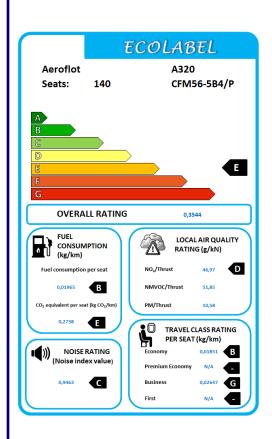


Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)


An Ecolabel for Aircraft

Dieter Scholz Hamburg University of Applied Sciences

https://doi.org/10.5281/zenodo.4072826

Deutscher Luft- und Raumfahrtkongress 2017 German Aerospace Congress 2017 Munich, Germany, 05.-07.09.2017

DLRK 2017

AN ECOLABEL FOR AIRCRAFT

including work of:

- Tim Haß (Bachelor Thesis)
- Lynn Van Endert (Master Thesis)
- ..

Abstract

In attempting to increase the environmental awareness in the aviation sector and to eliminate the green washing phenomenon, an investigation was done into the development and definition of an ecolabel for aircraft. Based on life cycle assessment it was found that aviation affects the environment most with the impact categories resource depletion and global warming (both due to fuel consumption), local air pollution (due to the nitrogen oxide emissions in the vicinity of airports) and noise pollution. For each impact category a calculation method was developed based solely on official, certified and publicly available data to meet the stated requirements of the ISO standards about environmental labeling. To ensure that every parameter is evaluated independent on aircraft size, which allows comparison between different aircraft, normalizing factors such as number of seats, rated thrust and noise level limits are used. Additionally, a travel class weighting factor is derived in order to account for the space occupied per seat in first class, business class and economy class. To finalize the ecolabel, the overall environmental impact is determined by weighting the contribution of each impact category. For each category a rating scale from A to G is developed to compare the performance of the aircraft with that of others. The harmonization of the scientific and environmental information, presented in an easy understandable label, enables the traveling customers to make a well informed and educated choice when booking a flight, selecting among airline offers with different types of aircraft and seating arrangements.

AN ECOLABEL FOR AIRCRAFT

Table of Content

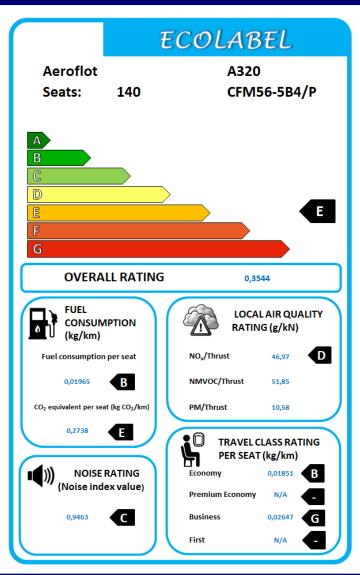
- Idea / Goal & the "Ecolabel for Aircraft"
- Background
- Life Cycle Assessment (LCA)
- Fuel Consumption
 - Source of Information (Payload & Range Diagram)
 - o Grouping into A to G Categories
- Global Warming
- Local Air Quality
- Noise
- Summary
- Next Steps

Idea / Goal & ...

- The travelling public should make an informed choice when selecting a flight
 - o Price
 - ticket price (basic fare, baggage, seat selection, ..., payment fees)
 - o Time
 - useful time & wasted time
 - o Comfort
 - travel class (=> seat pitch, seat width, ...)
 - number of transfers
 - Environmental footprint => Ecolabel for Aircraft

(simplified Life Cycle Assessment, LCA)

- Resource depletion (fuel burn)
- Global warming (fuel burn)
- Local air quality (NOx)
 - Ozone formation potential (NMVOC: NOx, SO2, CO, HC)
 - + Particulate matter formation (PM: NOx, PM)
- Noise



... the Ecolabel for Aircraft

- Information: airline, aircraft, number of seats, engine
- Overall Rating (average rating on <u>airline</u> level)
 - o Metric scaled between 0 and 1 (90% of aircraft)
 - o category: A to G
- Fuel consumption

(from manufacturer's payload & range diagram)

- resource depletion: fuel per seat-km (kg/km) & A to G
- global warming (depending on altitude):
 CO2-equivalent per seat-km (kg/km) & A to G
- Local air quality (ICAO LTO cycle)
 - o NOx (g/kN) & A to G
 - o NMVOC (g/kN) for information only
 - o PM-equivalent (g/kN) for information only
- Noise (from NoisedB database; ICAO & DGAC)
- Rating according to passenger travel class

- My presentation at the German Aerospace Conference 2012*:
 - Eco-efficiency: Create more with less waste and pollution.
 - Aviation growth does not (and will never) be met by aviation's efficiency gain! 0
 - Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!" 0
 - **ACARE goals** (fuel burn reduction, NOx, ...) 0
 - are unrealistic and will not be met
 - this without any consequences (see "Vision 2020")
 - IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
 - CO2 is not the (major) problem. The major problem is water!
 - It is already too late to safe the world. We need resilience! 0
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)

http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/Airport2030 PRE DLRK 2012 EcoEfficiencyOffCourse 2012-09-10.pdf

My presentation at the German Aerospace Conference 2012 (DLRK 2012): Eco-efficiency: Create more with less waste and pollution.

