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Abstract—For the nonlinear power flow problem specified with
standard PQ, PV, and slack bus equality constraints, we premnt
a sufficient condition under which the specified set of nonliaar
algebraic equations has no solution. This sufficient conditn is
constructed in a framework of an associated feasible, conxeop-
timization problem. The objective employed in this optimization
problem yields a measure of distance (in a parameter set) tche
power flow solution boundary. In practical terms, this distance is
closely related to quantities that previous authors have poposed
as voltage stability margins. A typical margin is expressedn
terms of the parameters of system loading (injected powers)
here we additionally introduce a new margin in terms of the
parameters of regulated bus voltages.

Index Terms—Power flow, Power flow solution existence, Max-
imum loadability, Solution space boundary

|I. INTRODUCTION

behavior with respect to initial conditions for certain dyju
cases. It is well recognized that a power flow problem may in
general have a very large nhumber of solutions; for example,
the work of [3] establishes cases for which the number of
solutions grows faster than polynomial with respect to roekw
size. For cases having multiple solutions, each solution ha
a set of initial conditions that converges to that solution
in Newton-Raphson iteration. Characterization of Newton-
Raphson regions of attraction was the subject of [4], which
demonstrated cases for which the boundaries of thesetattrac
sets were factual in nature. So despite the fact that vegelar
scale problems (10’s or 100’s of thousands of unknowns) are
routinely solved in power engineering practice, it is irmpat

to recognize that as parameters move outside of routine
operating ranges, the behavior of these equations can hbyhig
complex, and failure of convergence for a Newton-Raphson-

OWER flow studies are the cornerstone of power systefiased commercial software package is far from a reliable
analysis and design. They are used in planning, operatigfdication that no solution exists.

economic scheduling, transient stability, and contingested-

The properties of the Newton-Raphson iteration guarantee

ies [1]. The power flow equations used in these studies modghder suitable differentiability assumptions) that ttegation

the relationship between voltages and active and reactiv@ist converge to the solution for an initial condition segelc
power injections in a power system. The nonlinear powgi a sufficiently small neighborhood about that solution. [5]
flow equations may not have any solutions (the power floWowever, when a selected initial condition (or some limited
equations are said to be insolvable). That is, it is possibiet of multiple initial conditions) fails to yield convengee,

to choose a set of power injections for which no valighe user of a Newton-Raphson-based software package is left

corresponding voltage profile exists. Practical cases et

with an indeterminate outcome: does the specified problem

fail to have a solution include long-range planning studigsave no solution, or has the initial condition(s) simplyldeli
in which the studied system may not be able to suppa# fall within the attractive set of a solution that does &Xis
projected loads, and contingency studies for which theddss Conditions to guarantee existence of solutions to the power
one or more components may yield a network configuratigidw equations has been an active topic of study. For example,

that is similarly inoperable for the specified injectionsis’

[6] describes sufficient conditions for power flow solution

paper presents a practically computable sufficient camditi existence. However, as sufficient conditions, these arenoft
that, when satisfied, rigorously classifies a specified casecanservative: a solution may exist for a much larger range
unsolvable. This method also provides controlled voltage aof operating points than satisfy the sufficient conditions.
power injection margins that characterize a distance to tgher work on sufficient conditions for power flow solvalyilit

power flow solvability boundary.

includes [7], which focuses on the decoupled (active power-

In engineering practice, large scale nonlinear power floyoltage angle, reactive power-voltage magnitude) powav flo

equations are typically solved using iterative numerieaht

model. Reference [8] describes a modified Newton-Raphson

niques, most commonly Newton-Raphson or its variants [3jeration tailored to the type of ill-conditioning that can

that rely on an initial guess of the solution voltage magiets

appear in power systems problems. While convergence to a

and angles. An important limitation of these techniques &lution may be judged a constructive sufficient condition t
that they are only locally convergent. That is, they gerteraldemonstrate solvability, such approaches do not escape the
do not converge to a solution from an arbitrary initial guegsndamental limitations of a locally convergent iteratidn

[1], and may show very high sensitivity and highly complexnore recent work, [9] provides two necessary conditions for
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saddle-node bifurcation based on lines reaching theiicstat
transfer stability limits; however, this work does not yet
provide a test for power flow solvability or define a distance
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to the power flow solvability boundary. Newton-based methods whose conditions for convergence are
A measure of the distance to the solvability boundary (theherently local in nature. Furthermore, rather than reqgi
set of operating points where a solution exists, but sma#peated power flow calculations, the proposed method uses a
perturbations may result in the insolvability of the powemfl single evaluation of a semidefinite optimization problem.
equations [10]) is desirable to ensure that power systems ar The sufficient condition for power flow insolvability is
operated with security margins. If a solution does not exibased on an optimization problem that includes a relaxation
for a specified set of power injections, a measure of tlué certain equality constraints in the power flow equations.
distance to the solvability boundary indicates how close tiSpecifically, in this optimization problem, the voltageskaick
power flow equations are to having a solution. If a powemd PV buses are not fixed, but instead have a one-dimensional
flow solution exists, desired margins indicate distances degree of freedom (i.e., they are allowed to change in cohsta
solution non-existence at the solvability boundary. Hngst proportion). In Section Ill, we prove that the extra degrée o
work in this area uses a Newton-Raphson optimal mulfireedom guarantees the modified power flow equations to have
plier approach [11] to find the voltage profile that yieldsit least one solution. In an idealized lossless case, one may
the closest power injections to those specified [12], [13hterpret this as follows: a sufficiently high voltage prefil
The method described in [12] and [13] forms a non-convexlows the system to meet any specified power injections.
optimization problem, solved by an iterative algorithmtthaBy continuity from the lossless case, we argue that this will
may Yyield only a locally optimal solution, dependent on aoontinue to hold for modest losses, as is typical of models
initial condition. In particular, the method of [12] and [[13 for bulk transmission. With the relaxed problem feasible fo
is only guaranteed to find a locally optimal voltage profilesome (sufficiently high) voltage profile, we establish a non-
yielding the power injections closest (in a Euclidean norn®mpty feasible set for the optimization.
to those specified. Moreover, the approach of [12] and [13] With a non-empty feasible set established, the optimimatio
as presented does not seek to obtain security margins pooblem then seeks to minimize the slack bus voltage mag-
solvable sets of power injections (though one might pottulanitude (using the one-degree-of-freedom in voltage psfile
modifications of its algorithm that could do so). For soheablsubject to the active and reactive power injection constsai
sets of power injections, iterative techniques for findingd of the power flow equations. Importantly, we will show
margins comprised of the locally optimal minimum distanze tthat a further relaxed version of this optimization problem
the power flow solvability boundary are detailed in refencis a convex semidefinite programming problem, and hence
[14] and [15]. An algorithm that combines continuation antlas a practically computable global minimum. If the global
non-linear optimization techniques to either solve the @owminimum slack bus voltage obtained from this optimization
flow equations, when possible, or calculate a measure of poypeoblem is greater than the originally specified slack bus
flow insolvability is presented in reference [16]. Referefit7] voltage, there can be no solution to the originally specified
describes an optimization problem that applies interianpo power flow equations. However, due to the nature of the
methods to minimize the load shedding necessary to obtagtaxation, one may not draw a firm conclusion from the
solvable power flow equations. The minimum amount of loacbnverse: if the minimum slack bus voltage is less than or
shedding is used as a measure of power flow insolvabiliggual to the specified slack bus voltage, the power flow
Investigating the worst-case load shedding necessaryfeep equations may or may not be solvable.
flow solvability is also discussed in references [18] and.[19 The ratio of the specified slack bus voltage to the minimum
Reference [20] summarizes and compares some of these poslack bus voltage gives a “controlled voltage margin” to the
flow insolvability measures. power flow solvability boundary. In a provably unsolvable
In common industry practice, static voltage stability miasg case, this margin is the multiplicative factor by which the
are determined using repeated power flow calculations to findntrolled voltages must be increased to allow the podsibil
the “nose” point of a power versus voltage (“P-V") curveof existence for a power flow solution.
Closely related methods trace this curve while monitoring It is widely recognized that the power flow equations are
“reactive margins” on generators (i.e., the margin betwtben quadratic in the complex voltage vector when these voltages
generator’s reactive power output at a given operatingtpoire expressed in rectangular form. Exploiting this fact, an
and its maximum reactive output). Descriptions of relevaanhalogous power injection margin can also be calculated;
industry standards can be found in such works as [21]-[23here the new, one degree of freedom introduced represents
In this paper, we present a sufficient condition under whiah constant power factor change in injections at each bus in
a power flow problem is guaranteed to be insolvable. Bproportion to the specified injections. When the power flow
products of the computation are controlled voltage and powequations do not have a solution, the power injection margin
injection margins to the power flow solvability boundary. Irprovides the factor by which the power injections must be
contrast to existing techniques that are almost universatlecreased to admit the possibility for power flow solution
Newton-based, local solution methods, the semidefinite prexistence.
gram in the method proposed here yields a global solution toThese margins are non-conservative bounds. Thus, for an
the optimization problem that is formulated from the orgglp  insolvable set of specified values, a change in voltage by
specified power flow. This global optimum enables the guaraat least the amount indicated by the voltage margin (or a
tee of solution non-existence upon satisfaction of a seffici change in power injections by at least the amount indicated
condition. No such guarantee can be made with existifiy the power injection margin) is required for the power
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flow equations to bgotentiallysolvable. More precisely, the matrix, andn is the number of buses in the system. With
margin identifies the shortest distance (as measured iag®lt G # 0, this paper considers lossy networks.
setpoint changes for the controlled voltage margin and powe To represent typical behavior of equipment in the power
injection changes for the power injection margin) to a poirlystem, each bus is classified as PQ, PV, or slack, accomling t
at which the sufficient condition for power flow insolvabjlit the constraints imposed at that bus. PQ buses, which tjpical
fails to be satisfied; equivalently, this is the smallestadise to correspond to loads, tredt, and ); as specified quantities,
a point at which the associated necessary condition for poveand enforce the active power (1) and reactive power (2)
flow solvability is first satisfied. equations at that bus. PV buses, which typically correspond

