
Computer Science and Information Technologies

Vol. 1, No. 2, July 2020, pp. 39~46

ISSN: 2722-3221, DOI: 10.11591/csit.v1i2.p39-46 39

Journal homepage: http://iaesprime.com/index.php/csit

Efficient and scalable multitenant placement approach for in-

memory database over supple architecture

Arpita Shah1, Narendra Patel2
1Faculty of Technology and Engineering, Charotar University of Science and Technology (CHARUSAT),

Changa-388421, Gujarat, India
2Department of Computer Engineering, Birla Vishvakarma Mahavidyalaya Engineering College-GTU, Vallabh

Vidyanagar-388120, Gujarat, India

Article Info ABSTRACT

Article history:

Received Jan 23, 2020

Revised May 1, 2020

Accepted May 20, 2020

 Of late Multitenant model with In-Memory database has become prominent

area for research. The paper has used advantages of multitenancy to reduce

the cost for hardware, labor and make availability of storage by sharing

database memory and file execution. The purpose of this paper is to give

overview of proposed Supple architecture for implementing in-memory

database backend and multitenancy, applicable in public and private cloud

settings. Backend in-memory database uses column-oriented approach with

dictionary based compression technique. We used dedicated sample

benchmark for the workload processing and also adopt the SLA penalty model.

In particular, we present two approximation algorithms, Multi-tenant

placement (MTP) and Best-fit Greedy to show the quality of tenant placement.

The experimental results show that Multi-tenant placement (MTP) algorithm

is scalable and efficient in comparison with Best-fit Greedy Algorithm over

proposed architecture.

Keywords:

Best-fit greedy algorithm,

In-memory database,

MTP (multi-tenant placement),

Multitenancy,

Supple architecture

This is an open access article under the CC BY-SA license.

Corresponding Author:

Arpita Shah,

Faculty of Technology and Engineering,

Charotar University of Science and Technology (CHARUSAT),

Changa-388421, Gujarat, India.

Email: arpitashah.ce@charusat.ac.in

1. INTRODUCTION

Conventionally, in-memory databases have been in use for applications which were performance

sensitive such as financial services markets. In-memory database claim to provide an alternative to the OLAP.

Instead of pulling the data from a disk, keeping it in memory (RAM) speeds up the processing and response

time of data by order of magnitude. This is the reason why in-memory Database is booming in industry these

days. With the expeditious increase of Software-as-a-Service (SaaS), it has become important to operate

services at a faster response time for SaaS providers. With the aim of to reduce operational cost, multi-tenancy

provides methods for combining multiple tenants of hosted application into the same system. Multi tenancy

can be employed in the database layer in such a way that a single database can be used by multiple customers

i.e. tenants. A cloud uses technology of multitenancy to share IT resources among multiple applications and

tenants securely. Virtualization-based architectures is used by some clouds to isolate tenants and some uses

custom software architectures to get the job done. In this paper we have shown the proposed architecture for

standing tenant placement for query request with sample HR benchmark design combined both approaches in

memory and multitenancy. To improve sever utilization and resource profit, tested two algorithm(s) (1) Best

Fit Greedy (2) MTP. In Supple architecture it consists mainly three components (1) Cluster head: maintain

https://creativecommons.org/licenses/by-sa/4.0/

 ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 2, July 2020: 39 – 46

40

placement information over in-memory database. (2) Router: based on cluster map it forwards query request

to the suitable instance manager and (3) Instance Manager: distribution of requests across the tenant user.

The supple architecture adopt Microsoft Azure Platform and also provide physical machine that turned into

virtual disk pool.

