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Abstract 33 

Small and intermediate-size pelagic fisheries are highly impacted by environmental variability 34 

and climate change. Their wide geographical distribution and high mobility makes them more 35 

likely to shift their distribution under climate change. Here, we explore the potential impact of 36 

different climate change scenarios on the four main commercial pelagic species in the North-37 

East Atlantic (NEA): Atlantic mackerel (Scomber scombrus), European sprat (Sprattus 38 

sprattus), Atlantic herring (Clupea harengus) and blue whiting (Micromesistius poutassou). 39 

We used a process-based fisheries model (SS-DBEM), where all the target species were 40 

exploited at their maximum sustainable yield (MSY), to project future potential catches under 41 

a high and low future greenhouse gas scenario (RCP 2.6 and 8.5, respectively). Two ocean 42 

biogeochemical models (GDFL and MEDUSA) were used to force the environmental 43 

conditions. Mackerel and sprat are projected to have increases in a potential catch under both 44 

scenarios. Herring and blue whiting are projected to increase under the RCP2.6, but future 45 

projections under RCP8.5 show mixed responses with decreases or no changes forecasted. 46 

Overall, the potential catch is projected to increase in the northern area of the NEA but is 47 

projected to decrease in the southern area. These projected changes are mainly driven by 48 

changes in temperature and primary production. Shifts in the distribution of pelagic resources 49 

may destabilize existing international agreements on sharing of straddling resources as 50 

exemplified by the dispute in sharing of quota for Atlantic mackerel. Novel climate-ready 51 

policy approaches considering full species distribution are needed to complement current 52 

stock-based approaches. 53 

  54 
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Introduction 55 

The North Atlantic sustains some of the largest populations of commercially exploited fish 56 

stocks in the world (Trenkel et al., 2014). Four temperate-boreal pelagic species account for 57 

more than 65% of the total catches and 95% of pelagic species catch in the North-East Atlantic 58 

(NEA) (Merino et al., 2014, Trenkel et al., 2014): Atlantic herring (Clupea harengus), Atlantic 59 

mackerel (Scomber scombrus), European sprat (Sprattus sprattus) and blue whiting 60 

(Micromesistius poutassou). Atlantic mackerel (Scomber scombrus), European sprat (Sprattus 61 

sprattus), Atlantic herring (Clupea harengus) and blue whiting (Micromesistius poutassou).  62 

These species are widely distributed and subject to large annual migrations (Corten, 2002; 63 

Ruzzante et al., 2006; Huse et al., 2010). Fisheries catch statistics from International Council 64 

for the Exploration of the Sea (ICES) database (http://ices.dk/marine-data/dataset-65 

collections/Pages/default.aspx) during the period 2006-2013 show that the eastern ICES areas 66 

in the North Atlantic tend to support higher catches of herring (Fig. 1) whereas western ICES 67 

areas in the NEA are more dependent on blue whiting. Mackerel catches are more concentrated 68 

on the mid-northern ICES areas while sprat catches concentrate in the Baltic Sea (ICES area 69 

III). Norway has the highest  catches for blue whiting, herring and mackerel but its sprat catches 70 

are small. Denmark exploits more sprat and herring while catching a small proportion of the 71 

rest of the species. Harvesting countries of blue whiting, herring and mackerel are Norway, 72 

Russia, Iceland and Faroe Islands. Historic records show that the Netherlands had a blue 73 

whiting fishery in the past. Between 2014-2017, the top 5 exploiters countries for mackerel 74 

were also the United Kingdom, Norway, Iceland, Russia and Faeroe Islands, whereas the main 75 

sprat catches were from Denmark, Poland, Russia and Latvia. Despite other Bboreal/arctic 76 

stocks dealt with, such as  summer spawning herring off Iceland, capelin  stocks 77 

(Greenland/Iceland/Jan Mayen and the Barens Sea), sprat  and other southern small pelagic 78 

stocks (e.g. anchovy, sardine and horse mackerel) dealt with are far less important in terms of 79 
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biomass catches, butthey are important for the local economy of local economic importance 80 

and have a major ecological role to play in the NEA. 81 

 82 

Sprat (Sprattus sprattus) follow regular seasonal migrations and occasionally form huge 83 

aggregations (Henderson and Henderson, 2017). Mackerel performs extensive annual 84 

migrations with distinct spawning, feeding, overwintering and nursery areas (Boyd et al., 2018; 85 

Brunel et al., 2018). Blue whiting performs seasonal and diel vertical migrations (Gonçalves et 86 

al., 2017). Herring also undergo extensive migrations between feeding and spawning grounds 87 

(Kotterba et al., 2017). Historical collapses and recoveries of pelagic fish stocks have been 88 

attributed to a combination of climate and fishing effects and, recruitment success (Planque et 89 

al., 2010; Fernandes et al., 2010; Fernandes et al., 2015). Besides, overexploitation has been 90 

found to decrease fish stock resilience to environmental variability and climate change 91 

(Anderson et al., 2008; Bates et al., 2014; Hsieh et al., 2006, Ottersen et al., 2006). Small and 92 

intermediate-size pelagic fish species are recognized as key elements in marine food chains 93 

(Cury et al., 2011; Kearney et al., 2012) and distribution changes could have significant 94 

conservation and management implications (Astthorsson et al., 2012).  95 

 96 

The spawning ability and reproductive cycle of adult herring has often been linked to 97 

temperature conditions (Jennings and Beverton, 1991; Winters and Wheeler, 1996; MacKenzie 98 

et al., 2007), salinity (Rönkkönen et al., 2004) and food availability (Parmanne et al., 1994; 99 

Hufnagl and Peck, 2011). Herring stocks in the NEA tend to have inshore nursery areas (Geffen 100 

et al., 2011). Warmer temperature favoured higher sprat abundance (MacKenzie et al., 2007), 101 

whereas low salinity reduces its abundance despite the species’ tolerance to a wide range of 102 

salinity (Peck et al., 2012). Adult mackerel also shows affinity to warm water (Beare and Reid, 103 

