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“Everything should be made as simple as possible, but not simpler”
— Albert Einstein

“Frustra fit per plura quod potest fieri per pauciora (it is useless to
do with more what can be done with less) ”

— William of Ockham
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CHAPTER 1

Introduction

Under the definition of computational intelligence techniques falls an emerging
family of problem-solving and problem-stating methods that attempt to model
the intelligence that we can observe in nature.

Andries Engelbrecht, in his book [68], define the computational intelligence
as:

[...] the study of adaptive mechanisms to enable or facilitate intel-
ligent behavior in complex and changing environments.

This definition gives emphasis to adaptation skills which are based on discover,
learn and generalize knowledge, all abilities fundamental for the animals to
ensure survival and reproduction.

The term Computational Intelligence is strictly related to the more general
soft computing, a field of computer science characterized by the use of inex-
act solutions for computationally-hard problems [129]. This kind of approach
takes into consideration the uncertainty, approximation and tolerance to impre-
cisions exploiting them for dealing with problems, in contrast to the so-called
hard-computing which strive for mathematical accuracy and preciseness. The
model of soft computing is the human mind, and the main paradigm is the
machine learning/computational learning one: the possibility to learn from
observation in order to recognize and generalize new situations (or data). The
first paper with the definition of soft computing appeared in 1965 [235, 236]
but the methods it includes are earlier, like neural networks which first work
was published in 1958. Despite the two terms, computational intelligence and
soft computing, both include the same important methodologies (e.g. neural
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networks and fuzzy logic) the former puts emphasis on the ‘intelligence’ of
these methods while the latter underlines that these methods are less rigorous,
and so ‘softer’, than hard computing.

Computational Intelligence algorithms, and the soft computing field itself,
with deductive and case-based reasoning and a wide variety of learning sys-
tems, may be considered a sub-branch of Artificial Intelligence (AI) which fo-
cus, as the name itself explains, to the artificial definition of ‘intelligence’. The
debate about the definition of intelligence or about the relation between com-
putation/computing and intelligence itself are outside the topic of this disser-
tation, but it’s clear that the definitions and the labels on this wide area are not
simple, and probably not fundamental.

It should be clear that computational intelligence paradigm is a better model
of the intelligence we can found in nature than hard computing, in fact pre-
cision and rigorous calculations are not terms usually referred to human (or
more in general, animal) computation. On the other hand, fast calculations
and learning are easily associated to the human brain: a man is able to learn,
generalize, recognize and take decisions on new situations never faced and
observed before and he could process thousands of information of different ty-
pologies (visual, acoustic, factual etc) in a short time with a strong tolerance to
errors, noise and disturbs: all abilities highly desirable for a computer system
in a lot of fields (e.g. robotics or speech recognition).

However, searching a trade-off between precision/accuracy and costs/time
is necessary if we want to build models and systems with the same basic fea-
tures of human brain. In real-world problems, we often need to accept subop-
timal solutions in order to make acceptable the computational effort, i.e. the
time for a solution, defining what is “good enough” for the specific problem.
The search of this trade-off for a problem is the first task for an engineer de-
signing an algorithm for a specific application: he can choose on a wide range
of methods, from a trivial random sampling (low accuracy and low computa-
tional cost) to an exhaustive search (very high accuracy and very high compu-
tational cost). All the heuristics, and computational intelligence methods too,
are normally in between these two extremes.

Ho [104] gives an interesting example to explain the advantages of a “good
enough” philosophy, against a “best for sure” one. Let us consider a problem
consisting of of choosing in a search space of size D a sample in the top n
with N random samples. With D = 109 (a small size search space for real
applications) and N = 1000 the probability to choose the best sample (n = 1)
is 1 − (1 − 1/D)N = 10−6, a very low probability. This value increases to 0.01
if we consider “good enough” a value in the top n = 10000 , i.e. widening our
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Figure 1.1: Number of paper published from 1994 to 2010 in different topics

concept of “good”.

TAXONOMY OF COMPUTATIONAL INTELLIGENCE METHODS

In Figure 1.1 is shown the ratio between number of paper about a topic and
all the papers published1 in Evolutionary Computation, Swarm Intelligence,
and Artificial Neural Networks. Data is collected from Web of Science2. All the
three considered topics show an increasing trend, more evident for Evolutionary
Computation and Swarm Intelligence, research fields more recent than neural
networks.

Each computational intelligence algorithm has its origin in biological sys-
tems, in the following list is presented a brief summary of the natural system
which inspired the methodology and the first year of appearance in scientific
literature.

Neural Networks (NNs) models human brain and more in general, neural
systems. The first paper of McCulloch and Pitts [164] was published

1Data are updated at January 2010 and only the Computer Science and Technology section is
considered.

2Web of Science (http://scientific.thomson.com/products/wos/) by Thomson Reuters is
an academic service which database covers at January 2010 about 90 millions of scientific papers.

http://scientific.thomson.com/products/wos/
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in 1943, proposing a model for the biological neurons, but the first neu-
ron computing model, called perceptron, was proposed fifteen years later
by Rosenblatt [196]

Evolutionary Computation (EC) models natural evolution. Evolution Strategies
(ES) was developed by Rechenberg in the 60s [192], Evolutionary Programming
(EP) by Fogel in 1962 [77] and the main work about Genetic Algorithms
(GAs) is considered the book of John Holland [106] in 1975

Swarm Intelligence (SI) is inspired by the behaviour of swarms or colonies.
The first swarm algorithm, Ant Colony Optimization (ACO), was pro-
posed by Dorigo in 1992 [62]. In 1995 Particle Swarm Optimization
(PSO), was published by Eberhart and Kennedy [130].

Artificial Immune Systems (AIS) models the human immune system. The
first theoretical work about Clonal Selection principle was published by
Burnet [30] in 1959 but the first algorithm was presented by Forrest [82]
in 1994.

This list can not be considered exhaustive but it’s an attempt of outline
the main algorithms applied in this thesis. Even though the separations be-
tween each family are clear, there are many hybrid approaches that try to mix
the features of techniques in order to find the optimal solution for a problem,
e.g. using evolutionary computation algorithms to find parameters of neural
networks.

COMPLEX METHODS FOR COMPLEX PROBLEMS

Computational intelligence (CI) algorithms are commonly used for differ-
ent purposes, we can outline two main categories of application: learning/modelling
and optimization. Despite these two problem are partially overlapped, in fact a
learning problem can be formulated in an optimization form, the CI algorithms
have been designed for particular applications and they have gained popularity
especially where particular good results were obtained.

Computational Intelligence techniques presented more or less important
limitations that limited in some cases their diffusion. The main drawback
is the high computational requirements for optimization applications, in fact
CI algorithms are generally stochastic methods and therefore need an high
number of iterations in order to obtain good and feasible solutions, a number
generally higher than traditional methods in simple problems. Moreover, usu-
ally a large number of parameters are needed to tune these algorithms and in
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some cases (e.g. back-propagation algorithm) there are in literature no more
than empirical tests and best practises, leading to the common execution of a
time-consuming trial-and-error to obtain the optimal parameters for a specific
problem. Algorithms parameter settings are always problem-dependent and
the algorithms performances are normally very sensitive to them. In learning
and modelization problems, given that CI methods are generally data-driven,
the main shortcoming is that to obtain a good model the data provided has to
be a good representation of the problem space itself, i.e. data should contain
information spread evenly throughout the entire working range of the system.

Despite limitations and drawback, CI algorithms are commonly used, espe-
cially where an analytical model of the problem is impossible or too expensive,
or when due to non-linearity of the problem, modelling accuracy of traditional
techniques doesn’t permit to obtain practical good solutions. When there is not
enough knowledge or expertise to design problem-specific algorithms, random-
ized heuristics and CI approaches can perform effectively. Of course incorpo-
rate problem-specific knowledge into them might improve their performance.

Commonly, where an accurate mathematical modelling of the problem is
possible, the application of traditional algorithms, which often implies calcula-
tion of derivatives or gradient, certainly leads to the best results, i.e. in func-
tion optimization if the second derivative is present a Newton’s Method like
Levenberg-Marquardt, which is fastest compared to an Evolutionary Computation
method. In other cases, CI techniques, although usually not providing math-
ematically optimal solutions, can lead to “good enough” solutions, sometimes
near the optimal ones.