2. IN-MEMORY DATABASE

Earlier in-memory databases have been used in the performance sensitive applications which were

performance sensitive like financial services markets. However now a days in-memory databases have become

more generally adopted. At the same time, the Software-as-a-Service (SaaS) model has become popular and

customers are gaining interest in this model, as it decreases their the burden of the hassle of operating

the system, which requires provisioning the hardware as well as maintaining, operating and configuring

application servers and databases. The key difference between in-memory database (IMDB) and disk resident

database (DRDB) is that data in IMDB resides in main memory permanently and in DRDB, data resides

permanently on disk. Since the chip density is increasing day by day and semiconductor memory is becoming

cheaper so it’s possible to store huge amount of data in memory [1]. IMDBs can provide performance by an

order of magnitude faster as compared to DRDBs. In-memory which is one of the memory resident systems

and compares its processing time with a typical disc resident database. Of course the in-memory database

system (IMDB) gave better performance and response time. Complexity in in-memory databases is reduced as

the number of machine instructions reduced, buffer pool management is not required, and no need of extra data

copies, index pages decreases, and their simplified structure is possible. As a consequence the design becomes

simple and more concise, and requests are performed faster. IMDSs have also lower memory and CPU

requirements. Also the design and arrangement of data on disk is much more unfavorable than arrangement of

data on main memory. Real time applications require fast response. So IMDBs play crucial role for real time

applications. “Can entire database fit into main memory?” The answer depends on the application. If size of

application is limited and is growing at slower pace then it is possible to have entire database in main memory.

For example database employee details of some small company. But for real time applications it is must that

data reside in main memory. If size of database is too large to fit into the main memory for example an

application with satellite image data the data can be categorized as hot and cold data. The data which is

frequently required is categorized as hot and data which is rarely required and is voluminous is cold data.

The hot data lay in in-main memory and cold is stored on disk.

2.1. Challenges with in-memory systems

In-memory is liable to change rapidly while disk storage is non volatile. So regular backups must be

taken (on disk) and at the same time it is to be taken care that performance of IMDB is not affected. If disk fail,

data on other disks can be secured and recovery from disk is easy but if memory fails, entire database is lost.

The performance gain of IMDB can be limited by the application operating it, layout and implementation of

database itself, the hardware on which the database is running and the association with external devices. Large

volumes of data with lower frequency reads are not much more efficient with IMDBs. Many papers have

discussed the impact of memory residency of some important functional components of dbms like concurrency

control, access methods, commit processing, query processing and performance etc. Many papers have

discussed the issues related to IMDB recovery and briefly examine some of the solutions [2].

2.2. In-memory architecture

To understand the architecture of in-memory, architecture of ORACLE database is considered here,

which is categorized under the in-memory cache architecture. The elements of architecture include database

processes, memory-resident data structures, shared libraries and administrative programs. Indexes, system

tables, tables, cursors, locks, temporary indexes and compiled commands together make up the memory

resident data structures. Through direct link and client/server connections, the application can be linked to

the database or IMDB cache. Information is received by replication agents from master databases and is sent

to subscriber databases. Asynchronous data transfers between oracle database and cache groups in the in-

memory database cache are performed by cache agent. Figure1 shows oracle’s in-memory database

cache architecture [3]. External memory is accessed only in three cases:

 To load copy of main memory during system startup.

 Checkpoint over writing, recovery and on Logging.

 To persists data about data and configuration changes.

Comput. Sci. Inf. Technol.

Efficient and scalable multitenant placement approach for in-memory database over… (Arpita Shah)

41

Figure 1. In-memory database cache architecture

So for these type of tasks IMDBs rely on paged data handling while all other operations run purely on

main memory. The database community is going to experience a great shift in market in the coming years as

in-memory databases are becoming more effective and affordable. Although in-memory database mainly

consists two storage approach namely row-oriented (database re-structuring) and column-oriented. Many

databases can use both approaches row-oriented as well as column-oriented.