2002; Jansen et al., 2012; Hughes et al., 2014; Bruge et al., 2016). Predation by mackerel is 104 
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suggested to affect the distribution of blue whiting (e.g. Payne et al., 2012), and changes in 105 

distribution and abundance have also been associated with a strong subpolar gyre (Hátún et al., 106 

2009; Payne et al., 2012) and associated oceanographic processes.   107 

 108 

Ecosystem and population models based on size-spectrum theory (Blanchard et al., 2012; 109 

Jennings et al., 2008), habitat suitability theory (Kaschner et al., 2006; Phillips et al., 2006) or 110 

a combination of both (Fernandes et al., 2013a) are regularly used for projecting future 111 

scenarios of widely distributed fish species. These models suggest that temperature and primary 112 

production are often the main drivers of change in species’ distribution and abundance at global 113 

(Jennings et al., 2008; Cheung et al., 2011; Barange et al., 2014; Chust et al., 2014) and 114 

regional scales (Fernandes et al., 2017; Fernandes et al., 2016; Speirs et al. 2016). However, 115 

despite capturing observed global decadal trends with some success (Fernandes et al., 2013; 116 

Jennings and Collingridge, 2016), these models are not precise and realistic enough to inform 117 

short-term fisheries management (Dickey-Collas et al., 2014). This is partly because these 118 

models do not consider all the drivers and local geographical characteristics that impact specific 119 

species or stocks (Planque et al., 2011). Despite the complexity of these models, there are still 120 

processes that may be underrepresented, such as top-down effects (Kearney et al., 2012), which 121 

are often represented as part of a mortality term. Future projections are not only impacted by 122 

uncertainties stemming from unresolved and uncertain processes in the models, but also by 123 

natural variability and scenario uncertainty (Payne et al., 2016; Cheung et al., 2016a, Mullon 124 

et al., 2016). These points highlight the limitations in predicting the future changes in species 125 

biomass and distribution, but it also shows that there is an increased capacity to consider long-126 

term scenarios of change and its implications as well as the short-term forecast improvements 127 

(Fernandes et al., 2015; Trifonova et al., 2015). 128 

 129 
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 130 

Considering the importance of widely distributed pelagic species, high mobility, their 131 

sensitivity to environmental changes and exploitation patterns and their key role as prey to 132 

other resources (Trenkel et al., 2014; Cury et al., 2000), this paper aims to assess the impact of 133 

climate change on the long-term potential catches of the most abundant pelagic species and the 134 

likely implications for fisheries management.   135 
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Methods 136 

A multispecies fisheries model (Fernandes et al., 2013a) which is a combination of a size-137 

spectrum model and a dynamic bioclimate envelope model (thereinafter the SS-DBEM) was 138 

used to provide estimates of fish production potential under climate change scenarios. SS-139 

DBEM is driven by the environmental variables obtained from two ocean biogeochemical 140 

models that are run under a low and high greenhouse gas emission scenario (RCP2.6 and 141 

RCP8.5) over the 21st century considering multiple mechanisms summarized in Table I and 142 

described in following sections. Unless otherwise stated, we show 20-year averages of potential 143 

catches in the figures and tables to suppress the interannual-to-decadal variability of species, 144 

as we are interested in multi-decadal to centennial changes. However, figures with time-series 145 

show yearly values with the full modelled variability. The main data (results of model 146 

projections) is in the process of being made public through the European Copernicus service 147 

(https://climate.copernicus.eu/). 148 

  149 

Species-based fish model  150 

We used the Dynamic Bioclimate Envelope Model (DBEM), a combined mechanistic-151 

statistical approach that has been applied to a large number of marine species globally 152 

(Fernandes et al., 2013a; Mullon et al., 2016; Fernandes et al., 2017) and regionally (Jones et 153 

al., 2013; Fernandes et al., 2016; Fernandes et al., 2017). This model projects changes in 154 

species distribution and abundance with explicit consideration of mechanisms of population 155 

dynamics, dispersal (larval and adult) and ecophysiology (see Table I), under changes in ocean 156 

temperature, salinity, upwelling, sea-ice extent and habitats (Cheung et al., 2011; Cheung et 157 

al., 2016b) considering all the species distribution (not specific stocks of each species 158 

separately). Specifically, we employed a multi-species version of the model (SS-DBEM) that 159 
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incorporated species interactions based on size-spectrum (SS) theory and habitat suitability, the 160 

SS-DBEM (Fernandes et al., 2013a). Therefore, the model considers predation and food 161 

availability through size-spectrum energy transfer from primary producers to consumers of 162 

progressively larger body size. Despite yearly outputs, pelagic species have two internal time 163 

steps to account for interannual seasonality and both, bottom and surface environmental drivers 164 

are considered since these species have pelagic and demersal life stages. For example, herring 165 

is a demersal spawner (Lambert and Ware, 1984; Axelsen et al., 2000) whereas mackerel, sprat 166 

and blue whiting are pelagic spawners (Coombs et al 1981; Lambert et al., 1984; Fréon et al., 167 

2005).  168 

 169 

Fishing practices are considered in relation to the concept of maximum sustainable yield (MSY; 170 

Table I). MSY is defined as the highest average theoretical equilibrium catch that can be 171 

continuously taken from a stock under average environmental conditions (Hilborn and Walters, 172 

1992). In our application, the fishing mortality under MSY (FMSY) values were obtained from 173 

FishBase (www.fishbase.org) assuming that FMSY is approximately equal to 0.4 * M (natural 174 

mortality). This equation is used instead of the FMSY from stock assessments because SS-175 

DBEM models the whole species distribution (both inside and outside NEA) instead of 176 

modelling individual stocks. Therefore the whole species distribution (both inside and outside 177 

NEA) is modelled given that widely distributed species do not follow human management 178 

boundaries (Baudron et al., 2020). However, this equation values are in general consistent with 179 

values from stock assessments as reviewed below in the discussion section.  180 

 181 

The larvae recruitment depends on temperature and currents that are known mechanisms 182 

affecting the mortality or success of herring, mackerel, blue whiting and sprat (Alvarez and 183 

http://www.fishbase.org/


9 

 