Another major advantage of CI algorithms is that they usually permit to lead
with large-scale optimization problems where classical techniques, like branch-
and-bound and dynamic programming, take an unreasonable amount of time
to find an optimal solutions, or in presence of noisy data or high number of
variables.

We can draw the conclusion that CI may cope effectively with the com-
plexity and the difficulty of real-world problem. What does “complex” means?
High-dimensionality, problem parameters strongly dependent, lack of informa-
tion, noisy and corrupted data, real-time requirements etc. Even with these
conditions CI algorithms provided good performances in a wide variety of ap-
plication fields:

• Industrial fault detection

• Computer networks intrusion detection
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• Robotic control and planning

• Forecasting

• System identification

• Medical diagnosis

• Industrial scheduling and vehicle routing

• Financial modelling and risk estimation

• Software engineering

• Signal and image processing

• Sound and speech recognition

• Networks routing

• Process control and anomaly detection

This list is not exhaustive, however reviews for real-world applications can
be found in scientific literature, e.g. in [166] for neural networks and in [53]
for AIS.

In the last years a particular engineering field became important and a par-
ticularly interesting application field: energy systems. All the problems relative
to energy like energy management of facilities and buildings, optimal design of
energy systems, scheduling, load forecasting, planning, became more impor-
tant with the increase of needs of energy efficiency, due to fuels’ higher prices
and better sensibility of public opinion to pollution and consumptions. CI ap-
proaches are well suited to deal with such problems that usually are complex
considering non-convex and non-differentiable functions, noisy and disturbed
data, multiple local optima, constrained domains and more. This field has two
main features which makes it very interesting: the urgency of solutions to prob-
lems of public interest and the high degree of complexity of involved systems
and subsystems which involves knowledge of very different areas (thermody-
namics, computer science, ergonomy, social sciences, economics, etc). Given
that many energy-related problems involve pollutant emissions control and
fuel consumption efficiency (i.e. costs), it’s clear the urgency of these prob-
lems, urgency which caused increasing interest from public opinion and not
only from scientific fields.

There are several books about the application of CI algorithms and other
heuristics to energy problems, for a good example see [149, 242]
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ORGANIZATION OF THE WORK

This thesis is the resulting work of three years spent working at ENEA
(Italian Energy, New Technology and Sustainable Economic Development Agency)
on various projects concerning different aspects of energy systems: from the
temperature modelling with the aim of improving energy building simulation
to the optimization of a combined cycle power plant.

This work is organized in four chapters: Chapter 2 reviews and describe ap-
plications of computational intelligence algorithms to building energy systems
and the Chapters 3, 4, and 5 describe three different real-world applications.

Chapter 3 describes the application of neural networks to temperature mod-
elling. The problem of modelling hourly ambient temperatures of any Italian
location, given its geographical coordinates, is described and an hybrid ap-
proach based on computational intelligence techniques in order to estimate
monthly and daily temperature is proposed. Back-propagation (BP) algorithm
and a Genetic Algorithm (GA) are combined to train effectively neural net-
works in such a way that the BP algorithm initialises a few individuals of the
GA’s population. Experiments concerned monthly temperature estimation of
unknown places and daily temperature estimation for thermal load computa-
tion. This work was published in [23].

In Chapter 4 is described an application of fuzzy-logic and evolutionary
computation to the optimization of the start-up phase of a combined cycle
power plant. The process with fuzzy sets over the process variables start-
ing from experts’ knowledge in order to get the needed cost function for the
Genetic Algorithm (GA) used to obtain the optimal parameters. Due to the
obvious impossibility to test the resulting inputs on the real plant a complex
software simulator is used to evaluate the performance of the solutions. In
order to reduce the computational load of the whole procedure for the genetic
algorithm a novel fitness approximation technique is implemented, achieving a
cutting by 98% the number of fitness evaluations, i.e. software simulator runs
with respect to a Genetic Algorithm without fitness approximation. Moreover,
a multi-objective approach has been proposed and applied with interesting re-
sults. This work was published in [22].

Finally, in Chapter 5 is proposed a new approach for short-term load fore-
casting based on neural networks ensembling methods. A comparison between
traditional statistical linear seasonal model and NN-based models has been per-
formed on real building load data, considering the utilisation of external data
such as the day of the week and building occupancy data. The selected models
have been compared to the prediction of hourly demand for the electric power
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up to 24 hours for a testing week. This paper has been published in [54].
This work is concluded in Chapter 6 with a discussion on the results pre-

sented and some indications about the future work.



CHAPTER 2

Overview of Applications in Building
Energy Systems

“Complex problems have simple,
easy to understand wrong answers.”

Grossman’s Law

ORGANIZATION OF THE CHAPTER

In this Chapter we present a survey covering the area of computational in-
telligence algorithms to optimization, control and modelling in building energy
systems.

1. A brief introduction to energy-related problems is given in Section 2.1

2. Section 2.2 describes the methodologies covered in this survey

3. Section 2.3 examines several applications of computational intelligence
to optimization, modelling, control and forecasting problems related to
building energy systems.

2.1 INTRODUCTION TO ENERGY-RELATED PROBLEMS

We can try to define energy-related problems as all the problems involving
the extraction, collection and utilisation of energy resources to satisfy some
specific needs. This definition definitely includes many different fields of en-
gineering and science from civil engineering to mathematics, from computer

1



2.1. Introduction to Energy-related Problems 2

science to climatology. This chapter will focus on building energy systems, an
area, which due to its complexity and wide variety, has high potential on the
application of computational intelligence approaches, which application may
be seen as an alternative to conventional methods when the latter don’t provide
effective solutions.

Algorithms usually employed to cope with all the problems related to build-
ing energy systems require the solution of complex differential equations. In
this case, at first a physic model is needed and in the majority of cases only
a simplified model is available due to the lack of information (and time) for
a more realistic model. This kind of approach requires an high computa-
tional power and thus a considerable amount of time to have accurate results.
Moreover, data from building energy systems are often ‘noisy’ and incomplete,
two characteristics that makes the problems unsuitable for classical methods.
To be able to model the behaviour of building energy systems, it is necessary to
consider non-linear multivariate (and noisy) systems with an high number of
relations between the different parts of the system and the environment (e.g.
weather information).

Thus, although analytical models have been useful to study such systems,
with the increasing computational power of the last decades, numerical meth-
ods have became much more attractive than analytical solutions with the ad-
vantage of handling more complex and realistic situations.

Many of the problems experienced in buildings energy systems appears
to be most suited for computational intelligence approach. In fact, all these
approaches strongly rely on system models (software models or differential
equations), which due to the complexity of the physical original systems show
different degrees of approximation, and data collected from sensors.

An overview of artificial intelligence methods applied to building energy
systems was published by Krarti [138], which gives a focus on forecasting and
modeling tasks. Definitely more specialised is the work proposed by Gosselin
et al. [90] which reviews all the applications of Genetic Algorithms to heat
transfer problems, thus considering common HVAC (Heating, Ventilating, and
Air Conditioning) related optimisation problems.

On the basis of typology of problems we can define three main areas:

1. Forecasting/modelling

2. Control

3. Optimization
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Forecasting, the process of estimation of future situations, is a fundamental
task for planning, management, scheduling and for all the operations involving
the need of accurate information about the system state at a precise instant t.
Modelling instead, is a complementary task respect to forecasting because an
accurate representation of a system, where possible, is important to predict its
behaviour after specific inputs. In many cases the modellization of a system
can be performed with more accuracy with a statistical bottom-up strategy
(e.g. neural networks) respect to top-down approaches, which require detailed
information about all the parameters involved.

Control is the task of manage and regulate the behaviour of a system to
achieve a desired output. Possibly it involves modelling and forecasting in
order to get an estimation of the outputs up against controlled inputs.

Optimization is the fundamental process of find and choose the best al-
ternative with respect to one (or more) error measures, fulfilling physical con-
straints.

2.2 COMPUTATIONAL INTELLIGENCE METHODS

For this survey has been considered all the scientific literature published on
the last fifteen years related to the application of computational intelligence
techniques of building energy systems. In Table 2.1 all the selected papers has
been classified by their main problem area: forecasting/modelling, optimisa-
tion and control.