2.3. Multitenancy

With the aim of reducing operational cost, multi-tenancy provides methods for combining multiple

customers (i.e. tenants) of deployed application which run on the same infrastructure. Database layer can be

employed in the Multi tenancy architecture can be utilized in the database layer in such a way that a single

database can be shared by multiple customer. A cloud uses technology of multitenancy to share IT resources

among multiple applications and tenants securely. Virtualization-based architectures is used by some clouds to

isolate tenants and some uses custom software architectures to get the job done. Depending on requirements of

customer such as security, high availability, customizability, the choice of appropriate tenancy model is

decided. There are several possible multi-tenant schemes like shared design, VM based design etc. For tenant

applications are a well-known example of a type of application whose data and workloads can be partitioned

easily. For instance, with tenant applications, data and workload can typically be partitioned along tenant

boundaries since most requests are within the confines of a tenant. So, by considering a framework which takes

the tenant workloads as input, their performance SLOs (Service Level Objectives), and the server hardware

which is obtainable to the SaaS provider.

3. A SUPPLE INFRASTRUCTURE FOR MULTITENANCY OVER IN-MEMORY DATABASE

Proposed architecture for mulititenancy using in-memory is shown in Figure 2 which consists major

three components.

3.1. Component(s)

(1) Cluster head: There is single cluster leader exists in a Supple Infrastructure and it assigns one or

more tenant to server. Each tenant's replica is assigned to the individual instance handler, so that each instance

handler must process different data from multiple tenants. The cluster head maintains the placement

information over in memory database performance with hard disk based shown in Figure 2, which it propagates

to the route. In addition the cluster head also observe active nodes, starts and stops severs, placement

 ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 2, July 2020: 39 – 46

42

assessment and migration of tenant between servers. Request processing cannot assessed directly by the cluster

head.. The cluster head process has to run on all active severs to handle single point of failure to make highly

availability that can be possible by running a cluster head process on all active servers. (2) Router: It forwards

query request to the suitable instance manager based on cluster map information and also from outside the

cluster. Also, it provides location transparency of a tenant's database. The job of router need to be balanced the

load across the tenant’s replicas in round-robin pattern.

Figure 2. A supple infrastructure for multi-tenancy over in-memory database

If a replica of a tenant becomes unavailable in consequence on failure of a server [4, 5] requests need

to be balanced amongst the remaining live replicas. The query results send back to the application through the

router. (3) Instance Manager: The job of instance manger is to manage the distribution of requests across the

tenant user. When instance manager receive a write request, it write to caching database [6] (if no space over

main memory) and also forward the request to its successor node in a cluster. While, handling the database

over no. of servers concurrent requests may cause performance issues and it effect on application execution.

To resolve this problem we have experimented on Oracle Sharding Architecture to support Elastic scale.

Request for the write operation need to be obstinately written on i node out of n nodes and then asynchronously

replicated to the nodes i + 1 to n. Each tenant consists two consistent replicas and Individual instance manager

is coupled up with a local Oracle instance, which is shared amongst multiple tenants. Oracle instance support

the approach of multitenancy [7] and in-memory. A local Oracle instance needs to be paired with

instance manger.

3.2. Benchmark design

We have used dedicated sample benchmarks for mixed workload processing that benchmark called

HRSB-MT shown in Table 1. Our testing experiment is on Oracle in-memory column database, which runs for

mixed workload processing application. In column-oriented approach, database keep every attribute for in a

separate column structure and is ideal for analytics, since it allows for speedy data retrieval when only a few

columns are selected but the query accesses a huge portion of the data set. When DML operation (insert, update

or delete) occurs on both methods then row-oriented format is extremely effective for processing DML as it

manipulates an entire row or record in one go. A column approach is not so proficient as compared to row

format at processing row-wise DML but for OLAP, larger chunk of data Colum-oriented gives simultaneous

data execution. HRSB-MT model also opted dictionary-based compression techniques.

Table 1. HR schema benchmark-MT
Table_name Tablesize(MB)

Region 951955

Countries 220224

Locations 332

Departments 5171

Jobs 1032567

Employees 1956879

Comput. Sci. Inf. Technol.

