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Abstract

The Theory of General Relativity (GR) is very well-tested on local Solar System

scales, but tests on the largest cosmological scales have been limited by the volume

and precision of existing galaxy surveys. This situation is expected to change in the

coming decade with the advent of several new spectroscopic redshift surveys like desi

and Euclid. In this project, we test the nature of gravity on these scales by using

cosmological simulations to construct mock galaxy catalogs that mimic surveys as closely

as possible. In particular, we focus on ΛCDM and three variants of the f(R) model of

modified gravity: F6, F5, F4, each of which enhance the strength of gravity relative

to GR with increasing intensity. Because of the inherent nonlinearity of the f(R)

model, we use large-scale numerical simulations that self-consistently evolve dark matter

particles according to these modified equations of motion. In computing the two-point

3D real-space correlation function of the resulting dark matter halos, we find that due

to differences in the intensity of the enhancement of gravity, dark matter halos in F4

are significantly less clustered than GR, F6 is slightly less clustered, and F5 is slightly

more clustered. We transform each of these halo catalogues using the Halo Occupation

Distribution model, which determines the likelihood of a halo having a certain number

of galaxies based upon its mass. Finally, we trim these galaxy catalogues even further by

applying survey realism, ensuring that the galaxy distribution in the two cosmologies is

identical to the observer.
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Chapter 1

Introduction

The Theory of General Relativity (GR), published by theoretical physicist Albert

Einstein in 1915, is the currently accepted theory of gravitation in modern physics: it

generalizes special relativity and describes gravity as a unified geometric property of

both space and time, or “spacetime” (Einstein 1916). The significance of this theory, and

the resulting Einstein field equations (EFEs), cannot be understated. GR shows that

black holes are not merely mathematical conjecture, but can be formed by a sufficiently

compact mass which deforms spacetime (Montgomery et al. 2009). It famously predicts

the existence of gravitational waves, or violent ripples in spacetime produced by massive

accelerating objects (Einstein 1918), which were first detected by the Advanced Laser

Interferometer Gravitational-Wave Observatory in 2015 (Abbott et al. 2016). Most

significantly, GR provides the underlying theory behind current cosmological models of

the Universe that solve the EFEs (Einstein 1917; Friedmann 1922, 1924; Bucher & Ni

2015). Clearly, GR has been the source of astonishing scientific advances and has thus

transformed the landscape of astronomy and physics over the past century. Further
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CHAPTER 1. INTRODUCTION

ramifications of GR are discussed in the following section.

1.1 Tests of GR in the Past, Present, and Future

Over the years, GR has passed a remarkable number of precision tests, starting with

basic tests of the fundamental pillars of relativity and gravitation (Will 2014). These

include the Michelson-Morley experiment, which famously showed that the speed of light

is a universal constant, thus providing the basis of relativistic theory and debunking

the popular belief in an “aether” or medium through which light travels (Michelson &

Morley 1887). In addition, following Einstein’s publication of the Theory of GR, the

Eötvös experiment confirmed the Einstein equivalence principle that spacetime is curved

(v. Eötvös et al. 1922).

GR has also consistently held up to various tests of post-Newtonian gravity, or

solutions of the EFEs for the metric tensor, expressed as corrections to Newtonian gravity

in the weak-field. This includes an explanation to the long-standing question of the

precessing perihelion in Mercury’s orbit, a mystery that had remained unsolved for more

than half a century: while various ad hoc theories were initially proposed, such as a new

planet Vulcan located near the Sun (Le Verrier 1859), Einstein later showed that GR, in

place of Newtonian gravity, successfully accounts for the discrepancy (Einstein 1916). A

prediction of GR was also famously validated by the classic Eddington experiment: as

stated by John Archibald Wheeler, “Spacetime tells matter how to move; matter tells

spacetime how to curve”. Thus, light passing by the Sun will be deflected, a prediction

of GR confirmed by astronomer Arthur Eddington’s observation of a total solar eclipse

in the days following World War I (Dyson et al. 1920). Tests such as these—of GR as

2



CHAPTER 1. INTRODUCTION

well as its predictions—have solidified it as the current theory of gravitation.

1.1.1 Large-Scale Limitations

The abundance of these precision tests means that GR has remained extremely

well-tested on local Solar System scales. Although these tests have been by definition

confined to the weak-field regime, there have also been plentiful tests of GR in the

strong-field regime, such as the recent detection of the gravitational redshift in the orbit

of a star near the massive black hole candidate Sgr A* (Gravity Collaboration et al.

2018).

However, the same precision measures cannot be said of cosmological tests.

These tests do exist: for instance, the clustering of galaxies has successfully survived

comparisons between observational data from the Sloan Digital Sky Survey and results

from the Millenium Simulation, an N-body dark matter particle simulation which

assumes GR (Springel et al. 2005; Nurmi et al. 2013). However, tests of GR on these

extreme large scales have historically been limited by the volume and resolution of

existing galaxy surveys. Limitations on precision mean that a confident conclusion

cannot be drawn in the all-too-common event that the difference between theoretical

prediction and observed data is smaller than the experimental spread in error, which can

occur due to a combination of statistical and systematic limitations. Fortunately, this is

soon expected to change as experimental precision increases and statistical error shrinks

with the advent of several new spectroscopic redshifts surveys, such as the ground-based

Dark Energy Spectroscopic Instrument (desi), slated to start taking data in summer

2020 (DESI Collaboration et al. 2016), and the space-based Euclid, slated to launch in

3



CHAPTER 1. INTRODUCTION

June 2022 (Amendola et al. 2018).

Until that happens, however, GR remains essentially untested on these largest of

cosmological scales. The interest in doing so is driven by the nature of the standard

cosmological model ΛCDM, which is further discussed in detail in Section 1.2.1. Briefly,

this model requires the existence of a dark matter particle and some cosmological

constant Λ, or dark energy. The nature of both dark matter and dark energy remain

a mystery, thus driving cosmologists to ask whether gravity could, in fact, be different

from GR. After all, the structure that is observed in our Universe cannot automatically

inform us of its underlying cause without further investigation. All of this motivates the

crucial research questions behind this thesis: how can GR be tested in this regime? Until

observational data progresses, how can we take advantage of theoretical research methods

to answer this question? Observationally, what impact does this have on cosmology?

Are alternate theories of gravity viable? What is the true nature of dark energy?

1.2 The Standard Cosmological Model

Before investigating GR, we must understand the standard cosmological model it

encompasses. Shortly after the genesis of GR, the standard model of modern cosmology

was birthed by obtaining the exact solutions to the EFEs (Ishak 2019). These equations

have thousands of exact solutions, but only a small number of them have any real

physical meaning (Stephani et al. 2003). For instance, Delgaty & Lake (1998) found that

only 16 out of 127 candidate solutions passed basic tests of physical acceptability, such

as isotropy of pressure. Furthermore, of that small population with physical relevance,

only a select few have applications to cosmology, including the current standard model.
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CHAPTER 1. INTRODUCTION

This model combines the idea of expanding universes (Friedman 1922; Lemâıtre &

Eddington 1931) with the observational expectation that spacetime is globally isotropic

and homogenous (Robertson 1935; Walker 1937), known as the cosmological principle

(Barrow 1989). Doing so results in the Friedmann-Lemâıtre-Robertson-Walker (FLRW)

metric, which describes the geometry of space.

Using the EFEs in combination with this metric, cosmologists are able to obtain

an expression for the Hubble parameter of the Universe at any given redshift in terms

of the Hubble constant and the density parameters for matter, radiation, curvature,

and dark energy. Although there are slight discrepancies in the measurement of the

Hubble constant (Jackson 2007; Freedman & Madore 2010), astronomers have been

able to precisely measure the curvature of the Universe as well as the values of each of

the cosmological density parameters, primarily through data obtained from the Planck

observations (Planck Collaboration et al. 2016). With these measurements, it becomes

possible to describe the cosmic mass-energy budget and thus map the entire evolution

history and large-scale structure of the Universe exactly.

1.2.1 ΛCDM

This evolution history is described by the ΛCDM model, where Λ is the cosmological

constant, or dark energy, responsible for the accelerated expansion of the Universe and

CDM stands for Cold Dark Matter, a particle responsible for large-scale gravitational

effects which are unaccounted for by ordinary matter. As a result of previous precision

observations, as mentioned in Section 1.2, astronomers know the Universe to be nearly

spatially flat. Additionally, due to observations of galactic redshifts, there is strong
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CHAPTER 1. INTRODUCTION

empirical support for describing the evolution of the Universe using the “Hot” Big Bang

Model, which generally states that the Universe expanded from an initially highly dense

state to its current, very low-density state (Ryden 2003).

ΛCDM is thus a variant of the “Hot” Big Bang Model with a unique history of

cosmological parameter domination. This history begins with an early Universe which

was radiation-dominated and full of extremely hot, ionized baryonic gaseous matter.

Eventually, around redshift z ∼ 3400, a transition occurred as the Universe became

matter-dominated rather than radiation-dominated. Additionally, as the Universe

expanded, this hot, ionized baryonic gaseous matter eventually cooled so that electrons

and ions were able to combine and create neutral hydrogen.

In this period, known as the epoch of recombination at redshift z ∼ 1100, photons

no longer scattered off of free electrons, as they had previously (Peebles 1968; Zeldovich

et al. 1968; Seager et al. 1999). Because light was able to freely stream throughout

the Universe for the first time, a “dense fog” was finally lifted, effectively making the

Universe transparent in a process known as photon decoupling. The relic radiation from

these first photons is known as the Cosmic Microwave Background. Today, due to the

previous opacity of the universe, astronomers are unable to observe anything past the

surface of last scattering, which marks the point from which a typical CMB photon last

scattered off of an electron.

After photon decoupling and prior to the formation of the first stars and galaxies,

the Universe was plunged into an extended epoch appropriately named the “Dark Ages”

until redshift z ∼ 30 (Miralda-Escudé 2003). Eventually, as structure began to form

via gravitational collapse, the first stars caused the once-neutral cosmic gas to return
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CHAPTER 1. INTRODUCTION

to its previously ionized state. This epoch of reionization, which occurred within the

redshift range of 6 < z < 15, also marked a shift in which baryons became more visible

for the next millions of years (Zaroubi 2012). Once these early galaxies had formed, the

Universe began its modern dark-energy-dominated era at redshift z ∼ 1, a shift that is

responsible for the current accelerated expansion of the Universe (Frieman et al. 2008).

This most recent stage in the formation history of the Universe is where the major

differences between GR and alternate theories of gravity are most apparent.

1.3 Outstanding Questions in ΛCDM

Due to overwhelming empirical evidence in their favor, dark matter and dark energy

have been shown to be necessary components of any viable cosmological model (Trimble

1987). However, both still pose problems for cosmology in the frameworks of GR and

ΛCDM, as it remains unknown what exactly these components are in detail (Debono &

Smoot 2016).

1.3.1 Dark Matter

Dark matter is a mysterious, invisible particle which makes up the overwhelming

majority of matter in the Universe. Although it was theorized years beforehand (Zwicky

1937), the existence of dark matter was not confirmed until the 1970s, after flat rotation

curves of galaxies were observed (Ostriker et al. 1974; Rubin et al. 1980). These flat

rotation curves did not match theoretical expectations of decreasing velocity, and implied

that galactic mass increases linearly with radius (de Swart et al. 2017). However, this
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resulted in a mismatch between the observed and theoretical mass of these galaxies,

a discrepancy which ultimately suggested the existence of some sort “missing mass”

around the galaxies (Bertone & Hooper 2018). Following Zwicky (1933)’s first usage of

the term “dunkle Materie”, this missing mass later became known as dark matter, a

type of particle which cannot be observed directly, but that does interact gravitationally

with photons and baryons.