The dual of the optimization problem used in the sufficiergenerators, specify a known voltage magnitd¢ieand active
condition can be written as a semidefinite program (SDP). Thewer injectionP;, and enforce only the active power equation
optimal power flow problem (i.e., finding the optimal openati (1). The associated reactive pow@r may be computed as an
point for a power system subject to physical and engineerifutput quantity,” via (2). Finally, a single slack bus idesgted,
constraints) was recently formulated as an SDP [24], [25}ith its specifiedV; and d; (typically chosen to b&°). The
In prior work, the authors created an SDP formulation afctive powerP; and reactive powe€); at the slack bus are
the power flow equations in an attempt to calculate multiptéetermined from (1) and (2); network-wide conservation of
solutions to these equations [26]. In contrast to the nanvew complex power is thereby satisfied.
primal optimization problem [27], the feasible region okth Note that generator reactive power limits are not consitlere
dual problem formulated as an SDP is convex. The optimial this paper; generators are modeled as ideal voltage s®urc
objective value obtained from the dual SDP formulation iwith no limits on reactive power output. Generator limitg ar
a lower bound on the objective function value used in thelevant to power flow solvability since non-existence oivpo
sufficient condition here. Thus, if the sufficient conditiolds  flow solutions may result from limit-induced bifurcatior29],
based on the lower bound from the dual SDP formulation, of@0]. Extension of this work to incorporate reactive power
can be assured the originally formulated power flow equatiolimits is future work discussed in the conclusion.
admit no solution.

The organization of this paper is as follows. In Section 1. SOLUTION EXISTENCE PROOF
I, we give an overview of the power flow equations. In T
Section lll, we provide the existence proof that shows thtﬁJ
feasibility of the optimization problem used by the prombs
condition. In Section 1V, we describe the sufficient coruatiti

he sufficient condition for power flow insolvability re-
ires the evaluation of an optimization problem in which
Ghe feasible set is defined by a modified form of the power
flow equations. The modification introduces one new degree

fo_r power f'o".V |nsolvab|l_|ty and define voltage an_d POWEL freedom, allowing voltage magnitudes at the slack and PV
injection margins. Numeric examples are provided in SeCtI%uses to vary; this variation is restricted to a one-degree-

V. Section VI examines solutions with non-zero duality 98t_freedom “ray” with all voltage magnitudes changing in

We then conclude with a discussion of future work. constant proportion to their base-case values. We prowve tha
the feasible space is non-empty for any lossless powerrayste
II. POWER FLOW EQUATIONS OVERVIEW (i.e.,a networi model in Whichl) I>i/ne conguctances Fz:\re atb)z}ér
The power flow equations describe the sinusoidal steadging standard results of basic circuit theory and contynui
state equilibrium of a power network, and hence are formye argue that the problem retains a non-empty feasible set
lated in terms of complex “phasor” representation of circuivhen perturbed with small line conductances, as are typical
guantities (see, for example, Ch. 9 of [28]). The underlying bulk transmission.
voltage-to-current relationships of the network are Iméait  The proof of solution existence may be outlined as follows.
the nature of equipment in a power system is such th@je first establish that a solution must exist for any lossless
injected/demanded complex power at a bus (node) is tygicaliystem with zero power injections. We then use the implicit
specified, rather than current. The relation of interestés bfynction theorem to establish that solutions continue tistex
tween the active and reactive power injected at each bus 3gflinjections within small ball around zero. Hence, witttiis
the complex voltages at each bus, and hence the associgigfl must exist a ray that aligns with the originally spedfie
equations are nonlinear. Using the standard polar represgactor of non-zero power injections. We exploit the quadrat
tation for CompleX VOltageS, and rectangular “active/teat nature of the power flow equations to “scale up” Vo|tage
representation of complex power, the power balance equatignagnitudes along our one-degree-of-freedom, observiag th
at busi are given by the power injections must likewise move along the previpusl
identified ray. It follows trivially that there will exist acaling
n of voltages such that the specified power injections are real
Py =Vi Yy Vi (G cos (6; — 0) + Bugsin (6, — 0x)) (1) jzeq, thereby vyielding a solution to our modified form of the
’“il power flow equations.
Qi =Vi > Vi (Gisin (6 — 0x) — Bix cos (8; — 6x)) (2)
k=1 A. Existence of a Zero Power Injection Solution

where P; and(@); are the active and reactive power injections, Consider a generic lossless power system with all active
respectively, at bug Y = G + 5B is the network admittance and reactive power injections at PQ buses set to zero and all
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active power injections at PV buses set to zero. As our goalTo illustrate that this need not be the case for systems with
is accomplished if we can establish existence of one saiutidarge conductive elements in their bus admittance matngx, (i
we restrict attention to candidate solutions in which altdmi high transmission losses), consider the two-bus system avit

have the same voltage angle of zero. slack bus and a PV bus shown in Fig. 1.

First, since zero power injection at a PQ bus implies
zero nodal current injection, such buses have only branch Vslack /0 deg ' Vey £ 0deg
admittances incident (i.e., from a circuit perspectiveesth jb

are nodes with no independent source connected to them).
They can be eliminated from the network, and the network
admittance matrix algebraically reduced via standardieed %P
linear circuit theory. We generically assume that the reduc PV
network does not result in any zero impedance lihes. .
. . Fig. 1. Two-Bus System

Next, since the substitution theorem [28] guarantees that a
any PV bus that has an associated non-zero reactive pPOWefhea transmission line admittance is+ jb; note that in
injection, there must exist a shunt admittance of appréPrignis agmittance representation, the conductive ternand
value such that, when substituted in place of the reactiye, susceptance tergb appear as parallel branch elements
injection, an identical solution for bus voltages is preset payeen the two buses. The voltage at the slack bus is denoted

The fact that the injections being replaced are purely neact by Viiaer, and the voltage at the PV bus is representetiby
ensures that the associated admittances will be purelyiimagi, angled. The power injection at the PV bus is

nary; i.e., susceptances only.