Chifflet, 2012; Fernandes et al., 2015; Huse. 2016; Martin et al., 2016; Henderson and 184 

Henderson, 2017). The model calculates larvae dispersal through ocean currents and diffusion 185 

assuming that pelagic larvae disperse passively from surrounding ‘source’ areas through ocean 186 

surface current and diffusion (Cheung et al., 2008; Table I). The magnitude of larval 187 

recruitment is dependent on pelagic larval duration (PLD), strength and direction of ocean 188 

currents and diffusivity (Table I). PLD, expressed in days, is calculated from an empirical 189 

equation established from a meta-analysis of PLD from 72 species of fish and invertebrates 190 

(O’Connor et al. 2007). Based on the calculated PLD and ocean current velocity data, the model 191 

calculates dispersal of pelagic larvae over time through diffusion and advection. Diffusion and 192 

advection of ocean currents are important factors determining dispersal of pelagic larvae of 193 

marine organisms (Possingham & Roughgarden 1990; Gaylord & Gaines 2000; Bradbury & 194 

Snelgrove 2001; Gaines et al. 2003). The temporal and spatial patterns of pelagic larval 195 

dispersal were modelled by a two-dimensional advection-diffusion equation (Table I; Sibert et 196 

al. 1999; Gaylord & Gaines 2000; Hundsdorfer & Verwer 2003). 197 

 198 

 199 

 200 

Ocean biogeochemical models 201 

Ocean environmental conditions from two ocean biogeochemical models of different 202 

complexity were used to force the species-based fisheries model SS-DBEM: the NEMO-203 

MEDUSA (NEMO, Nucleus for European Modelling of the Ocean and MEDUSA, Model of 204 

Ecosystem Dynamics, nutrient Utilisation, Sequestration and Acidification, Yool et al., 2013) 205 

and the GFDL ESM2M (GFDL, Geophysical Fluid Dynamics Laboratory and, ESM2, Earth 206 
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System Model z coordinate, Dunne et al., 2012; Dunne et al., 2013).;.Both ocean 207 

biogeochemical models simulate changes in physical and biogeochemical ocean conditions 208 

over the historical period and the 21st century under two different greenhouse gas scenarios 209 

(RCP2.6 and RCP8.5). These ocean conditions include seawater temperature, salinity, oxygen, 210 

alkalinity, primary production and horizontal and vertical water currents  and affect the 211 

ecological processes in the SS-DBEM model such as the life-history, habitat, population 212 

dynamics and dispersal (Fernandes et al., 2013a; Queirós et al., 2016).  213 

 214 

NEMO-MEDUSA biogeochemical model 215 

The NEMO-MEDUSA is a global ocean model (Yool et al., 2013) with a half-degree ocean 216 

resolution. It simulates the physical environmental conditions and a size-structured ecosystem 217 

of small phytoplankton and zooplankton. The NEMO-MEDUSA explicitly includes the 218 

biogeochemical cycles of nitrogen, silicon and iron nutrients as well as the cycles of carbon 219 

which are not used directly by the fish model but influence the primary production. The 220 

NEMO-MEDUSA model was initialized using standard biogeochemical climatological fields 221 

(Garcia et al., 2010; Key et al., 2004) and simulated under surface atmospheric forcing derived 222 

from the Met Office Unified Model simulations (HadGEM2 configuration).  223 

 224 

GFDL biogeochemical model 225 

The GFDL ESM2M is a global coupled atmosphere-ocean general circulation model (Dunne 226 

et al. 2012, 2013) including a marine biogeochemistry model. The global ocean model has an 227 

approximately 1° horizontal resolution and it describes the cycles of carbon, nitrogen, 228 

phosphorus, silicon, iron, oxygen, alkalinity and lithogenic material and considers three 229 

phytoplankton functional groups.  230 
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Greenhouse gas emission scenarios 231 

The two ocean biogeochemical models were run under two greenhouse gas emission scenarios 232 

(Moss et al., 2010): a strong mitigation scenario (Representative Concentration Pathways 233 

RCP2.6) with an atmospheric CO2 concentration of 421 ppm by the end of the 21st century, and 234 

”the business as usual” high greenhouse gas emissions scenario (RCP8.5) with atmospheric 235 

CO2 concentrations of 936 ppm by the end of this century.  236 

 237 

Validation of the species projections  238 

Standardised and long-term fisheries surveys from 1977 to 2007, collated by Simpson et al. 239 

(2011), were used to cover the breadth of fisheries for this study. The survey data available for 240 

validation included AFBI Irish Sea Q1 and Q3, Cefas Celtic Sea, Cefas North Sea (autumn) 241 

and ICES IBTS North Sea (spring) datasets. The raw data are now freely available at the ICES 242 

website (www.ices.dk/marine-data/data-portals/Pages/DATRAS.aspx). Data from demersal 243 

surveys are widely used to estimate abundance (e.g. ICES, 2014d; Peck et al., 2013) and 244 

distribution (e.g. Huse et al., 2008; Jansen et al., 2012) of pelagic species. Given that blue 245 

whiting, sprat and herring have all been shown to undertake diel migrations (Cardinale et al., 246 

2003; Post et al., 2019)  resulting in greater day trawl catches (Petrakis et al., 2001) and that 247 

survey trawl data has been shown to be a reliable indicator of pelagic species abundance (Fig.4, 248 

Suppl. Mat.; Montero-Serra et al., 2015; ICES, 2015; Peck et al., 2013) and distribution (Huse 249 

et al., 2008; Jansen et al., 2012), the dataset used in this study are considered more reliable 250 

when compared to landings (herring) and acoustic (sprat) data (Fig.4, Suppl. Mat.; Montero-251 