Aviation growth does not (and will never) have իcy gain! 0 Jevson's Paradox: "Fuel Con 0 Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences ACARE g 0 are un

- this with AERO – AIRCRAFT DESIGN AND SYSTEMS GROUP IATA / ATA
 - would no
 - Why 202
- CO2 is not th
- It is already to 0
 - Do not bot

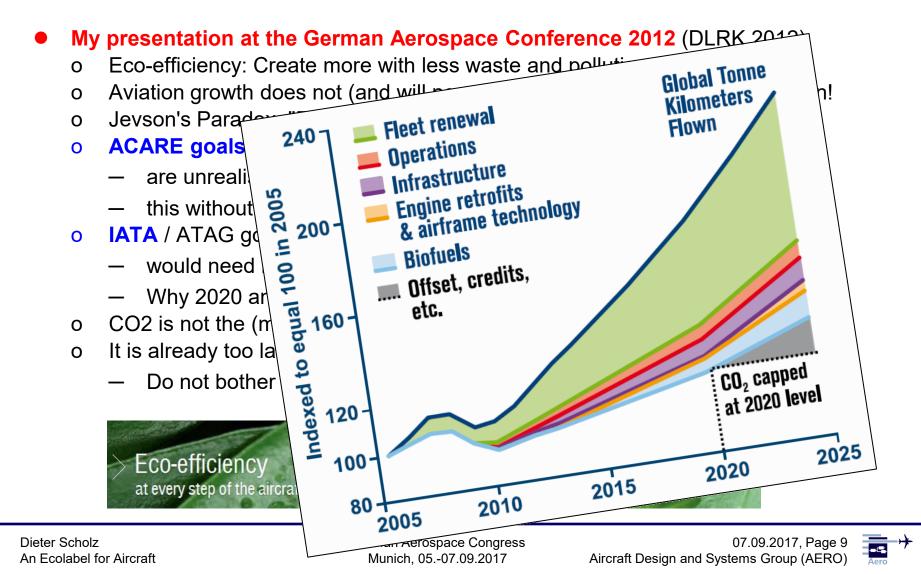
German Aerospace Congress

Munich, 05.-07.09.2017

Eco-Efficiency in Aviation -

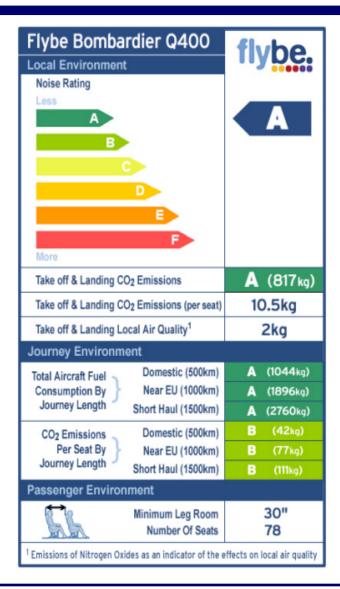
Flying Off Course?

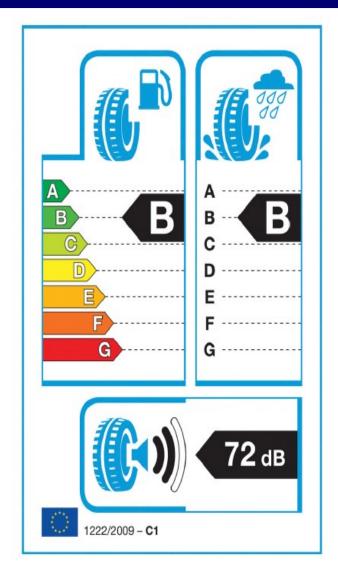
resilience


hburg)

- My presentation at the German Aerospace Conference 2012 (DLRK 2012):
 - o Eco-efficiency: Create more with less waste and pollution.
 - o Aviation growth does not (and will never) be met by aviation's efficiency gain!
 - o Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!"
 - o **ACARE goals** (fuel burn reduction, NOx, ...)
 - are unrealistic and will not be met
 - this without any consequences (see "Vision 2020")
 - o IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
 - CO2 is not the (major) problem. The major problem is water!
 - o It is already too late to safe the world. We need resilience!
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)

- My presentation at the German Aerospace Conference 2012 (DLRK 2012):
 - o Eco-efficiency: Create more with less waste and pollution.
 - o Aviation growth does not (and will never) be met by aviation's efficiency gain!
 - o Jevson's Paradox: "Fuel Can Not Be Saved from Efficiency Increase!"
 - o **ACARE goals** (fuel burn reduction, NOx, ...)
 - are unrealistic and will not be met
 - this without any consequences (see "Vision 2020")
 - IATA / ATAG goal: "carbon-neutral growth from 2020"
 - would need massive & effective compensation scheme. CORSIA?
 - Why 2020 and not today?
 - CO2 is not the (major) problem. The major problem is water!
 - o It is already too late to safe the world. We need resilience!
 - Do not bother about aviation, rather increase height of the dikes (Hamburg)