Efficient and scalable multitenant placement approach for in-memory database over… (Arpita Shah)

43

3.3. Resource consumption of multiple homogeneous tenant

So, by considering a framework which takes workloads of the tenant as input, their performance SLOs

(Service Level Objectives) [8,9] and the server hardware which is obtainable to the DaaS provider, and result

into a cost-effective recipe which specifies utilization of hardware to deliver and how the tenants are scheduled

on available hardware resource. Each tenants contain the same size and request rate on a sever. Total no. of

users is distributed uniformly among all tenants and the server is filled up only 15-20% of its main memory is

used. The tenant size ts is divided by the resultant amount of memory. As a result depending on the chosen

value for ts server may contain few or more tenants, so we vary ts. From 20 to 198 MB (from 400,000 to

4,000,000 rows). Request per tenant is denoted by TR and it may increase until SLO violated [10, 11]. Figure

3 Shows that when the number of tenants is increased by a factor of 10, throughput decreases by 10%. A SLO

perspective [12] violates whether the server scan function is utilized by small number of large tenants or several

small tenants.

Figure 3. Maximum Throughput without violation the performance SLO

4. STANDING TENANT PLACEMENT

For standing tenant placement, we have considered following general data as input.

A valid tenant assignment is performed using binary decision x ∈ {0,1} S × T × R , where

()

,

y

t i
x

 = { 1, if tenant copy y is on sever i , otherwise 0 } (1)

s ∈ {0,1}N (2)

where si=1 indicates that specific server i is active, otherwise server is inactive.

Now, as performing tenant placement also needs to be checked that replica of tenant is allocated to a

server once or not and no two copies of the same tenant. So, to check the specific condition we have applied

some constraints.

,
 1

y

t i

i N

x

 ∀t ∈ T, ∀y ∈ R (3)

,
 1

y

t i

y R

x

 ∀t ∈ T, ∀i ∈ N (4)

The server in-memory capacity needs to fit on full amount size of all tenant on that server.

()

,
() ()

y

t i i

t T y R

t x c i s

 ∀i ∈ N (5)

 ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 2, July 2020: 39 – 46

44

One of the important key features of greedy heuristics is that they are computationally less rigorous

than meta-heuristics. Greedy algorithms are loosely based on the well-known best-fit algorithm. It also delivers

good results for the related bin-packing problem. Although the problem in a Best Fit algorithm consist constant

approximation ratio over bin packing. So, when the tenants are small it inclined to bundle lots of tenants on a

server. Best-fit algorithm is used for tenant placement, which finds the server with the least remaining resource

that can accommodate each tenant, and in case such a server cannot be found, either relaxes the constraints

gradually or use a new server. Starts with a random placement. It assumes a fixed number of tenant types and,

on each server, it assigns tenants of the same type to the same database server instance with a fixed amount of

main memory allocated [13].

4.1. Proposed multitenant placement (MTP) algorithm

When tenants quantity is increasing then we need to apply tenant placement algorithm to allocate

server resources [14,15]. Parameters for Multi-tenant placement algorithm as shown in Table 2 are illustrate

the tenant, server capacity, replica of tenant and other resource parameters.

Table 2. MTP parameters
Symbol Meaning

T NT
Shows no. of tenants, Ti represent ith

tenant

S IS

No. of servers (to show resource

allocation)

σ : T→NT+ Function returns Main memory

requirement of a given tenant

c : S→IS+

Function returns Main memory capacity

of ith server

The purpose of mentioned algorithm which implemented on proposed architecture is to improve

utilization of server to the set of tenants. Allocating proper resources over the tenants, we have deployed the

tenant placement algorithm in Cluster head to improve server utilization. To fulfil tenant's service quality as

its basis requirement, the performance testing use basic function swapping as a result it is considering minimum

number of servers as and when it is required. On the base of meeting the requirements of service quality of the

tenant, experimental test use Best fit heuristic algorithms which is compared with the proposed Multi-tenant

placement algorithm. In a resulting outcomes MTP requires less number of servers.