Serra et al., 2015). Despite these studies, it is acknowledged that bottom trawl surveys are not 252 

designed to target pelagic species, and that additional abundance estimates should be extracted 253 

from acoustic surveys (e.g. ICES, 2015). However, acoustic data is not consistently available 254 
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over the study area and timeframe despite recent important advances in its harmonization and 255 

public availability are promising for its use in ecosystem modelling and validation. For 256 

example, the ICES Working Group on Acoustic and Egg Surveys for Sardine and Anchovy in 257 

ICES areas 7, 8 and 9 (WGACEGG) is developing a not yet public protocol with the title 258 

“Manual for Acoustic Surveys in Ices Areas 6, 7, 8 and 9”.  259 

 260 

The total number of individuals for each species was tallied across size classes for each survey 261 

haul. An average catchability estimate was applied to similar pelagic species for all size groups 262 

using total biomass and catch estimates from Sparholt (1990): 263 

 264 

Corrected abundance= uncorrected abundance * (1 / catchability) 265 

 266 

To control for the differing effort between surveys the swept area for each haul was 267 

calculated using estimates of wing-spread for Grand Ouverture Vertical (GOV) trawls from 268 

Fraser et al. (2007) multiplied by the distance over which the hauls were undertaken scaled to 269 

km2 following the equation: 270 

 271 

Area swept km2 = (((6.85 * (log(depth))) + 5.89) * distance) / 1000000 272 

 273 

Depth and distance were measured in meters, being the distance based on haul duration and 274 

speed (assumed tow speed 4 knots for duration of haul, except for North Ireland data where the 275 

data is defined as the number of individuals/3nm).  276 

 277 

All the survey data is aggregated into a cell grid of 0.5 x 0.5 degrees to match the fish model 278 

grid. To compare projected changes with observations from surveys, a time-series per cell for 279 
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each species have been compared. Besides, time-series aggregating all the spatial cells with 280 

survey data for each species is compared to estimate the long-term performance of wider areas. 281 

The time-series are normalized between 0 and 1 to consider that the model projects relative 282 

change and to have error estimates in an interval that are easier to understand. Since multiple 283 

species at multiple cells were considered, we needed to ensure that results are comparable, 284 

therefore,time-series of survey data with more than 3 years of missing data were not included. 285 

As a result, not enough data to assess the simulated changes in blue whiting was available. 286 

Then, time-series from the models were extracted for those years, species and cells where there 287 

was commonly available data from the surveys at the 0.5x0.5 degrees and yearly resolution. 288 

This restricted the data that could be analysed to the period from 1982 to 2007 (26 years) and 289 

the following 3 pelagic species (out of the 4 modelled here): herring, mackerel and sprat. These 290 

time-series were produced for both, the survey data and the model projections, and were 291 

compared by calculating the average error (AE) between them: 292 

 293 

AE =
∑ |pj-sj|j

j
,                                                                                                                            294 

 295 

where, p is the biomass projected in the SS-DBEM model in a particular year for each species, 296 

and s is the biomass from the survey and j is the number of years with data.   297 
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Results 298 

Performance of the fish projections 299 

General trends are well simulated by the models when aggregating over big areas (Table II and 300 

Fig.2). However, local scale simulations are more complicated (grid cell level). Errors at cells 301 

level range between 0.43 and 0.49, whereas errors aggregating all the cells with survey data 302 

drops to the range 0.23 to 0.41 (Table II). In general, projections for herring and mackerel using 303 

GFDL biogeochemical model tend to have lower errors than projections using NEMO-304 

MEDUSA’s output. However, sprat projections using the NEMO-MEDUSA model at both, cell 305 

and aggregated levels, are higher than those projected with the GFDL. Moreover, none of the 306 

differences between biogeochemical model projections is statistically significant (paired t-test). 307 

Therefore, it cannot be concluded that projections driven by a particular biogeochemical model 308 

are better than the other.  309 

 310 

The large variance in the error highlights the need to consider the model projections as averages 311 

over periods (e.g. 20-year averages) instead of considering the modelled inter-annual 312 

variability. This can be observed in Figure 2 where variability projected by the model and that 313 

observed in surveys does not match at the year by year scale, however, similar decadal trends 314 

are observed. This outcome drives our approach of showing results as an ensemble of both 315 

model projections (Fig. 3) to show the inherent uncertainty from the projection of 316 

environmental variables in the biogeochemical models into the species model. 317 

 318 

  319 
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Projections of potential catch and its distribution under two emission scenarios 320 

Herring catches were projected to vary by ±5-10% relative to the present day (2015) averaged 321 

over the North-East Atlantic, but the projections diverge between the two gas emission 322 

scenarios from 2070 onwards (Fig. 3a). Under the low greenhouse gas emission scenario, 323 

herring is projected to increase by up to 15% by the end of this century, while under the high 324 

greenhouse gas emission scenario, herring is projected to decrease by up to 35%. On the 325 

contrary, mackerel was projected to increase in both future scenarios:  up to 5-10% until 2040 326 

(Fig. 3b) and much higher increases 15-30% by the end of the century. The model simulates 327 

increases in catch trends for mackerel (Fig. 3b) and sprat (Fig. 3c). However, projections of 328 

sprat have larger uncertainties in the first decades than other species projections. Sprat would 329 

be benefited from changes in environmental conditions under a low gas emission scenario and 330 

showing the most significant differences across.  Catch of blue whiting is projected to increase 331 

by up to 10% in a low emission scenario but it is projected to decrease by up to 40% under a 332 

high emission scenario (Fig. 3d). However, there is considerable uncertainty in projections 333 

under the high scenario and results need to analyse carefully.  334 

 335 

Catch projections for all the pelagic species show consistent increases under a low emission 336 

scenario by the end of the century (Fig. 3). The projections under the high emissions scenarios, 337 

however, are more uncertain than low emission scenarios and sometimes do not even agree on 338 

the sign of changes. Herring and blue whiting show the lowest uncertainty in the medium term 339 

to 2040 (Fig. 3a,d), whereas mackerel and sprat show higher uncertainty in the medium term 340 

between 2040 and 2080 (Fig. 3b,c). The uncertainties in potential catches are mainly driven by 341 

the high uncertainty in primary production projections (Table III). Despite a general increase 342 

in temperature in all ICES areas, northern areas experience generally lower increases than 343 
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southern areas in the shorter term (2020-2039).  Primary production increases in areas II and 344 

