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Abstract. In this work we address algorithmic fairness concerns that
arise when graph nodes are ranked based on their structural relatedness
to a personalized set of query ones. In particular, we aim to mitigate
disparate impact, i.e. the difference in average rank between nodes of a
sensitive attribute compared to the rest, while also preserving node rank
quality. To do this, we introduce a personalization editing mechanism
whose parameters can be adjusted to help the ranking algorithm achieve
a variety of trade-offs between fairness constraints and rank changes. In
experiments across three real-world social graphs and two base ranking
algorithms, our approach outperforms baseline and existing methods in
uniformly mitigating disparate impact, even when personalization suffers
from extreme bias. In particular, it achieves higher trade-offs between
fairness and rank quality and manages to preserve most of node rank
quality when a constrained amount of disparate impact is allowed.

Keywords: node ranking, personalized ranking, algorithmic fairness,
disparate impact mitigation

1 Introduction

Machine learning has been widely adopted in systems that affect important as-
pects of people’s lives, from recommending social media friends to assisting juris-
dictional or employment decisions. Since these systems often learn to replicate
human-generated and systemic real-world biases, fairness concerns arise when
the outcome of automated decisions end up correlating to sensitive attributes,
such as gender or ethnicity [1, 2]. Approaches commonly define fairness as similar
assessment between sensitive and non-sensitive groups of data entries under a
statistical measure [1, 3–5]. In this work, we focus on disparate impact elimina-
tion [6–9], which requires (approximate) statistical parity between sensitive and
non-sensitive positive predictions.

Node ranking is a type of machine learning that organizes relational data into
graphs, whose nodes are ranked based on their structural relatedness to a subset
of query ones. Ranking can be personalized, in the sense that query nodes share
an attribute (e.g. the same political views), in which case node ranks can be used
as estimators for that attribute [10–12]. If no personalization takes place and all
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nodes are used as queries, ranks reflect the structural importance of nodes [13,
14].

Although graph ranking is an important machine learning discipline, remark-
ably little work has been done to make it fair. In fact, the first -to our knowledge-
principled understanding of node rank fairness was only recently proposed by
Tsioutsiouliklis et al. [15], who explore disparate impact mitigation for the node
ranks of Google’s non-personalized PageRank algorithm [16]. We now initiate a
discussion on the fairness of personalized node ranking algorithms. Contrary to
non-personalized algorithms, where node rank quality is tied to ad hoc defini-
tions of structural importance, in this case there exist objective notions of node
rank quality that fairness-aware approaches should ideally respect.

In this work we refer to a convex permutation model for estimating the
unfairness of data entries [3] and adapt it to estimate an unbiased personalization
that yields similar yet fairer node ranks. This model can be trained towards a
variety of fairness-aware objectives, such as fully eliminating disparate impact
or minimizing rank edits under statistical parity constraints. We corroborate
its efficacy by comparing it to baseline and existing practices across two ranking
algorithms and three real-world graphs with both unbiased and extremely biased
personalization.

Our contribution lies in initiating a discussion on fairness-aware personalized
ranking algorithms, where we address biased personalization and the preserva-
tion of prediction-related node rank quality. Furthermore, we investigate whether
approaches uniformly introduce fairness in the sense that they do so for both
the whole graph and an evaluation subset of nodes.

2 Background

2.1 Personalized Node Ranking Algorithms

Personalized node ranking starts from a set of query nodes sharing an attribute of
interest and scores nodes per some notion of structural proximity to query ones.
We organize node scores, which are called ranks, into vectors r whose elements
r[v] ≥ 0 correspond to nodes v. We similarly organize a personalization vector p,
whose elements p[v] ∈ [0, 1] reflect the probability of nodes v being query ones.