In the ΛCDM model, this particle is theorized to be a CDM particle: a cold,

collisionless dark matter particle with essentially no velocity dispersion. This particle

creates a bottom-up model of hierarchical structure formation, wherein low-mass galaxies

form before high-mass galaxies, thus growing in size through accretion and merging. This

bottom-up model very well matches key measurements of the evolution of large-scale

structure in our Universe, as described in Section 1.2.1. However, there is one major

tension concerning ΛCDM: despite these aforementioned successes, as well as extensive

experimental efforts on the parts of numerous particle physicists, a CDM particle has yet

to be detected (Bertone et al. 2005).

1.3.2 Dark Energy

Dark energy, or the cosmological constant Λ, poses yet another conundrum in ΛCDM.

From observations of supernova measurements, it was famously found that the Universe

is actually undergoing accelerated expansion (Riess et al. 1998; Perlmutter et al.

1999). This discovery suggested the additional existence of a dark energy component

that dominates the mass-energy budget of the Universe. Additionally, a multitude of

cosmological observations beyond supernovae also support that the FLRW expansion

8



CHAPTER 1. INTRODUCTION

rate has a late-time acceleration (Blake et al. 2011a,b, 2012).

Despite these agreements, there have been huge discrepancies in attempting to

measure the value of the cosmological constant. Namely, astronomical observations

suggest a cosmological constant which is many orders of magnitude smaller than the

value obtained from quantum field calculation (Weinberg 1989). Additionally, it is not

yet understood why the energy density of the cosmological constant is the same exact

order of magnitude as the density of matter: had the energy density been any larger,

structure in the Universe would not have been able to form (Ishak 2007). Indeed, it is

not even understood why dark energy dominates during the present-day rather than

earlier in the past, as that also would have inhibited structure formation.

1.4 Alternative Theories of Gravity

These lingering questions regarding ΛCDM, as well as the observational limits on testing

GR cosmologically, as overviewed in Section 1.1.1, have led to various proposals of

alternative theories of gravity, including scalar-tensor gravity, quadratic gravity, and

more (Clifton et al. 2012; Berti et al. 2015). In this thesis, we consider an alternate

theory of modified gravity, the f(R) gravity model, where R is the Ricci scalar, an

invariant quantity which characterizes the curvature of a spacetime manifold. This is not

to be confused with Modified Newtonian Dynamics (MOND), which does not include

any dark matter, and instead modifies Newtonian gravitation to account for the missing

mass in galactic rotation curves (Milgrom 1983). We provide a short description of f(R)

gravity below, but a full overview is located in Chapter 2.

9



CHAPTER 1. INTRODUCTION

1.4.1 A Short Introduction to f(R) Gravity

Modified theories of gravity were originally motivated by the desire to do away with the

cosmological constant Λ. Thus, in modified gravity, dark matter still exists and is often

assumed to be a CDM particle. However, most models that are still currently viable

still require an explicit cosmological constant to drive accelerated expansion. Despite

this, f(R) gravity does aim to largely replace the cosmological constant Λ: rather than

relying on a dark energy-like component to the Universe, f(R) gravity proposes that the

accelerated expansion of the Universe is primarily driven by deviations from GR. As a

result, the investigation of modified gravity is motivated by the desire to test deviations

from GR due to differences in the underlying strength of gravity.

However, because GR is so well-tested on local, Solar System scales, viable models

of modified gravity must incorporate a “screening” mechanism. In the case of the f(R)

gravity model, this is achieved through the “chameleon” mechanism, which suppresses

this enhancement of gravity in high-density regions like the Solar System (Khoury &

Weltman 2004; Mota & Shaw 2007; Bose et al. 2017). The law of gravitation therefore

only deviates from GR in low-density regions, which are typically only found on large

cosmological scales. Thus, voids are made to be even more low-density than they already

are, leading to overall accelerated expansion of the Universe. At the same time, due

to the high density and large radius of curvature R on local scales, the chameleon

mechanism suppresses this enhancement of gravity in such regions. Consequently, f(R)

gravity effectively reduces to the GR limit in places like the Solar System, thereby

matching current and past observations of the Solar System.

In this thesis, we focus on the most-widely researched form of modified gravity,

10



CHAPTER 1. INTRODUCTION

known as the Hu-Sawicki f(R) gravity model (Hu & Sawicki 2007). In this model of f(R)

gravity, a CDM particle is assumed, as well as a chameleon mechanism that suppresses

the enhancement of gravity in highly-dense regions. This mechanism makes f(R) gravity

an interesting and viable alternative to GR, motivating our core question in this thesis:

how can we distinguish f(R) gravity from GR in our Universe? What is the “smoking

gun” that we can look for in observations?

1.4.2 Determining the “Smoking Gun” for Alternative Theories

Because of the inherent nonlinearity in the f(R) model, we rely on large-scale numerical

simulations that self-consistently evolve dark matter particles according to the f(R)

modified equations of motion. We focus on four N-body cosmological simulations in

particular: one of GR, as well as three variants of f(R) gravity: F4, F5, and F6,

each of which enhance the strength of gravity relative to GR with increasing intensity.

However, in reality, astronomers do not observe the dark matter halos that form in

N-body simulations; they observe galaxies. We are concerned with using proxies that an

observational cosmologist might use, and therefore aim to address the following question:

if we make the same selections that are made in a redshift survey, will there be any

differences that still persist at the end of the process that might be representative of

differences in gravity?

To accomplish this, we take halo catalogues produced from each simulation set and

transform them into galaxy catalogues that mimic true galaxy surveys. We do this by

populating the halo catalogues with galaxies using the Halo Occupation Distribution

(HOD) model (Kravtsov et al. 2004). After creating a pipeline to automate this process,

11
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we apply realism to the galaxy catalogues to create mock surveys. For this step, we

take the 3D coordinates of the galaxy catalogue and project them onto the sky in

RA and DEC coordinates. We then apply the same redshift selection, sky mask, and

incompleteness that real galaxy surveys contain; in particular, we mimic the SDSS-iii

LOWZ survey, which focuses on nearby galaxies only, at redshifts z / 0.4 (Manera

et al. 2014). With these mock surveys in hand, we are finally equipped to identify any

differences between the two models, as these residual differences are representative of the

underlying differences in gravity.

The remainder of this thesis is organized as follows: in Chapter 2, we review the

theory behind GR and the Hu-Sawicki f(R) gravity model in further detail. We also

discuss the N-body simulations used for each of these halo catalogues, such as their

size, volume, and resolution limit. Additionally, we present and discuss the Halo Mass

Function and Correlation Function for GR and f(R). In Chapter 3, we review the HOD

model used to assign positions and velocities to galaxies in each of the halo catalogues.

We present and discuss the Galaxy Correlation Function and Matter Power Spectrum

obtained from the HOD galaxies. In Chapter 4, we outline the procedure for adding

realism to the galaxy catalogues. We compare the mock galaxy surveys between f(R)

and GR, examine redshift space distortions, and present final results. Finally, in Chapter

5, we present our conclusions and discuss future steps for further researching this topic.

12



Chapter 2

The f (R) Modified Gravity Model

2.1 Modified Gravity Models

Modified gravity models are popular alternatives to Einstein’s Theory of General

Relativity. They include models ranging from Scalar-Tensor, Einstein-Aether, and

Bimetric theories, as well as f(R) and other general higher-order theories (Clifton

et al. 2012). A commonality of these models is their presumption that the accelerated

expansion of the Universe is caused by a large-scale deviation from GR, rather than a

cosmological constant Λ or some unknown form of matter, such as dark energy (Joyce

et al. 2016). In most modified gravity theories, this modification is due to what is

commonly called a “fifth force”, which is mediated by a new scalar field. Because of the

existence of this fifth force, these models describe a Universe which is only made up of

ordinary and dark matter, often presumed to be a cold dark matter particle.

Although the fifth force is a large-scale deviation from GR, its effect is still very

13



CHAPTER 2. MODIFIED GRAVITY

much felt on smaller scales comparable to the typical separation between galaxies. As

mentioned in Section 1.4.1, in order to reconcile these changes with observations of the

Solar System, modified gravity theories that wish to remain viable often contain an

inherent “chameleon” or “screening” mechanism, which acts to suppress the modification

of gravity, or in this case, the fifth force, on these scales. In the f(R) gravity model we

consider, this suppression of the fifth force is achieved by hiding scalar degrees of freedom

in high density regions (Navarro & Acoleyen 2007), the details of which are discussed in

Section 2.1.2. In the following subsection, however, we first begin with an overview of

GR, and how it compares to the f(R) gravity model.

2.1.1 A Brief Comparison to GR

The Einstein Field Equations (EFEs) of GR are described by Equation 2.1 below, where

Gµν is the Einstein tensor representing the curvature of spacetime, Λ is the cosmological

constant, gµν is the metric tensor, G is the gravitational constant, and Tµν is the energy

momentum tensor (Janssen et al. 2007).

Gµν + Λgµν = 8πGTµν (2.1)

The FLRW metric is given by Equation 2.2 below, where s is the line element, a(t)

is the scale factor, k is the curvature of spacetime, and r is the radial coordinate.

ds2 = −dt2 + a2(t)

(
dr2

1− kr2
+ r2

(
dθ2 + sin2 θdφ2

))
(2.2)

Solving the EFEs of Equation 2.1 for this metric, Equation 2.2, as well as the energy

14
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momentum tensor Tµν results in the dynamical Friedmann equations, the first of which

can be written in terms of the cosmological parameters below:

H2(a) = H2
0

[
Ω0
ma
−3 + Ω0

ra
−4 + Ω0

ka
−2 + Ω0

dea
−3(1+w)

]
(2.3)

Here, w is the dark energy equation of state variable, and the cosmological

parameters are as follows: H(a) is the Hubble parameter, H0 is the Hubble constant,

and Ω0
m, Ω0

r, Ω0
k, and Ω0

de are the density parameters for matter, radiation, curvature,

and dark energy, respectively. In contrast, for an FLRW curved background metric in a

f(R) gravity model, the dynamical Friedmann equations can be written as Equation 2.4

below (Ishak 2019):

H2 =
1

3F

[
8πGρ̄− 1

2
(f −RF )− 3HḞ

]
− κ

a2
(2.4a)

Ḣ = − 1

2F
(8πG(ρ̄+ P̄ ) + F̈ −HḞ ) +

κ

a2
(2.4b)

Here, the f(R) gravity model generalizes GR by using the general function f(R) in

place of the Ricci scalar R used in GR. As such, F ≡ fR, where fR refers to the scalar

field, and the Ricci scalar R can be written as R = 6(2H2 + Ḣ + κ/a2). Additionally,

κ represents the curvature of spatial sections, and overdots such as Ḣ symbolize a

derivative with respect to cosmic time t. In addition to the dynamical Friedmann

equations, this modification to gravity ultimately generalizes the EFEs of Equation

2.1, as well as the dynamical Friedmann equations of Equation 2.3. In the following

subsection, we discuss these alterations in further detail.
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2.1.2 The Hu-Sawicki f(R) Gravity Model

In this thesis, we consider the Hu-Sawicki gravity model, which, like other f(R) gravity

models, is based on deviations from GR. In GR, the EFEs contain derivatives that are,

at maximum, of the second order (Lovelock 1971). This means that GR can easily be

modified by simply allowing for higher order derivatives in the field equations. The

f(R) gravity models do just that, changing the EFEs from second-order to fourth-order

derivatives. This is accomplished by generalizing the standard Einstein-Hilbert action of

GR, which is described by Equation 2.5 below:

S =
1

16πG

∫ √
−g(R− 2Λ)d4x+

∫
Lm (gµν , ψ) d4x (2.5)