2.2.1 Neural Networks

Neural Networks are evidently a common tool for energy-related problems:
their ability to find relationships between observed data and to approximate,
often with a satisfying precision, complex physical systems are in fact critical
for the application to building energy systems. For this reason we can find
neural networks used in a wide variety of approaches, they are common for
forecasting tasks and they are often used as approximated models for control
tasks when an estimation of the behaviour of the controlled system is required.

The most common typology of neural network is the feed-forward (FF)
one, the name refers to the fact that the information flows only in one direc-
tion, from the input to the output nodes, without loops. Multilayer Perceptrons
(MLPs) are most popular kind of neural networks of this typology. MLPs have
at least three layers, one input layer, one output layer and a variable number
of hidden layers. This kind of neural networks is used for several reasons, the
first is probably the easiness of implementation (there are many available in
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Table 2.1: Buildings survey

Field Refs.
Optimization

Efficient building design [34, 230, 35, 127, 160, 224,
244]

HVAC System design [78, 142, 128]
HVAC Operation settings [58, 108, 45, 158, 176, 41,

38, 40, 150, 49, 184, 240,
241]

Model identification [221, 239, 177]
Control

HVAC Systems control [232, 35, 79, 133, 10, 11, 20,
154, 170, 171, 223, 172]

Building Lighting [93]
Intelligent Buildings [173, 157]

Forecasting and Modeling
Air flow forecasting [13]
Energy forecasting [122, 124, 14, 168, 16, 21,

60, 87, 233, 15, 180, 66, 153,
152, 61, 229, 143]

Prediction of Natural Lighting Levels [48]
Thermal comfort index modelling [12]
Prediction of indoor temperature [91, 159, 165, 197]

commercial and open source software, see Appendix A) and second, the exis-
tence of an efficient training algorithm, the back-propagation (BP) algorithm.
For this reason, MLPs are sometimes called back-propagation neural networks.

The BP algorithm performs a gradient descent in network weights space
according to the error function and since its invention it has been extended
with additional features, such as an adaptive learning rate (a parameter which
influences the amplitude of changes of the weights) and the introduction of a
momentum term for the weight changes formula (the delta rule). The problem
of finding the best weights for a neural network can be defined as a classical
numerical optimization problem, thus Newton and quasi-Newton methods can
be applied. A commonly used algorithm is the Levenberg-Marquartd method
[151] which exists also in its Hessian-approximated form.
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Another frequent feed-forward neural network typology is the Radial-Basis
Function (RBF) network, where into the hidden layer there is a set of radial-
basis functions (commonly Gaussian functions) which apply a nonlinear trans-
formation from the input to the hidden high-dimensional space. This struc-
ture has a strong theoretical justification into the Cover’s theorem [51] on the
separability of patterns and it has a major advantage on its easiness of imple-
mentation. Generalized Regression Neural Networks (GRNNs) are similar to
RBF networks, they have in fact a Gaussian function as hidden function for
each training instance which returns a value indicating the degree of similarity
between the input vector and the particular training instance.

Differently from feed-forward networks, recurrent networks have at least
one feedback loop and various models have been presented during the years
(Elman networks, Jordan networks, Hopfield networks, etc). Although this
kind of network is able to approximate dynamical systems (see [208]), there
is an evident problem in applying training algorithms based on descent meth-
ods (like backpropagation) and thus various alternative methods (often very
computationally expensive) have been proposed during the years.

An hybrid model between neural networks and fuzzy logic is called ANFIS
(Adaptive Network Based Fuzzy Inference System). This approach allows a
mapping between input and outputs using a fuzzy inference system and it has
been used successfully in many identification and control applications although
its implementation results particularly time consuming.

A recent survey can be found in the work by Kalogirou [123] which review
mainly the applications of neural networks on prediction and estimation.

In Table 2.2 all the NN-based implementations in selected papers are clas-
sified by the neural network typology and further information about training
algorithm and structure are provided.

2.2.2 Evolutionary Computation

As evolution is the natural process where the best (fittest) organism tends to
survive in a competitive and changing environment, Evolutionary Computation
(EC) mimics this process “evolving” a set of solutions (population), creating
better solutions generations after generations through the genetic operators
of mutation and reproduction. The most common Evolutionary Algorithm is
the Genetic Algorithm (GA), which model was proposed in the ’50s but made
popular by the extensive work of John Holland [106].

GA performs a stochastic search for an optimal solution, given a cost func-
tion called fitness function, though the solution space. Originally GA was in-
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Table 2.2: Neural networks models. Abbreviations used for the training al-
gorithms (where specified) are the following: simple backpropagation (BP),
backpropagation with momentum (BPM), Levenberg-Marquardt (LM), Scaled-
Conjugate Gradient (SCG)

Neural network typology Reference with number of layers and training algorithm
MLP [121, 223, 165, 233, 66, 61, 160, 170](3-layers, LM), [10] (3/4-

layers, BPM),[124, 125, 122, 87] (3-layers, BPM), [171, 141,
229] (3-layers, BP), [14] (3/5-layers, QuickProp), [45] (4-layers,
LM), [168, 180, 153] (3-layers, BP), [11] (4-layers, BPM), [16]
(3-layers, BP and Resilient BP), [60, 12] (4-layers, BP), [13] (3-
layers, SCG and LM)

RBF [197] (LM and K-Means clustering), [153], [93]
GRNN [20, 21, 153]

Recurrent networks [124, 125] (3-layers)
ANFIS [158, 152, 157]

tended to have a discrete solution space, where each solution was encoded as a
binary string, but nowadays is common to consider GA also with a real-valued
encoding where the solution is represented with a vector.

The search process is made up of three main steps: selection, reproduction
and mutation. The first step has the objective of emphasize better solutions, the
second step to combine them to create offspring with a better fitness, and the
last one, mutation, has the aim to introduce new solution components adding
diversity into the population. Evolutionary Algorithms are suited for parallel
and distributed computing, a motivation for their popularity and some variants
exist underlines this important aspect, e.g. the so-called Island Model where
two or more populations evolve in parallel exchange solutions (migration) with
a specified strategy. GAs may be adapted to multi-objective optimization prob-
lems and the most common is the category of Pareto-based approaches, using
the concept of Pareto dominance, where the NSGA-II algorithm [57] is prob-
ably the most used. Evolutionary Programming (EP) and Evolution Strategies
(ES), although presented earlier than GAs are scarcely used in the papers re-
viewed in this section. The first one, proposed by Fogel in 1962 [77], empha-
sizes the behaviour of the solutions (phenotypic evolution) and recombination
operators are not present. Evolution Strategies was developed by Rechenberg
in 1965 [192] and its first implementation, the (1+1)-ES, didn’t make use of
population. There exists for ESs some successful parameters adaptation strate-
gies and nowadays this typology of EA is gaining more popularity thanks to
a particular efficient implementation called Covariance Matrix Adaptation ES
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Table 2.3: Evolutionary Computation approaches.

Approach References with additional information
Genetic Algorithms [144, 58, 108, 48, 221, 93, 34, 45, 35, 157, 239, 185, 158, 41,

38, 147, 222, 39, 231, 244, 177, 142, 80, 49, 240, 172, 178, 186,
152]

Island GA [184, 128]
Multi-Objective GA [230, 224] (MOGA), [176, 160] (NSGA-II), [127] (MOO)

Evolutionary Programming [79, 78]
Evolution Strategies [40], [126] (CMA-ES with Hybrid Differential Evolution)

(CMA-ES) [100].
All the EC-based approaches reviewed in this chapter are summarized in

Table 2.3.