III and decreases everywhere else despite high uncertainty. Area III, which contains the highest 345 

increases, shows the lowest uncertainty in terms of primary production estimates.   346 

Figure 4 shows the changes in species distributions for the periods 2020-2039, 2050-2069 and 347 

2080-2099 relative to the present baseline period (2000-2019) under the high-emission 348 

scenario. Blue whiting, herring and mackerel have a potential for habitat displacement towards 349 

the Arctic Ocean, with reductions in the southern area of distribution, especially for herring 350 

and blue whiting. For capelin there are no agreement between the models since GFDL projects 351 

in general slight increases for both emission scenarios with decadal oscillations, whereas 352 

Medusa show strong declines in the high emission scenarios for most of the ICES areas (higher 353 

declines in northern areas of NEA). Sprat shows a decline in catch potential in areas IV, VI and 354 

VII, but not a corresponding increase in northern regions. There is a consistent pattern showing 355 

that northern latitudes will benefit whereas southern areas will be negatively impacted in terms 356 

of all species catches. ICES area IIb is the area that shows the highest increases with gains in 357 

blue whiting, herring and sprat. Sprat increases are concentrated at the more southerly end of 358 

the northern regions IIa and V, areas that show other three species. Herring is expected to show 359 

the highest changes by 2020-2039 and 2050-2069, both positive and negative, in terms of the 360 

amount of area experiencing changes. Mackerel will be the second species more impacted by 361 

2050-2069. blue whiting is projected to increase and sprat to decrease, with a few local 362 

exceptions. Herring and mackerel show the highest changes with dramatic northern shifting by 363 

the end of the century. Overall, the lower emission scenarios show similar spatial patterns in 364 

terms of areas of highest increases and decreases for each species with some differences: (i) 365 

slower rates of changes with almost no change by 2020-2039, (ii) changes in 2050-2069 similar 366 

to the high emission scenario between 2020-2039 and (iii) changes by the end of the century 367 

similar to the mid-century projections under the high emission scenario. The sparse catches 368 
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have concentrated mostly in the south-western areas. However, the potential catches decrease 369 

projected by the model in the future is consistent with the trend observed in the Baltic (ICES 370 

area III) catch data. Therefore, the model cannot be trusted to forecast the distribution of species 371 

precisely, but it is good for general trends over wide areas (e.g. ICES areas). 372 

 373 

  374 
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Discussion 375 

We show that under a MSY, the SS-DBEM projects a general increase in the potential catch for 376 

all widely distributed pelagic species in the short (by 2020) and the medium term (by mid-377 

century), but a decrease for herring and blue whiting by the end of the century under a high 378 

emission scenario (RCP8.5). Potential catch increase is projected in northern areas but 379 

decreases in southern areas mainly due to changes in temperature and primary production 380 

(Table III) simulated by two ocean biogeochemical models in response to climate change. For 381 

example, both models simulate a decrease in the Atlantic Meridional Overturning circulation 382 

under global warming, which leads to an overall reduction of ocean heat transport to the high 383 

North Atlantic and as a result to a reduced warming south of Greenland (Winton et al., 2013).  384 

 385 

Potential catch increases of pelagic species are projected over the 21st century, despite negative 386 

trends in total primary production in NEA southern areas. However, total fish biomass can 387 

decrease as shown in other studies (Cheung et al., 2009; Lotze et al., 2019) while biomass of 388 

small fish species increases (e.g. pelagic species considered in this study). This is because at a 389 

higher temperature the steepness of the relationship between the primary production and fish 390 

abundance will increase (Fernandes et al., 2016a).  Using a simple size-spectrum approach 391 

based on temperature and primary production (Jennings et al., 2008), an increase of 2oC in 392 

temperature (and at the same primary production level) can trigger a 20% decrease in total 393 

biomass, but an increase of smaller size fish abundance and biomass (Fernandes et al., 2016). 394 

This is consistent with higher trophic and benthic species projected to decrease as a result of 395 

warming and ocean acidification in southern areas of the NEA (Queirós et al., 2015; Fernandes 396 

et al., 2017, Lotze et al., 2019). The two biogeochemical models show agreement on the main 397 

trends and areas of impacts. The differences in the simulated physical and biogeochemical 398 



19 

 

conditions between the two models under the same future scenario may be explained by 399 

internal natural variability uncertainty or model uncertainty (Walters et al., 2005; Hawkins and 400 

Sutton, 2009; Frölicher et al., 2016; Cheung et al., 2016a; Frölicher et al., 2016).  401 

Figure 2 shows that we can trust more the model for herring and sprat because they are more 402 

able to reproduce the historical catches (goodness of fit), also considering that the SS-DBEM 403 

is not a statistical model where catch data has been used to drive the model (generalization 404 

power). However, it seems the model is less reliable for mackerel in comparison with the other 405 

species. Figure 2 does not show high uncertainty in the historical projections since there is 406 

small difference between the model run trends except for sprat that shows higher differences. 407 

Nevertheless, higher uncertainty is shown in the projections (Fig. 3), so that scenario 408 

uncertainty is expected to be higher than model internal variability. This study results are in 409 

agreement with empirical work which confirms that projected increases of mackerel in the 410 

Svalbard Archipelago (Berge et al., 2015). Furthermore, evidence of mackerel distribution 411 

changes in association with warmer temperatures across the North Atlantic have been recorded 412 

(Overholtz et al., 2011; Hughes et al., 2014; Montero-Serra et al., 2015(Montero-Serra et al., 413 

2015). Sprat abundance and size has been declining since 1980 (Henderson and Henderson, 414 