Here, G is Newton’s gravitational constant, g the determinant of the metric tensor

gµν , and Lm the Lagrangian density of the matter fields, ψ. This equation follows

from the action integral of classical mechanics. In the Hu-Sawicki f(R) Gravity Model

however, Equation 2.5 is generalized by replacing the Ricci scalar R with an algebraic

function f(R). This modification is described by Equation 2.6 below:

S =
1

16πG

∫
d4x
√
|g|[R + f(R)] +

∫
d4xLm (2.6)

In taking the derivative of the Lagrangian Lm with respect to the metric, one can

obtain the modified Poisson equations, which, in effect, describe the dynamical changes

made to f(R) gravity. These modified Poisson equations are described by Equation 2.7

below:
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CHAPTER 2. MODIFIED GRAVITY

∇2Φ =
16πG

3
δρm −

1

6
δR (fR) (2.7a)

∇2fR =
1

3c2
[δR (fR)− 8πGδρm] (2.7b)

Here, the scalar field fR ≡ df(R)/dR has been introduced in order to relate the

gravitational potential Φ to the density and curvature at a certain position. These

quantities are defined in Equation 2.8 below, where the bar refers to the cosmic mean of

a variable:

δρm ≡ ρm − ρ̄m (2.8a)

δR ≡ R− R̄ (2.8b)

Finally, we can define f(R) itself, using the Hu-Sawicki gravity model (Hu & Sawicki

2007). Although this model is by no means the only choice, it has desirable properties,

and is described by Equation 2.9 below:

f(R) = −m2 c1 (−R/m2)
n

c2 (−R/m2)n + 1
(2.9)

The mass scale m can be defined in the following equation, where Ωmh
2 is the

physical matter density, inferred from the Cosmic Microwave Background using GR, and

ρ̄0 = ρ̄(ln a = 0) is the current average density:

m2 ≡ κ2ρ̄0

3
= (8315 Mpc)−2

(
Ωmh

2

0.13

)
(2.10)
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The remaining variables, n, c1, and c2 are dimensionless model parameters. The

specific form of f(R) expressed in Equation 2.9 has been chosen so that it abides by the

following limits:

lim
R→∞

f(R) = const. (2.11a)

lim
R→0

f(R) = 0 (2.11b)

It is absolutely necessary that f(R) satisfy these limits, as it ensures that a number

of essential observational properties are met. First, f(R) must achieve accelerated

expansion without the use of an explicit cosmological constant. Furthermore, it must

do so with an expansion history that is close to that of ΛCDM. Lastly, it must preserve

the ΛCDM as a limiting case, in order to pass the numerous Solar-System tests of GR.

This is achieved through the aforementioned screening mechanism, which can be seen in

action in Equation 2.12:

lim
m2/R→0

f(R) ≈ −c1

c2

m2 +
c1

c2
2

m2

(
m2

R

)n
(2.12)

In this equation, f(R) has been expanded for the limiting case of high curvature

R, equivalently small m2/R. For cases of high density or spatial curvature, like the

Solar System, it becomes clear that the second term will vanish and f(R) will become

a constant, thus satisfying the first requirement of Equation 2.11. Therefore, although

there is no explicit cosmological constant chosen in the f(R) gravity model, in the

limiting case of high curvature, the model will still reduce to GR, thus satisfying the

many high-precision Solar System tests of GR.
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Finally, we are able to relate the scalar field fR to the function f(R) using Equation

2.13, as outlined below:

fR = −nc1

c2
2

(−R/m2)
(n+1)

[1 + (−R/m2)n]
2 ≈ −n

c1

c2
2

(
m2

−R

)(n+1)

(2.13)

In the above equation, R has been approximated in the following manner:

− R̄ ≈ 8πGρ̄m − 2f̄(R) = 3m2

[
a−3 +

2

3

c1

c2

]
(2.14)

In order for f(R) to preserve the exact cosmological background expansion history

of ΛCDM, this models sets c1/c2 = 6ΩΛ/Ωm. Here, Ωm is the current fractional density

of non-relativistic matter and ΩΛ is the current fractional density of the cosmological

constant for ΛCDM. With this, it is ensured that the Hu-Sawicki model of f(R) gravity

reproduces the ΛCDM background expansion history. Additionally, in this thesis, we

assume that n = 1, which is the choice adopted most commonly. Finally, in the present

epoch, the Hu-Sawicki f(R) parameter becomes fR0, which is defined in Equation 2.15

below:

fR0 ≡ fR(ln a = 0)� 1 (2.15a)

fR0 ≈ −n
c1

c2
2

(
12

Ωm

− 9

)−n−1

(2.15b)

The absolute value of this parameter |fR0| defines the efficiency of the chameleon

mechanism in the f(R) gravity model.
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2.2 The Simulations

The chameleon mechanism is critical for maintaining the viability of this theory of

modified gravity. In fact, linear theory would overpredict the effect of modified gravity

on small scales, precisely because it would not capture the chameleon screening. As a

result of this, the f(R) model is inherently nonlinear, and depending on the density of

the region of the Universe in question, gravity will behave very differently. This variation

in the strength of gravity causes strong nonlinearities in the modified field equations,

making analytical studies of the f(R) modified gravity model extremely challenging.

As a result, for this research we rely on large N-body cosmological simulations which

self-consistently evolve dark matter particles according to the modified equations of

motion.

In this thesis, we use the Extended LEnsing PHysics using ANalaytic ray Tracing

(elephant) simulations (Cautun et al. 2018). These simulations were originally

performed using the ecosmog code (Li et al. 2012), which itself is based on the

simulation code ramses (Teyssier 2002). Within the simulations, the dark matter

halos are identified using the publicly-available rockstar halo finder code (Behroozi

et al. 2012). The exact parameters and technical specifications of these simulations are

included in Table 2.1. We use F4, F5, and F6 to refer to a Hu-Sawicki f(R) parameter

|fR0| of 10−4, 10−5, and 10−6 respectively. Additionally, every dark matter halo in each

simulation contains the parameters listed in Table 2.2, such as virial mass, velocity, root

mean square velocity, virial radius, and position.

In creating the mock galaxy survey, we apply realism cuts that mimic parameters

from the lowz sample of the 2015 Baryon Oscillation Spectroscopic Survey (boss)
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Parameter Physical Meaning Value

Ωm present fractional matter density 0.281

ΩΛ 1− Ωm 0.719

h H0/
(
100kms−1Mpc−1

)
0.697

ns primordial power spectral index 0.971

σ8 r.m.s. linear density fluctuation 0.820

n HS f(R) parameter 1.0

|fR0| HS f(R) parameter 10−6, 10−5, 10−4

Lbox simulation box size 1024 Mpc/h

Np simulation particle number 10243

mp simulation particle mass 7.78× 1010 M�/h

Ndc domain grid cell number 10243

Nref refinement criterion 8, 8, 8, 8, 8, 8, 8, 8 . . .

Table 2.1:: The various parameters and technical specifications of the f(R) and GR large

cosmological N-body dark matter simulations used in this thesis.

21



CHAPTER 2. MODIFIED GRAVITY

Parameter Physical Meaning Units

M200 the virial mass M�

Vmax the maximum velocity Mpc/h/s

VRMS the root mean square velocity Mpc/h/s

R200 the virial radius Mpc/h

Rs the scale radius Mpc/h

cNFW the NFW profile concentration parameter –

X x-coordinate Mpc/h

Y y-coordinate Mpc/h

Z z-coordinate Mpc/h

VX x-component of the velocity Mpc/h/s

VY y-component of the velocity Mpc/h/s

VZ z-component of the velocity Mpc/h/s

Table 2.2:: The various parameters defined for each halo in the f(R) and GR large

cosmological N-body dark matter simulations used in this thesis.
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Data Release, which is part of the Sloan Digital Sky Survey III (sdss-iii) (Reid et al.

2016). The lowz sample has a redshift range of 0.15 < z < 0.43, the median of which

is z̄ = 0.34. As a result, in this thesis we focus on two snapshots from the elephant

simulations, one at z = 0 for F4, F5, and GR, and one at z = 0.34 for F5, F6, and

GR. When computing the halo mass function (HMF) and two-point 3D real-space halo

correlation function, we include an analysis of all datasets at both redshifts. This is

mostly to demonstrate how strong the maximum difference between the f(R) gravity

model and GR can be. However, because F4 deviates so strongly from GR and is in

contention with a number of observational constraints (Lombriser 2014), we focus solely

on F5, F6, and GR at z = 0.34 when using the Halo Occupation Distribution (HOD)

model to populate dark matter halos with galaxies in Chapter 3.

2.2.1 The Halo Mass Function

This section discusses the HMF for F4, F5, and GR at z = 0, depicted in Figure 2.1,

as well as the HMF for F5, F6, and GR at z = 0.34, depicted in Figure 2.2. The HMF

plots the number density of halos at a certain mass, and in both of these figures the

grey, shaded region denotes a “resolution limit”, wherein the number of halos at low

masses begin to significantly drop due to finite mass resolution in the simulation. In

other words, if the N-body simulations included enough low-mass halos, the HMF would

monotonically increase for the entirety of the plot, rather than displaying irregular

behavior in the beginning. Additionally, although there are no error bars on this figure,

the errors are so small that they can be ignored.

In Figures 2.1 and 2.2, we calculate the HMF for 408,022 of the most massive halos
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Figure 2.1: Top Panel : The halo mass function (HMF) at z = 0 for dark matter halos

in F4 (blue), F5 (orange), and GR (black). The grey shaded region denotes a “resolution

limit”, where the number of low-mass halos begins to significantly drop due to finite mass

resolution in the simulation. Bottom panel : The ratios of the HMF of F4 and F5 to GR.
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in each simulation, ensuring a target number density of 3.8× 10−4 halos/(Mpc/h)3. This

target was chosen in order to closely mimic the number density of galaxies in the lowz

catalogue of boss, which hovered around 10−4 galaxies/(Mpc/h)3 (Reid et al. 2016). We

purposefully do not randomly select halos: while that is a theoretically valid comparison,

it would not be the most meaningful one to make. This is due to the fact that since the

halo population is dominated by low-mass halos, a random selection of 408,022 objects

preferentially selects more low mass halos. In a true galaxy survey, on the other hand,

which compiles a galaxy sample of fixed number density, we are instead more likely to

observe the brightest galaxies, and correspondingly most massive dark matter halos.

Thus, we choose to bring our comparison more in line with what might be done in a

galaxy survey by selecting a population at fixed abundance. In other words, we calculate

the HMF for a population of halos which has first been sorted in descending order of

halo mass. Doing so leads to Figure 2.1, where we can see a clear distinction between

F4, F5, and GR. Due to the nature of their screening mechanisms, the HMF of F4 is

greater than that of F5, which is in turn greater than that of GR. In examining F4, it is

important to keep in mind that the screening mechanism is inefficient on all scales. This

means that the enhancement of gravity is not suppressed, so that dark matter halos will

merge and grow in size. As a result, dark matter halos in both over-dense (surrounded by

many other halos) and under-dense (located in a void-like area) regions of the Universe

are more massive than their counterparts in GR. Because this, there are less low-mass

halos than there would be in GR, and the HMF for F4 becomes shifted to the right in

comparison.