- Let's get priorities right to protect the environment:
 - Avoid to travel (do something else instead)
 - 2. For each trip select the **best mode of transportation** (aircraft, train, bus?)
 - 3. Select the **shortest route**
 - 4. Select the **best vehicle/airline** (**get info from the Ecolable for the Aircraft**)
 - 5. Make sure the **vehicle is full** and you select an **economy seat**, unless ...
 - **6.** Compensate (... or maybe just do not compensate, if you do not like the idea)


- Flybe's Ecolable (2007):
 - Label not used anymore by Flybe
 - o Never used by other airlines (as intended)
 - o Detail design shows many deficiencies.

- Labelling of Tyres (2009):
 - o "Regulation (EC) No 1222/2009 on the labelling of tyres" *
 - o An example to learn from

http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009R1222

- Other schemes
 - 1. ICAO Emission Calculator

http://www.icao.int/env

- 2. Atmosfair Emission Calculator
- 3. Atmosfair Airline Index

http://www.atmosfair.de

ISO 14020 Series: Environmental labels and declarations

ISO 14020:2000 Environmental labels and declarations –

General principles

ISO 14021:2016 Environmental labels and declarations –

Self-declared environmental claims (Type II environmental labelling)

ISO 14024:1999 Environmental labels and declarations –

Type I environmental labelling -- Principles and procedures

ISO 14025:2006 Environmental labels and declarations –

Type III environmental declarations -- Principles and procedures

ISO/TS 14027:2017 Environmental labels and declarations –

Development of product category rules

Type II Used for the travelling public => Ecolabel for Aircraft

Type III Used for the experts => Full Report for Experts

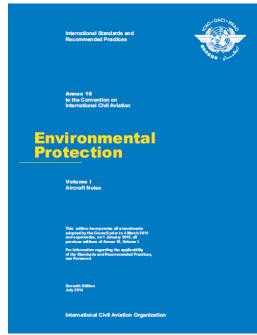
http://www.iso.org

- ISO 14025 (Type III) for Experts => Full Report
 - o The label has to be voluntary
 - o The label has to be life cycle based
 - o The label has to be verifiable
 - o The label has to be open for interested parties
 - o The label has to be **transparent**
 - o The label has to be flexible
 - o The label **allows comparing** different offers
 - o The label can be calculated by anyone
- ISO 14021 (Type II) for the Travelling Public => Ecolabel derived from Report

ICAO-Regulations

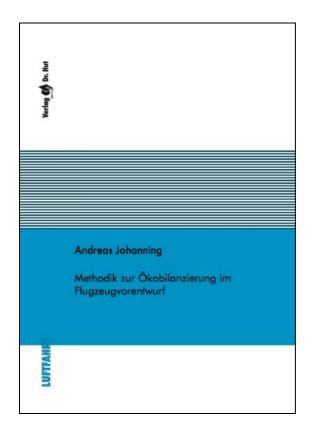
ICAO Annex 16 - Volume 1: Environmental Protection –
Aircraft Noise

http://cockpitdata.com/Software/ICAO Annex 16 Volume 1


ICAO Annex 16 - Volume 2: Aircraft Engine Emissions –
Aircraft Engine Emissions

http://cockpitdata.com/Software/ICAO Annex 16 Volume 2

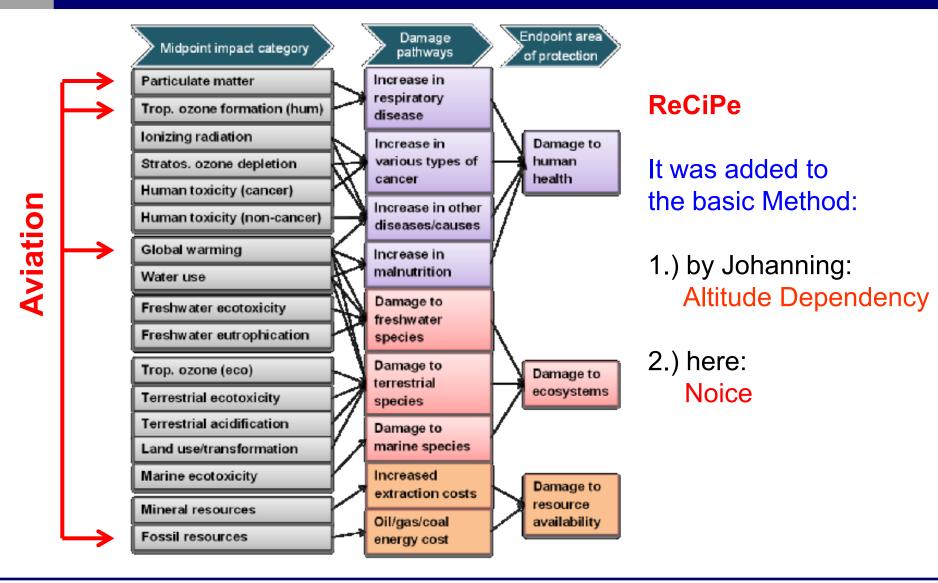
ICAO Annex 16 - Volume 3: Aircraft Engine Emissions –