2.2.3 Other Computational Intelligence Approaches

Although neural networks and evolutionary computation cover the major-
ity of the approaches reviewed in this chapter, other computational intelligence
approaches are worth a mention. Particle Swarm Optimization (PSO) in one
the most common Swarm Intelligence algorithms. Invented by Kennedy and
Eberhart in 1995 [130], this algorithm is inspired by flocks of birds behave
and decide their trajectories. In this computational methods, each solution
(particle) moves into the solution space with a speed and a direction, influ-
enced by both the solutions already explored and the best solution discovered
from the entire swarm. For a detailed explanation of this algorithm see the
book by Eberhart et al. [64] and the extensive survey by Poli [190]. Genetic
Programming (GP) may be considered a specialization of a Genetic Algorithm
where the solutions are tree structures expressing computer programs or, more
in general, expressions with operators and terminals. John R. Koza is consid-
ered the ‘father’ of this methodology [137] and it has gaining a lot of interest
thanks to the growth of CPU power in many research areas

2.3 BUILDING ENERGY SYSTEM

Energy is used in buildings for operating systems such as HVAC systems
(heating, ventilation and air-conditioning), lighting, elevators, which are es-
sential for the comfort and safety of building’s occupants. We can see all the
problems related to these systems at different levels: building level, consider-
ing whole building energy management, and single system level.
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2.3.1 Design and control of Thermal System

Inside a building, a comfortable internal environment is achieved by the
use of HVAC systems and it’s not strange that mostly of the applications of
computational intelligence techniques are about these systems. The control
and operations optimization of HVAC systems is strongly influenced by envi-
ronmental conditions, first of all internal and external temperature, and other
external factors which often are hard to model analytically.

Furthermore, HVAC systems are big energy consumers, especially in com-
mercial buildings where air-conditioning systems account for more than half
the total electricity consumption. Therefore, their efficiency has a significant
effect on the overall energy performance of these buildings.

HVAC optimization

Dickinson and Bradshaw in 1995 [58] presented one of the first application of
Evolutionary Computation to HVAC systems. Optimization of system param-
eters and operation scheduling is performed with a standard GA which maps
directly the system model by the means of a model description language. The
authors underline in their work the accuracy of the proposed methodology and
the issues related to computational times. Huang and Lam [108] presented the
application of GA with the objective of obtaining the optimal parameters of a PI
controller. A comparison with Ziegler-Nichols method is performed taking into
account overshooting and settling time, showing that the GA-based method
presents better performance than classical methods. A more sophisticated ap-
plication on the optimization of HVAC systems performances with regard to
power saving (i.e. operating costs) is performed with GA in Congradac and
Kulic [49], controlling the air damper in order to minimize the costs and the
concentration of CO2 inside the building. The HVAC system is modelled with
MATLAB/Simulink software [162] and a GA control with three different target
levels of CO2 concentration is compared with the case without its use (stan-
dard operation mode). In all the cases the use of Genetic Algorithm provides
an evident energy saving and the results are validated with a detailed model of
a business building using EnergyPlus software [52]. The simulation has been
performed on a summer working day and the energy consumption of chillers
is reduced by 11 − 21% respect to the standard operating mode which leaves
the air dampers always opened. Other approaches based on evolutionary com-
putation for HVAC system control can be found in Fong et al. [79] and Kie and
Theng [133]. The first work uses Evolutionary Programming (EP) to optimize
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chiller water supply temperature and air temperature of air handling unit of
an HVAC system and the latter minimizes the total power consumption of the
condenser power loop by the means of GA. Both works show an effective sav-
ing potential of consumed electricity (respectively of 7% and 35%). The work
by Nassif et al. [176] discusses a multiobjective GA-based approach for the
optimization of HVAC control strategy, considering both energy demand and
thermal comfort, measuring the latter with the predicted percentage of dissat-
isfied (PPD) [73]. This method, based on NSGA-II algorithm, optimises the
various operating setpoints and it is applied on an existing HVAC system with
a final achievement of 16% of energy savings on summer months. A complex
HVAC system is optimized in Lu et al. [158] using an ANFIS system and us-
ing a GA with the aim of minimizing the overall energy consumption. In the
GA, solutions represent the number of chillers, water pumps and cooling coil
fans, the airflow rates of supply, and the temperature of chilled water supply.
Due to the multiple nonlinear constraints, a penalty function is added to the
fitness function in order to penalize infeasible solutions. The proposed method
using ANFIS and GA is compared, by software simulations, with several tradi-
tional methods and it achieves, in all the cases considered, lower energy con-
sumptions. In Ben-Nakhi and Mahmoud [20] GRNNs are used to optimize the
scheduling of office buildings air conditioning simulating two buildings with
ESP-r software [46]. The neural controller scheme proposed, composed by six
different neural networks using as inputs hourly temperature readings, is de-
signed to predict the time of the end of thermostat regulation aiming to have
the setpoint temperature restored inside the building for the beginning of the
working days.

In Morel et al. [171] a NN-based heating adaptive controller, called NEUROBAT,
is developed and furthermore tested both by simulations and real building,
with the objective of reducing consumptions, increasing comfort and minimis-
ing the maintenance. Neural networks are used to predict solar radiation and
ambient temperature and to model the building behaviour, considering a 6
hours prediction time horizon. The comparison via software simulations has
been performed considering three different commercial controllers, while for
the real building the experimentations are performed simultaneously on two
independent rooms: one controlled with a conventional controller and the
other one with the proposed controller. In both cases NEUROBAT controller
leads to better comfort and lower heating consumptions, 11 − 13% reduction
on a year. A NN controller is adopted in Liang and Du [154] to control the
indoor thermal comfort level, measured it with PMV index (Predicted Mean
Vote) [73]. The neural network takes two inputs: error between PMV set
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value and measured value and error derivative. The output of the network is
the control of the HVAC system. The authors compare the NN controller with a
PI controller, simulating setpoint variations and cooling load disturbances. The
proposed NN controller exhibits a very smooth signal and better performances,
moreover allowing to obtain high comfort levels and energy savings. A thermal
comfort control model incorporating NN predictive model is presented in Moon
and Kim [170] and experimentations were performed on a residential build-
ing. The model takes into account air temperature, humidity and PMV with
the aim of reducing overshoots and undershoots of traditional control strate-
gies normally due to the late thermal response of the building and lag-times
of cooling/heating systems. The proposed framework, tested with real ex-
perimentations and software simulations, reduces overshoots and undershoots
with higher thermal comfort and in some cases reducing the building energy
consumption.

Zhou and Haghighat describe in their work [240, 241] a methodology to
design a ventilation system for office buildings based on NNs and GA. In order
to estimate the efficiency of each designed solution, CFD (Computational Fluid
Dynamics) simulations are used and due to their high computational complex-
ity (20 hours for each evaluation) a surrogate model, based on NN, has been
used for the GA, which commonly requires an elevate number of fitness eval-
uations (in this case CFD simulations). The feed-forward NNs take as seven
inputs the parameters of the ventilation system evaluated and estimate PMV,
energetic consumptions, and other interesting variables. The training phase
is performed on a set of initial simulations, selected with a Latin Hypercube
Sampling (LHS) [113] method to sample the parameter space with the min-
imal number of points. Once trained the NN, this is used into the GA fitness
function, which takes into account four objectives combined in a singe one
with a weighted sum. Five different combinations of weights are considered
and the improvement with respect to a baseline case is shown, leading to the
conclusion that GA approach is critically dependent by weights values but po-
tentially permits to obtain important improvements respect to classical designs.
Ooka et al. [184] present an optimal design method for a building energy sys-
tem, providing the best combination of equipment and operational planning
with respect to consumptions and emissions. A distributed GA is used with
its individuals’ chromosome representing the capacity of selected equipments
(cogeneration system, turbo refrigerator, heat pumps) for the optimisation of
equipment case, otherwise, for operation control case, each chromosome rep-
resents hourly scheduling of load factor for each equipment. This approach is
tested on a single day considering an hospital building and the comparison is
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performed with a exhaustive search approach leading to the conclusion that
the multi-island GA algorithm used finds the most efficient solution.

HVAC control

With the aim of energy savings, a NN based controller which changes dynam-
ically the room temperature according to thermal comfort value is developed
by Yamada et al. [232]. The neural network with fuzzy control calculations
controls the hot/cold water flow to maintain the desired room temperature in
accordance with any deviation between computed PMV and target value. The
network learns the correct thermal comfort model with the help of room users,
which enter their thermal feelings through an input unit. The experimentation
validated the approach which is able to achieve an energy savings of 18% re-
spect to the conventional control strategy, with only the drawback of a PMV
slightly greater than zero but however within the comfortable range.