On the other hand, examining F5 leads to a slightly different interpretation,

as its screening mechanism is more efficient than that of F4. This means that it is
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actually inefficient only in under-dense regions of the Universe, and is roughly equal

to GR in over-dense regions of the Universe. However, it is not equivalent to GR in

these over-densities, meaning that the enhancement of gravity is still not completely

suppressed. Thus, dark matter halos in over-dense regions are more massive in F5 than

their counterparts in GR, but are still of a lower mass than those in F4, because the

screening mechanism is not as weak. This relationship is visible in Figure 2.1, as the

HMF for F5 is shifted to the right of that for GR, but to the left of the HMF for F4. In

Figure 2.2, we are able to examine the HMF for F5, F6, and GR at z = 0.34. Exactly as

in Figure 2.1, which depicts a snapshot at z = 0, the HMF for F5 is shifted to the right

of the HMF for GR. It is encouraging that these comparisons remain consistent between

the two snapshots, as our consequent analysis should apply to present-day as well.

Now, in examining the HMF for F6, it is important to note that the screening

mechanism is at its most efficient of all three considered f(R) models. As a result, halos

in over-dense regions of the Universe in F6 are nearly exactly equal to their counterparts

in GR. However, this also means that these halos are less massive than their counterparts

in F5, which still undergo some enhancement of gravity in over-dense regions. On the

other hand, halos in under-dense regions of the Universe in F6 continue to experience

a stronger, more enhanced degree of Newtonian Gravity. Because of this, these halos

become more massive than their counterparts in GR. This relationship is visible in the

bottom panel of Figure 2.2, where a slight increase in the HMF of F6 compared to GR

can be seen. At about 1013 M�, however, the HMF for both GR and F6 appear to

become roughly identical, signifying that this cutoff is likely the point at which high-mass

halos in F6 become dominated by halos in over-dense regions, rather than under-dense

regions. Furthermore, it is clear that the HMF for F6 consistently remains below that of
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Figure 2.2: Top Panel : The halo mass function (HMF) at z = 0.34 for dark matter

halos in F5 (orange), F6 (green), and GR (black). The grey shaded region denotes a

“resolution limit”, where the number of low-mass halos begins to significantly drop due

to finite mass resolution in the simulation. Bottom panel : The ratios of the HMF of F5

and F6 to GR.
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F5, as expected, due to the comparative efficiency of the screening mechanism.

2.2.2 The 3D Halo Correlation Function

To measure the large-scale clustering of halos in these simulations, we use the spatial

two-point correlation function ξ(r). This function describes the clustering properties of

galaxies in three dimensions as a function of pair separation and is defined in Equation

2.16 below:

N(r)dV = N0[1 + ξ(r)]dV (2.16)

Here, N(r)dV represents the number of galaxies in the volume element dV at

distance r from any galaxy, N0 represents the average number density of galaxies in

space, and ξ(r) represents the excess number of galaxies at a distance r away from each

galaxy. In this thesis, we use the publicly available Python code corrfunc (Sinha &

Garrison 2020) to carry out both the two-point 2D projected correlation function wp(p)

and the two-point 3D real-space correlation function ξ(r). In corrfunc, ξ(r) is defined

using the “natural estimator”, or Landy-Szalay formula, as described by Equation 2.17

below (Landy & Szalay 1993):

ξ(r) =
DD

RR
− 1 (2.17)

Here, DD refers to the total number of “galaxy-galaxy” pairs. However, in order

to compare to the galaxy data, the correlation function naturally requires a term which

concerns random data. Thus, RR refers to the total number of pairs given a completely
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Figure 2.3: Top Panel : The two-point 3D real-space correlation function r2ξ(r) at z = 0,

calculated at fixed abundance for dark matter halos in F4 (blue), F5 (orange), and GR

(black). 408,022 halos selected in order of descending mass in a (1024 Mpc/h)3 volume

box make a number density of 3.8 × 10−4 halos/(Mpc/h)3. Bottom panel : The ratios of

r2ξ(r) of F4 and F5 to GR.

29



CHAPTER 2. MODIFIED GRAVITY

random dataset with the same number density as that of the galaxies. This term can

be computed analytically using Equation 2.18 below, where RRi denotes the expected

number of random pairs in bin i, N the total number of points, Vi the volume of bin i, ρ̄

the average density of the entire simulation box, and L the box length:

RRi = NViρ̄ = NVi
N − 1

L3
(2.18)

The two-point 3D real-space correlation function is depicted in Figure 2.3 for F4,

F5, and GR at z = 0. In order to emphasize the differences in this clustering statistic

on all scales, r2ξ(r) is plotted, rather than ξ(r). Like the HMF, the correlation function

is plotted for 408,022 halos at fixed abundance, achieving a target number density

of 3.8 × 10−4 halos/(Mpc/h)3. As discussed in Section 2.2.1, because the screening

mechanism for F4 is inefficient on all scales, the HMF is shifted to the right of that

for GR. This inefficient screening mechanism also means that gravity is enhanced in

over-dense regions of the Universe, leading to an increased number of dark matter halo

mergers.

The direct consequence of such mergers is depicted in Figure 2.4: where there are a

cluster of low-mass dark matter halos in GR, their counterparts in F4 will merge together

into a few isolated high-mass halos. As a result, an over-dense region of the Universe

in GR can become an under-dense region in F4, causing an overall shift towards less

clustering of dark matter halos. This effect is exacerbated by the enhancement of gravity

in under-dense regions of the Universe, where halos in F4 become larger than their

counterparts in GR. This shift in mass is significant: because the correlation function is

calculated using fixed abundance, more under-dense halos are sampled in F4, therefore
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Figure 2.4: Left : A cluster of low-mass dark matter halos in GR, located in an over-

dense region of the Universe. Right : Due to the inefficient screening mechanism in F4,

over-dense regions will undergo an enhancement of gravity. Thus, these halos will merge

together into just one high-mass halo, located in what is now an under-dense region of

the Universe.
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causing the dramatic drop in clustering displayed by F4 in Figure 2.3.

On the other hand, F5 appears to have slightly stronger clustering than GR. This

is because, as discussed in Section 2.2.1, the screening mechanism for F5 is such that

gravity is roughly equal to GR in over-dense regions, but still not exact. This slight

enhancement of Newtonian Gravity means that for F5, there are a higher number of

high-mass dark matter halos located in over-dense regions of the Universe. Thus, just

as the HMF is shifted to the right of that for GR, fixed abundance means that the

correlation function for F5 will be shifted slightly upwards of that for GR.

In Figure 2.5, the two-point 3D real-space correlation function r2ξ(r) is depicted for

F5, F6, and GR at z = 0.34. 408,022 halos are plotted at fixed abundance for a target

number density of 3.8× 10−4 halos/(Mpc/h)3. As in Figure 2.5, we see that F5 displays

comparatively more clustering than GR. However, F6 counter-intuitively appears less

clustered than GR, albeit less so than F4, even though it is the closest to GR out of

all three f(R) models. In fact, this subversion is a direct result of the efficiency of the

screening mechanism found in F6. As discussed in Section 2.2.1, F6 has the most efficient

screening mechanism out of all the considered f(R) models. As a result, its gravity is

exactly equal to that of GR in over-dense regions of the Universe. However, because

there is still an enhancement of gravity in under-dense regions, these halos become larger

than their counterparts in GR. Thus, with fixed abundance we find that F6 samples

more halos in under-dense regions of the Universe than GR. As such, F6 desplays slightly

less clustering than GR, but still more so than F4, as displayed in Figure 2.5. It is

encouraging that these results are all consistent with each other, and that their physical

interpretation is consistent with our expectation of the relative behavior of F4, F5, F6,

and GR.
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Figure 2.5: Top Panel : The two-point 3D real-space correlation function r2ξ(r) at

z = 0.34, calculated at fixed abundance for dark matter halos in F5 (orange), F6 (green),

and GR (black). 408,022 halos selected in order of descending mass in a (1024 Mpc/h)3

volume box make a number density of 3.8 × 10−4 halos/(Mpc/h)3. Bottom panel : The

ratios of r2ξ(r) of F5 and F6 to GR.
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Chapter 3

The Halo Occupation Distribution

Model

3.1 Populating Dark Matter Halos with Galaxies

In this chapter, we move away from simply examining the f(R) gravity model at the halo

level, and finally begin populating the dark matter halos with galaxies. From this point

on, we no longer consider F4, and instead focus only on F5, F6, and GR at z = 0.34.

To construct mock galaxy catalogues from these dark matter only simulations, we

implement the HOD model. In order to discuss the HOD model, it is first important to

become familiar with the structure of a dark matter halo, depicted in Figure 3.1, as well

as the corresponding terminology. We assume that every dark matter potentially halo

encompasses a central galaxy which is located at its center. In addition to this central

galaxy, there may be smaller gravitationally-bound halos located within the radius of

this larger dark matter “host” halo. These virialized clumps of dark matter, or subhalos,
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Figure 3.1: A dark matter “host” halo, which encompasses a central galaxy at its center,

as well as many smaller subhalos. Each gravitationally-bound clump of dark matter, or

subhalo, surrounds a satellite galaxy which is situated at its center.
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thus orbit within the gravitational potential of the “host” halo. If a subhalo exists, it

then encompasses its own satellite galaxy, situated at its center.

Thus, the HOD model is a probability distribution which describes the likelihood for

a halo of mass M to host a number Ncen and Nsat of central and satellite galaxies. The

result is an HOD model which can be described by just five basic parameters (Zheng

et al. 2005), as shown in Equation 3.1 below:

〈Ncen (M)〉 =
1

2

[
1 + erf

(
logM − logMmin

σlogM

)]
(3.1a)

〈Nsat(M)〉 = 〈Ncen〉
(
M −M0

M1

)α
(3.1b)

Here, 〈Ncen (M)〉 and 〈Nsat (M)〉 refer to the mean occupation distributions for

central and satellite galaxies, respectively, for a dark matter halo of mass M . The five

basic HOD parameters are thus Mmin, σlogM , M0, M1, and α, each of which operate

according to the functionality described in Table 3.1.

3.2 Achieving the Target Number Density

In order to create a suitable mock galaxy survey, we must ensure that the galaxy

population achieves the same number density profile as the lowz sample from boss,

part of sdss-iii, as depicted in Figure 3.2. To do this, we must first upscale the number

of mock galaxies by setting a target number density of ∼ 8.8× 10−4 galaxies/(Mpc/h)3.

Doing so will assure that the final desired number density is still achieved, even after

the appropriate survey realism cuts, such as sky completeness and redshift selection, are
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HOD Parameter Physical Meaning

Mmin the minimum mass of halos that can host a central galaxy

σlogM the characteristic width of this transition

M0 the truncation mass of halos that can host a satellite galaxy

M1 a normalization factor

α the power-law slope

Table 3.1:: The five basic HOD parameters which describe the mean occupation function

for central and satellite galaxies, respectively 〈Ncen (M)〉 and 〈Nsat (M)〉, as well as their

physical meanings.

Figure 3.2: Number density as a function of redshift z for the lowz sample (green) from

boss, part of sdss-iii, as well as three other samples. Figure reproduced from Reid et al.

(2016).

37



CHAPTER 3. THE HOD MODEL

applied in the final stages of the thesis. In addition to achieving this target number

density, we must ensure that both the number density and projected clustering of F5,

F6, and GR match as closely as possible to each other. The latter process is discussed in

Section 3.4.

3.2.1 Finding the Optimal Mmin

In order to attain this target number density, we must determine the optimal values

for the five basic HOD parameters outlined in Table 3.1. For ease of computation, and

because we will later vary all five parameters, at this stage we choose to vary just one

parameter, Mmin. Accordingly, we assign fixed values to the four parameters σlogM ,

α, fM0, and fM1. The latter two terms fM0, and fM1 are individual dimensionless

parameters that can be defined as the ratios in Equation 3.2 below:

fM0 =
M0

Mmin

(3.2a)

fM1 =
M1

Mmin

(3.2b)

The fixed values of these four HOD parameters, as previously determined by Manera

et al. (2013), are listed in Table 3.2. Because of how we have defined fM0, and fM1 in

Equation 3.2, by simply varying Mmin, we are able to effectively test different values of

M0 and M1 as well. In order to ascertain the optimal value of Mmin, we create a possible

parameter space with 5000 possible points ranging from 1011 M� to 1015 M�. For each

of these possible solutions, we determine the number of central and satellite galaxies
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HOD Parameter Fixed Value

σ 0.596

α 1.0127

fM0 0.97

fM1 8.13

Table 3.2:: The remaining four HOD parameters, fixed at the values determined by Man-

era et al. (2014) for F5, F6, and GR.