CO2 Certification Requirement

http://www.fzt.haw-hamburg.de/pers/Scholz/materialFM1/ICAO-2017_Annex16_Volume3_CO2CertificationRequirement.pdf

Life Cycle Assessment (LCA)

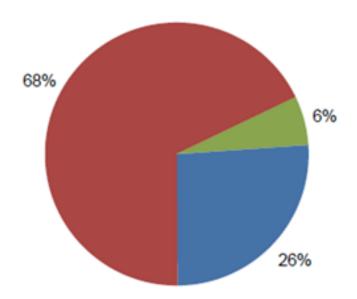
Johanning (2017): Life Cycle Assessment in Aircraft Design ISO 14040:2006
Environmental Management -- Life Cycle Assessment


ReCiPe

ReCiPe is a method for the impact assessment in a Life Cycle Assessment LCA. LCA translates emissions and resource extractions into a limited number of environmental impact scores by means of so-called characterization factors. There are two ways to derive characterization factors, i.e. at midpoint level and at endpoint level. ReCiPe calculates:

- 18 Midpoint Indicators
- 3 Endpoint Indicators
- 1 Single Score

http://www.fzt.haw-hamburg.de/pers/Scholz/Airport2030/JOHANNING DISS Methodik zur Oekobilanzierung im Flugzeugvorentwurf 2017.pdf



Life Cycle Assessment (LCA)

ReCiPe - Result (A320):

Johanning (2017)

- Decrease of resource depletion
- Climate Change
- Formation of Particular Matter

Ecolabel for Aircraft

Overall Rating:

$$R_{overall} = 0.4 R_{warming} \\ + 0.2 R_{depletion} \\ + 0.2 R_{localAir} \\ + 0.2 R_{noice}$$

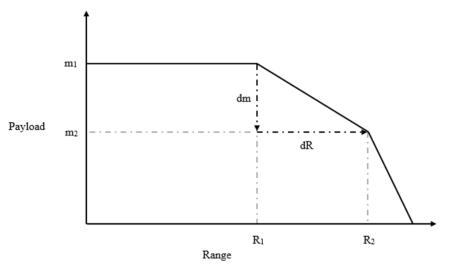
Table 1: Summary of candidate metrics

Table 1: Summary of candidate metrics							
	Full Mission Metrics						
Single parameter metric	Block Fuel Range						
Two- parameter metric	Block Fuel Payload * Range	Block Fuel Useful Load * R	Block Fuel MTOW * Range	Block Fuel Floor Area * R	Block Fuel Av. Seats * R		
Three- parameter metric	Payload * R.*Speed Block Fuel Payload * R./Time	Block Fuel Useful Load * R.*Speed Block Fuel Useful Load*R./Time	Block Fuel MTOW * R. *Speed Block Fuel MTOW * R./Time	Floor Block Fuel Block Fuel Floor Floor Area*R./Time	Av. Seats * R. *Speed Block Fuel Av. Seats * R. *Speed Block Fuel Av. Seats * R./Time		
		Instantar	eous Performanc	e Metrics			
Single parameter metric		1 1 					
Two-parameter metric	1 SAR * Payload	1 SAR * Useful Load	1 SAR * MTOW	SAR * Floor Area	1 SAR * Av. Seats		
Three- parameter metric	1 SAR * Payload * Speed	1 SAR * Useful Load * Speed	1 SAR * MTOW *Speed	SAR * Floor Area* Speed	SAR * Av. Seats * Speed		

Selecting a Fuel Metric:

 $1/(SAR \cdot n_{seat})$

Note: R = Range


http://partner.mit.edu/projects/metrics-aviation-co2-standard

measured
$$SAR = -\frac{dR}{dm} = \frac{V_{TAS}}{C_{gross}}$$

calculated
$$SAR = -\frac{dR}{dm} = \frac{V \cdot E}{c \cdot g}$$

Here taken from:

Payload-Range-Diagram available from: "Documents for Airport Planning"

$$SAR = -\frac{dR}{dn}$$

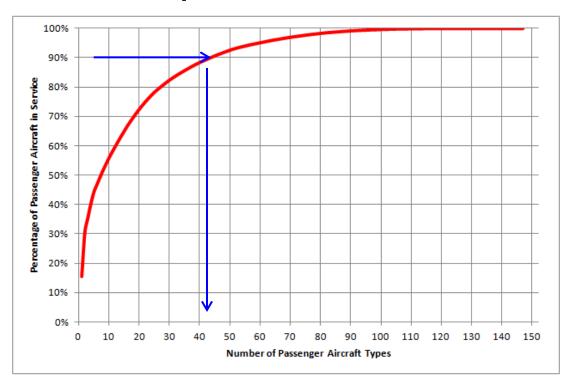
See: http://links.ProfScholz.de

$$SAR = \frac{R_2 - R_1}{m_1 - m_2}$$

Global airliner fleet by type and operator

Airbus A300	Total 210
Africa	Total 3
Egyptair (600)	2
Egyptair (B)	1
Asia Pacific & Middle East	Total 47
Air Hong Kong (600)	10
Global Charter Services (B)	4
Iran Air (600)	3
Iran Air (B)	4
Mahan Air (600)	14
Mahan Air (B)	1
Meraj Air (600)	2
Qeshm Airlines (600)	4
Silk Road Cargo Business (600)	1
Unique Air (600)	2
Uniton Airlings (600)	2

Turkish Airlines	3
North/South America	Total 17
Air Transat	9
FedEx	8
Airbus A318	Total 43
Europe	Total 24
Air France	18
British Airways	2
TAROM	4
North/South America	Total 19
Avianca	10
Avianca Brazil	9
Airbus A319	Total 1,327 (6)
Africa	Total 34
Afriqiyah Airways	2
Air Côte d'Ivoire	1


Druk Air	3
Etihad Airways	2
Lucky Air	3
Mihin Lanka	1
Myanmar Airways International	3
R Airlines	1
Rotana Jet	1
Royal Jordanian	4
Safi Airways	2
Saudia	4
Shenzhen Airlines	5
Sichuan Airlines	23
SilkAir	4
Tibet Airlines	14
Tigerair	2
West Air (China)	1

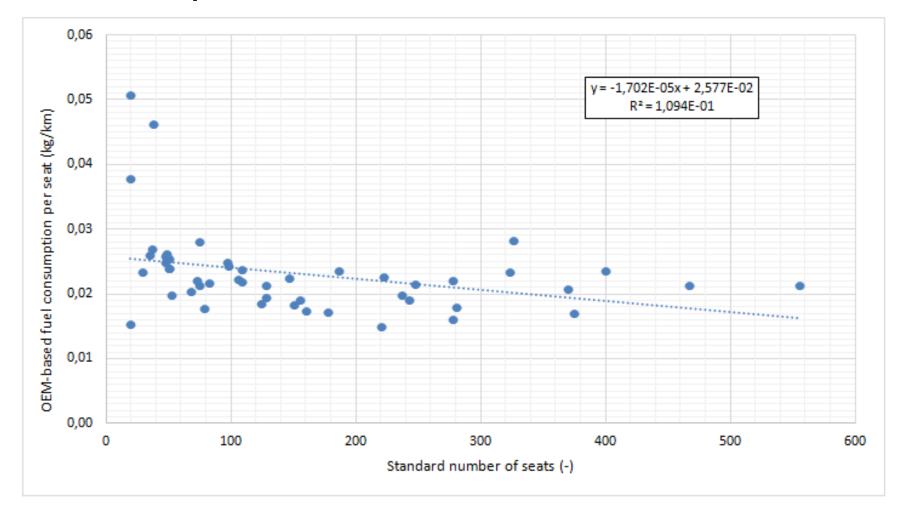
Dart Airlines	1
EasyJet	133
EasyJet Switzerland	11
Ellinair	2
Finnair	9
Germania	8
Germania Flug	2
Germanwings	43
Hamburg International	(2)
Helvetic Airways	1
Iberia	16
Lufthansa	30
Niki	5
Rossiya	26
S7 Airlines	20
242	1

147 different aircraft types and26000 aircraft in database

https://www.flightglobal.com/asset/12798

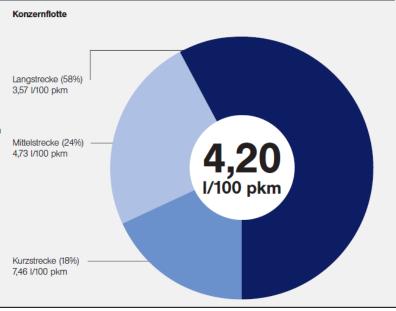
$$\left(\frac{n}{n_{max}}\right)_{in \quad service} = 1 - a \cdot e^{b\left(\frac{n}{n_{max}}\right)_{type}} \qquad a = 0.748$$

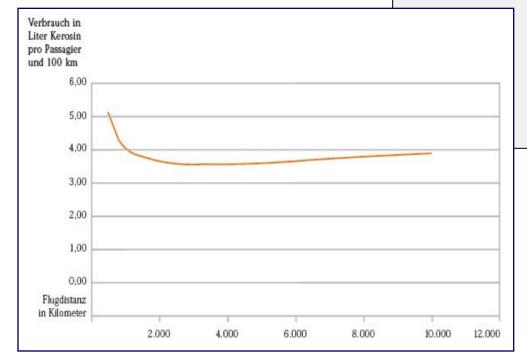
$$b = -0.0480$$


Some of the most operated 49 types where selected to describe 90% of all passenger aircraft (n_{seat} > 14).