With PQ buses eliminated and reactive injections at PV )
buses replaced by equivalent susceptances, the resuttng n ~ Prv = gVpy — Vev Viiger (g cos (0) + bsin () (5)
work has the property that active and reactive power ing@sti g o-bus system has a zero power injection solution for

at all non-slack buses are identically zero. This allowsais £ given set of parameters b, Vv, and Viues if a value of
write the remaining network constraints of interest asaii’nee0 exists such thaPpy (4) = 0. The existence of such a
voltage/current relationships, as follows value of 6, depends on the ratio dfpy to Ve, and the
ratio of b to g. A zero power injection solution to this system
{ Lsiack ] _ | Ik Jb2 { Valack } ) exists when line resistances are small relative to lineteemes
0 jbs | jBs + jdiag (Ad) Vey and voltage magnitude differences are small. Specifictily,

where Ad is is a vector of shunt element susceptance%’,(iStence o_f a zero power injection solution for the system i
diag (Ad) denotes the diagonal matrix with elements/sg F19- 1 requires

. by | b2 | | 2 2
on the diagonalB = is the bus susceptance Vev \" 1 b 6
bl | Bs Vo) S1TG (6)

matrix, and superscripf’ indicates the transpose operator. _ ) . .
Viaer @nd Lyiaer are the voltage and current injection at the Since voltage magnitudes differences and line resistamce t

slack bus, respectively, antlpy is the vector of PV bus reactance ratios are typically small in realistic poweltays,

voltages. Note that the lossless assumption implies that e expect that typical systems must have zero power injectio
network admittance matrix is purely imaginary solutions. Consistent with this observation, all the IEEspr

Solving (3) for Ad yields flow test cases of_ [31] have zero power injection solut_ions.
However, (6) confirms that the two-bus example will fail to
Ad — (diag(va))’l (—bsVitack — BaViv) (4) have a zero injection solution when the conductance values

relative to susceptance is sufficiently large; a zero iigect

Because the voltage profile solution we seek is restrictgdution fails to exist in the case of transmission paramete
to have the same voltage angle at all buses and a non-zg&gociated with very high losses.
voltage magnitude at the slack bus, it follows that the \gata
at every bus must be non-zero adihg (Vpy) is invertible. g Implicit Function Theorem
Henc_e, for a Io_ssless system under the assumptions spemﬂequ next apply the implicit function theorem [32] at the zero
(4) yields a unique solution for the shunt susceptance salue

whose existence follows from the Substitution Theorem. POWer injection solution. Application of the implicit fution
" theorem requires a non-singular Jacobian at the zero power

provides a zero power injectioninjection solution. We therefore first investigate the Jaao
_ PV o evaluated at this solution.
solution to the reduced network that resulted from elimomat  The Jacobian obtained using polar voltage coordinates at

of PQ buses; voltages at PQ buses can be trivially recofizero power injection solution of a lossless system can be
structed. We conclude that any lossless system is guathnt@gitten as

to have a zero power injection solution.

v
Thus, the vectof

Jl 1 0
1Such a zero impedance line outcome can be eliminated by énasitp J= (7)
small perturbation to the underlying line parameter data. 0 Ja
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where Although the assumptions of lossless systems and inductive
lines are required for the above proof, non-singularity e t
oP ) ) ) Jacobian at a zero power injection solution genericallydgol
Ju = 5 —diag (V) (Bdiag (V) — diag (BV))  (8) for more general systems (e.g., lossless systems with some
oQ ) ) capacitive lines and lossy systems). A singular Jacobiardvo
Ja2 = v —diag (V) B — diag (BV) (®)  imply marginal stability at the zero power injection sotuti

Since active and reactive power injections at the slack bWéth multiple solutions coalescing at a bifurcation poifihere

are unconstrained, the rows and columns correspondingeto th |m: reaszon to expecF t-hISt.tO occlu; at afzerollp?EWéé injection
slack bus are removed from balh; andJss. Similarly, since solution. Zero power injection solutions for a power

the reactive power injections at PV buses are unconstraini@W test cases [31] have non-singular Jacobians at zerorpowe

the rows and columns corresponding to PV buses are remoYdgction solutl_ons. . . .
If the Jacobian of the power flow equations is non-singular

from J 2. Note that botrg2 and %2 equal zero for the voltage o e uti he implicit funct
profile with the same voltage angle at all buses correspgndf?flf the Z(-arg. powerhlnjec'uoln S0 ution, 't e.|mfp 'C't" unctlon
to a zero power injection solution of a lossless system. theorem indicates that a solution must persist for all pawer

The implicit function theorem can be applied at a ze

rpﬁctions in a small ball around the zero power injection. §hu
power injection solution so long as the Jacobian at thistswiu there exists some voltage magnitude and angle perturbation
is non-singular. In the lossless case, this requires Jhat

AV ZA¢ such that

(7) is non-singular. We next show that the Jacobian for a .
lossless power system is non-singular at a zero power ioject fF(V+AVZAS) = AP +jAQ (11)
solution, provided that all lines are inductive and that th@r any smallAP, AQ, whereV is the voltage profile for
network is connected (i.e., no islands). the zero power injection solutiomAP and AQ are small

J in (7) is non-singular if botl¥;; andJ, are non-singular. perturbations to the active and reactive power injectiams]

The matrixdiag (BV') in J22 is equivalenttaliag (1), wherel  f represents the power flow equations relating the voltages
is the vector of current injections. Since all rows and cai8m and power injections.

in Joo correspond to PQ buses with zero current injections,
this term is zero. The matridiag (V') is non-singular since Scaling Up Voltages

all voltages are non-zero for the voltage profile with the eam Wi lete th lut st b dina th
voltage angle at all buses. With the slack bus row and column € complete the Solution existence proot by €xpanding the

removedB is non-singular for a connected power system WitﬁmaII ball ar_ound the_ ZEro power _|nJect|on S(_)I_utlon to gh)_m
inductive lines. ThusJy, is non-singular voltage profile that yields the originally specified poweget:

Sincediag (V) is non-singularJy, is non-singular if tlons..Slnce the power flow equations are guadratic in veltag
magnitudes/, scaling all voltage magnitudes also scales the

power injections. That is, scaling the voltage magnitudtes i

(B diag (V) — diag (BV)) = (11) by the scalag gives

BioVo+...+B1.V,, --- —B1,.Va
f(B(V+AVZAS)) = B2 (AP + jAQ) (12)

-BnuiVi o BuVi+ o+ By V-1 Choose aA P+ jAQ that is in the direction of the specified
(10) power injections and obtain a corresponding voltage profile

is non-singular. Note that the diagonal elements in (10) a:JH—AVAAzS. Then increasg until the power injections given

re - oI
the negative of the sum of the off-diagonal elements in t g \(/g Ig _e|_ Ar(‘)/ffe??e/) :_nit;:/h ;263)3 tpheecrlwﬂeizlzgv;ﬁer ?iiti'f?;ds'
corresponding row. Under the assumption of inductive lines ge p y P

such that all off-diagonal elements are negative, this imatlpower Injections.
has weak diagonal dominance. With the slack bus row and
column removed, the remaining matrix has at least one row
where the diagonal element is strictly greater than the sum N o
of the off-diagonal elements (i.e., strict diagonal domica A- Condition Description

exists for this row). Since the power system associatedtwéh  The proof in Section Il shows that there exists a voltage
B matrix is connected (i.e., no islands), the digraph assettiaprofile satisfying the power injection equations. We depelo
with the matrix in (10) is strongly connected. This implieat the sufficient condition for power flow insolvability by de-
the matrix is irreducible [33]. Since the matrix is irredolei, termining whether any such voltage profile could match the
weakly diagonally dominant, and has at least one row wipecified slack bus and PV bus voltages. No solution to the
strict diagonal dominance, the matrix is irreducibly dinglly power flow equations exists if it is impossible to obtain a
dominant. By the Levy—Desplanques theorem, the matrix isltage profile that yields the specified power injectionslevh
non-singular [33]. ThusJy; is non-singular. This proves also matching the specified voltage magnitudes at slack and
that the Jacobian for a connected, lossless system at a Zevbbuses.