Ranking algorihms are often expressed as graph filters [17, 18]. These use a
normalization W of the graph’s adjacency matrix, whose elements W [u, v] define
transitions from nodes u to v. Then, given that propagating the personalization
n hops away can be written as Wnp, they weigh different propagation distances:

r = H(W )p

H(W ) =

∞∑
n=0

hnW
n (1)

H(W ) is a graph filter. Different filters can be obtained for different weights
hn methods of calculating W . For example, the graph’s adjacency matrix M
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can be normalized column-wise W = MD−1 or symmetrically D−
1
2MD−

1
2 ,

where D = diag
([∑

uM [v, u]
]
v

)
is the diagonal table of node degrees. Two

well-known graph filters are Personalized PageRank [19, 20] and Heat Kernels
[21], which respectively arise from hop weights hn = (1−a)an and hn = e−ttn/n!
for parameters a ∈ [0, 1] and t ∈ {1, 2, 3, . . . }.

The sweep procedure [22, 23] is a method that utilizes node ranking algo-
rithms to identify tightly-knit congregations of nodes well-separated from the
rest of the graph, a concept known as subgraph conductance [24]. This method
assumes that a base ranking algorithm R with strong locality [25], such as per-
sonalized PageRank and Heat Kernels, yields ranks R(p) for a personalization p
that comprises structurally close query nodes. It then compares ranks with their
non-personalized counterparts R(1), where 1 is a vector of ones:

rsweep =
R(p)[v]

R(1)[v]
(2)

From now on, we will refer to this postprocessing as the sweep ratio.
The sweep procedure orders all nodes based on their sweep ratio and cuts

the graph into two partitions so that conductance is minimized. This practice
statistically yields well-separated partitions for a variety of node ranking algo-
rithms [22–24]. From a high-level perspective, this indicates that the sweep ratio
tends to improve node rank quality.

2.2 Algorithmic Fairness and Graph Mining

Algorithmic fairness is broadly understood as parity between sensitive and non-
sensitive group entries, in the sense that a chosen statistical property is not biased
in favor of either. Three popular fairness-aware objectives commonly recognized
in the literature [4, 1, 3, 5] are disparate treatment elimination, disparate impact
elimination and disparate mistreatment elimination. These correspond to not
using the sensitive attribute in predictions, preserving statistical parity between
the fraction of sensitive and non-sensitive positive labels and achieving identical
predictive performance on the two groups under a measure of choice.

In this work, we focus on disparate impact [6–9, 1] as the type of unfairness to
mitigate. A well-established measure that quantifies how well a system mitigates
disparate impact is the pRule [6]; denoting as R[v] the binary outputs of a system
R for entries v as R[v], S the sensitive group and P (a|b) the probability of a
conditioned on b, this measure is defined through as:

pRule =
min(pS , pS′)

max(pS , pS′)
∈ [0, 1]

pS = P (R[v] = 1|p ∈ S)

pS′ = P (R[v] = 1|p 6∈ S)

(3)

The higher the pRule, the fairer a system is. There is precedence [6] for consid-
ering 80% pRule or higher as fair. Calders-Verwer disparity |pS − pS′ | [7] is a
correlated but less descriptive measure that is optimized at the same point.



4 Emmanouil Krasanakis, Symeon Papadopoulos, and Ioannis Kompatsiaris

In domains related to ranking, fairness has been defined for the order of
data entry recommendations [26–29] as equity in the ranking positions between
sensitive and non-sensitive entries. However, these notions of fairness are not
applicable to the more granular understanding provided by node ranks.

In graphs, the notion of achieving fair node embedding has been proposed
[30, 31]. These are the first approaches that introduce fair random walks, which
are stochastic process modeled by personalized PageRank, although the fairness
of these walks is only implicitly asserted through embedding fairness. A more
advanced understanding has been achieved recently in the more general domain
of graph neural networks [32], which can be trained to produce fair recommen-
dation, even under partial knowledge of the sensitive attribute.

Lastly, a recent work by Tsioutsiouliklis et al. [15] has jump-started a dis-
course on node rank fairness. Although focused non-personalized ranking, it first
recognizes the need of optimizing a trade-off between fairness and preserving
rank quality. Furthermore, a first definition of node rank fairness is provided,
called phi-fairness. Under a stochastic interpretation of node ranks, where they
are proportional to the probability of nodes assuming positive labels, φ-fairness

becomes equivalent to disparate impact elimination when φ = |S|
|S|+|S′| .