49
payload-range
diagrams
evaluated

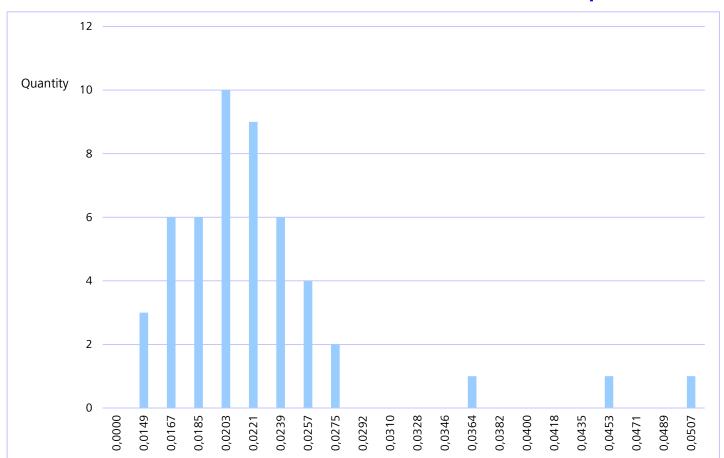
Method to quickly determine cruise altitude from basic data




Durchschnittlicher spezifischer Treibstoffverbrauch in I/100 pkm (Kreismitte) sowie die Anteile der verschiedenen Verkehrsgebiete (Kreissegmente) am gesamten Passagiertreibstoffverbrauch der aktiven Flotte 2010

Spezifischer Treibstoffverbrauch Passagierbeförderung 2010

Definition der Verkehrsgebiete: Langstrecke über 3.000 km Mittelstrecke 800 bis 3.000 km Kurzstrecke unter 800 km


Lufthansa 2010

DLR 2000

21 equal intervals

Normalized OEM-based fuel consumption per seat (kg/km)

Rating scale for the fuel consumption per seat (kg/km)

Rating	Range		Normalized to 0-1	
	min	max	min	max
\mathbf{A}	0,01493	0,01772	0	0,0781
В	0,01772	0,01983	0,0781	0,1370
С	0,01983	0,02131	0,1370	0,1783
D	0,02131	0,02246	0,1783	0,2106
E	0,02246	0,02392	0,2106	0,2514
F	0,02392	0,02602	0,2514	0,3099
G	0,02602	0,05070	0,3099	1,000

7 unequally spaced intervals for categories A to G with the same number of aircraft in each category

Aircraft fuel combustion

Fuel C_nH_m+S

Ideal combustion: $CO_2 + H_2O + N_2 + O_2 + SO_2$ Air $N_2 + O_2$ Real combustion:

 $CO_2+H_2O+N_2+O_2+NO_X+UHC+CO+C_{soot}+SO_X$

			UHC 4%	Soot 0.1%
				CO 11.8%
	Combustion	H₂O 27.6%	0.4%	
O ₂ 16.3%	products 8.5%	CO ₂ 72%		NO _x 84%
N ₂ 75.2%		(SO _x ~0.02%)]	Residual products of non-ideal combustion

Species	Emission Index (kg/kg fuel)
CO_2	3,16
H_2O	1,23
SO_2	1,23 2,00 · 10 ⁻⁴ 4,00 · 10 ⁻⁵
Soot	4,00 · 10-5