power injection solution is invertible, under the assumpif One way to determine if a valid voltage profile exists is
inductive lines. to find the voltage profile with the lowest possible slack bus

IV. SUFFICIENT CONDITION FOR POWER FLOW
INSOLVABILITY
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voltage. If the minimum possible slack bus voltage is greatachievable slack bus voltage (i.e., the square root of the
than the specified slack bus voltage, no voltage profile wilptimal objective value of (14)) is denoted &$,"", .

satisfy the power flow equations and thus the power flow Matrices employed in (14) are defined as

equations are insolvable. If, conversely, the minimum lslac

bus voItage is less th(_am the specified slack bus voltage, ampow v 1 Re (Vi +YT) Im (Y7 - i) )
flow _solutlon. may eX|st.. . . =2 m (Yi - ¥T) Re(¥i +Y7)

This condition thus indicates that no power flow solution - ”
exists when the minimum slack bus voltage obtainable while Y= L Im (YkTJF Yi) Re(Yi- YkT) (16)
satisfying the power injection equations (with PV bus vipéta 2 |Re (Y —Yi) Im(Yi+Y,)
magnitudes scaled proportionally) is greater than theipdc evel 0
slack bus voltage magnitude. An optimization problem with M = 0  eref a0

objective function minimizing the slack bus voltage and-con
straints on power injections and PV bus voltage magnitudegheree, denotes the:!” standard basis vector iR and the
as shown in (13), is used to evaluate this condition. matrix Yj, = exeiY. Notation is adopted from [25].

Note that the dual formulation (14) is always feasible since
the pointA, = 0, 7, = 0, u; = 0 for all ¢ implies A =

in Vilac 13a
mltl)l t; « ( ) Mslack t 0.
subject to The semidefinite dual formulation (14) provides a lower
P, = Vi Zv’i (Gir, cos (8, — 6:) + Bu sin (¢ — 61)) bound on the minimum s_Iack bu_s vol_tage in (13). No solution
P to the power flow equations exists if the lower bound from

Vke{PQ PV} (13b) (14) is greater than the specified slack bus voltage. That is,

Qk = Vi Y_ Vi (Gugsin (8 — 6;) — Biy cos (3 — 0;)) the condition
i=1 VkePQ (13c) — 8)
Vslack = Vo
Vie = otk Vetack VkePY (13d) e

wherel} is the specified slack bus voltage, is a sufficient but

wherePQ is the set of PQ buse®V is the set of PV buses, not necessary condition for insolvability of the power flow
and V.1 is the slack bus voltage magnitude, represents equations. Note that this formulation does not use any rank
the specified ratio of the PV buk and slack bus voltage relaxations or enforce any requirements on matrix rankes; th
magnitudes. The minimum achievable slack bus voltage (i.solution to the convex problem (14) is only used as a lower
the optimal objective value of (13)) is denoted 145" . bound on (13).

Note that (13) is feasible for lossless systems and expected he converse condition does not necessarily hold: the power
to be feasible for most practical power systems as arguielv equations may not have a solution even if
in Section Ill. The power flow insolvability condition can
therefore be evaluated. vmin <V, (19)

The optimization problem (13) is in general non-conve hus, (19) is a necessary, but not sufficient, condition for

[27], and hence solution for a global optimum is not assured. f vability. H tisfacti f(19) i
A global minimum is required in order to ensure the validity ghower Tlow solvability. However, satistaction o (19) is ex-

the sufficient condition on power flow solution non—existencpected to often predict the existence of a power flow solution

We therefore formulate in (14) the semidefinite dual of (13 If the A matrix in (14b) has a nullspace with dimension less

SDP algorithms can assure that we find the global solution an or equal to two, a solutlonn?ifnthe power flow equations
the convex dual formulation (14). with slack bus voltage equal t& (and PV bus voltage

slack

magnitudes scaled proportionally) can be obtained (seg [25
for further details). If a solution to the power flow equaton

max Y (P4 D> (wQk) (14a) with slack bus voltage equal fid, does not exist, the solution
ke{PQ, PV} kePQ with lower slack bus voltage must disappear as the conttolle
subject to voltages increase. The disappearance of a solution due to
_ increasing controlled voltages does not typically occinug,
ANy, 1) = | Matack — I;P:Q (MY + 76 Yx) satisfaction of (19) by a solution to (14) withm (null (A)) <
€

2 is a strong indicator of power flow solution existence.
— Z ()\kYk + Mk (Mk - OéiMslack)) i 0 (14b)
kEPY B. Controlled Voltage Margin

where \i, v, and uy are the Lagrange multipliers for active The sufficient condition (18) is binary: the specified power

power (equation (13b)), reactive power (equation (13a)j] aflow equations either cannot have a solution or may have a
PV bus voltage magnitude ratio (equation (13d)) constsainsolution. We next show how the sufficient condition can be

respectively, associated with bis The symbol- indicates interpreted to give a measure of tliegreeof solvability.

that the corresponding matrix is constrained to be positivle develop a measure of the distance to the power flow
semidefinite. The maximum lower bound on the minimursolvability boundary, which we define as the set of solvable
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power injections where all solutions may vanish under small The power injection margim corresponding to the con-
perturbations. Since operating a power system far from td&ion in (22) gives an upper, non-conservative bound of
power flow solvability boundary is required to ensure stghil the distance to the solvability boundary in the direction of
a measure of the distance to the solvability boundary isulisefuniformly increasing power injections. For a solvable skt o
A measure of the distance to the solvability boundary alsmwer injections, the largest proportional increase in gow
indicates how close insolvable power flow equations are iigjections at each bus while potentially maintaining sbility
solvability. is a factor ofn. For an insolvable set of power injections, a
We introduce a controlled voltage margin measuifer the proportional change of all power injections by at legsis
distance to the power flow solvability boundary. The comgal required for a solution to be possible.
voltage margin is defined as the ratio between the specifiedNote that the power injection margin can be rewritten in
slack bus voltage and the lower bound on the minimum slat&ms of the voltage margin.
bus voltage obtained from (14).

n=(0)" (23)

The sufficient condition for power flow insolvability can be
. ) ) rewritten in terms of the power injection margin:< 1 is a

o IS an upper (non-c_qnservatwe) bound of the distance {icjent condition for power flow insolvability.
the pO\;\ller flow splvablhty boundary. Fo:j a stc)nlvable sbet of The power injection margin can alternatively be calculated
power tlow gquat|ons, We are guarar)t_ee to be at or eyqugng a different optimization problem that directly makies
the solvability boundary |f_the specified slack bus V_c’ltagﬁower injections at constant power factor with fixed slack
decreases by the facter For insolvable power flow equanns,and PV bus voltage magnitudes. This gives the same power

increasing the slack bus voltage magnitude (with propoétio injection margins as (22) in all test cases. This approaksla
increases in PV bus voltage magnitudes) by at least a fac,

of % (without changing the power injections) is required foéofeasmlhty proof and does not have any advantages over (22
solvability.