In this work we consider the similar objectives of a) trading-off deviation
from the original ranks and high pRule and b) preserving rank quality under
fairness constraints. The pRule is calculated according to the above-mentioned
stochastic interpretation of ranks as:

pS = P (R[v] = 1|p ∈ S) =

∑
v∈S L∞(r)[v]

|S|

pS = P (R[v] = 1|p ∈ S) =

∑
v 6∈S L∞(r)[v]

|S′|

(4)

where L∞(r) is a normalization that divides ranks with their maximum value and

R is a stochastic process with probability P (R[v] = 1) = r[v]
maxu r[u]

= L∞(r)[v].

3 Our Approach

We theorize that there exist two types of potential node rank bias: stationary and
rank-related. The first arises when ranks are underestimated or underestimated
by the same multiplicative amount. Whereas the depends on the personalization,
which transfers either its own or graph edge bias to the ranks. Of the two,
stationary bias is easier to treat, as it does not depend on the personalization
and only attacks the outcome of the ranking algorithm. In fact, the sweep ratio
eliminates it, as it ends up dividing node ranks with their bias term.

On the other hand, rank-related bias is harder to tackle. To see why, let
us consider an invertible graph filter, such as the closed form of personalized
PageRank H(W ) = (1− a)(I − aW )−1. For a personalization vector p produces
ranks r = H(W )p and there exist fair ranks rfair that satisfy a fairness-aware
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objective, such as achieving a trade-off between preserving the original ranks
and improving the pRule:

minimize
‖L∞(rfair)− L∞(r)‖1

|V |
− pRule(rfair)

where pRule(rfair) calculates the pRule of those ranks across all graph nodes V
and ‖ · ‖1 is the L1 norm that sums the absolute value of vector elements.

In this setting, the personalization pfair = H−1(W )rfair of fair ranks differs
from the original one at mast as much as the hard (i.e. achievable) bound:

‖pfair − p‖ ≤
‖rfair − r‖

minλ∈ eigenvalues of W H(λ)

where ‖ · ‖ is the L2 vector norm. Depending on the graph filter and adjacency
matrix normalization, small deviations between biased node ranks and their fair
counterparts can require significant personalization changes to replicate.

Based on the above, searching for a personalization that induces fair ranks
is roughly equivalent to directly searching for such ranks, yet computationally
harder. Nevertheless, we argue that, if a parametric model with few degrees of
freedom is used to edit the personalization, adjusting its parameters to achieve
fair ranks would avoid overfitting, i.e. if the edited personalization results in
node rank fairness, this would permeate the whole graph in the sense that it
would also be achieved by random subsets of nodes.

In this section we propose a model called Fair Personalizer (FP) that can be
adjusted to satisfy different fairness-aware node rank objectives. This model’s
design was motivated by the Convex Underlying Error Permutation (CULEP)
we previously developed to reweight training examples [3]. The same practice can
not be directly ported to node ranks, since ranking does not inhrently account
for negative examples, weighting non-positive personalization vector elements
does not change ranking outcome and there exists no validation set for ranks.
To address these shorcommings, we move to a dual setting that focuses on cor-
rect instead of erroneous node rank identification, shift our focus to editing the
personalization and use the personalization as a rough validation set.

We use a stochastic interpretation P̂ (·) of ranks that snaps them to 1 with
probability proportional to their value and to 0 otherwise. In the rest of this sec-
tion we avoid adding ‘[v]’ next to each quantity and consider all vector operations
(including multiplication) to be applied element-by-element.