IPCC1999

http://www.ipcc.ch/ipccreports/sres/aviation/

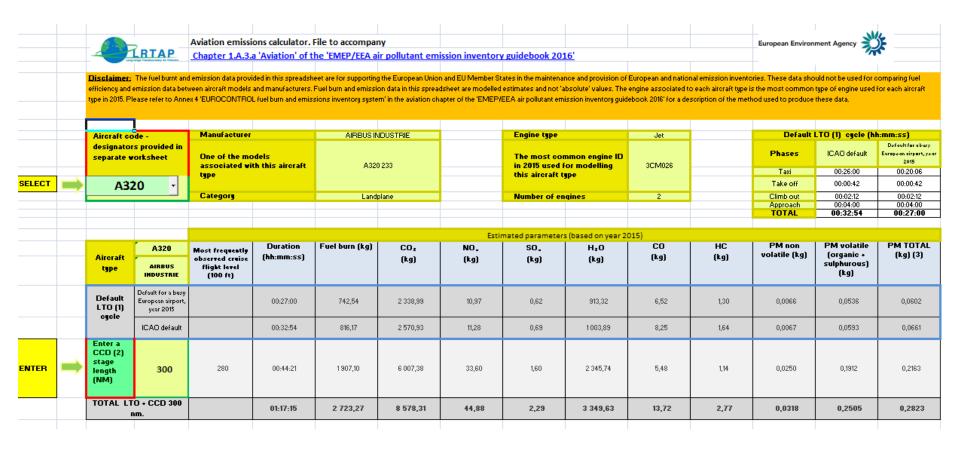
EEA 2016

http://www.eea.europa.eu/publications/emep-eea-guidebook-2016

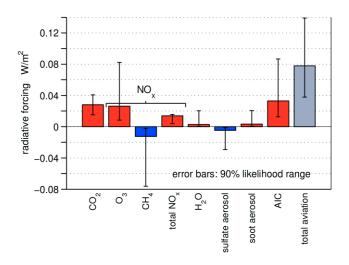
European Environment Agency

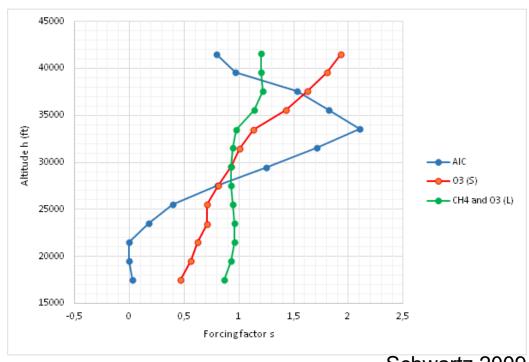
European Monitoring and Evaluation Program (EMEP) http://www.emep.int

European Environment Agency http://www.eea.europa.eu/publications/emep-eea-guidebook-2016


Users will find two Excel files:

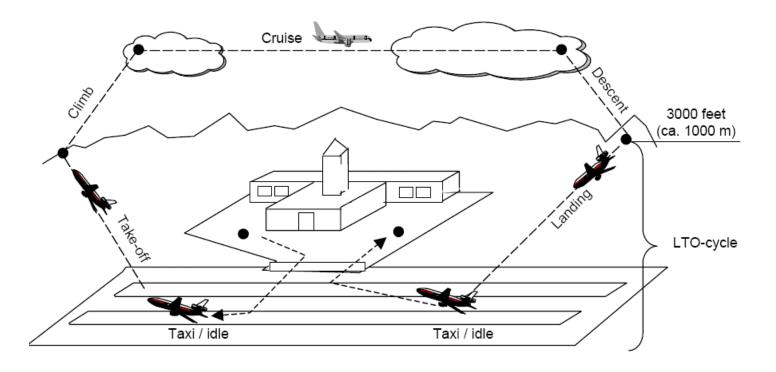
- Master emission calculator
- LTO emission calculator


Height (feet)	Fuel burnt	NO _x , UHCs and	CO ₂ , H ₂ O and SO _x	VOCs
> 3 000 CCD	BADA	BFFM2	Proportional to the mass of fuel	Proportional to the mass of UHCs
≤ 3 000	AEED and other da	tabases	burnt	generated



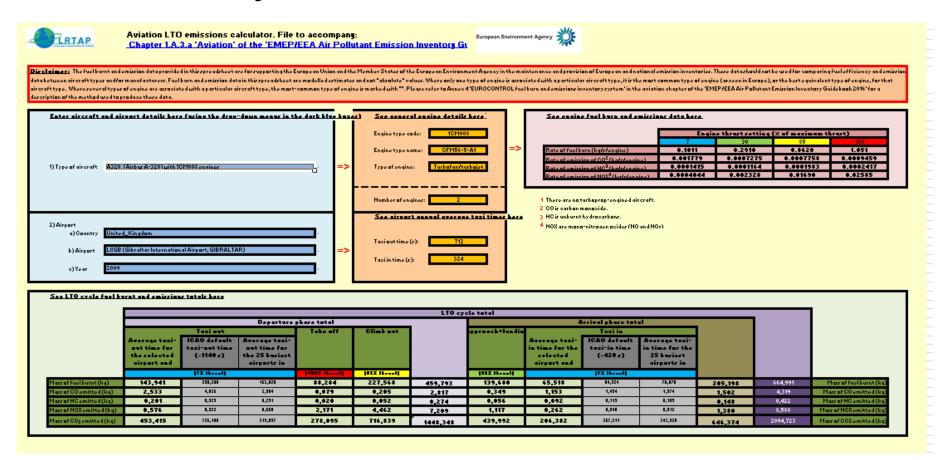
IPCC 1999

... more details ...