Simulation log(Mmin) ngal (10−4 galaxies/(Mpc/h)3)

F5 12.67 8.702

F6 12.60 8.708

GR 12.57 8.707

Table 3.3:: The optimal Mmin HOD parameter for F5, F6, and GR which most closely

matches the target number density ntarget = 8.8 × 10−4 galaxies/(Mpc/h)3. Fixing the

other HOD parameters at the values determined by Manera et al. (2014) gives the above

number densities.
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which reside in each dark matter halo. Finally, we use interpolation to select the optimal

value of Mmin that will achieve the desired target number density. Carrying out this

optimization procedure for F5, F6, and GR allows us to obtain the corresponding values

for Mmin, the log of which appears in Table 3.3.

This table also includes the resulting galaxy number densities of each simulation,

which, once we determined these optimal Mmin values, we were easily able to compute

using Equation 3.1. As desired, the results are extremely close to the desired target

number density of 8.8 × 10−4 galaxies/(Mpc/h)3, and are even closer to each other, as

displayed by Figure 3.3. Here, we have plotted the number of central, satellite, and total

galaxies found in each dark matter halo as a function of its mass. The 16th and 84th

percentiles of each of these three curves are also plotted for F5, F6, and GR.

As expected, the curve for central galaxies begins at very low values of approximately

zero, and eventually rises to achieve the maximum value of one central galaxy per

halo. Similarly, the curve for the number of central galaxies begins at very low values

of approximately zero, and progressively rises. Note that no halos which host satellite

galaxies are smaller in mass than Mmin, as it is impossible for a dark matter halo to host

a satellite galaxy if it cannot even host a central galaxy. This cutoff point can be more

clearly seen in Figure 3.4. Examining these plots thus makes it abundantly clear that

the number of galaxies are extremely close for each of these three simulations, as they

all fall within the 16th and 84th percentiles of each curve. Consequently, our goal to

match the target number density across all three mock galaxy surveys is achieved at this

intermediary step.
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Figure 3.3: The number of galaxies as a function of the mass of each halo in F5 (orange),

F6 (green), and GR (black). The furthermost left curve depicts all galaxies, the middle

curve satellite galaxies, and the furthermost right curve central galaxies. The 16th and

84th percentiles of the number of galaxies are shaded in for each curve.
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Figure 3.4: The number of galaxies as a function of the mass of each halo in F5 (orange),

F6 (green), and GR (black). The furthermost left curve depicts all galaxies, the middle

curve satellite galaxies, and the furthermost right curve central galaxies. The optimal

value of Mmin which achieves the target number density is plotted as a vertical dotted line

for each simulation, and the 16th and 84th percentiles are shaded around each curve.
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3.3 Assigning the Spatial Distribution of HOD

Satellite Galaxies

Now that the optimal values of Mmin are determined for F5, F6, and GR, and the dark

matter halos are populated with the correct number of galaxies to obtain the desired

target number density, we must assign positions to each of the mock galaxies. This will

enable us to compute the two-point 2D projected correlation function wp(r), which we

later hold as fixed for GR, and match with F5 and F6 by varying their HOD parameters

in Section 3.4.

3.3.1 The Navarro–Frenk–White Profile

Assigning positions to central galaxies is extremely straightforward, as they will simply

be located at the center of their host halo. Assigning positions to each mock satellite

galaxy created is a little more complicated, however. In order to accomplish this, we use

the Navarro-Frenk-White (NFW) profile, which describes the equilibrium density profile

of cold dark matter halos in N-body cosmological simulations (Navarro et al. 1997). This

density profile can be described as a function of radius r by Equation 3.3 below:

ρ(r) =
ρ0

r
Rs

(
1 + r

Rs

)2 (3.3)

Here, ρ(r) refers to the mean interior matter density of a cold dark matter halo and

Rs refers to the scale radius of the halo. Similarly, ρ0 is a halo-specific density parameter

related to the characteristic dimensionless density δc and the critical density of the
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universe ρc(z), which is a function of redshift z, as described by Equation 3.4 below:

ρ0 = δc ρc (3.4a)

ρc =
3H2(z)

8πG
(3.4b)

Here, H(z) refers to the Hubble parameter and G to the Newtonian constant of

gravitation. Plotting the NFW profile using Equation 3.3 produces Figure 3.5, which

depicts the characteristic matter density profile ρ of a dark matter halo as a function of q.

Here, q refers to the fraction of radius r from the halo’s “virial” radius R200. Because the

density of an equilibrium halo is proportional to the density of the universe at the time

of its formation, the virial radius R200 of a halo is defined as the radius which achieves an

interior mean matter density of 200ρc (Kravtsov 2013). As expected, the density profile

depicts a gradually-changing logarithmic slope which tends towards r−3 for r � Rs.

3.3.2 Creating a Mock Galaxy Catalogue

In order to assign positions to all of the mock galaxies and create a cohesive catalogue,

we assume that the NFW profile perfectly describes their location in terms of the radius

r, which spans from the center of each host halo to the center of a mock satellite galaxy.

However, we must first rewrite Equation 3.4 in terms of the known parameters listed in

Table 2.2 in the Appendix. To accomplish this, we first determine the total mass M of a

dark matter halo enclosed within some radius r using Equation 3.5 below:
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Figure 3.5: The Navarro-Frenk-White profile, which descibes the equilibrium density

profile of cold dark matter halos in N-body cosmological simulations. Here it is plotted as

a function of a fraction q of the virial radius R200. This figure depicts the expected density

profile for the halo in GR with the largest mass M200 = 1.479× 1015 M� at z = 0.34, as

well as a concentration parameter cNFW = 4.753114 and scale radius Rs = 0.501447.
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M =

∫
V

ρdV =

∫ Rmax

0

4πr2ρ(r)dr (3.5a)

M = 4πρ0R
3
s

[
ln

(
Rs +Rmax

Rs

)
− Rmax

Rs +Rmax

]
(3.5b)

Here, dV is the differential volume element and Rmax is the maximum point of

integration along the radial axis, referring to the radius r at which the satellite galaxy

in question is located. Consequently, ρ(r) is identical to the density profile described by

Equation 3.3, and refers to the mean enclosed matter density of the halo within some

radius r. We are thus able to use this equation to solve for the density parameter ρ0,

using the fact that the virial radius R200 can be related to the scale radius Rs by some

“concentration parameter” cNFW, as described by Equation 3.6 below:

R200 = cNFWRs (3.6)

The concentration parameter cNFW, like the scale radius Rs, is unique to each

individual dark matter halo. Using this definition allows us to solve for the halo-specific

density parameter ρ0 in Equation 3.5 by first substituting R200 for Rmax, M200 for M ,

and cNFW for R200/Rs. This results in the following equation, described by Equation 3.7

below:

ρ0 =
M200

4πRs
3
(

log(1 + cNFW)− cNFW

1+cNFW

) (3.7)

With this expression for the density parameter ρ0, we can now compute the density

profile ρ(r) in Equation 3.3 in terms of the virial mass M200, the scale radius Rs, and
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the concentration parameter cNFW, all of which are well-defined constants for each halo

in all the simulations, as displayed by Table 2.2 in the Appendix. Furthermore, because

the virial radius refers to the radius at which the mean enclosed matter density is 200 ρc,

the virial mass M200 can be defined in terms of the critical density of the Universe ρc and

the virial radius R200, as described by Equation 3.8 below:

M = ρ V (3.8a)

V =
4πR3

3
(3.8b)

M200 = 200ρc(z)
4πR200

3

3
(3.8c)

With this new definition of the density parameter ρ0 described by Equation 3.7

and the above definition of M200 in Equation 3.8, we can solve for the characteristic

dimensionless density δc in Equation 3.4. The resulting expression is defined by Equation

3.9 below:

δc =
200

3

c3
NFW(

log(1 + cNFW)− cNFW

1+cNFW

) (3.9)

3.3.3 Assigning Final Positions and Velocities to Mock Galaxies

With the halo-specific density parameter ρ0 defined in Equation 3.7, we are finally able

to use the NFW profile in Equation 3.3 to assign positions to all of the mock galaxies in

each simulation. To do so, we generate an array of possible distances from the center
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of the halo, ranging from 10−5R200 to 10R200. We then generate a random mass that

falls within M200 of each halo, and use interpolation to obtain the corresponding radial

position along the NFW profile. Finally, we are generate random angular coordinates

(θ, φ) for each galaxy within every halo, and use the newly obtained radial position to

convert to Cartesian coordinates (X, Y, Z). In doing so, we shift the positions of the

satellite galaxies so that they are offset by the location of their host halo. Because this

offset may push a mock satellite galaxy beyond the confines of the simulation box length,

we then correct these stray positions by taking advantage of the periodic nature of the

box to “wrap” the satellite galaxy back to the other end of the simulation.

With this, the process of assigning positions to mock galaxies is complete. Now,

we can assign velocities to the mock galaxies. Just as central galaxies share the same

positions as their host halo, as described in Section 3.3.1 and depicted in Figure 3.1,

determining the velocities of central galaxies is similarly straightforward. To do this, we

simply assign mock central galaxies the same velocity as their host halo.

In parallel, just as assigning the positions of satellite galaxies is more complicated

than assigning the positions of central galaxies, assigning the velocities of satellite

galaxies is slightly more complex than doing the same for central galaxies. To accomplish

this, we drew 210 random samples from a normal Gaussian distribution that were

centered around the velocity of the host halo, and had a standard deviation equivalent

to the root mean square velocity VRMS of the host halo. Therefore, for each component

VX , VY , and VZ of the total velocity of each satellite galaxy, the standard deviation

is VRMS/
√

3. Finally, from these 210 randomly sampled velocities, we then randomly

selected exactly enough velocities to assign to the number of satellite galaxies in each

host halo, which are determined according to the optimal HOD parameters calculated in
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Section 3.4.3.

3.3.4 Intermediary Results

Using this method to assign positions and velocities to mock galaxies in F5, F6, and GR

at redshift z = 0.34 produces the plot in Figure 3.6. Here, the dotted line depicts the

expected NFW profile ρ(r) for the most massive halo in each simulation, while the solid

line in each panel displays the actual produced density profile. This graph makes clear

that the resulting data does indeed follow the curve of the characteristic density profile

ρ(r) outlined by Equation 3.3, as originally intended.

Although these mock galaxy positions only achieve the intermediary step of

matching the target number density of 8.8 × 10−4 galaxies/(Mpc/h)3 as closely as

possible, we have chosen to compute the projected clustering for comparison: Figure 3.7

depicts the two-point 2D projected correlation function r2wp(r) for F5, F6, and GR at

redshift z = 0.34. In Section 3.4, we take into account the projected clustering as well as

number density, finalize the mock galaxy positions, and examine the resulting correlation

function.