2017) due to changes in temperature and global climate patterns in the Bristol Channel which 415 

contains spawning and overwinter areas. A distribution shift of fish species can occur due to 416 

changes in habitat suitability, but there are additional processes involved (e.g. geographical 417 

attachment, species interactions or demographic structure) which are needed for a shift to 418 

happen or which can limit it (Planque et al., 2011). Therefore, a species may be able to move 419 

to new areas (Nøttestad et al., 2016) where it has not been previously observed or species can 420 

increase their abundance dramatically in areas where they have rarely observed due to density 421 

changes (Petitgas et al., 2012; Punzón et al., 2016). Both situations would produce a shift in 422 

the centroid of the species distribution. The SS-DBEM model used considers many of these 423 
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processes as detailed in Planque et al. (2011). The modelled shift in distribution is determined 424 

by changes in predicted carrying capacity of the species in each grid cell, while its shifts are 425 

the result of the spatial population dynamics (Cheung et al., 2016b). Firstly, carrying capacity 426 

of the population in a cell is positively related to habitat suitability and the energy from primary 427 

production that is available for the species with consideration of competition between species 428 

in the same cell which can limit shifts speed (Fernandes et al., 2013). Secondly, diffusion of 429 

the populations is also related to the gradient of habitat suitability between adjacent cells, 430 

resulting in an increase in net diffusion out of the cell if habitat suitability in adjacent cells is 431 

higher. Thirdly, population recruitment is determined by the dispersal of larvae which is 432 

dependent on surface ocean advection and pelagic larval duration, the latter is a function of 433 

temperature. Thus, as ocean conditions change, these three processes result in the change in the 434 

distribution of abundance of the species. 435 

 436 

The SS-DBEM model used do not account for the adaptation capacity of the species to changes 437 

in environmental conditions, due to the sparse knowledge available. This could slow the rate 438 

of changes or limit the spatial occurrence of these changes. Engelhard and Heino (2004) 439 

demonstrated substantial changes in phenotypic growth and maturation in herring, but a weak 440 

evolutionary response. While some studies investigate differences in spawning herring 441 

populations using genetic proxies (Jørgensen et al., 2005; King et al., 1987; McPherson et al., 442 

2003), herring spawning tactics also appear to be influenced by phenotypic variability 443 

(Jennings and Beverton, 1991; Winters and Wheeler, 1996). Herring have probably adopted 444 

different spawning seasons as one of their survival strategies (Melvin et al., 2009; Sinclair and 445 

Tremblay, 1984). Although it is established that in herring the process of first maturation is 446 

triggered by a combination of physiological (size condition of fish) and environmental cues 447 

such as temperature (Winters and Wheeler, 1996) and photoperiodic cycles (McPherson and 448 
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Kjesbu, 2012), the relative influence of genetics and environment on herring spawning 449 

behaviour (i.e. seasonal strategy) remains unresolved. Similarly, no evidence of climate 450 

change-induced genetic selection was found by Heath et al. (2012). 451 

 452 

Pelagic species have lower geographical barriers and higher capacities to change their 453 

distribution (Cheung et al., 2008; Trenkel et al., 2014) due to their wide distribution and pelagic 454 

habitat but they are also highly vulnerable to environmental variability, including multi-decadal 455 

regime shifts (Alheit et al., 2009; Barange et al., 2009; Chavez et al., 2003; Fernandes et al., 456 

2010; Hsieh et al., 2009).  This sensitivity to environmental variability is often linked to 457 

impacts on the recruitment success of pelagic species (Ibaibarriaga et al., 2007; Hátún et al., 458 

2009; MacKenzie et al., 2012; Payne et al., 2013; Bruge et al., 2016; Tsoukali et al., 2016). 459 

Atlantic herring, mackerel and blue whiting are migratory species that occupies nursery 460 

grounds during the early life stages and then migrates to feeding grounds (Blaxter and Holliday, 461 

1963; Corten, 2002; Ruzzante et al., 2006; Volkenandt et al., 2015). The areas of highest 462 

negative impact contain many of the key spawning areas of these pelagic species. For example, 463 

herring known spawning areas are in the East of Scotland and the Celtic sea (Damme and 464 

Bakker, 2014).  Although, mackerel spawning areas from Iberian Peninsula to the West of 465 

Ireland and Scotland (Brunel et al., 2018) would be less affected, strong impacts in the southern 466 

spawning areas around Iberian Peninsula are projected. Blue whiting spawning areas in the 467 

West of Ireland and Scotland (Gonçalves et al., 2017) would be less affected with potential 468 

positive impacts on local spawning in the Norwegian coast and the coast of Iceland. Similarly, 469 

local herring spawning in Norwegian coast might become more suitable (Berg et al., 2017). 470 

These results agree with the increase of northern spawning areas already forecasted decades 471 

ago (Johnson, 1977). Geographical attachment of migratory pelagic species to nursery and 472 

spawning areas has been observed and discussed (Petitgas et al., 2006; Brunel et al., 2017). 473 
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The life history characteristics of the pelagic species considered in this study render them 474 

having low to moderate vulnerability to fishing (Cheung et al., 2005; see also 475 

www.fishbase.org). These vulnerabilities to environmental variability and fishing complicates 476 

the assessment of the impacts of long-term climate change on these species, both in terms of 477 

distribution shifts and mortality (Petitgas et al., 2012; Shephard et al., 2014). One of the main 478 

examples is the anchoveta (Engraulis ringens), whose catches are highly variable and strongly 479 

dependent on the state of the El Nino Southern Oscillation index (FAO, 2016). The intensive 480 

fishing impacts in the variations of the stock abundance contributing to the amplification of the 481 

change magnitude (Fréon et al., 2008).  482 

 483 

Mackerel increases in northern latitudes have had direct economic consequences for Iceland, 484 

Greenland, Norway and Scotland and have raised disputes on catches allocations between these 485 

countries (Bazilchuk, 2010; Cendrowicz, 2010; Astthorsson et al. 2012; Jansen et al., 2016; 486 