P̂ (rfair = r̂fair)

= P̂ (rfair = r̂fair|p = r̂fair)P̂ (p = r̂fair)

+ P̂ (rfair = r̂fair|p 6= r̂fair)P̂ (p 6= r̂fair)

We then borrow CULEP’s understanding and estimate the ability of estimated
ranks to be fair by perturbing the probability of the estimated personalization
being fair. To perform this perturbation, we recognize that, when the former are
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perfectly estimated, so are the latter. Otherwise, a skewness should be performed
that depends on whether and how much ranks overestimate or underestimate the
personalization p[v] and whether nodes v are sensitive. Overall, we propose the
estimator:

P̂ (rfair = r̂fair|p = r̂fair) = KP̂ (pfair = p̂fair)e
−b(L∞(r)−p)

P̂ (rfair = r̂fair|p 6= r̂fair) = KP̂ (pfair = p̂fair)e
b(L∞(r)−p)

where b is a vector of real values such that b[v] = {bS if v ∈ S, bS′ otherwise} and
K ≥ 0 is a common constant. Furthermore, given that selecting sensitive and
non-sensitive nodes as part of the personalization is done with fixed probabilities
aS and aS′ pertaining to the personalization bias, we organize those into a vector
a = P̂ (p = r̂fair) with elements a[v] = {aS if v ∈ S, aS′ otherwise}. We finally
select a fair personalization estimation p̂fair based on a a self-consistency crite-
rion, i.e. that resulting ranks approach fair ones when personalization estimation
approaches the respective fairness-inducing personalization:

p̂fair = P̂ (rfair = r̂fair|pfair = p̂fair) =
P̂ (rfair = r̂fair)

P̂ (pfair = p̂fair)

∝ ae−b(L∞(r)−p) + (1− a)eb(L∞(r)−p)

(5)

4 Experiment Setup

4.1 Graphs

To assess the ability of our approach to achieve fairness while preserving node
rank quality, we experiment on three graphs: two Facebook friendship graphs
[33] and one Twitter graph of political retweets [34]. These are chosen on merit
that there exists sensitive attribute information for all their nodes.

The Facebook graphs each start from a given user and comprise their so-
cial ego network, i.e. the subgraph comprising all social relations between them
given and their friends (including relations between friends). Ten such graphs
are available in the source material, out of which we randomly select two to
experiment on. These are denoted as FacebookX, where X is their starting user.
Tens of anonymized binary attributes are available for their nhodes, out of which
we consider ‘gender’ as the sensitive attribute and the first ‘education’ attribute
as the prediction label. The Twitter graph comprises more nodes and edges but
only one anonymized sensitive attribute corresponding to each node’s binary po-
litical opinions (left or right). Due to the lack of a predictive attribute, we define
one that as the sensitive attribute’s binary complement.

These graphs are overviewed in Table 1. Columns correspond to graph names,
number of nodes, number of edges, fraction of nodes with positive labels, number
of nodes designated as sensitive and pRule value of their positive labels.
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Graph Nodes Edges Positive
Nodes

Sensitive
Nodes

pRule

Facebook0 347 5,038 .68 .36 .91
Facebook686 170 3,312 .55 .46 .91
Twitter 18,470 48,365 .61 .39 0

Table 1. Experiment graph characteristics

4.2 Compared Methods

In our experiments we compare the ability of several methods to bring fairness
on personalized PageRank and Heat Kernels. These algorithms were run with
the frequently-used parameters a = .85 and t = 3 and with symmetric normal-
ization, which a preliminary investigation revealed to yield higher values for the
AUC measure presented later in this section. Their ranks were computed to a
numerical precision of 10−9 using the pygrank1 graph ranking library. We com-
pare the following fairness-aware schemes on these two base algorithms:
None. The base ranking algorithm.
Mult. A simple postprocessing baseline that multiplies ranks across the sensi-
tive and non-sensitive groups with a different constant each, so that disparate
impact is fully mitigated. If r are the base ranking algorithm’s node ranks, this
method yields ranks:

rMult[v] =

(
φs[v]∑

u∈S s[u]r[u]
+

(1− φ)(1− s[v])∑
u6∈S s[u]r[u]

)
r[v]

where φ = |S|
|S|+|S′| is the fraction of graph nodes that are sensitive and s[u] =

{1 if u ∈ S, 0 otherwise}. It is easy to see that
∑
v∈S rMult[v] =

∑
v 6∈S rMult[v].