Algorithm: MTP

Input: T Tenants, Server in-memory capacity
c , Replica y

Find binary value thru eq. (1) (0,1)

T={t1,t2......tn}= sorted list of tenant in decreasing order with respect of size

for server i in S = { 1,2,3} do

 for each ti ∈ T

(2)

,t i
x

 if

(2)

,t i
x

 then

 locate other server j such that

(1)

,t j
x

 call swap(t, i, j)

 else

 place ti on server

 end if

 end for

call σ(T[i])

if (T[i]<
c) then

S[j]=S[j]-T[i]

end if

end for

Comput. Sci. Inf. Technol.

Efficient and scalable multitenant placement approach for in-memory database over… (Arpita Shah)

45

5. EXPERIMENTAL SETUP AND RESULTS ANALYSIS

The experiments were carried out on a cluster of three servers which is shown in Figure 2, each having

16GB memory, VM(s), running CentOS and Oracle in-memory database. We produced up to 60 tenants. Each

tenant runs with mix workloads in proportion to the generated query pattern. Concerning the sizes of the

tenants, we measured the in-memory database with multitenancy settings existing in Microsoft SQL Azure

[16-17]. Figure 4 shows that number of tenants placed on each server (i.e. no of server = 2, 3 and 4) for resource

allocation [16]. If there are 8 tenants labeled as A,B,C,D,E,F,G,H and for three server numbered as 1,2 and 3.

If tenant B, C, D placed on server 1 then 1= {B, C, D} likewise for others tenants too. When the number of

servers is not enough, both algorithm best fit and MTP uses different strategies. Figure 4 shows no. of tenants

placed on each server numbered as 1, 2 and 3. In this paper we adopt the SLA penalty model [17], if queries

arrived during server overload will fail to notice their SLA deadlines and the penalty need to be paid by service

provider; and other queries will meet their SLA. Reason is using the load of a tenant will change very frequently

for opting SLA model. SLA penalties occur mostly due to prolonged system overload instead of a temporary

burst in arrival of query for a short period (example arrival during 10 millisecond).

Figure 4. No. of tenant on sever

As it shown in Figure 5 shows that how query processed using two different approaches: Best fit

Greedy and MTP, in which Best fit worked on hard disk based query processing while MTP processed query

over in-memory database cluster. Cost of query processing through tenant is comparatively low in MTP than

Best fit Greedy and also works effectively than best fit. We have also experimented scalability of tenant

placement. Figure 6 shows running time of MTP which is for 50 tenants. Running time for Best fit greedy is

insignificant below 0.3 second even for 30 tenants, whereas MTP takes bit longer time than Best fit greedy

approach.

Figure 5. Effectiveness of tenant placement

Figure 6. Scalability of tenant placement

 ISSN: 2722-3221

Comput. Sci. Inf. Technol., Vol. 1, No. 2, July 2020: 39 – 46

46

6. CONCLUSION

Multitenancy with in-memory database (opted in Oracle) speeds up the processing and response time

of data request. For in-memory database we have tested over different platform like SAP HANA, GridGrain

and Oracle. In this paper we have proposed multitenancy architecture (supple) using in-memory database with

proposed MTP algorithm. From the perspective of efficiency the paper shows proposed MTP algorithm in

comparison with Best fit Greedy approach with database benchmark (HRSB-MT) over few tenants to improve

the quality of tenant placement. While this paper focuses on supplement architecture for multitenant with in-

memory database, in future will work on dynamic placement approach.

REFERENCES
[1] Hung, Tran & Huang, Chuanhe. “An Effective Data Placement Strategy in Main-Memory Database Cluster.”

Proceedings - 2nd International Conference on Networking and Distributed Computing, ICNDC, pp. 93 - 98. 2011.

[2] Soon M. Chung. “Parallel main memory database system.” In Proceedings of the 1992 ACM/SIGAPP Symposium on

Applied computing: technological challenges of the 1990's (SAC '92), Hal Berghel, Ed Deaton, George Hedrick,

David Roach, and Roger Wainwright (Eds.). ACM, New York, NY, USA, pp. 273-282, 1992.