The sufficient condition can be rewritten in terms of the
voltage margino < 1 is a sufficient condition for power flow We next apply the sufficient condition for power flow
insolvability. solvability to the IEEE 14-bus and IEEE 118-bus systems
[31] using optimization codes YALMIP [34] and SeDuMi [35].
The power injections are uniformly increased at each bus at
constant power factor until the sufficient condition indesa

Another measure of the distance to the power flow solvabihat no solutions are possible. The sufficient conditiomltss
ity boundary is given in terms of power injections. The powefre compared to power flow solution attempts by a Newton-
injection margin is a measure of how large of a change in tiRaphson algorithm.
power injections in a certain profile is required for the powe
|njef<_:|t|oni to be on tr_\e_ so!vablllty bou_ndary. We consider th%_ IEEE 14-Bus System Results
profile where power injections are uniformly changed at eac
bus in order to take advantage of the quadratic nature of theResults from applying the sufficient condition to the IEEE
optimization problem (13) in the sufficient condition. (Thel4-bus system are given in Table I. The specified slack bus
impact of non-uniform changes in power injections is futureoltage isVo = 1.0600 per unit.

work discussed in Section VII.) The quadratic property that The originally specified active and reactive power injetsio

Vo
min
~slack

(20)

g =

V. NUMERIC EXAMPLE

C. Power Injection Margin

we exploit can be written as are increased uniformly at each bus. The first column of Table
| lists the multiple by which the injections are increased. N
h(n(P+ Q) =n( nlzink)Q (21) Ppower flow solutions exist after a sufficiently large increas
—Sstac

(approximately 4.060 for this example). Note that the itiggc
where P and () are vectors of the active and reactive powetwultiplier given in the first column does not change at a
injection at each bus; is the function representing optimiza-constant rate but rather focuses on the region near power flow
tion problem (13) relating the minimum slack bus voltage teolution non-existence.
the power injections, and is a scalar. The second column indicates whether a Newton-Raphson
(21) describes the linear relationship between the squaksiver converged to a solution at the corresponding loading
of the voltages and the power injections. This relations8ip In order to increase the likelihood of convergence, the ldewt
evident from (13b) and (13c): scaling all voltages,fy scales Raphson solver was initialized at each injection multiphéth
the active and reactive power injections by the solution from the previous injection multiplier and agia
To develop the power injection margin, uniformly scale thaumber of Newton-Raphson iterations were allowed.
power injections until the sufficient condition (18) indiea  The third column provides the lower bound on the minimum
that the power injections are (at least) on the solvabiliglack bus voltage in per unit obtained from (14). In order to
boundary. evaluate the sufficient condition for power flow insolvatlyiat
each injection multiplier, the value in this column is comgzh
n (Vo )2 = (VW) (22) to the specified slack bus voltage of 1.06 per unit. If the @alu

~slack
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[ Injection Multiplier | NR Converged [ V™, IEEE 14-Bus Voltage Margin g vs. Injection Multiplier
1.000 Yes 05261 ® ‘ ‘ ‘ ‘
2.000 Yes 0.7440
3.000 Yes 0.9112
4.000 Yes 1.0522
4.010 Yes 1.0535
4.020 Yes 1.0548
4.030 Yes 1.0561
4.040 Yes 1.0575
4.050 Yes 1.0588
4.055 Yes 1.0594
4.056 Yes 1.0595
4.057 Yes 1.0597
4.058 Yes 1.0598 o) : 5 5 ; .
4.059 Yes 1.0599 Injection Multiplier
4.060 No 1.0601
4.061 No 1.0602 Fig. 2. |EEE 14-bus \oltage Margin
4.062 No 1.0603
4.063 No 1.0605
4.064 No 1.0606 IEEE 14-Bus Continuation Trace: Bus 5
4.065 No 1.0607 | : :
5.000 No 1.1764 r : :
TABLE | 05l : :
SOLVABILITY CONDITION RESULTSFOR IEEE 14-BUs SYSTEM ‘ : '
08/ : ;
> ' '
in the third column is greater than 1.06, the sufficient ctadi 041
indicates that no power flow solutions exist. These results 02l * [——Nominal Slack Voltage PV Curve
show agreement between Newton-Raphson convergence and : bow S'gck B(l;s VﬂtagePP\,/ tCurve
.. oy . Y--- er sound on Nose Poin
the sufficient condition; a power flow solution was found o e ‘ :
for all injection multipliers where the sufficient conditio 0 ! Injecti%n Mumpnesr ‘
!nd_|cated that a solution was possible (0b§erv§ that bAfff), (a) Nominal and Low Slack Bus Voltage PV Curves
is just greater than 1.06 and no solution is found by the
Newton-Raphson solver at an injection multiplier of 4.060) IEEE 14-Bus Continuation Trace: Bus 5
The existence of a solution for all power injections that 12}
satisfy (19) is expected since th& matrix in (14b) has a i :
nullspace with dimension two. This need not always be the :
case. In V-B, we investigate an example wiilm (null (A)) = 0.8 \
4 where no solution was found for some power injections o :
even though the condition (19) indicated that a solution was oo
possible. 0.4l —~—
We next use the IEEE 14-bus system example to demon- ——Nominal Slack Voltage PV Curve |  +
strate the voltage and power injection margins. In Fig. 2, th 0.2r Eigh SECK BdUS Vﬁ'tagePP_VtC”We :
. . . . . . = er bound on Nose Poin L
voltage margino is plotted versus the injection multiplier. 0 e :
i ini 1 i 0 1 2 3 5
The voltage margin decreases as power injections increase. Intection Multiplier

The voltgge_ margin crosses one at an injeption multiplier of (b) Nominal and High Slack Bus Voltage PV Curves
4.0595, indicating that no power flow solution can exist for
larger power injections. Beyond this point, the voltage givar Fig. 3. IEEE 14-Bus System PV Curves
provides the minimum increase in the slack bus voltage (with
corresponding proportional voltage increases at all P\édus
required in order for a power flow solution to possibly existiS & = g5 = 2-0148 per unit. Thus, no solution can exist
In Fig. 3, we examine the power versus voltage (P} the slack bus voltage is reduced by more than a factor of
curves for the high-voltage, stable solution to the IEEEbLg- 2.0148 (with all PV bus voltages reduced proportionally)eT
system. These curves, which were plotted using continuatigrey PV curve in Fig. 3a is obtained when the voltages are thus
techniques [36], show how the solution voltages change witgduced. This curve shows that with these reduced voltages,
proportional increases in power injections at all busese THere is the single solution is on the power flow solvability
plots show the voltage at the arbitrarily selected PQ bus fijgoundary; no solutions exist after any further increase in
(Plotting the voltage at a PQ bus is required since voltade® injection multiplier. Thus, the voltage margin accatat
magnitudes at slack and PV buses are fixed.) The PV cufpdicates the distance to power flow insolvability.
using the nominal slack and PV bus voltages is shown in black.The solution to the optimization problem (14) also enables
Evaluating the optimization problem (14) at an injectionletermination of the power injection margin Solving (22)

multiplier of one gives &7}, = 0.5261. The voltage margin yieldsn = (é:ggg?)z = 4.0595. Thus, the power injections can
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[ Injection Multiplier [ NR Converged | V™n |

be increased uniformly by a factor of 4.0595 until the suéfiti

condition indicates that no power flow solutions are possibl i'gg i:: 8'%%
The black PV curve associated with the nominal voltages in 500 Yes 0.8095
Fig. 3a corroborates this assertion: a power flow solutiastex 2.50 Yes 0.9050
for all power injection multipliers less than 4.0595, but no 3.00 Yes 0.9914
lution exists beyond this power injection multiplier 31 Jes 1.0159
solu Yy S pow Ject phier. 3.16 Yes 1.0175
The voltage and power injection margins can also be used to 317 Yes 1.0191
investigate insolvable power injections. Assume that walado 3.18 Yes 1.0207
like to consider operation at a power injection multipliguel 3.19 No 1.0223
to five. Evaluating the optimization problem (14) at a power ggg mg i'gggg
injection multiplier of five givesV{j, ¢, = 1.1764. Note that 355 No 10271
(22) implies that knowledge oV [}, at a power injection 323 No 1.0287
multiplier of one allows the direct calculatiol”;’”, at a 3.24 No 1.0303
ower injection multiplier of five: ot 3.25 No 1.0319
P J P : 3.26 No 10335
3.27 No 1.0351

ymin = /o ymin, 3.28 No 1.0366
—stack | Mul=5 VI Vstaci Inj Mult=1 3.29 No 1.0382
=0.5261 - v/5 = 1.1764 per unit (24) 4.00 No 1.1448

. L . . TABLE Il
The voltage margin at a power injection multiplier of five is | ysoLvasiLiTy ConpiTion RESULTS FORIEEE 118-BUs SysTEM

o = 528 =0.9011. ¢ < 1 indicates that there is no solution

at a power injection multiplier of five. To potentially actee
a power flow solution, the slack bus voltage must increase IEEE 118-Bus Voltage Margin o vs. Injection Multiplier
by at least a factor o% = 1.1098 (with corresponding 6 ‘ ‘ ‘

proportional increases in all PV bus voltages). The grey PV
curve in Fig. 3b has the voltages thus increased. Obsertve tha
increasing the voltages in this way allows for a power flow
solution on the power flow solvability boundary for a power
injection multiplier of five.