Wang and Chen [223] developed a fault-tolerant control for buildings’ ven-
tilation based on neural network models. In order to keep an acceptable indoor
air quality, CO2-based demand-controlled ventilation (DCV) systems strongly
depends on the information provided by sensors. The authors developed a
system for detecting faults (classified as ‘soft’ and ‘complete’ faults) and val-
idating measurements. The air conditioning system of an office building has
been simulated with TRNSYS software [134] and data are collected to cre-
ate NN models. Variables considered for the model are the damper control
signals and air flows (outside and supply) and the fault-tolerant control strat-
egy detects the anomalous deviations between models’ estimations and sensor
data to classify the fault typology and provide a correct measurement to the
HVAC system. Validations tests were performed under various occupancy and
weather conditions and it is shown than the proposed control strategy permits
to achieve a good compromise between air quality and energy performances
in case of sensor failures. A controller for building with high thermal inertia
based on NNs is proposed by Argiriou et al. [10, 11]. It is composed by two
modules: one for forecast energy requirements and a meteorological model
for weather conditions (ambient temperature and solar irradiance). The me-
teorological part consists of two different feed-forward neural networks used
as one-step ahead predictors, both have as inputs the past samples of temper-
ature and solar irradiance and information about time and day of the year.
Similarly, the heating energy predictor network has 35 inputs consisting of the
previous samples of temperature (ambient and indoor), solar irradiance and
status of the heating system. The neural controller developed has been tested
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online and offline: in the first case using a test room with a data acquisition
system for three months, and in the other case via TRNSYS software simulation
comparing it with a conventional controller. In both cases the proposed con-
troller was able to maintain the temperature set point and the comparison with
the conventional controller showed a saving of 7.5%− 15% on heating energy
consumption. The paper by Mossolly et al. [172] examines optimal control
strategies of air-conditioning systems applying a GA to the optimisation con-
trol strategies. With an objective function which takes into account comfort,
air quality and energy consumptions, the GA optimises operational set points.
The approach is validated on a case study of an academic building using Visual
DOE software [3], with the conclusion that the optimised strategies lead to a
consistent decrease of energy consumptions (from 10% to 30%) on summer
period maintaining thermal comfort and indoor air quality.

Chiller Units

Optimization of chiller units capacity can lead to high energy savings, espe-
cially where the air-conditioning requirement lead to an high power consump-
tion (e.g. industrial plants in hot areas). In Chang [41, 38] GAs are used to
optimize the partial loading ratio (PLR) of chiller units, minimizing the energy
consumption and satisfying the loading constraints. Evolutionary approach is
compared on two case studies with Lagrangian method, which doesn’t con-
verge when the load request is below the 50% due to the non-convexity of the
kW-PLR curve. The GA permits to reach satisfying results with an high exe-
cution speed. The same author in [40] use Evolution Strategies for the same
task leading to similar results but simpler implementation. Another approach is
proposed by Lee and Lin [150] based on Particle Swarm Optimization (PSO) al-
gorithm. The authors compared this swarm intelligence approach with Genetic
Algorithm and Lagrangian method on two test cases and in both PSO leads to
lower consumptions on low demands.

Neural networks are used in Chow et al. [45] to model a direct-fire absorp-
tion chiller system and to be used by GA for optimization. Various settings, as
pump speed or water temperatures, are used as inputs in a neural network with
other uncontrolled variables (e.g. ambient temperature) and correlated with
system’s costs and efficiency. Once an effective model is created, GA is used
to find the optimal set of control variables minimizing the costs. Comparison
with standard designs on three cases shows the effectiveness of such approach
achieving energy saving.
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HVAC models optimisation

Advanced HVAC controllers integrate online predictors of system performance.
To achieve an effective prediction, accurate models of measures like cooling
and heating coil are needed to calculate optimal setpoints. Wang and Jin [221]
use a GA algorithm for the on-line optimisation of HVAC control strategy pa-
rameters. A simplified physical model is used to predict the responses to the
control set-points and the GA determines the optimal variables minimizing the
cost function, which concerns PMV, air quality and energy use. As expected, the
choice of the cost function shows to be critical and the experimentations, per-
formed with TRNSYS software, demonstrate the effectiveness of control strate-
gies proposed to improve overall system performances. Similarly, self-tuning
models are developed in Nassif et al. [177] validating them on collected real
data from an existing HVAC system. Model parameters are tuned by using a GA
and the models include: zone temperature, return air entalphy/humidity, CO2

concentration, fans, cooling and heating coil. The proposed model is compared
with a simple one (without self-tuning) on measured data showing a significant
improvement on accuracy.

Thermal comfort modelization

Normally human thermal comfort index is calculated using predicted mean
vote (PMV) index [73] which may take a long computational time due to
the nonlinear equations involved into the calculations. In Atthajariyakul and
Leephakpreeda [12] NNs are used to learn the relationship between thermal
variables and thermal comfort index, experimenting both models in an air-
conditioned room and showing a good agreement between the two models.

2.3.2 Building Model Identification

The task of identification of characteristic parameters and coefficients of
materials is very important to achieve an accurate modelling of building be-
haviour.

A procedure based on GA were proposed by Zhang et al. [239] to determin-
ing heat transfer coefficient of a wall surface. GA optimizes transfer function
coefficients with as a goal the achievement of a particular value of heat flux
error. Experimental data validates the proposed method and a high accuracy
is achieved with a smaller computational load than traditional identification
methods.
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2.3.3 Intelligent Building and Ambient Intelligence

The term ‘Intelligent building’ refers to the advantages obtained by the ap-
plication of information management and intelligent methods to the various
building services and systems (see Flax [76]) with the aim to make them more
efficient minimizing the costs.

Instead, the term ‘Ambient Intelligence’ gives a vision of a more pervasive
presence of intelligence, dealing with the development of a new paradigm
where people are immersed in a digital environment that is aware of their
presence and context, and which is sensitive, adaptive and reactive to their
desires, habits and emotions.

Lighting Controller

A self-adaptive management system which takes in account visual and thermal
comfort inside the building and energy consumptions is proposed in Guillemin
and Morel [93]. The method controls the blinds position according both to
the exact position of the sun and the indoor lighting to optimize the visual
comfort, e.g. avoiding too much solar light which can disturb the user. When
the user is not present the controller set the priority to optimize the energy
consumption. The method uses a heating controller which takes into account
weather conditions (using a neural network based predictor), user presence,
and temperatures. All the different models used: illuminance ratio, artificial
lighting, climate, thermal room are based on fuzzy logic and NNs, and they
are adapted using GA during the night. The method was experimented on
two rooms inside an office building and compared with traditional controllers
with the result of large energy savings (up to 25%) and good visual comfort
(measured with user surveys).

Computational Intelligence Controllers for Intelligent Building

In an intelligent building a set of heterogeneous devices are controlled with
the aim of satisfy users preferences, using all the data provided by sensors.
Fuzzy controller or neural network can be used both as main tools, the former
due to its ability to handle imprecision and the similarity with the human rea-
soning, the latter, on the contrary, is a black-box approach and permits to find
even complex relationships between available data. Probably one of the first
work about this topic is found in Mozer [173] where an adaptive control of an
home is proposed. The authors developed a system which, observing inhabi-
tant behaviours, is able to program itself adapting to their needs. The optimal
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control follows two objectives: minimisation of discomfort for users and en-
ergy cost. This system was implemented in a residence equipped with sensors
in each room (temperatures, light, sound level etc) and with the possibility
to control water heaters, ceiling fans, the intensity of lights, gas furnace, and
electric space heaters. The global controller, receiving data from indoor and
outdoor sensors, learns the habits and preferences of users (e.g. about light
intensity) trying to minimise its objectives. Despite the authors didn’t provide
experimental data, the approach can be surely considered the first one about
the utilisation of computational intelligence methods for home automation.

In Lopez et al. [157] an evolutionary algorithms is chosen for the gener-
ation of fuzzy controllers, experimenting and validating the technique on the
real data collected on a dormitory (called iDorm) where sensors and actuators
were available for the control during the staying, lasted several days, of a stu-
dent. The algorithm is called GA-P, and it is an hybrid between GA and Genetic
Programming (GP), and the deviation between the value proposed by the fuzzy
controller and the real one of the actuator is used as metric of performance.
An analysis of controllers is performed and interesting relationships between
variables can be observed, moreover a comparison with ANFIS is carried out
resulting in no significant differences in accuracy with the remark that ANFIS
normally creates an higher number of rules than GA-P, but on the other hand,
the GA-P tends to be slower than ANFIS.