Schwartz 2009 http://www.enu.kz/repository/2009/AIAA-2009-1261.pdf

This added to ReCiPe to include the Altitude Dependency


Local Air Quality

Definition of the landing and take-off cycle (LTO)

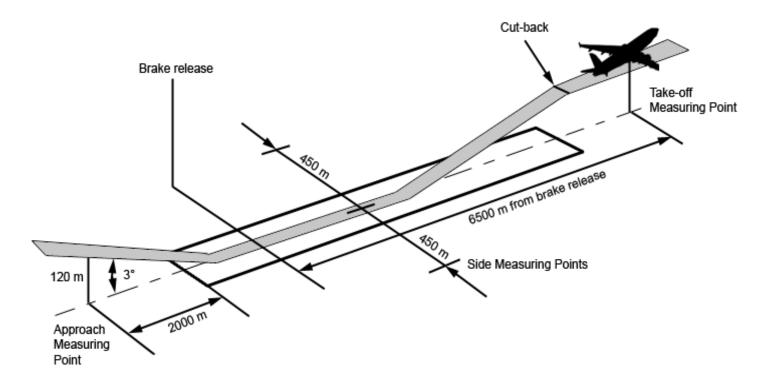
Local Air Quality

Local Air Quality

Characterization factors of ReCiPe

Midpoint category	NO _x	SO ₂	PM	CO	HC
Photochemical oxidant formation (ozone)	1	0,081	-	0,046	0,476
Particulate matter formation	0,22	0,20	1	_	_

... more details ...

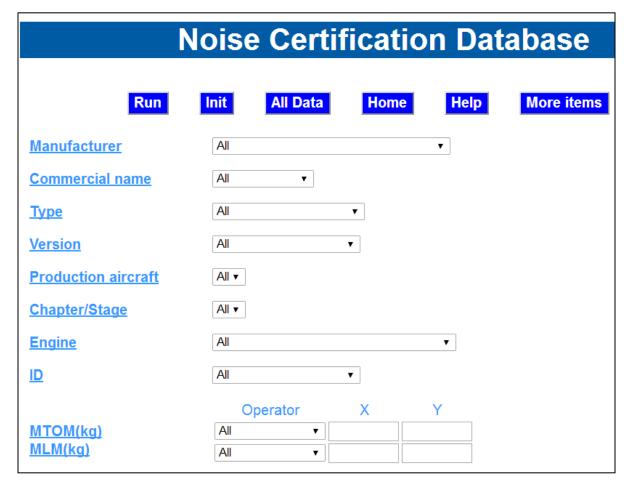

Ozone :
$$NMVOC_{LTO} = 1 \cdot (NO_x)_{LTO} + 0.081 \cdot (SO_2)_{LTO} + 0.046 \cdot (CO)_{LTO} + 0.476 \cdot (HC)_{LTO}$$

PM:
$$(PM_{equivalents})_{LTO} = 0.22 \cdot (NO_x)_{LTO} + 0.20 \cdot (SO_2)_{LTO} + 1 \cdot (PM)_{LTO}$$

$$(PM)_{LTO} \text{ calculated from "smoke number"}$$

But: Only NOx enters the overall rating

Noice



Reference points for the noise measurement

Noice

... more details ...

http://noisedb.stac.aviation-civile.gouv.fr

The Tool

General Information				
Aircraft type	A320			
Airline	Aeroflot			
Engine type	CFM56-5B4/P			
Thrust (kN)	120,1			
MTOW (kg)	75500			
Amount of Seats	140			

Trave	l Class Ratin	g	
Class	Pitch (in)	Width (in)	Seats
Economy	31	18	120
premium economy	0	0	0
Business	38	21	20
First	0	0	0
Total amount of seats			140
S _{EC} (in ²)			558
S _{PEC} (in ²)			0
C _{n ~} (in ²)			702

Noise Rating Jets Lateral Flyover Approach Noise Level (EPNdB) 93,5 84,7 95,5 96,9 100,6 Noise Limit (EPNdB) 91.6 Level/Limit 0,964912281 0.924672489 0,949304175 0,9463 Average Normalized 0-1 0,7040

... more details ...

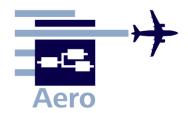
... more details ...

Local Air Quality Rating	
Fuel LTO cycle (kg)	408
LTO NO _x (g)	5641
LTO SO _x (g)	81,6
LTO HC (g)	818
LTO CO (g)	4123
Smoke number T/O	5,4
Smoke number C/O	4,1
Smoke number App	0,2
Smoke number Idle	0,5
Fuel Flow T/O (kg/sec)	1,132
Fuel Flow C/O (kg/sec)	0,935
Fuel Flow Ann (kg/sec)	0.312

Fuel Consumption Rating	
$R_1(km)$	3882
$m_1(kg)$	19750
$R_2(km)$	5200
$m_2(kg)$	16125
dr (km)	1318
dm (kg)	3625
1/SAR (kg/km)	2,750379363
Fuel consumption (kg/km/seat)	0,01965
Normalized 0-1	0,1318

Summary & What Next?

Summary


- An "Ecolabel for Aircraft" has been defined (ISO, ICAO, ...)
- Based on simplified Life Cycle Assessment (LCA)
- Fuel Consumption
 - o Source of Information: Payload & Range Diagram (directly from OEM)
- Global Warming
- Local Air Quality
- Noise

What Next?

- Final check; final ideas; finalizing the method
- More Examples
- "Governing Body" ???
- To go "massive" public ???

Contact

info@ProfScholz.de

http://www.ProfScholz.de