Spijkers and Boonstra, 2017). Given the projected trends in mackerel and that other species 487 

may follow similar patterns, our work suggests that further disputes for widely distributed 488 

pelagic species quotas may occur, as other recent studies (Baudron et al., 2018). Brexit and 489 

politics can add difficulties to these tensions depending on the final agreement between UK 490 

and EU (Lubchenco and Grorud-Colvert, 2015; Boyes and Elliott, 2016). This could also have 491 

implications for fisheries of higher trophic level species that forage on pelagic species such as 492 

cod or haddock, marine mammals and seabirds (Köster et al., 2001; Mullowney and Rose, 493 

2014). In addition, these species could follow the pelagic species shift causing further 494 

management issues, but also conservation problems with polar species (Renaud et al., 2012).  495 

 496 
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Small pelagic fisheries in the Northeast Atlantic are managed partly by North-East Atlantic 497 

Fisheries Organization (NEAFC) and partly by the EU Common Fishery Policy, whose 498 

objective is to maintain or rebuild fish stocks to levels that can produce their MSY. This policy 499 

is already yielding stock improvements on European Atlantic fisheries (Cardinale et al., 2013), 500 

particularly in relation to widely distributed pelagic species (Fernandes and Cook, 2013). For 501 

example, Atlantic herring seems to have recovered from overexploitation faster than expected 502 

(Nash et al., 2009), though later studies have attributed the recovery to natural variability in the 503 

climate system (Drinkwater et al., 2014).  504 

 505 

ICES advice works on the stock level for each species giving different values of fishing 506 

mortality under MSY for some of the evaluated stocks. Herring historical estimates of 507 

sustainable fishing mortality advice (i. e., Fmsy) for most of the stocks is 0.25 except for a 508 

couple of stocks with 0.15 and 0.35 values respectively (ICES Stock Summary Database; 509 

http://www.ices.dk).  ICES summary database used to reports a value of 0.22 for the mackerel 510 

stock “mac-nea”, the 2014 ICES advice report a value of 0.25 (ICES, 2014b) and the latest 511 

2019 report shows a value of 0.23 (ICES, 2019a). For sprat the 2014 ICES advice report 512 

suggests the values 0.29 and the ranges 0.26-0.32 (ICES, 2014a) with the latest advice 513 

decreasing these values to the range between 0.19 and 0.27 (ICES, 2019b).  The value for blue 514 

whiting was increased from 0.18 to 0.30 (ICES, 2014c) and further to 0.32 recently (ICES, 515 

2016a). The fishing mortality FMSY for each of the species used in this study, (based on natural 516 

mortality) for herring, mackerel, blue whiting and sprat, is 0.21, 0.26, 0.18 and 0.49 517 

respectively. Most of these F values for the whole species distribution are close to the ones 518 

reported based on individual stock assessments above, despite for many stocks there is not yet 519 

a stablished Fmsy value in the stock assesment. There are still many mackerel, sprat and blue 520 

whiting stocks exploited above MSY levels or of unknown status (ICES, 2016a; ICES, 2019a; 521 

http://www.ices.dk/
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ICES, 2019b). Furthermore, research highlights the economic and ecological benefits of fishing 522 

levels below MSY (Shephard et al., 2013; Voss et al., 2014; Da-Rocha and Mato-Amboage, 523 

2015; Merino et al. 2015).  524 

 525 

Due to the difficulties and lack of some stocks data aforementioned, the European Commission 526 

is developing a proposal for a multi-stock multiannual plan for the management of fisheries in 527 

the Baltic aiming at cod, herring and sprat (amending Council Regulation (EC) No 2187/2005 528 

and repealing Council Regulation (EC) No 1098/2007). The need for multi-species approaches 529 

is not only recognized ecologically, but also for an effective ecosystem management approach 530 

(Möllmann et al., 2014). The SS-DBEM model considering trophic interactions for 49 species 531 

in the North Atlantic has shown a 20% slower latitudinal shift of species than in the single-532 

species approach (Fernandes et al., 2013a). A recent study (Thorpe et al., 2015) highlights that 533 

multi-species MSY values can differ by 25-40% compared to the current single-species 534 

approaches which confirms previous concerns raised in Walters et al. (2015).  Recent research 535 

suggest that forecast of climate change areas of impact can be used to inform multidisciplinary 536 

local spatial planning and stakeholder’s actions for of climate-ready management (Fernandes 537 

et al., 2017; Queirós et al., 2016; Queirós et al., 2018). These climate-ready approaches use 538 

multiple ecosystem models and statistical analysis to identify potential areas where higher 539 

changes might occur to be considered by managers and industries in their planning. However, 540 

this adds further complexity to the need of transboundary agreements (ICES, 2016b; Krysov et 541 

al., 2017) which need to contemplate long-term considerations.  542 

  543 
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Tables 985 

Table I. Table summarizing the main equations and parameters to consider the species 986 

mechanisms in SS-DBEM. Further details in associated references. 987 

 988 

Mechanism Equation Parameters 

Growth = anabolism – 

catabolism 

(Pauly 2010; Cheung et al., 

2011) 

G = HWa – kW  

H = g[O2] * e-j1/T 

k = h[H+] * e-j2/T 

 

H = anabolism coefficient 

k = catabolism coefficient 

W = body weight 

a = anabolism exponent (0.5 to 0.95) 

W∞ = asymptotic weight 

The coefficients g and h were derived from 

the average W1, K, and environmental 

temperature (T) of the species reported in the 

literature. 

Length-Weight W = a * Lb W = weight 

L = length 

Size-spectrum production 

(Jennings et al., 2008; 

Fernandes et al., 2013) 

P = exp (25.22 – E/kT) * W0.76 E = activation energy of metabolism 

k = Boltzmann's constant 

T = temperature in Kelvin (°C+273) 

Intrinsic population 

growth rate (Hilborn & 

Walters,1992) 

G=r * A * (1 – (A/KC)) r = intrinsic rate of population increase 

A = the relative abundance  

KC = population carrying capacity  

Larval recruitment 

(O’Connor et al., 2007; 

Cheung et al., 2008) 

 

PLD = pelagic larvae duration 

T = surface temperature 

Tc =15 C 

DM is the developmental type of larvae 

(0 lecithotrophic, 1 planktotrophic) 

N = number of cells where species occur 

Larval dispersal 

(Hundsdorfer & Verwer 

2003; Cheung et al., 2008) 
 

D = diffusion parameter 

(u, v) = velocity parameters 

LAV = larvae recruitment 

Adult movement Cm * h-1 Cm = centimetre 

h = hour 

Natural mortality 

(Pauly, 1980; Cheung et 

al., 2011) 

M = -0.4851 – 0.0824 * log(Winf) + 0.6757 

* log (K)  + 0.4687 * log(T) 

Winf = asymptotic weight 

K = von Bertalanffy growth parameter  

T = average water temperature in the 

animal’s range. 

