximately 4.060 for this example).eNot We next use the IEEE 14-bus system example to demon-
that the injection multiplier given in the first column doest n strate the voltage and power injection margins. In Fig. 2, th
change at a constant rate but rather focuses on the region nedtage margino is plotted versus the injection multiplier.
power flow solution non-existence. The voltage margin decreases as power injections increase.

The second column indicates whether a Newton-Raphsbhe voltage margin crosses one at an injection multiplier of
solver converged to a solution at the corresponding loading0595, indicating that no power flow solution can exist for
In order to increase the likelihood of convergence, the Ilewt larger power injections. Beyond this point, the voltage givar
Raphson solver was initialized at each injection multipliéth ~ provides the minimum increase in the slack bus voltage (with
the solution from the previous injection multiplier and aga corresponding proportional voltage increases at all P\ég§us
number of Newton-Raphson iterations were allowed. required in order for a power flow solution to possibly exist.

The third column provides the lower bound on the minimum In Fig. 3, we examine the power versus voltage (PV)
slack bus voltage in per unit obtained from (10). In order tourves for the high-voltage, stable solution to the IEEEbLI4-
evaluate the sufficient condition for power flow insolvalyilat system. These curves, which were plotted using continoatio
each injection multiplier, the value in this column is comgzh techniques [36], show how the solution voltages change with
to the specified slack bus voltage of 1.06 per unit. If the @alyproportional increases in power injections at all busese Th
in the third column is greater than 1.06, the sufficient coadi plots show the voltage at the arbitrarily selected PQ bus five
indicates that no power flow solutions exist. These resuliBlotting the voltage at a PQ bus is required since voltage
show agreement between Newton-Raphson convergence aragjnitudes at slack and PV buses are fixed.) The PV curve
the sufficient condition; a power flow solution was foundising the nominal slack and PV bus voltages is shown in black.
for all injection multipliers where the sufficient conditio  Evaluating the optimization problem (10) at an injection
indicated that a solution was possible (observe that BGtf,  multiplier of one gives &;%", = 0.5261. The voltage margin
is just greater than 1.06 and no solution is found by ths o = +250¢ — 2.0148 per unit. Thus, no solution can exist
Newton-Raphson solver at an injection multiplier of 4.060) if the slack bus voltage is reduced by more than a factor of

The existence of a solution for all power injections tha2.0148 (with all PV bus voltages reduced proportionally)eT
satisfy (15) is expected since th& matrix in (10b) has a grey PV curve in Fig. 3a is obtained when the voltages are thus
nullspace with dimension two. This need not always be tlmeduced. This curve shows that with these reduced voltages,
case. In [28], an example wittim (null (A)) = 4 displayed there is the single solution is on the power flow solvability
no solution for some power injections even though (15) wd®undary; no solutions exist after any further increase in
satisfied. the injection multiplier. Thus, the voltage margin accahat




|EEE 14-Bus Conti tion T :Bus b5 . . .
us Lontinuation Trace: Bus proportional increases in all PV bus voltages). The grey PV

curve in Fig. 3b has the voltages thus increased. Observe tha
increasing the voltages allows a solution on the power flow
: solvability boundary for an injection multiplier of five.

0.8 i
The power injection margim can also be calculated at a
L 0.6] " power injection multiplier of five using (19).
> ' '
04 E : 1% /106002
| : 0= <me - ) = <1'1764) =0.8119 (25)
0.2t + |—Nominal Slack Voltage PV Curve ~slack |Inj Mult=>5 ’
: Low Slack Bus Voltage PV Curve . . . . PR
¢ |- ~Upper Bound on Nose Point U _1 |mpI|_es that no squt.|o_n e?<|sts at a power_lnjgcuon
% 3 5 5 z multiplier of flye. The power injection m.ar.gln.also |nd_|c§te
Injection Multiplier that no solution can exist for power injection multipliers
(a) Nominal and Low Slack Bus Voltage PV Curves greater than0.8119 - 5 = 4.0595. This corresponds to the
“nose” point of the black (nominal) PV curve in Fig. 3b.
IEEE 14-Bus Continuation Trace: Bus 5
1.2} : VI. CONCLUSION AND FUTURE WORK
| : We have presented a sufficient condition for identifying
i insolvability of the power flow equations. This sufficient
ol condition requires the evaluation of an optimization peoil
! We have proven that this optimization problem is feasible
> 0.6 for lossless power systems and argued that practical power
! systems should also yield a feasible optimization problem.
0.47 —~—— In order to quantify the degree of solvability, we developed
—Nominal Slack Voltage PV Curve : controlled voltage and power injection margins from the
02y T__iah Slack Bus Voliage PY Curve sufficient condition that provide upper bounds on the distan
pper Bound on Nose Point . . X X
0, - . . . ; to the power flow solvability boundary. Finally, we applied

the sufficient condition, voltage margin, and power injecti
margin to the IEEE 14-bus system. Although we provided a
sufficient condition for power flownsolvability, the majority
of power systems we investigated yielded results simildhé¢o
IEEE 14-bus system where a power flow solution was found
indicates the distance to power flow insolvability. with a Newton-Raphson algorithm up to the point identified by

The solution to the optimization problem (10) also enablefe sufficient condition as insolvable. (See [28] for an eplem

determination of the power injection margin Solving (19) where this does not occur.)

yieldsn = ($:2889)" = 4.0595. Thus, the power injections can  There are several open questions associated with this work.

be increased uniformly by a factor of 4.0595 until the sudiiti The first involves further consideration of generator rieact
condition indicates that no power flow solutions are possiblpower limits. The modifications to the optimization problam
The black PV curve associated with the nominal voltages $ection IV-A extend the insolvability condition to bounceth
Fig. 3a corroborates this assertion: a power flow solutiasiex effect of upper limits on generator reactive power injetsio

for all power injection multipliers less than 4.0595, but n¢-urther research into the use of more detailed models for
solution exists beyond this power injection multiplier. generator reactive power limits is ongoing.

The voltage and power injection margins can also be used tQAnother area open to further study regards computational is
investigate insolvable power injections. Assume that waldo sues. Although the methods proposed in this paper are kiitab
like to consider operation at a power injection multipliguel for off-line planning studies with contingencies, comgtiataal
to five. Evaluating the optimization problem (10) at a poweshallenges for semidefinite program solvers may preclude th
injection multiplier of five givesV/ ;. = 1.1764. Note that on-line calculation of voltage stability margins in veryde-
(19) implies that knowledge oV {j,7. at a power injection scale systems. Specifically, the positive semidefinite tcaims
multiplier of one allows the direct calculatiol’;.,. at a in the dual optimization problem (10b), whose size scales as
power injection multiplier of five: (2n)2 wheren is the number of buses in the system, controls

the solution time of (10). For locations with known voltage
min _ min _ stability issues, a small, more localized system modeldbel
Ve ng anms = VI Vil gy = 11764 (24) used to apply the proposed methods in an on-line environment

The voltage margin at a power injection multiplier of five ig~uture work will explore the structure and sparsity of the
o= % = 0.9011. ¢ < 1 indicates that there is no solutionpower flow equations to more quickly solve the semidefinite
at a power injection multiplier of five. To potentially achiéee optimization problem for larger systems.

a power flow solution, the slack bus voltage must increaseFinally, we intend to investigate solutions with non-zero
by at least a factor o{)_glm = 1.1098 (with corresponding duality gap (see [28] for further discussion).

Injection Multiplier
(b) Nominal and High Slack Bus \oltage PV Curves
Fig. 3. |IEEE 14-Bus System PV Curves
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