LFPRO. Near-optimal redistribution of ranks causing disparate impact [15].
Sweep. postprocessing using the sweep ratio of Equation 2.
FP. The FP model of Equation 5 whose probability parameters aS , aS′ ∈ [0, 1]
and exponentias bS , b

′
S ∈ [−10, 10] are trained the following objective with coor-

dinate descent optimization provided by the pygrank library:

minimize

∥∥L∞(r)− L∞(r̂fair)
∥∥
1

|V |
− pRule(r̂fair)

CFP. Constraining the FP model to not consider improvements for over 80%
pRule by training it on the objective:

minimize

∥∥L∞(r)− L∞(r̂fair)
∥∥
1

|V |
−min

(
.8, pRule(r̂fair)

)
SweepLFPRO. Applying LFPRO on the outcome of Sweep.
SweepFP. Applying FP on the outcome of Sweep.
SweepCFP. Applying CFP on the outcome of Sweep.

1 https://pypi.org/project/pygrank/
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4.3 Evaluation

To compare the different fairness-aware methods, we randomly split graph nodes
into training and evaluation sets, where the former comprise a fraction among
[10%, 20%, 30%] of graph nodes, uniformly sampled without repetition. This
mimics real-world usage of node ranking algorithms, where not many labels
are known. For each possible fraction of training set nodes we sample 5 different
training sets (we do so in a seeded way that passes the same sets to each ranking
algorithm) and average the following measures across the respective 3 · 5 = 15
evaluation sets:
AUC. The area under curve of the receiver operating characteristics [35], which
is often used to measure the quality of rank-based recommendations given known
binary labels. 50% AUC indicates random node ranks, whereas 100% AUC per-
fect rank quality. We stress that fairness-aware methods are tasked with pre-
serving but not improving potentially low node rank quality.
WR. The worst pRule between the ranks of all graph nodes and the ranks
of evaluation nodes. To see why this measure is necessary, we point that some
fairness-aware algorithms are designed to yield perfect disparate impact elimi-
nation (i.e. 100% pRule) when considering the whole graph. However, it is im-
portant for all nodes to benefit from increased fairness. For example, if a method
achieves 100% and 1% pRule on all graph nodes and the evaluation ones respec-
tively, it should not be considered as fair. For WR to accurately assess whether
the effects of disparate impact treatment are uniformly spread across all nodes,
we avoid directly optimizing towards the pRule of evaluation nodes.

In addition to the above-described evaluation, we also consider cases of ex-
tremely biased personalization. For example, this occurs with high probability
when sensitive nodes are disproportionately few. Or when the personalization se-
lection is biased against non-sensitive nodes, for example because corresponding
people reluctant to share their information [36]. To simulate this behavior, we
also perform experiments with the most extreme type of bias, where no biased
node is allowed in the personalization.

5 Experiments

We first explore unbiased personalization, where training nodes are randomly
selected before identifying queries of positive labels. The outcome of applying
fairness-aware schemes on the personalized PageRank and Heat Kernel algo-
rithms is detailed Table 2. We omit results for the Twitter graph, which by
definition follows extreme personalization and is covered in subsequent experi-
ments.

In this first series of experiments, base ranking algorithms comfortably ex-
ceed the baseline 80% pRule. Nevertheless, no method reaches perfect fairness
for both all nodes and the evaluation subset. An important finding is that the
Mult baseline outperforms LFRPO for producing fair ranks, which suggests that
the latter’s non-personalized efficacy does not carry over to personalization and
uniform notions of fairness.
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Personalized Pagerank Heat Kernels
Facebook0 Facebook686 Facebook0 Facebook686
AUC WR AUC WR AUC WR AUC WR

None .54 .90 .55 .92 .53 .85 .56 .83
Mult .53 .95 .55 .94 .53 .89 .55 .85
LFRPO .53 .94 .55 .92 .52 .81 .55 .74
Sweep .55 .92 .58 .94 .54 .86 .58 .80
FP .50 .94 .53 .96 .49 .95 .51 .96
CFP .53 .92 .53 .91 .52 .89 .51 .92
SweepLFRPO .54 .94 .57 .93 .53 .81 .57 .77
SweepFP .56 .94 .55 .95 .56 .95 .54 .92
SweepCFP .56 .95 .55 .91 .57 .88 .54 .88

Table 2. Experiments for unbiased personalization

Between approaches, our proposed FP and SweepFP dominate others with
respect to WR values. SweepFP also maintains equal or better AUC compared
to the base ranking algorithm. CFP and SweepCFP do not improve fairness as
much, since their 80% pRule constraint is already satisfied, but still yield similar
or higher rank quality and fairness compared to the base algorithms, Mult and
LFPRO.