2.3.4 Building and energy system design

Buildings are designed with the aim of providing a comfortable internal en-
vironment for the occupants, and the building envelope, which mainly consists
of walls, roofs, windows, doors and floors, allows heat to flow between the in-
terior and exterior of a building and, hence, it plays a key role in regulating the
indoor environment. Therefore, the thermal characteristics of a building enve-
lope have significant influence on HVAC systems, affecting, both, equipment
capacity and energy required for their operation. Due to implementation diffi-
culties and high costs, most measures to optimize the thermal performance of
building envelopes need to be incorporated at the design stage of buildings or
during a major upgrading exercise. Although such improvement measures are
relatively expensive, they normally result in lower heating and cooling loads
and so downsizing of equipment and lower energy consumption making them
generally financially viable when considered on a life-cycle basis.

Given the large number of parameters often involved in building design
process, multi-objective optimisation approaches are generally preferred given
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their capacity to consider all the objective functions (economical, environmen-
tal, etc) in parallel, without requiring explicit priorities.

Efficient building design

Optimization methods can be used in the design process for search and op-
timization of optimal design solutions. In Caldas and Norford [34] GAs are
used to choose the optimal sizing of windows to optimize lighting, cooling,
and heating performances. The effectiveness of a solution is provided by DOE-
2.1E thermal simulation software [92]. The proposed optimization method
permits to cope with large problems where there is no way to calculate manu-
ally the optimal solution and moreover it provides multiple solutions offering
valuable alternatives to the designer. A multi-objective approach is proposed
by the same authors [35] for the optimization of building shape and materials
considering as objectives heating, lighting and costs.

The work by Wright et al. [230] proposed an optimisation approach for
building design with the aim of finding the optimal trade-off between oper-
ating cost and occupants thermal comfort. The application is restricted to
HVAC systems: setpoints, coil width and height, etc. Three days of opera-
tion have been used to evaluate the performance of the solutions provided by
the used multi-objective GA implementation. Several design constraints have
been taken in account and two optimization criteria have been specified: op-
erating cost of HVAC system and maximum thermal discomfort (measured as
PPD). The proposed approach offers the possibility to investigates the various
design solutions showing great potential in the understanding of the behaviour
of buildings and design solutions.

A multi-objective GA is used in Wang et al. [224] to design a green build-
ing performing a life cycle analysis (LCA), with the aim of obtain assist the
designer to design a building considering both environmental and economical
criteria. Both discrete and continuous variables are used to define the building
design: orientation, aspect and window-to-wall ratio, window and wall types,
materials of wall and roof layers, and roof type. Two fitness functions are con-
sidered: life-cycle cost (LCC) and life-cycle environmental impact (LCEI), both
calculated using a simulation program based on a tool developed by ASHRAE
[189]. A Pareto-based multi-objective GA is used and validated on a case study
consisting of the design of an office building located in Canada. The Pareto
front provided permits to understand the trade-off relationship between con-
sidered criteria and so the authors suggest that a multi-objective approach can
assist the designer in the evaluation of the large amount of parameters involved
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in green building design.
A method to optimize the geometric form of a building in order to max-

imize the solar irradiation is proposed in Kämpf and Robinson [127]. They
used RADIANCE [146] ray tracing software to simulate the irradiation of the
building with the aim of creating a fitness function used by a CMA-ES/HDE hy-
brid Evolutionary Algorithm developed by the authors [126]. Three different
test cases were considered: a grid of 25 Manhattan-style buildings, orientation
and tilt of the roof surfaces of a set of buildings, roof geometry modelled as 2D
Fourier series. The results showed that the evolutionary approach proposed
was able to find good and, in certain cases, non-intuitive solutions raising an
interesting question about the possibility of use such approaches as source of
inspiration for architects and engineers. With the same objective is the work by
Znouda et al. [244] which optimises the building shape with a classic GA im-
plementation. The design variables considered are: length of the facades, types
of roofing and walls and windows glazing. The evaluation of the solutions is
performed by the means of a software tool to estimate the building behaviour
called CHEOPS [84]. The authors performed the experimentations on two dif-
ferent optimization problems: one minimising the energy consumptions, and
another on economic performance. Optimal solutions provided by the two for-
mulations are, as expected, quite different, leading to the conclusion that a
multi-objective approach should be preferable due to its feature of providing
not only an optimal solution, but a set exploring the trade-off between the two
objective functions.

A NSGA-II algorithm is applied in Magnier and Haghighat [160] with the
aim of the optimization of building design. Several variables of the HVAC
(i.e. set points and airflow rates) of a building are coded into solutions and
two objective functions are used: total energy consumption (cooling, heating
and fans) and average absolute PMV. In order to reduce the number of the
time-costly building simulations (performed with TRNSYS), a neural network
is used to model the building behaviour, providing an acceptable approxima-
tion. This approach leads to the creation of a set of Pareto-optimal solutions
representing the trade-off between the two objective functions, with a signifi-
cant improvement, especially considering the average PMV, with respect to the
manually designed solutions

Energy System Design

In Fong et al. [78] Evolutionary Programming (EP) algorithm is used to op-
timize the design of a solar water heating system of a residential building. A
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model of a 28-stories building is built in TRNSYS and the following variables
are included in the optimization process: tilt angle and surface azimuth of so-
lar collectors, storage capacity of hot water calorifier and mass flow rate of
circulation pump. This approach leads to the design of a more efficient system
and it provided useful information for the engineering design.

In large building energy systems, e.g. in large residential buildings or hospi-
tal, it’s not simple to find the optimal combination of machinery to optimize the
overall efficiency of the system. In Kayo and Ooka [128] the authors present
an application of island GAs for the optimal design of the energy system of a
building. On two test cases, an hotel and an hospital, the size and presence of
different types of machinery (e.g. refrigerators or gas boilers) are represented
inside the individuals’ chromosomes and the proposed design is simulated in
order to calculate the primary energy consumption. For both cases the evolu-
tionary approach performed effectively and it provided useful information for
the design process.

GAs are used in Kumar et al. [142] to design earth-to-air heat exchanger
in a non-air conditioned residential building. The algorithms optimizes five
variables (e.g radius and thermal conductivity) using as fitness function the
calculation of cooling potential of the system with a building simulation soft-
ware. The solution found is compared with a deterministic model and a neural
network for the prediction of the exit temperature of air, finally showing the
best accuracy.

2.3.5 Prediction and forecasting

The availability of accurate and updated information may be fundamental
for building energy systems for several reasons: to optimize the system pa-
rameters related to external factors, to obtain an effective control, to achieve
an efficient design, etc. All the information commonly managed by Building
Management Systems (BMS) can be used to predict future situations in the
way to minimize the error and maximize the precision. Furthermore, forecast-
ing data may be useful to find hidden relationship between available data.

To achieve an accurate forecast, information about the process we are cop-
ing with are needed but especially in real-world cases when important variables
are not available, black-box approaches can be used. This kind of approach
doesn’t require any knowledge of internal dynamics but it considers the whole
system only in terms of its inputs and outputs, the most common black-box
methods are neural networks, which are able to model a system observing in-
puts and outputs. Especially in cases where a large amount of data is available,
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neural networks are commonly used in energy applications.
A review of modeling techniques for energy consumption, focusing on resi-

dential sector, can be found in Swan and Ismet Ugursal [211].

Energy consumptions

A modelling work of residential energy consumption with neural networks is
performed in Aydinalp et al. [14, 16, 15] considering as input the properties of
the heating system and the building, information about appliances and people
living in the building, weather and temperature (indoor and outdoor) informa-
tion and socio-economic characteristics of the building (e.g. income, dwelling
type, etc.). Models were validated in the Canadian residential sector achieving
a good prediction performance higher than engineering models already used.