The power injection margim can also be calculated at a
power injection multiplier of five using (22).

2
_ Vo
n= V'nLin !
—slack |Inj Mult=5

~ (1.0600
~\11764

2 i i i
) =0.8119 (25) ° ! InjectionZMuItipIier ° !
n < 1 implies that no solution exists at a power injectior&ig. a
multiplier of five. The power injection margin also indicate
that no solution can exist for power injection multipliers
greater than0.8119 - 5 = 4.0595. This corresponds to the
“nose” point of the black (nominal) PV curve in Fig. 3b.

IEEE 118-bus \Voltage Margin

that satisfaction of (19) will result in power flow solvabyli
may not hold. Correspondingly, these results emphasize the
fact that (18) is asufficientcondition for power flow insolv-
B. IEEE 118-Bus System Results ability. Specifically, a power flow solution was not found for
Results from applying the sufficient condition to the IEEBnjection multipliers greater than 3.18, even thoulty.";
118-bus system are given in Table Il. The data are arrangeddriess than the specified slack bus voltage until an injactio
the same manner as in Table . The specified slack bus voltageltiplier of 3.27. A continuation power flow indicates tté
is Vo = 1.0350 per unit. high-voltage solution bifurcates at a power injection niplikr
The results can be categorized intro three regions: smail3.185, so it is likely that no solutions exist after thisirio
power injections where the sufficient condition indicateatt No solutions are found at injection multipliers larger tf8a@7
a solution is possible and a solution is indeed found usinghere the sufficient condition indicates that no solutiors a
a Newton-Raphson solver, larger power injections where thessible.
sufficient condition indicates that a solution is possihlé o We next use the IEEE 118-bus system example to demon-
solutions are found, and yet larger power injections whieee tstrate the voltage and power injection margins. In Fig. 4, th
sufficient condition indicates that no solutions are pdesiind voltage margine is plotted versus the injection multiplier.
no solutions are found. Similar to Fig. 2, the voltage margin decreases as power
The dimension of the nullspace of tAematrix in (14b) for injections increase. The voltage margin crosses one at an
the IEEE 118-bus system was four. Therefore, the expentatiajection multiplier of 3.2695, indicating that no power flow
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IEEE 118-Bus Continuation Trace: Bus 44

an upper boundon the distance to the solvability boundary.
The solution to the optimization problem (14) also enables

determination of the power injection margin Solving (22)

yieldsn = (1-0350)2 = 3.2695. Thus, the power injections can

0.5724
be increased uniformly by a factor of 3.2695 until the suéfinti

1.2¢

08] condition indicates that no power flow solutions are possibl
I o6l This is also an upper bound on the distance to the solvability
boundary: as indicated by the sufficient condition, the blac
0.4 PV curve associated with the nominal voltages in Fig. 5a has
: no solutions for power injection multipliers larger tha2@&95,
02 Nominal Slack Voltage PV Curve but also appears to have no solutions for some values of power

Low Slack Bus Voltage PV Curve

- - ~Upper Bound on Nose Point injection multipliers below 3.2695. (It is possible, butlikely,
0 ‘ : ‘ ‘ ‘ that a PV curve associated with a different solution maytexis
0 05 1 15 2 25 3 35 o S p .,
Injection Multiplier at injection multipliers between the “nose” of the PV curve

associated with the high-voltage solution at 3.1840 and the
value of 3.2695 from the sufficient condition.)
IEEE 118-Bus Continuation Trace: Bus 44 The voltage and power injection margins can also be used to

(a2) Nominal and Low Slack Bus Voltage PV Curves

1.2} ; investigate insolvable power injections. Assume that waldo
: like to consider operation at a power injection multipliguel
af ’ to four. Evaluating the optimization problem (14) at a power
: injection multiplier of four givesV(;;", = 1.1448. Note that
0.8f ' (22) implies that knowledge oV ;.7 at a power injection
3 : multiplier of one allows the direct calculatiol;;..;, at a
> 06r : power injection multiplier of four:
0.4+ !
— Nominal Slack Voltage PV Curve min _ min
ool High Slack Bus Volt:?ge PV Curve Vistack ‘Inj =4 = V7T Ytack |Inj Mult=1
' -~ ~Upper Bound on Nose Point =0.5724 - V4 = 1.1448 per unit  (26)
% 1 _ "2 o 3 4 The voltage margin at a power injection multiplier of four is
Injection Multiplier o = 10330 = 0.9041. ¢ < 1 indicates that there is no solution
(b) Nominal and High Slack Bus Voltage PV Curves at a power injection multiplier of four. To potentially aehie

a power flow solution, the slack bus voltage must increase
by at least a factor 05.11% = 1.1061 (with corresponding
proportional increases in all PV bus voltages). The grey PV
curve in Fig. 5b has the voltages thus increased. Since no
solution can exist for larger power injections. For largewer solutions are evident from the PV curve at an injection multi
injections, the voltage margin provides the minimum inegeapjier of four, it appears that this is not a large enough \ggta
in the slack bus voltage (with corresponding proportiongdcrease to obtain solvability. This is a result of the fdwtt
voltage increases at all PV buses) that is required in ordgé use a sufficient condition for power flow insolvability to
for a power flow solution to possibly exist. calculate the voltage margin; failing to satisfy the thefisieit

In Fig. 5, we examine the PV curves for the high-voltag&ondition for power flow insolvability does not ensure the
stable solution to the IEEE 118-bus system. The plots sh@xistence of a solution.
the voltage at the arbitrarily selected PQ bus 44 (plottmg t The power injection margim can also be calculated at a
voltage at a PQ bus is required since the voltages at slack giagver injection multiplier of four using (22).
PV buses are fixed). The PV curve using the nominal slack
and PV bus voltages is shown in black.

Fig. 5. IEEE 118-Bus System PV Curves

2
Evaluating the optimization problem (14) associated with n = #
the sufficient condition at an injection multiplier of oneves K;’Z;Zkllnj Multed
a Vi, = 0.5724. The voltage margin isr = 19359 — 103501\ 2
1.8082. Thus, no solution can exist if the slack bus voltage = (1.1448) = 0.8174 (27)

is reduced by more than a factor of 1.8082 (with all PV bus
voltages reduced proportionally). The grey PV curve in Beg. 7 < 1 implies that no solution exists at a power injection
is obtained when the voltages are thus reduced. Although maltiplier of four. The power injection multiplier also inzhtes
solutions exist for the grey PV curve at injection multipfie that no solution can exist for power injection multipliers
larger than one, there are also injection multipliers sligless greater than).8174 - 4 = 3.2695. The “nose” point of the
than one for which no solutions are found with continuationlack (nominal) PV curve in Fig. 3b is slightly lower than
techniques. This reinforces the fact that the voltage maggi this upper limit on power flow solvability.
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VI. SOLUTIONS WITH NON-ZERO DUALITY GAP =10 v,=10 L0 v
R,,*jX,,=0.0001 +j0.05 R, +jX,,=0.0001 +j0.05

P+j Qg

If the A matrix in (14b) has nullspace with dimension 194j025

greater than two, a non-zero duality gap exists between @
primal problem (13) and the dual problem (14) [25]. The
dual problem will give av’}’", that is less than th& "

slack ;
. ¢ . :a Fig. 6. Three-Bus System
of the primal problem. IfV7'" < Vy < V7»n | condition 9 y

slack slack?