3.4 Matching the Projected Clustering

Thus far, the positions represented in Figure 3.6 have only satisfied one criterion of the

final mock galaxy catalogue, in that they achieve the target number density 8.8 × 10−4

galaxies/(Mpc/h)3. This section discusses the second goal of also achieving an equivalent

projected correlation function across F5, F6, and GR. To do this, we hold the HOD
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Figure 3.6: The Navarro-Frenk-White profile, plotted on the dotted line as a function

of a fraction q of the virial radius R200. The assigned positions of each galaxy in this

selected dark matter halo, the most massive halo in the simulation, is also plotted for F5

(orange), F6 (green), and GR (black).
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Figure 3.7: The pre-minimization two-point 2D projected correlation function r2wp(r)

at z = 0.34, calculated at fixed abundance for central and satellite galaxies in F5 (orange),

F6 (green), and GR (black). F5: 934,362 galaxies in a (1024 Mpc/h)3 volume box make a

number density of 8.702×10−4 galaxies/(Mpc/h)3. F6: 935,002 galaxies make a number

density of 8.708×10−4 galaxies/(Mpc/h)3. GR: 934,918 galaxies make a number density

of 8.707×10−4 galaxies/(Mpc/h)3. Bottom panel : The ratio of r2wp(r) of F5 and F6 to

GR
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parameters represented in Tables 3.2 and 3.3 as fixed, for GR only. We then vary all

five HOD parameters for F5 and F6, until they are as close as possible to both the

number density and the two-point 2D projected correlation function of the mock galaxies

populated in GR.

3.4.1 Defining the Error

In order to determine exactly how close the F5 and F6 are to GR, we use a form of the

chi-square statistic χc, described by Equation 3.10 below:

χ2
c =

∑ (Oi − Ei)2

Ei
(3.10)

Here, c refers to the degrees of freedom, Oi to the observed value of the ith point in

an experiment, and Ei to the expected value of the ith point. In this case, the observed

value Oi represents the mock galaxies in either F5 or F6, and the expected value Ei

represents the mock galaxies in GR. Thus, χ2
c sums over the difference between the

observed and expected values for each point in the data. In this thesis, we adapt this

basic model into Equation 3.11 below:

χ2
c = δwp(r) + δngal (3.11)

Here, chi-square χ2
c can be defined as the sum of the error in clustering δwp(r) and

the error in number density δngal. The former can be computed as the square root of the

original chi-square χ2
c definition, as described by Equation 3.12.
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δwp(r) =

√√√√Nbins∑
i=1

(wp, f(R)(ri)− wp,GR(ri))2

Nbins

(3.12)

Here, wp, f(R)(ri) refers to the ith value of the two-point 2D projected correlation

function for the f(R) model in question, and is akin to the observed value Oi in Equation

3.10. Similarly, wp,GR(ri) refers to the ith value of the two-point 2D projected correlation

function for GR, and is akin to the expected value Ei. This is identical to the χ2
c

definition found in Equation 3.10, except the square of the difference is divided by the

number of bins Nbins, rather than the expected value Ei. Similarly, the error in number

density δngal is defined in Equation 3.13 below:

δngal = 8[(nf(R) − nGR)× 104]2 (3.13)

Here, ngal refers to the number density of galaxies in the f(R) model, and nGR to

the number density of galaxies in GR, which we are holding as fixed. We multiply the

difference in number density nf(R) − nGR by 104 because all number densities are of order

10−4, and we would like to bring them to unity in order to weight the error in number

density δngal in Equation 3.11 accordingly. Thus, we choose 8 as the weighting factor to

make the error in number density δngal of the same magnitude as the error in clustering

δwp(r), determined in Equation 3.12.

3.4.2 Minimizing the Error

At this stage, we have the five HOD parameters Mmin, σlogM , M0, M1, and α, which

are described in Table 3.1, fixed for GR. Now, we must optimize these parameters for
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F5 and F6. To accomplish this, we minimize the chi-square error χ2
c between the f(R)

gravity models and GR using the definition outlined in Equations 3.11 through 3.13.

This process, which we will refer to as “minimization” throughout this thesis, is carried

out using the optimize.minimize Python package, which is part of the SciPy library

(Virtanen et al. 2020).

In this minimization process, we begin with an initial guess of these five HOD

parameters for F5 and F6. For this initial guess, we use the values that we determined

most closely match the target number density 8.8 × 10−4 galaxies/(Mpc/h)3, as listed

in Tables 3.2 and 3.3. As described in Section 3.1, we then populate the dark matter

halos in each f(R) gravity model by plugging these initial values into the HOD model.

This allows us obtain the number of central and satellite galaxies in each halo, as well

as compute the number density of galaxies. Simultaneously, we use the NFW profile to

assign real positions to each satellite galaxy within the host halo, as described in Section

3.3.3. Because central galaxies share the same location as their host halo, we can then

easily compute the two-point 2D projected correlation function wp(r) of all the mock

galaxies. Finally, we use these values to determine the chi-square χ2
c between the f(R)

gravity model and GR. The number density and two-point 2D projected correlation

function wp(r) for galaxies in GR is fixed, since the HOD parameters have remained

fixed throughout this process.

This is the first loop involved in the minimization process. For numerous iterations

thereafter, scipy.optimize.minimize repeats this process by testing new HOD

parameters until the chi-square error χ2
c reaches as low a value as possible. At this

point, the minimization process is considered complete, and the last set of guesses for

the HOD parameters becomes the optimal values we use for producing the final mock
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galaxy catalogues in this thesis. In running scipy.optimize.minimize, we also set the

tolerance for termination to 10−3 and utilized the Nelder-Mead algorithm (Nelder &

Mead 1965; Wright 1996). We chose to use adaptive algorithm parameters, which adjust

themselves according to the dimensionality of the problem (Gao & Han 2012). This

is extremely useful for high-dimensional minimization such as this, as the HOD model

involves five free parameters.

3.4.3 Final Results

The final HOD parameters which optimally minimize the chi-square error χ2
c using the

method outlined in Section 3.4.2 are listed in Table 3.4. Here, we can see the result of

the minimization process, and the values of the five HOD parameters (Mmin, σlogM , M0,

M1, and α) ultimately used to populate the mock galaxies throughout dark matter halos

in F5 and F6. The number density of galaxies which are listed in this table are obtained

using this method.

From this table, it is evident these mock galaxy catalogues have achieved a final

number density which is relatively close to the target number density of 8.8 × 10−4

Simulation Mmin σ α fM0 fM1 ngal (10−4 galaxies/(Mpc/h)3)

F5 12.677 0.58690 1.1053 1.0205 7.4127 8.6553

F6 12.609 0.58856 1.0654 1.0060 7.8379 8.6596

Table 3.4:: The optimal HOD parameters for F5 and F6 which most closely match both

the number density and two-point 2D projected galaxy correlation function wp(r) of GR.

Plugging these values into the HOD model results in the above galaxy number densities.
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Figure 3.8: Top Panel : The two-point 2D projected correlation function r2wp(r) at

z = 0.34, calculated at fixed abundance for central and satellite galaxies in F5 (orange)

and GR (black). F5, post-minimization: 929,821 galaxies in a (1024 Mpc/h)3 volume

box make a number density of 8.6553×10−4 galaxies/(Mpc/h)3. F5, pre-minimization:

934,362 galaxies make a number density of 8.702×10−4 galaxies/(Mpc/h)3. GR: 934,918

galaxies make a number density of 8.707×10−4 galaxies/(Mpc/h)3. Bottom panel : The

ratio of r2wp(r) of F5 to GR, before and after the minimization process.
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galaxies/(Mpc/h)3, and even closer to the final galaxy number density achieved in GR,

which is listed in Table 3.3 as 8.707 × 10−4 galaxies/(Mpc/h)3. At first glance, it may

seem quite alarming that they seem to have strayed further away than the original

galaxy number density, which were achieved during the intermediary stage described in

Section 3.2. As listed in Table 3.3, these achieved galaxy number densities are within

0.1% of each other. While this is indeed true, it is also very important to note that this

final calculation of galaxy number density utilize HOD parameters which were optimized

to minimize the error in both number density and the two-point 2D projected galaxy

correlation function wp(r), as Equations 3.10 through 3.13 describe. Thus, any widening

gaps in the achieved and target number density are compensated for by simultaneously

closing the gap in projected clustering between the f(R) gravity model and GR.

This is illustrated by Table 3.5, which lists the values of the chi-square statistic χc

in F5 and F6. The column titled “Pre-minimization” refers to the chi-square statistic

χc had it been calculated prior to the minimization process described in Section 3.4.2,

and instead using the HOD parameters listed in Table 3.2 and the optimal Mmin values

shown in Table 3.3. The column titled “Post-minimization” thus refers to the chi-square

statistic χc calculated after this minimization process, using the HOD parameters which

appear in Table 3.4. It is therefore apparent that the minimization process has aided in

achieving a uniform galaxy number density and projected clustering among the mock

galaxy catalogues in F5, F6, and GR.

This adjustment can be seen very clearly in Figures 3.8 and 3.9, which plot

the two-point 2D projected correlation function r2wp(r) at z = 0.34, calculated at

fixed abundance for central and satellite galaxies in F5 and F6 respectively. The

curves titled “Pre-minimization” and “Post-minimization” thus correspond with the
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Figure 3.9: Top Panel : The two-point 2D projected correlation function r2wp(r) at

z = 0.34, calculated at fixed abundance for central and satellite galaxies in F6 (green)

and GR (black). F6, post-minimization: 929,821 galaxies in a (1024 Mpc/h)3 volume box

make a number density of 8.6596e-4 galaxies/(Mpc/h)3. F6, pre-minimization: 935,002

galaxies make a number density of 8.708e-4 galaxies/(Mpc/h)3. GR: 934,918 galaxies

make a number density of 8.707e-4 galaxies/(Mpc/h)3. Bottom panel : The ratio of r2wp(r)

of F6 to GR, before and after the minimization process.
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“Pre-minimization” and “Post-minimization” columns in Table 3.5, which list the final

chi-square statistic χc. Between “Pre-minimization” and “Post-minimization”, the ratio

of the projected clustering in F5 to that in GR increased by ∼ 6.6%. Similarly, the ratio

of the projected clustering in F6 to that in GR increased by ∼ 2.0%, thus showing that

the minimization process successfully preserved the target number density of galaxies,

while matching the projected clustering among the three simulations.

From Figures 3.8 and 3.9, we can see that the mock galaxies in F6 originally dispayed

a more similar 2D correlation function to GR than F5 did in the “Pre-minimization”

phase. This is to be expected, as F6 has a more efficient screening mechanism than F5

does, and should be clustered in a fashion more similar to GR than F5. However, after

the minimization process described in Section 3.4.2 is complete, the mock galaxies in F5

actually counter-intuitively display a more similar 2D correlation function to GR than

F6 does. For completeness, we also include Figure 3.7, which plots the two-point 2D

projected correlation function r2wp(r) for F5, F6, and GR on the same graph.