Adaptive NN models are evaluated in Yang et al. [233] for real-time build-
ing energy prediction. Two adaptive models are proposed: one with accu-
mulative training where the NN is retrained with new collected data and one
with a sliding window, where the network is trained with a constant amount
of measurements (older samples are discarded). Principal Component Analysis
(PCA) is applied to input data in order to find and remove redundant variables.
Static and on-line models, with and without applying PCA on input variables,
were tested on data provided by DOE 2.1E software [92] simulation of an of-
fice building and on measured data collected from a real environment. Static
models perform far better than on-line models on simulated data but the situ-
ation changes on real data, where all the proposed models don’t achieve good
performances. However, the work underlines the effectiveness of a PCA-based
feature selection methodology.

Fewer inputs are instead used in the NN model by Dombaycı [61], which
predicts the hourly heating energy consumption considering as inputs the hour
of the day, day of the week, the month and the consumption of the previous
hour. The model is tested on the consumptions of a residential building us-
ing as training and testing sets four years data, using different numbers of
neurons into the hidden layer in order to find the optimal value which finally
achieves about a 20% of relative error (MAPE) on the testing set. The work
presented by Mihalakakou et al. [168] considers a six years period of time
of the hourly consumptions for a residential building. Using as inputs the air
temperature and the solar radiation, a neural network performs a prediction
on a 1-year testing period with good results (R2 > 0.94). Similarly, Neto and
Fiorelli [180] consider the daily consumption of an office building testing two
NNs: one with the minimum and maximum temperature as inputs, another
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with more weather data (relative humidity, solar radiation, etc). The latter
network achieves testing error below 10% both for working days and holidays.

In Ekici and Aksoy [66] the yearly heating energy consumption of buildings
with three different form factors are predicted with a neural network which
has as inputs building orientation, transparency ratio, and insulation thickness.
Several combinations of these inputs are used to simulate buildings’ consump-
tions used as NN training set. All the buildings are considered to be in the same
geographic area and the results show an high accuracy (94-99%). Wong et al.
[229] create a ANN model able to predict daily cooling, heating, and lighting
consumptions of a building given environmental, building coefficients and day
of the week. Using EnergyPlus software [52], simulation data are provided to
train the neural network model on an office building. The experimentations
show that NN models used predict effectively the consumptions, achieving a
maximum relative error of 8%.

The work done by Gonzalez and Zamarreño [87] uses a special neural net-
work consisting of a MLP model with a feedback structure, trained with an hy-
brid algorithm composed by a backpropagation method with a random search.
The predictor used considers as inputs the forecasting of the ambient tempera-
ture value, the hour, the day of the week, and the load at the previous time step.
The method is applied on two benchmarking dataset provided by ASHRAE1 for
a competition and the results are compared with the winners. Also related
to ASHRAE competition, in Dodier and Henze [60] the energy use prediction
is operated by a NN with the application of statistical analysis to reduce the
number of inputs. The authors used a neural network for each variable to
be predicted, and for each of them a method based on Wald statistical test is
applied to decide whether an input variable is relevant or not. Time and occu-
pancy data were found relevant for all variables but not environmental data,
furthermore an analysis of autocovariance was used to choose the time lag be-
tween values of inputs proposing a complete study of input selection analysis
using NNs.

In Li and Su [152] an hybrid GA-HANFIS (Hierarchical Adaptive Network-
based Fuzzy Inference System) model is developed and applied on the predic-
tion of air conditioning energy daily consumption of an hotel. The inputs of the
model are seven: the dry-bulb temperature and three past samples, and other
three past samples of the daily consumption (the output). The GA optimizes
the structure and the parameters of the hierarchical ANFIS and the authors
try different combinations of inputs comparing the prediction accuracy of their

1American Society of Heating, Refrigerating, and Air-Conditioning Engineers
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algorithm with a neural network, concluding that the former performs slightly
better than the latter.

Steam load

Neural network ensemble is used in Kusiak et al. [143] with the aim of predict-
ing the steam consumption. An initial feature selection is performed among the
input variables and MLP neural networks are compared with other data mining
method in finding relationships between the steam load and the weather data.
The ensemble model outperformed the other methods and the prediction was
effective especially during the heating season.

Cooling Load

A GRNN is used in Ben-Nakhi and Mahmoud [21] to model the hourly cool-
ing load of a building with the aim of an optimisation of the thermal energy
storage. Hourly ambient temperatures are used as input and a simulation soft-
ware (ESP-R software [46]) is used to create the database needed for neu-
ral networks training and testing. The utilization of an ANN permits to use
less weather inputs than building software simulations and thus predicting the
hourly load, with effective results on testing buildings, using only simple data
as external temperature. A comparative study of four modelling techniques has
been presented in Li et al. [153], where support vector machines (SVM) and
three types of neural networks are experimented on the hourly cooling load
prediction of an office building. All the models use as inputs relative humidity,
temperature and solar radiation, and the cooling loads used as values to com-
pare are calculated with DeST software [234]. The experimentations show
that SVM and Generalized Regression Neural Network perform better than a
back-propagation neural network and a radial-basis function neural network.

Natural lighting levels

GA is used in Coley and Crabb [48] with the aim of predicting the natural light-
ing within a room, using the information of lighting sensors outside the build-
ing. The evolutionary computation approach is compared with a least-squares
method and the former performs better with lower errors. Authors suggested
it as the basis of a natural lighting controller and developed a prototype used
to control the illumination within an office space.
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Air flow

In Ayata et al. [13] NNs are used to predict the maximum air velocity and tem-
perature into a building. Accurate simulations with the computational fluid
dynamics software FLUENT [114] were performed and the simulation data
are used to train an ANN using as inputs building parameters and wind in-
formation. The modelling work suggested a building dimensional ratio for an
optimal choice of natural ventilation.

Indoor temperature and humidity

The issue of predicting building indoor temperature with the aim of control the
heating system is addressed in Gouda et al. [91]. Four variables were taken
into account: past history of outdoor and indoor temperature, solar irradiance,
and heating valve position. A method based on Single Value Decomposition
(SVD) is used to decrease the dimension of input data maximizing informa-
tion content and the trained NN with this data is used to predict the indoor
temperature up to two hours ahead.

Neural Network Nonlinear autoregressive (NNARX) models are used in
Mechaqrane and Zouak [165] on the prediction of indoor temperature inside
a residential building. First, an ARX model is applied with the appropriate
number of past samples of considered variables (temperatures, solar radiation,
and heating power) and then the same structure is used for the NNARX model.
The neural network is optimized with a pruning procedure, the optimal brain
surgeon (OBS) strategy [101]. The comparison shows that the NNARX model
clearly outperforms ARX model, especially after the pruning procedure, which
increased the prediction accuracy drastically. A similar approach is used in Lu
and Viljanen [159] for prediction of indoor temperature and relative humidity.
The variables considered are only outdoor and indoor temperature and outdoor
and indoor relative humidity. A GA is used to determine the input variables and
the number of hidden neurons of the network, coding into the chromosome all
the possible combinations of inputs. As expected, the prediction of relative
humidity is more difficult than temperature, and the GA performs better than
NNARX methods on MSE measure. For indoor temperature from one-step to
four-step prediction, both methods exhibit an high accuracy with the NNARX
slightly better than GA.

For a similar task, a radial basis functions neural network approach is used
by Ruano et al. [197]. All the work is based on environmental data collected
from a secondary school building and the inputs considered are: air tempera-
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ture (outdoor and indoor), solar radiation and relative humidity. The RBFNs
can have as inputs one of the considered variables with a lag, for this reason
there is a very high number of different inputs’ combinations. The selection
of pseudo-optimal inputs combination is performed by a multi-objective GA
with 16 objectives: RMSE and mean error of training/testing/validation, am-
plitude of network’s weights, number of inputs, and a set of correlation-based
tests. The accuracy of optimal solutions is compared with the physical model
showing that ANN perform generally better. Moreover, an adaptive version
of the system is proposed in order to achieve high accuracy during the whole
year using different observation sliding window sizes and then, both predictive
models are used for the control of an air-conditioned system, demonstrating
the possibility to achieve significant energy savings with the adaptive model.

Solar water heating system

A long-term prediction of solar energy output of a domestic heating system is
performed in Kalogirou [122] using ANNs. The inputs used are: the month of
the year, environmental parameters (temperature and solar irradiance), tem-
perature of cold water, volume of the system, and various coefficients. The
obtained percentage error is 2− 5% on different training sets.