[3] Oracle Database In-Memory with Oracle Database 12c Release March 2017 from

https://docs.oracle.com/cd/E16662_01/doc/timesten.1121/b56058/arch.htm

[4] Jan Schaffner, Benjamin Eckart, Dean Jacobs, Christian Schwarz, Hasso Plattner, and Alexander Zeier. “Predicting

in-memory database performance for automating cluster management tasks.” In Proceedings of the 2011 IEEE 27th

International Conference on Data Engineering (ICDE '11). IEEE Computer Society, Washington, DC, USA, pp.

1264-1275, 2011.

[5] Huang, Yunkui & Zhang, Yansong & Ji, Xiaodong & Wang, Zhanwei & Wang, Shan. “A Data Distribution Strategy

for Scalable Main-Memory Database.” Advances in Web and Network Technologies, and Information Management,

APWeb/WAIM 2009 International Workshops: WCMT, RTBI, DBIR-ENQOIR, PAIS, Suzhou, China, pp.13-24, April

2009.

[6] Jacobs, Dean, and Stefan Aulbach. “Ruminations on Multi-Tenant Databases.” In BTW, vol. 103, pp. 514-521. 2007.

[7] Ning Zhang, Junichi Tatemura, Jignesh Patel, and Hakan Hacigumus. “Re-evaluating designs for multi-tenant OLTP

workloads on SSD-basedI/O subsystems.” In Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data (SIGMOD '14). ACM, New York, NY, USA, pp. 1383-1394, 2014.

[8] F. Farber, C. Mathis, D. D. Culp, W. Kleis and J. Schaffner. “An in-memory database system for multi-tenant

applications.” Proc. BTW, pp. 650-666, 2015

[9] Zhen Liu, Mark S. Squillante, and Joel L. Wolf. “On maximizing service-level-agreement profits.” In Proceedings

of the 3rd ACM conference on Electronic Commerce (EC '01). ACM, New York, NY, USA, vol. 29, no. 3, pp. 213-

223, December 2001.

[10] Y. Chi, H. J. Moon, and H. Hacıgümü. “s. iCBS: Incremental Cost-based Scheduling under Piecewise Linear SLAs.”

PVLDB, vol. 4, no. 9, pp. 563–574, 2011.

[11] Y. Chi, H. J. Moon, H. Hacıgümü¸s, and J. Tatemura. “SLA-Tree: A Framework for Efficiently Supporting SLA-

based Decisions in Cloud Computing.” In EDBT, pp. 129–140, 2011.

[12] J. Csirik, D.S. Johnson. “Bounded space on-line bin packing: best is better than first.” In Proceedings of the1991

second annual ACM/SIGACT-SIAM, San Francisco, vol. 31, no. 2, pp. 115-138, March 1991.

[13] F. Wang, J. Li, J. Zhang and Q. Huang, “Research on the Multi-Tenant Placement Genetic Algorithm Based on

Eucalyptus Platform,” 2016 12th International Conference on Computational Intelligence and Security (CIS), Wuxi,

pp. 382-385, 2016.

[14] H. Koziolek, “The SPOSAD Architectural Style for Multi-tenant Software Applications,” 2011 Ninth Working

IEEE/IFIP Conference on Software Architecture, Boulder, CO, pp. 320-327. 2011.

[15] Y. Zhang, Z. Wang, B. Gao, C. Guo, W. Sun and X. Li, “An Effective Heuristic for On-line Tenant Placement

Problem in SaaS,” 2010 IEEE International Conference on Web Services, Miami, FL, pp.425-432. 2010.

[16] Danny Strockis “Microsoft Azure” from https://azure.microsoft.com/en-us/resources/samples/active-directory-

dotnet-webapp-multitenant-openidconnect

[17] Y. Xiaoyong, T. Hongyan, L. Ying, J. Tong, L. Tiancheng and W. Zhonghai, “A Competitive Penalty Model for

Availability Based Cloud SLA,” 2015 IEEE 8th International Conference on Cloud Computing, New York City, NY,

pp. 964-970, 2015