(19) may hold without T[he eX-ISte.nce. (.)f a power flow solutior Slack Bus Reactive Power Injection vs. Controlled Voltages
Since directly calculating/)»"; is difficult due to the non- 60"
convexity of the power flow equations in (13), it is hard tc
determine whether a solution exists for cases where (1@sho
anddim (null (A)) > 2. The IEEE 118-bus system in Sectior
V-B provides an example of such a case.

As the controlled voltages are decreased, the solutions
the power flow equations come together in bifurcations. V
conjecture that the dimension of the nullspace of Ahmatrix 1%

depends on where these solutions bifurcate. The minimt

7

P+jQ,

50r

401

301

slack bus voltage of the primal optimization (13) is obtaine 207
when the last solutions bifurcate. If the minimum slack bt
voltage is obtained when two solutions bifurcate far fror 10¢
the point of bifurcation of any previously existing soluig

we conjecture thatank (null (A)) < 2. If more than two 0

solutions bifurcate at or near the same minimum slack b
voltage (e.g., the final two pairs of solutions bifurcatehwit
the same or similar values of'i"), we conjecture that
rank (null (A)) > 2.

The system diagram in Fig. 6 provides an example with two

pairs of solutions bifurcating at the same value of minimuower injection resulted in solutions wittim (null (A)) = 2.

slack bus voltage, resulting iim (null (A)) = 4. Bus one is Appropriate biases to obtain solutions withn (null (A)) =

a PV bus with voltage magnitude0 per unit and generation 2 have not yet been found for other systems (e.g., the IEEE

of 0.5 per unit, bus two is a slack bus with voltag®20°, 118-bus system used in Section V-B).

and bus three is a PQ bus with load) + j0.25 per unit. The sufficient condition (18) does not generally give a
Fig. 7 shows the slack bus reactive power injectignfor  solution to the power flow equations with slack bus voltage

all four existing solutions as the controlled voltages até®u equal to the specified value f; traditional techniques are

one and two are uniformly decreased. When the controlleguired to actually find a potentially existing solution.dn

voltage magnitudes reach 0.3582 per unit, both pairs gftempt to actually find power flow solutions, a modification

solutions bifurcate. Note that both pairs of solutions twéite to the objective function of (13) was attempted. Specificall
at different values of slack bus reactive power injectionafl the objective function (13a) was replaced with (28),

is, even though both solution pairs disappear at the same val
of controlled vo!tages, all four solutions do not come tbget min (‘/52lack B V02)2 28)
to the same point.

For this examplel/”;’", from optimization (14) finds the ~ This modified objective function minimizes the squared
correct minimum slack bus voltage of 0.3582 per unit. Thaifference in squared slack bus voltage magnitude (squared
bifurcation points for both solution pairs in Fig. 7 havesthivoltage magnitudes are necessary to easily form the dual
voltage. Thus, the optimization problem (14) has no biggoblem). The power flow equations have no solution when
toward choosing either of these two solutions. Indeedgsatic  the optimal objective value is greater than zero.
solutions must be connected in the convex dual formulation,Since the constraints (13b), (13c), (13d) are unchanged, th
any matrices in the dual feasible space that lie betweerethexistence proof given in Section Il applies, so this modifie
solutions, including matrices that have nullspaces wighldi- condition can be evaluated.
mension, are possible solutions to (14). Thus, the optitiza  In the same manner as the original sufficient condition, the
problem (14) is not expected to obtaitim (null (A)) < 2. dual of the optimization problem with the modified objective
We conjecture that similar explanations apply to otheresyst function (28) provides a lower bound on the primal objective
with dim (null (A)) > 2, such as the IEEE 118-bus systenfunction. If the dual objective value is greater than zero, n
used in Section V-B. solutions exist for the power flow equations. If, additidpal

Using optimization codes YALMIP [34] and SeDuMi [35],the A matrix has a nullspace with dimension less than or
we obtained a solution to (14) for the three-bus system wiggual to two, the solution to the power flow equations can be
dim (null (A)) = 4. For this system, adding a small bias in thebtained [25].
objective function to favor larger or smaller slack bus te@c  Unfortunately, the optimization problem with this modified

Fig. 7. Solutions for Three-Bus System



12 University of Wisconsin-Madison Department of Electrieadd Computer Engineering. Technical Report ECE-12-01.

objective function generally failed to providA matrices Finally, we intend to further investigate our conjecturad e
that had nullspaces with appropriate dimension on all IEGHanation of solutions with non-zero duality gap. Do mué#ip
power flow test systems [31]. Also, the modified formulatiopairs of solutions bifurcate near the minimum slack busagust

often had numeric problems. This modified objective funttiofor other systems? What system topologies yield the pdigibi
(28) was thus not practically useful. Future work includesf havingdim (null (A)) > 2?

investigating other modifications that allow for determigihe

solution to the power flow equations in addition to providing ACKNOWLEDGMENT

a sufficient condition of solution non-existence. The authors acknowledge support of this work by U.S.

Department of Energy under award #DE-SC0002319, as well
VIl. CONCLUSION AND FUTURE WORK as by the National Science Foundation under IUCRC award
§0968833. Daniel Molzahn acknowledges the support of the

We have presented a sufficient condition for identifying . . . .
b fy ational Science Foundation Graduate Research Fellowship

insolvability of the power flow equations. This sufficien
condition requires the evaluation of an optimization peoil
We have proven that this optimization problem is feasible REFERENCES

for lossless power systems and argued that practical powgl H. SaadatPower System Analysis McGraw-Hill, 2005.

systems should also yield a feasible optimization problent2] J. Glover, M. Sarma, and T. Overby@ower System Analysis and

. . Design Thompson Learning, 2008.
In order to quantify the degree of solvability, we deve|0peq3] J. Balllieul and C. Byrnes, “Geometric Critical Point Alysis of

controlled voltage and power injection margins from the Lossless Power System ModeldEEE Transactions on Circuits and

sufficient condition that provide upper bounds on the digtan __ Systemsvol. 29, no. 11, pp. 724-737, Nov 1982.
] J. Thorp and S. Nagavi, “Load flow fractals,” Proceedings of the 28th

to th fl Ivability bound Finall lied
0 the quer OW_S_O vability boun ar)/' inally, we app e IEEE Conference on Decision and Control, 198ec 1989, pp. 1822
the sufficient conditions, voltage margin, and power inggct -1827 vol.2.

margin to the IEEE 14-bus and 118-bus example system@] W. Zangwill and C. GarciaPathways to Solutions, Fixed Points, and

e . Equilibria.  Prentice-Hall, 1981.
The IEEE 118-bus system exemplified the fact that this is J. Jarjis and F. D. Galiana, “Analysis and Characteiorabf Security

sufficientcondition for power flow insolvability; it is possible Regions in Power Systems, Part I: Load Flow Feasibility Gt in
to find cases that appear to have no solution even though the Power Systems,” McGill University, Final Report, U.S. Depeent of

. " . P - Energy, Division of Electric Energy Systems, DOE/ET/29108-Pt.1,
sufficient condition for insolvability is not satisfied. Hewer, Marc%ylgso. o=y

the majority of power systems we investigated yielded tesul [7] M. llic, “Network Theoretic Conditions for Existence driniqueness

similar to the IEEE 14-bus system where a power flow solution o©f Steady State Solutions to Electric Power Circuits,Pioceedings of
f d with a Newt Raph | ith to th int 1992 IEEE International Symposium on Circuits and Systd®&AS)
was tound with a Newton-rapnson algoritnm up to the poin vol. 6, May 1992, pp. 28212828 vol.6.

identified by the sufficient condition as insolvable. [8] M. Ebrahimpour and J. Dorsey, “A Test for the ExistenceSofutions in

There are several open questions associated with this work !II-Conditioned Power Systems,” ifFEEE Proceedings of Southeastcon
hat intend t We will investigate how the volta 91, vol. 1, Apr 1991, pp. 444448
that we Intend to pursue. will investg w v 9?9] S. Grijalva, “Individual Branch and Path Necessary Ctods for

and power injection margins change with non-uniform power Saddle-Node Bifurcation Voltage CollapselEEE Transactions on
injection scaling. For instance, what happens if the power Power Systemssol. 27, no. 1, pp. 12-19, Feb. 2012.