We now experiment on extreme personalization bias, where there is no sensi-
tive group query node and fairness constrains require learning generalized rules
that transfer to sensitive group nodes. Extreme bias ends up being too unfair
for the base ranking algorithms to achieve 80% WR and they require further
assistance. However, only methods that involve the FP model manage to uni-
formly mitigate disparate impact. These significantly reduce node rank quality
compared to other approaches, however this happens because the latter fail to
reach meaningful levels of fairness and hence settle on preserving the base node
rank quality.

An interesting finding is that Sweep detrimentally affects FP on the Twitter
graph. This indicates that either stationary bias is not exhibited by our base node
ranking algorithms or that the success of Sweep for unbiased personalization in
other cases can be attributed to its higher node rank quality proving more leeway
for the FP model to improve rank and fairness trade-offs.

Overall, SweepFP achieves similar or better levels of uniform disparate im-
pact mitigation and node rank quality trde-offs compared to other methods and
is significantly ourperformed only by FP on the Twitter graph. We hence sug-
gest using one of these two method when disparate impact mitigation is the most
important objective of node ranking algorithms.

On the other hand, SweepCFP and CFP always achieve their constraint of
reaching 80% WR while maintaining rank quality. This reveals that the FP
model successfully prevents overfitting towards non-uniform notions of fairness.
Hence, these methods should be preferred when ranking needs to satisfy only a
predetermined fairness level.
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Personalized Pagerank Heat Kernels
Facebook0 Facebook686 Twitter Facebook0 Facebook686 Twitter
AUC WR AUC WR AUC WR AUC WR AUC WR AUC WR

None .53 .69 .54 .74 .58 0 .54 .37 .55 .39 .58 0
Mult .51 .75 .52 .73 .49 .25 .50 .40 .52 .38 .56 .11
LFRPO .51 .75 .52 .70 .54 .53 .42 .48 .50 .48 .57 .53
Sweep .55 .67 .56 .74 .58 0 .54 .35 .56 .38 .58 0
FP .53 .95 .52 .93 .49 .93 .47 .81 .52 .90 .44 .96
CFP .52 .90 .52 .82 .53 .80 .49 .82 .52 .81 .45 .80
SweepLFRPO .51 .72 .52 .68 .55 .52 .44 .44 .49 .43 .58 .53
SweepFP .54 .91 .54 .92 .27 .96 .52 .78 .52 .80 .38 .94
SweepCFP .54 .88 .54 .84 .43 .80 .53 .80 .54 .83 .48 .81

Table 3. Experiments for extreme personalization bias

The broader success of FP-based methods can be attributed to the prepro-
cessing nature of personalization editing, which addresses the catastrophic effects
of bias before it is propagated through complex network dynamics.

6 Conclusions and Future Work

In this work we tackled the problem of mitigating disparate impact while pre-
serving the quality of graph node ranks and explored personalization editing as a
means to do so. Our approach derives a personalization editing model whose pa-
rameters can be adjusted to trade-off rank preservation and fairness objectives.
We explored this model’s effectiveness on mitigating disparate impact while pre-
serving the node rank quality of personalized PageRank and Heat Kernels by
experimenting on three real-world social graphs, where found that it significantly
outperforms potentially competing methods in uniformly mitigating bias across
ranks, even under cases of extreme unfairness.

For future work, we are interested in exploring the efficacy of our methodology
on more graphs and node ranking algorithms, especially ones that cannot be
modeled as graph filters. Furthermore, the FP model or an adjustment could be
used to mitigating other types of unfairness, such as disparate mistreatment and
methods for mitigating unfairness under partial knowledge of sensitive attributes
could be explored.
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