This shift in the 2D projected clustering is reflected in the chi-square χc values

displayed in Table 3.5. Here we can see that F5 originally began with a larger deviation

from GR than F6 did, but after the minimization process is complete, F5 actually has a

slightly lower chi-square χc than F6. Thus, on the basis of comparing the galaxy number

density and projected clustering between the f(R) gravity models and GR, the F5 mock

galaxy catalogue is actually closer to GR than F6 is, even though it has a more efficient

screening mechanism. However, the two still have a chi-square χc which is very close

in value to each other, putting us in a good position to then apply realism cuts to the

galaxy catalogue, a process which is discussed in Chapter 4.
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χ2
Min Pre-minimization Post-minimization

F5 5.7826 1.3217

F6 3.7710 1.3403

Table 3.5:: The values of the chi-square statistic χc in F5 and F6, calculated before and

after the final χ2 minimization process. This procedure calculates the optimal HOD pa-

rameters, taking into account the error from the two-point 2D projected galaxy correlation

function wp(r), in addition to the already included error from the galaxy number density.
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Chapter 4

Creating a Realistic Mock Galaxy

Survey

4.1 Adding Survey Realism

In this chapter, we discuss the process of adding survey selections to the galaxy

catalogues described in Chapter 3 in order to create a mock galaxy survey. These survey

selections originate from the lowz sample parameters of the 2015 boss Data Release,

which is part of sdss-iii (Reid et al. 2016). The cut includes a redshift z selection of

0.15 < z < 0.43, a number density cut which mimics number density plot in Figure 3.2,

and a projection of the simulation box onto a 2D sky. To make this transformation, we

use the publicly accessible make survey C code (White et al. 2014).
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4.1.1 Volume Remapping

In order to utilize make survey to transform the mock galaxy catalogue into a mock

galaxy survey, we simply input the survey parameters from the lowz sample for both

the north and south Galactic caps of the sky. However, it is important to note that the

f(R) and GR simulations are in the shape of a box, while true galaxy surveys cover an

irregular volume with geometrical constraints determined by observations. As a result,

the make survey code must “remap” the simulation cube into a cuboid, or non-cubical

box shape, using remap vectors. To determine the remap vectors which optimally

transform this periodic box, we rely on a remapping technique developed by Carlson &

White (2010). This technique embeds the shape of the target galaxy survey inside the

simulation cube, while limiting the amount of wasted volume and preserving the volume

and internal structure of the mock galaxy catalogue.

A visual of this can be seen in Figure 4.1, which depicts the remapped cuboid, the

original simulation cube with box length Lbox = 1024 Mpc/h, and the target survey

volume with comoving radial distance DC , RA and DEC spans θRA and θDEC, and RA

and DEC arc lengths sRA and sDEC. The latter can be calculated using the classic

formula for arc length, where s represents the arc length along a wedge, r represents

the radius of the encompassing circle, θ represents the angle that the wedge spans. To

calculate the RA arc lengths sRA and sDEC, we substitute for the radius r the radial

comoving distance DC . Similarly, the angle spanned θ is equivalent to the RA and DEC

spans θRA and θDEC in units of radians. This relationship is described by Equation 4.1

below:

62



CHAPTER 4. MOCK GALAXY SURVEY

Remapped Cuboid

Simulation
Box

Lbox= 1024 Mpc/h

DC

sDEC

sRA

DC

Lbox

Lbox

sDEC

sRA

θDEC

θRA

Survey

Figure 4.1: The simulation box, with side length Lbox = 1024 Mpc/h, as well as the

remapped cuboid it will transform into. The dimensions of this cuboid are determined

by the survey volume, which can be described by the comoving radial distance DC , the

RA and DEC spans θRA and θDEC, and the RA and DEC arc lengths sRA and sDEC. The

dimensions of the remapped cuboid are thus DC , θRA, and θDEC so that it can encompass

the entirety of the survey volume.

63



CHAPTER 4. MOCK GALAXY SURVEY

s = rθ (4.1a)

sRA = DCθRA (4.1b)

sDEC = DCθDEC (4.1c)

As Figure 4.1 shows, because the survey should be able to fit inside the remapped

cuboid, it must have, at minimum, physical dimensions of sRA, sDEC, and DC . From

these dimensions, we are able to calculate the corresponding remap vectors, which consist

of a 9-element matrix made up of remap vectors u11, u12, u13, u21, u22, u23, u31, u32, and

u33 as shown below. This remap matrix is then input to make survey and accordingly

remaps the original simulation box. Therefore, in order to determine the proper remap

vectors, we must first calculate the physical dimensions of the remapped cuboid, sRA,

sDEC, and DC .


u11 u12 u13

u21 u22 u23

u31 u32 u33



4.1.2 Determining the Radial Comoving Distance DC

Because the arc lengths sRA and sDEC are dependent upon it, as illustrated by Figure

4.1 and Equation 4.1 above, we must first begin by calculating radial comoving distance

DC . To do so, we use the cosmology calculator created by Wright (2006), which uses the

definition of radial comoving distance DC described by Equation 4.2 below (Hogg 1999):
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DC = DH

∫ z

0

dz′

E (z′)
(4.2a)

E(z) ≡
√

ΩM(1 + z)3 + Ωk(1 + z)2 + ΩΛ (4.2b)

Here, DH = c/H0 refers to the Hubble Distance, while E(z) = H(z)/H0 can be

described by a function in which QM , Qk, and QΛ refer to, respectively, the current

fractional density of non-relativistic matter, relativistic matter, and the cosmological

constant (Peebles 1993). As a result, in order to determine the radial comoving distance

DC using Wright (2006)’s cosmology calculator, we need only input values for the current

Hubble constant H0, the current fractional density of non-relativistic matter ΩM , the

current fractional density of the cosmological constant ΩΛ, and the redshift z. It should

be noted that this equation can be applied to the f(R) simulation as well as the GR

simulation because the exact cosmological background expansion history of ΛCDM is

preserved in the f(R) gravity model, as described in Section 2.1.2.

The input parameters are listed in Table 4.1, as well as the resulting radial comoving

distance DC = 1165.1 Mpc. We have chosen redshift z = 0.43 in order to encompass the

entirety of the redshift range 0.15 < z > 0.43 of the galaxies in the lowz catalogue.

Furthermore, the values of the current fractional density of non-relativistic matter

ΩM and current fractional density of the cosmological constant ΩΛ have been chosen

according to the values assigned in the elephant simulations, which are listed in Table

2.1. These are the same values used in the make survey code. Additionally, the

Hubble constant H0 is assumed to be 100 km/s/Mpc simply for ease of converting the

radial comoving distance DC from units of Mpc to Mpc/h. The relationship between
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the Hubble constant H0 and the dimensionless h-parameter is described by Equation 4.3

below:

H0 = 100h kms−1 Mpc−1 (4.3)

Selecting a Hubble constant H0 = 100 km/s/Mpc ensures that h = 1. As a result,

the comoving radial distance DC , determined by the cosmology calculator to be 1165.1

Mpc, is equivalent to 1165.1 Mpc/h.

4.1.3 Determining the Remap Vectors

Now that the radial comoving distance is determined, we can obtain the the RA and

DEC arc lengths sRA and sDEC. To do so, we introduce L1, L2, and L3, which are

dimensionless parameters describing the ratio of the new cuboid lengths to the original

simulation box length Lbox = 1024 Mpc/h. Ideally, the dimensions of this cuboid should

be such that they encompass the shape of the lowz survey, as is illustrated by Figure

4.1. In order for the survey, and thus all of the mock galaxies, to fit inside the final

remapped cuboid, each dimension of the cuboid must, in principle, be at minimum equal

to the RA and DEC arc lengths sRA and sDEC spanned by the lowz survey, as well as

the radial comoving distance DC calculated in Section 4.1.2. In terms of L1, L2, and L3,

this relation can be described according to Equation 4.4 below:

L1 ≥
sRA

Lbox

(4.4a)
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Figure 4.2: Completeness maps in the north and south Galactic caps for the lowz cat-

alogue selected from the BOSS sample, part of SDSS-III. Each patch of colour represents

an individual plate, and the color determines the completeness, or weight, of that plate,

according to the colorbar on the right. The gray shaded regions represent the initial target

area on the sky, and any missing patches of color are regions where plates did not reach

the minimum required completeness. Figure reproduced from Reid et al. (2016).
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L2 ≥
sDEC

Lbox

(4.4b)

L3 ≥
DC

Lbox

(4.4c)

Equation 4.4b should, in theory, describe the minimum physical dimensions of the

remapped cuboid which fully encompass the shape of the lowz catalogue. However, in

reality, the final remapped cuboid is limited by the volume V of the initial f(R) and GR

N-body simulations, which is fixed at V = Lbox
3. As a result, once the RA arc length

sRA and radial comoving distance DC is obtained, although the second dimension of the

remapped cuboid L2 should in principle correspond with the DEC arc length sDEC, as

defined in Equation 4.4b, it must instead be defined in terms of the remaining “true” arc

length, which we denote as SDEC. Since we have already determined the radial comoving

distance DC and the RA arc length sRA, we therefore know that L2 must be defined by

Equation 4.5 below:

L2 ≥
SDEC

Lbox

(4.5a)

SDEC =
V

DC sRA

(4.5b)

With Equations 4.1 and 4.5, we can finally begin calculating the dimensions L1, L2,

and L3 of the remapped cuboid. First, we estimate the RA and DEC spans θRA and

θDEC from the completeness maps of the north and south Galactic caps in the lowz

catalogue. These maps are depicted in Figure 4.2, where each patch of colour represents

an individual plate with a certain level of completeness. The gray shaded regions
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Parameter Value

H0 100 km/s/Mpc

ΩM 0.281

ΩΛ 0.719

z 0.43

DC 1165.1 Mpc

Table 4.1:: The input parameters H0, ΩM , ΩΛ, and z for the comoving radial distance DC

determined by Wright (2006)’s cosmology calculator, assuming a flat cosmology where

ΩΛ = 1− ΩM .

Galactic cap θRA (◦) sRA (Mpc/h) θDEC (◦) sDEC (Mpc/h) SDEC (Mpc/h)

North 155 3151.9 75 292.4 1525.1

South 95 1931.8 50 477.1 1016.7

Table 4.2:: The RA and DEC spans θRA and θDEC which encompass the lowz catalogue,

as well as the corresponding arc lengths sRA and sDEC. The last parameter listed is

SDEC, which represents the remaining dimension constrained by the vaues of the radial

comoving distance DC , the RA arc length sRA, and the volume V of the f(R) and GR

N-body simulations.
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represent the initial target area of completeness on the sky, and any missing patches of

color are regions where plates did not reach the minimum required completeness. The

estimated RA and DEC spans θRA and θDEC are listed in Table 4.2.

We convert these estimated RA and DEC spans θRA and θDEC from degrees to

radians and apply Equation 4.1 to obtain the RA and DEC arc lengths sRA and sDEC

for both the north and south Galactic caps in the lowz sample. The final results are

listed in Table 4.2, as well as the “true” DEC arc length SDEC and the original RA and

DEC spans θRA and θDEC. Having determined the values of the radial comoving distance

DC , the RA arc length sRA, and the “true” DEC arc length SDEC, we simply divide each

of these parameters by Lbox to obtain the final remapped dimensions L1, L2, and L3,

which are listed in Table 4.3. From these remapped dimensions, we determine the closest

possible side lengths L1, L2, and L3 from a pre-calculated list developed by Carlson &

White (2010). These new side lengths are listed in Table 4.4 for both the north and

south Galactic caps. The final remap vectors for the north and south Galactic caps of

the lowz catalogue, each consisting of a 9-element matrix, are written as the following,

respectively:

North =


3 1 0

1 0 0

0 1 1



South =


2 1 0

1 0 0

0 1 1


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L1 L2 L3 sRA SDEC DC

North 3.08 0.286 1.14 3151.9 1525.1 1165.1

South 1.89 0.466 1.14 1931.8 477.1 1165.1

— (Mpc/h)

Table 4.3:: The final remap vectors L1, L2, and L3 for both the north and south Galactic

caps of the lowz catalogue. The corresponding physical dimensions of the remapped

cuboid sRA, SDEC, and DC are also listed for comparison.

L1 L2 L3

North 3.1623 0.2294 1.3784

South 2.2361 0.3333 1.3416

Table 4.4:: The final side lengths L1, L2, and L3 which describe the geometry of the

remapped cuboid and most closely match existing side lengths calculated by Carlson &

White (2010). These side lengths L1, L2, and L3 are calculated for both the north and

south Galactic caps of the lowz catalogue.
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With these matrices, we are able to input the remap vectors into the make survey

code and transform the mock galaxy catalogue obtained in Chapter 3 into a mock galaxy

survey, which in turn mimics the parameters of the lowz survey.