L . 10] I. Hiskens and R. Davy, “Exploring the Power Flow Satuti Space
injections are scaled at a subset of the buses, if the pO\ke# Boundary,” IEEE Transactions on Power Systenvsl. 16, no. 3, pp.

injections are scaled with non-constant power factor, or if 389-395, Aug 2001.

stac Conditioned Power SystemsEEE Transactions on Power Apparatus

in (13) to the active and reactive power flow constraints {13b 1y systemsvol. PAS-100, no. 4, pp. 1736-1743, April 1981.
and (13c) (as determined by the Lagrange multiplleesd~y, [12] T. Overbye, “A Power Flow Measure for Unsolvable Casd&EE
respectively) provides insight for small changes, but nucae Transactions on Power Systemsl. 9, no. 3, pp. 1359-1365, Aug 1994.

. indicates that th itiviti vat [13] ——, “Computation of a Practical Method to Restore Povidow
experience inaicates tha ese sensiuvities are oniyj 4 Solvability,” IEEE Transactions on Power Systemsl. 10, no. 1, pp.

very small perturbations. The impact of large power inpatti 280-287, Feb 1995.
changes requires further investigation. [14] I. Dobson and L. Lu, “New Methods for Computing a Clos&stddle

. . Node Bifurcation and Worst Case Load Power Margin for Vadtag
Another area open to further study regards computational is Collapse,”|IEEE Transactions on Power Systerusl. 8, no. 3, pp. 905—

sues. Although the methods proposed in this paper are fiitab 913, Aug 1993.

for off-line pIanning studies with contingencies Compma| [15] F. Alvarado, I. Dobson, and Y. Hu, “Computation of Cles8ifurcations
' in Power SystemsEEE Transactions on Power Systemasl. 9, no. 2,

cha[lenges for §emidefinite program solver; may preclude th o, 918 978 May 1994.
on-line calculation of voltage stability margins in verydea- [16] F. Echavarren, E. Lobato, and L. Rouco, “A Power Flowvabllity

scale systems. Specifically the positive semidefinite tcaims Identification and Calculation Algorithm Electric Power Systems Re-
! search vol. 76, no. 4, pp. 242—250, 2006.

in the dual optimization problem (14b), whose size scales P?] S. Granville, J. Mello, and A. Melo, “Application of latior Point
S

(2n)2 wheren is the number of buses in the system, contro Methods to Power Flow UnsolvabilityJEEE Transactions on Power
the solution time of (14). For locations with known voltag? Systemsvol. 11, no. 2, pp. 1096-1103, May 1996.

bility i I | lized t deld:bal 18] V. Donde, V._ Lopez, B Lesieutre, A._ Pmar, C. Yang, andMeza,
stability issues, a small, more loca 'Zef Sys em_ mo e_ “Severe Multiple Contingency Screening in Electric Powest8ms,”
used to apply the proposed methods in an on-line environment IEEE Transactions on Power Systemsl. 23, no. 2, pp. 406-417, May
Future work will explore the structure and sparsity of the  2008. ) . -

fl ti X ickl | th idefi .%9] Z. Feng, V. Ajjarapu, and D. Maratukulam, “A Practicaiminum Load

power tiow equations 10 more quickly solve the semidetini Shedding Strategy to Mitigate Voltage Collaps&sEE Transactions on

optimization problem for larger systems. Power Systems/ol. 13, no. 4, pp. 1285-1290, Nov 1998.



University of Wisconsin-Madison Department of Electrieald Computer Engineering. Technical Report ECE-12-01. 13

[20] J. Zhao, Y. Wang, and P. Ju, “Evaluation of Methods forasl&ing

the Insolvability of Power Flow,” inThird International Conference on
Electric Utility Deregulation and Restructuring and PowEgchnologies,

2008 (DRPT 2008)April 2008, pp. 920-925.

[21] Reactive Reserve Working Group under the auspices ahriieal
Studies Subcommittee of the Western Electricity Coordaga€Council,
“Guide to WECC/NERC Planning Standards 1.D: Voltage Suppod
Reactive Power,” March 30, 2006.

[22] C. Taylor, Power System Voltage Stability Electric Power Research

Institute Series, McGraw-Hill, 1994.

[23] T. Van Cutsem and C. Vournad/oltage Stability of Electric Power

Systems Springer-Verlag, New York, 2008.

[24] X. Bai, H. Wei, K. Fujisawa, and Y. Wang, “Semidefinitedgramming
for Optimal Power Flow ProblemsJhternational Journal of Electrical
Power & Energy Systemsol. 30, no. 6-7, pp. 383-392, 2008.

[25] J. Lavaei and S. Low, “Zero Duality Gap in Optimal Powelow
Problem,” IEEE Transactions on Power Systenwl. 27, no. 1, pp.
92-107, Feb. 2012.

[26] B. C. Lesieutre, D. K. Molzahn, A. R. Borden, and C. L. Dado,
“Examining the Limits of the Application of Semidefinite Rramming

to Power Flow Problems,” iMd9th Annual Allerton Conference on

Communication, Control, and Computing, 208ept. 28-30 2011.
[27] B. Lesieutre and I. Hiskens, “Convexity of the Set of &ibke Injections

and Revenue Adequacy in FTR Marketi2EE Transactions on Power

Systemsvol. 20, no. 4, pp. 1790 — 1798, November 2005.

[28] L. Chua, C. Desoer, and E. Kuh,inear and Nonlinear Circuits

McGraw-Hill, New York, 1987.

S.-H. Li and H.-D. Chiang, “Impact of Generator ReaetiReserve on
Structure-Induced Bifurcation,” ilEEE Power Energy Society General
Meeting, 2009. PES '09July 2009, pp. 1-5.

I. Dobson and L. Lu, “Voltage Collapse Precipitated bg tmmediate
Change in Stability When Generator Reactive Power Limits &n-
countered,"IEEE Transactions on Circuits and Systems I: Fundamental
Theory and Applicationsvol. 39, no. 9, pp. 762-766, September 1992.
Power Systems Test Case Archive. University of Wadiing
Department of Electrical Engineering. [Online]. Availabl http:
IlIww.ee.washington.edu/research/pstca/

M. Hirsch and S. SmaleDifferential Equations, Dynamical Systems,
and Linear Algebra Academic Press New York, 1974.

R. Horn and C. JohnsoMatrix Analysis Cambridge University Press,
1985.

J. Lofberg, “YALMIP: A Toolbox for Modeling and Optimation

in MATLAB,” in IEEE International Symposium on Computer Aided
Control Systems Design, 2004IEEE, 2004, pp. 284-289.

J. Sturm, “Using SeDuMi 1.02, A MATLAB Toolbox for Optimpation
Over Symmetric ConesOptimization Methods and Softwareol. 11,
no. 1, pp. 625-653, 1999.

V. Ajjarapu and C. Christy, “The Continuation Power WtoA Tool for
Steady State \oltage Stability AnalysidEEE Transactions on Power
Systemsvol. 7, no. 1, pp. 416-423, Feb 1992.