Fishing mortality at MSY FMSY = 0.4 * M M =  Natural mortality 

 989 
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Table II. Estimation of the average error (0-1 range) and standard deviation by comparing time-990 

series of survey data with modelled data at cells level (by cell) and by aggregating all the cells 991 

for each species with survey data in the NEA (cell sum).  992 

 993 

 994 

 995 

 996 

 997 

 998 

 999 

 1000 

Table III. Mean and variance of sea surface temperature (SST) and primary production (PP) 1001 

changes by ICES areas. Current temperature and differences between different futures (2020-1002 

2039, 2050-2069, 2080-2099) and present (2000-2019). Temperature is in Celsius degrees and 1003 

primary production in percentage change. Northern areas are shadowed. Negative average 1004 

primary production is highlighted in bold. 1005 

  2020-2039  2050-2069 2080-2099 

Area Scenario SST PP SST PP SST PP 

II RCP2.6 +0.3 ±0.1 +1.9 ±0.4 +0.7 ±0.8 +5.0 ±5.8 +0.5 ±0.8 +1.9 ±2.2 

 RCP8.5 +0.1 ±0.1  +0.0 ±1.6 +1.4 ±1.1 +9.1 ±6.2 +2.6 ±2.0 +11 ±3.7 

III RCP2.6 +0.9 ±0.1 +4.2 ±3.3 +0.9 ±0.6 +10 ±12 +0.8 ±0.5 +5.2 ± 26 

 RCP8.5 +0.8 ±0.1  +5.2 ±6.1 +2.0 ±0.7 +13 ±21 +3.6 ±1.1 +17 ± 30 

IV RCP2.6 +0.5 ±0.7 -10 ±15 +0.5 ±0.3 -12 ±12 +0.2 ±0.3 -14 ±15 

 RCP8.5 +0.5 ±0.1  -6.4 ±9.3 +1.2 ±0.5 -11 ±12 +2.3 ±0.9 -14 ±10 

V RCP2.6 +0.2 ±0.0 -6.0 ±5.7 -0.1 ±0.3 -11 ±10 -0.3 ±0.1 -12 ±11 

 RCP8.5 -0.1 ±0.5  -4.3 ±1.5 0.0 ±0.1 -15 ±17 +0.6 ±0.8 -17 ±16 

VI RCP2.6 +0.2 ±0.1 -11 ±12 +0.2 ±0.1 -19 ±24 0.0 ±0.1 -21 ±26 

 RCP8.5 +0.2 ±0.2  -8.3 ±9.2 +0.3 ±0.1 -23 ±30 +0.4 ±0.5 -32 ±28 

VII RCP2.6 +0.3 ±0.2 -12 ±13 +0.3 ±0.2 -17 ±23 +0.3 ±0.2 -19 ±26 

 RCP8.5 +0.4 ±0.2  -8.4 ±10 +1.0 ±0.8 -21 ±26 +2.0 ±1.6 -27 ±26 

 1006 

  1007 

Species Time-series GFDL MEDUSA 

Herring By cell 0.43 ± 0.15 0.44 ± 0.17 

 Cell sum 0.27 ± 0.17  0.23 ± 0.16 

Mackerel By cell 0.46 ± 0.15 0.49 ± 0.16 

 Cell sum 0.30 ± 0.29  0.41 ± 0.19 

Sprat By cell 0.49 ± 0.17 0.47 ± 0.16 

 Cell sum 0.31 ± 0.29 0.26 ± 0.22 
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Figures 1008 

Figure 1. The proportion of catches of the four main pelagic species (BWH blue whiting, HER 1009 

herring, MAC mackerel, SPR sprat) considered per ICES area in relation to total catches for 1010 

the NEA. It is based on Official Nominal Catches 2006-2013 from ICES database which 1011 

includes fish, shellfish and algae catch. Country abbreviations are; Denmark (DK), Faeroe 1012 

Islands (FO), Finland (FI), Iceland (IS), Ireland (IE), Netherlands (NL), Norway (NO), Poland 1013 

(PL), Russian Federation (RU), Scotland (UKM), Sweden (SE) and United Kingdom (UK).  1014 

 1015 

 1016 

Figure 2. Time series of projections of 3 pelagic species with the two different biogeochemical 1017 

model forcing in the same cells where there is survey data. The abundance time-series are 1018 

normalized and the values have been smoothed using a 5-year moving average. 1019 

 1020 

 1021 

Figure 3. Relative change of potential MSY catches for the four pelagic species in ICES areas 1022 

II to VII, relative to 2015 catches. RCP2.6 (green) and RCP8.5 (blue) represent a low and high 1023 

future greenhouse emission scenario, respectively. Both biogeochemical models (GFDL and 1024 

NEMO-MEDUSA) were used to drive two fisheries projections for each scenario. Then, the 1025 

mean value is used to calculate the straight-line trend and the shaded ranges show the difference 1026 

between both projections.  1027 

 1028 

 1029 

Figure 4. Left panel, model projections of current species distribution (20 years average from 1030 

2000 to 2019). Right panel, projected relative changes of potential catches (average of two 1031 

biochemical models) under the high emission scenario (RCP8.5) in ICES areas II to VII. The 1032 

columns represent differences between different futures (2020-2039, 2050-2069, 2080-2099) 1033 

and the present (2000-2019).  1034 

  1035 
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Fig. 1 1036 
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Fig. 2 1038 
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Fig. 4- 1043 
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