4.2 The Final Mock Galaxy Surveys

The make survey code produces a mock galaxy survey with information on the number

density, redshift z, RA, DEC, and completenesss of each galaxy. With this information,

we are able to reproduce Figure 3.2, which depicts the number density of the lowz

catalogue as a function of redshift z. This number density plot is reproduced for each of

the F5, F6, and GR mock galaxy surveys in Figure 4.3, where the number density of

each galaxy in both the f(R) gravity model and GR mock galaxy surveys is plotted as

a function of redshift z. It should be noted that due to the redshift cut which restricts

galaxies to a redshift range 0.15 < z < 0.43, as well as other realism selections, the

number density of galaxies has been down-sampled from the target number density of

8.8 × 10−4 galaxies/(Mpc/h)3 to an average galaxy number density of about 3 × 10−4

galaxies/(Mpc/h)3.

Figure 4.4 simply displays the sky coverage of the mock survey galaxies on an

Aitoff projection. Figure 4.5 is similar, but instead mimics Figure 4.2 to plot the sky

completeness maps for each of the F5, F6, and GR mock galaxy surveys in both the

north and south Galactic caps. As in the original lowz survey, the colorbar distinguishes

the different colors of each point, signifying which are of higher completeness, or weight,

and therefore more accurate as data. The minimum required completeness for a point

to be used is 0.60. These sky completeness plots seem to be successful in mimicking
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Figure 4.3: The galaxy number density ngal of F5 (orange), F6 (green), and GR (gray),

plotted as a function of redshift z. The appropriate galaxy survey realism cuts have

already been applied, in accordance with the LOWZ parameters from the 2015 Baryon

Oscillation Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III.
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Figure 4.4: The sky coverage for F5 (orange), F6 (green), and GR (gray), plotted on

an Aitoff geographic projection. The appropriate galaxy survey realism cuts have already

been applied, in accordance with the lowz parameters from the 2015 Baryon Oscillation

Spectroscopic Survey, which is part of the Sloan Digital Sky Survey III.
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the parameters of the lowz catalogue, as identical patches in the sky are missing,

and the area covered is preserved. One major difference is the unique “fuzziness” seen

at the edges of the mock sky completeness plots. In part, this is due to the lowered

transparency that the points are being plotted with, in an effort to make visible areas

with a lower density of mock galaxies. The root cause, however, lies in the fact that

the original f(R) gravity model and GR N-body simulations are simply not not large

enough in volume to contain all of the lowz survey space, as discussed in Section 4.1.3

and exemplified by the large difference between the ideal DEC arc length and the “true”

DEC arc length listed in Table 4.2.

Figures 4.3 through 4.5 are therefore the final visualizations of our mock galaxy

surveys for F5, F6, and GR. They are remarkable in how closely each simulation matches

the other in terms of number density and sky completeness, as well as how closely they

are to the original parameters of the lowz survey. This shows that we have successfully

implemented a pipeline which transforms an N-body cosmological dark matter simulation

into a realistic mock galaxy survey. With this pipeline, we are in a good position to

begin investigating underlying differences between the mock galaxy survey. Because we

have eliminated trivial differences that are due to the observer, such as a difference in

redshift selection, sky completeness, number density, or projected clustering, we can now

attribute any differences to the underlying theory itself. This question is further explored

in Chapter 5.
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Figure 4.5: Completeness maps for F5, F6, and GR in the north and south Galactic caps,

plotted as a function of RA and DEC. The minimum allowed completeness, or weight, of

each “plate” is 0.6, as depicted by the colorbar.
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Conclusions

5.1 Discussion

In this thesis, we have compared the nature of gravity in f(R) and GR N-body

cosmological simulations, starting at the level of dark matter halos. In Chapter 2, we

examined the halo mass function and two-point 3D real-space halo correlation function

r2ξ(r) for F4, F5, F6, and GR at both redshifts z = 0 and z = 0.34. Here, we were able

to see the full effect of the varying efficiency of the screening mechanism for the f(R)

gravity model, where it is least inefficient for F4 and most inefficient for F5. Although

there is, in a sense, a resolution limit of ∼ 12.5 M�, this limit simply marks the point at

which the number of low-mass halos begin decreasing in the simulations. That does not

mean, however, that physical results for halos of this size are untrustworthy.

Having completed this analysis at the halo level, we then began the process of

transforming the dark matter simulation into a mock galaxy catalogue by populating
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each of the dark matter halos with mock galaxies. We do so by assigning the number of

central and satellite using the HOD model and the positions of these galaxies using the

NFW profile. Although there are certain limitations to the basic HOD model, such as

an under-prediction of galaxies in halos, these errors occur at such small scales, they are

at a precision beyond those of upcoming galaxy surveys (Hadzhiyska et al. 2020).

Furthermore, in order to be able to analyze the resulting mock galaxy surveys for

differences due to the underlying gravity, we must eliminate any causes of observational

variation, such as galaxy number density and projected clustering. To accomplish this, we

develop a pipeline which determines the optimal HOD parameters that match the galaxy

number density and projected clustering most closely among the f(R) and GR N-body

cosmological simulations. Visualizing the mock galaxy survey as a sky completeness map

and number density plot, and comparing to the original lowz catalogue confirms that

this goal has been accomplished. As a result, we have successfully created a pipeline

for transforming an N-body dark matter particle cosmological simulation into a realistic

mock galaxy survey.

5.2 Future Work

With this new pipeline as a tool, moving forward it is finally possible to begin analyzing

the underlying differences between the f(R) gravity model and GR. Because the

elephant simulations used were too small in volume, as evidenced by the “fuzziness”

seen in the completeness maps of Figure 4.5, we would need to do so using a simulation

with a large enough box length. This ensures that the target survey can fit inside of the

remapped cuboid, which shares the same volume as the original simulation. Fortunately,
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this is a straightforward process as we simply need follow the HOD pipeline developed in

Chapter 3. Once this new simulation is transformed into a mock galaxy survey, we are

able to begin testing for observable differences between the f(R) gravity model and GR.

5.2.1 Redshift Space Distortions

Because we have made other factors such as galaxy number density and projected

clustering essentially equivalent between the mock galaxy surveys for the f(R) gravity

models and GR simulations, we believe that the observable difference which may prove

most useful likely lies in redshift space distortions (RSDs). RSDs are an observational

phenomenon in which the observed redshift-space position s(r) of a galaxy is different

from its true real-space position r.

An example of this can be seen in Figure 5.1, which portrays two common effects of

RSDs. On the left are two galaxies as they would be seen in real-space, and on the right

are how they appear in redshift-space. The lower galaxy is located in an over-density,

and as a result, it becomes “squashed” in redshift-space. In contrast, the upper galaxy

is located in an under-dense environment, and in redshift-space it is distorted so that is

stretches out along the line-of-sight of the observer.

Such RSDs are often referred to as the “Finger-of-God” (FOG), and can be seen in

SDSS galaxies in Figure 5.2 (Tegmark et al. 2004). On the left, they are clearly distorted

along some line-of-sight, and on the right they have assumed their original shapes in

real-space, after the removal of the FOG effect. Ultimately, these RSDs are caused by

the peculiar velocity vr(r) of a galaxy, or motion unique to an individual galaxy beyond

its motion due to the Hubble flow, which is described using Hubble’s Law in Equation
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Figure 5.1: A diagram depicting the effects of Redshift Space Distortions (RSD) on

observed galaxies. Due to the peculiar velocities Vp of galaxies, galaxies in an underdense

region will become elongated along the observer’s line of sight, and galaxies in an overdense

region will become contracted along the observer’s line of sight.

Figure 5.2: The measured large-scale real-space power spectrum P (k) from SDSS. Left

Panel : An example of a galaxy redshift survey where the initial data displays a strong

FOG effect. Left Panel : The true real-space positions of the galaxies, after the FOG

effect has been removed. Figure reproduced from Tegmark et al. (2004).
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5.1 below:

V ' cz = H0r (5.1)

Here, V is the recession velocity of a galaxy due to the Hubble Flow. However,

Hubble’s Law is only adequate for very low redshifts, and can only apply on cosmological

scales in a completely homogeneous Universe. Our Universe, in contrast, contains

numerous inhomogeneities which derive from galaxies and other structures. This

inhomeneity introduces distortions into Hubble’s Law in the form of a peculiar velocity

v(r), as can be seen in Equation 5.2 below:

V = H0r + v(r) (5.2)

The peculiar velocity v(r) can thus be used to determine the new position of a

galaxy in redshift-space, or positions directly derived from the redshift of a galaxy. The

exact relationship can be described using Equation 5.3 below, where vr(r) refers to the

radial component of the peculiar velocity (Raccanelli et al. 2013):

s(r) = r + vr(r)r̂ (5.3)

5.2.2 Velocity Power Spectrum

In order to detect RSDs in a real galaxy survey, we can simply recognize that they are

encoded in the observed large-scale clustering signal. This relationship is shown by a

simple model for the power spectrum in Equation 5.4 below:
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P s
gg(k, µ, z) = knT 2(k)G2(z)

[
b(z, k) + f(z)µ2

]2
(5.4)

Here, we see how observations of the linear power spectrum can be powerful

measurements. For instance, a measurement of P s
gg(k, µ, z) can lead to the full power

spectrum, where k is the comoving wavenumber and µ is the cosine angle of the

line-of-sight. On the right-hand side of the equation, measuring either G2(z) or f(z)µ2

can lead to RSDs. Lastly, 2(k) and b(z, k) are terms whose measurements, respectively,

lead to information from the power spectrum shape and information from large-scale

bias.

As a result, in our simulations, we can calculate the RSDs of the mock galaxies

by examining the velocity power spectrum for the f(R) gravity model and GR. This is

possible because we have already calculated the velocity of the mock galaxies, along with

their positions, as detailed in Section 3.3.3. Thus, we need only compute the monopole,

quadrupole, and hexadecapole power spectra Pgg(k), Pgv(k), and Pvv(k) in redshift-space

(Tegmark et al. 2004).

5.3 Final Thoughts

Because of their dependency on the peculiar velocity v(r), RSDs are a powerful tool

for distinguishing between different theories of gravity (Kaiser 1987). It is significant

that the peculiar velocity v(r) depends upon the structure of galaxies, clusters, and

superclusters, which in turn depends on the underlying theory of gravity. This link

between inhomogeneities, large-scale structure, under- and over-densities, and the
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peculiar velocity v(r) of each individual galaxy means that RSDs should look distinct

between mock galaxy surveys for the f(R) gravity model and GR.

Figure 5.3 depicts a prediction of what these differences may look like between F5,

F6, and GR in particular. Because F5 has the least efficient screening mechanism, it

undergoes the strongest enhancement of gravity. As exemplified by Figure 5.1, galaxies

in F5 will likely experience the strongest RSDs between the three simulations, due to its

strong enhancement of gravity. It is thus clear that will indeed be differences between

the three cosmologies F5, F6, and GR, and it will be particularly interesting to see

whether the FOG effect or “squashed” effect is most dominant, as the efficiency of the

screening mechanism, and thus the enhancement of gravity, depends on the density of

the surrounding region.

As a result, the question we will ultimately need to investigate is whether the

differences in RSDs are even visible to observers, as we are constrained by the precision

of upcoming galaxy redshift surveys. However, given the automated pipeline we have

developed in this thesis, as well as future surveys such as Euclid and desi, we are poised

to make great strides in testing different theories of gravity in the future.
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F5

F5

F5
F6

F6

F6

GR

GR

GR

Figure 5.3: A diagram depicting some possible effects of Redshift Space Distortions

(RSD) on mock galaxies in the f(R) gravity models and GR. Because it has the least

efficient screening mechanism, F5 will likely suffer the most distortion in redshift-space,

while GR will likely suffer the least.
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