CHAPTER 3

Ambient Temperature Modelling

“An expert is one who knows more and more about less and less
until he knows absolutely everything about nothing.”

Nicholas Butler

ORGANIZATION OF THE CHAPTER

In this chapter, we introduce the application of neural networks to mod-
elling, finally describing a specific application to temperature modelling.

1. Sections 3.1 and 3.2 describe neural networks and other algorithms later
used in this chapter

2. Section 3.3 describes the ambient temperature modelling problem

3. An hybrid approach for neural networks training is presented in Section
3.4

4. Section 3.5 describes the specific problem and the experimental setup,
where in Section 3.6 results of the application of various algorithms are
examined.

3.1 MODELLING WITH NEURAL NETWORKS

Neural networks are powerful tools to solve complex modelling problems
of non-linear systems. This technique gained a lot of popularity thanks to
its advantages: easiness of implementation, the capability of be applied to
an immense variety of problems where it performs reasonably well, and its

25
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general-purposeness. Neural networks demonstrated their effectiveness in sys-
tem identification and modelling in many studies and real-world applications
[9, 24, 175, 181, 31, 228, 50, 89, 32, 107, 198].

There are various architectures of neural networks, notable ones are feed-
forward and recurrent networks. Feed-forward networks are commonly used
in modelling and pattern recognition tasks while recurrent networks are used
to construct a dynamic model of the process.

Neural networks are computational models which, observing outputs and
inputs of a system, are able to reflect linear and non-linear relationship among
them, given a specific error measure. This means that, having a non-linear
function y = f(x), we require that the neural network described by the func-
tion F (·) is close enough to f(·) as:

||F (x)− f(x)|| < ε, ∀x (3.1)

With enough training data and the right neural network structure we can have
the approximation error ε small at will. Neural networks are considered a
black-box methodology because they don’t require prior information about the
physics of the system. When a certain level of system knowledge is available
(e.g. operating range, degree of nonlinearity, dynamics rapidity etc.) the mod-
elling is called ‘gray-box’.

This ability to approximate an unknown function, defined by its input-
output mapping, is at the basis of any modelling task. Neural networks may
be used to identify a system, learning the relationship between input (x) and
output (y), and to perform the inverse task, treating xi as the desired response
to yi, although this task can be very difficult because may not be a unique
solution for a given output.

Modelling of any system with neural networks is performed in the following
steps:

1. System inputs and outputs are selected

2. A dataset is created and, depending on the neural network typology and
structure, it is pre-processed (e.g. scaling, filtering, normalization)

3. Dataset is split in two subsets: one used for the network training and
the other one is used to test the generalization capability of the trained
network (another subset may be used to decide the stop of the training
algorithm)

4. Neural network is trained, i.e. weight coefficient values are determined
respect of a specific error measure, usually Mean Square Error (MSE)
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5. Generalization capability is tested on a data subset not used during the
training phase, i.e. not observed by the neural network






 



Figure 3.1: Modelling with a neural network

In modelling and regression problems, the common error measure is the
mean square error (MSE). During the beginning of the training phase, the MSE
is usually quite high. The expected behaviour is that as the network is trained,
the error will gradually decrease until it reaches a minimum. It’s worth noting
that when only the MSE is considered as indicator of neural network perfor-
mance, the network may tend to minimize the error giving as output always
the mean value of the function. This means that the training methodology is
a critical phase and problem-dependant, although many empirical rules exist
about the kind of activation functions or training algorithm to choose (for an
example see Lecun et al. [148]).

3.1.1 Structure of Neural Networks

Neural networks are structured with a set of interconnected layers, each of
them composed of nodes; the typology of connections and nodes (called neu-
rons) characterizes the different typologies of neural networks. In this work
we considered the most common feed-forward (FF) neural networks: multi-
layer perceptrons (MLP) and radial basis functions (RBF) networks (see [102]
for a detailed introduction). They are structurally equivalent and are consid-
ered feed-forward networks because the layers are connected starting from the
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inputs and arriving to the outputs with the information flowing in only one
direction. The connections are weighted edges linking two neurons; weight’s
value is a real number normally initialized with a random value and it changes
during the network’s training. The nodes/neurons consist of a function, called
activation function, generally a non-linear function which takes an input the
sum of all the connected neurons’ values of the previous layer (see figure 3.2).

Figure 3.2: Neuron scheme

A complete introduction on neural networks and their theoretical back-
ground can be found in [102, 129].

3.1.2 Multi-Layer Perceptrons (MLP)

MLP neural networks can have one or more hidden layers, each of these
is composed of non-linear activation functions, commonly a differentiable sig-
moid function (generally a logistic function 1

1+e−t or an hyperbolic tangent
2

1+e−2t − 1) which takes in input the inner product of inputs and connections’
weights.

Learning process for MLP networks has to decide which features of the
input pattern should be represented by the hidden neurons, which work as
feature detectors, with respect to the error for each training pattern.

The back-propagation (BP) algorithm is the most commonly used tech-
nique for training neural networks, proposed first by Werbos [226] and later
by Parker [188] and by Rumelhart and McClelland [199]. The algorithm is
made up of two phases: a forward one, where the input is propagated through
the network, and a backward phase, where the error signal is propagated from
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the outputs to the inputs calculating the adjustment for each layer. After the
presentation of k-th input, each weight wij that connect the node i to the node
j is corrected according the following formula:

∆wij(k) = ηδj(k)yi(k) (3.2)

where η is the learning rate parameter, yi is the output of the neuron i, and
δj(k) is the gradient defined as:

δj(k) =
∂E(k)

∂vj(k)
= ej(k)ϕ

′
j(vj(k)) (3.3)

where ej(k) is defined as the error between the output of the network and the
desired value, E(k) is the square error 1

2

∑

e2j(k) for all the network outputs,
vj is the input value for the neuron j, and ϕ is the activation function.

As the back-propagation (BP) algorithm is an application of the gradient de-
scent (also known as steepest descent) method to the weight space, it suffers
of all the problems of this method (see [205]), for this reason the algorithm
is common improved with the introduction of an adaptive learning-rate and
a momentum constant, which make the algorithm more effective, stable, and
with a smoother trajectory in weight space (see [102]). Many major modifica-
tions of BP algorithms have been proposed during the years, which have proved
their usefulness in practical applications. It is worth mentioning the quickprop
algorithm [70], resilient back-propagation [195], the Levenberg-Marquardt al-
gorithm [98] and conjugate gradient methods [97].

3.1.3 Radial-Basis Functions (RBF) Networks

Radial basis function networks are neural networks whose hidden layer is
composed of radial basis functions (e.g. Gaussian functions), functions whose
output depends only on the distance of the input vector from a point defined
center. Differently from MLP that can have more than one hidden layer, RBF
networks have only one hidden layer. Hence, the output of the network is:

F (x) =
N
∑

i=1

wo
i ϕ(‖x− ci‖) (3.4)

with N the number of nodes in the hidden layer, wo
i the weight of the con-

nection to the output node, ci the center of the function i, and || · || denotes
usually Euclidean norm. If we define Φ as the N-by-N matrix of all the elements
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ϕij = ϕ(||xi − cj ||), we may write:

Φw = x (3.5)

and so we may find the weight vector w as:

w = Φ
−1

x (3.6)

assuming that Φ is nonsingular (which is true if all the points in x are distinct).
Generally the radial basis function is a Gaussian function defined as:

ϕ(‖x− ci‖) = exp[−β‖x− ci‖2] (3.7)

but other class of radial-basis functions can be used, the most common are
the multiquadrics (ϕ(x) =

√

(x2 + c2)) and the inverse multiquadrics (ϕ(x) =
1√

x2+c2)
)

RBF neural networks’ training can be separated in two problems: choosing
the shape of the radial-basis function and choosing the output layer weights. A
well-established training algorithm such as the back-propagation for MLP net-
works doesn’t exist for RBF networks and different techniques were developed
during the years.

A simple approach may be the following:

1. Placing the RBFs centers randomly or using a clustering algorithm (e.g.
k-means)

2. Selecting the radius of the RBF (the β value for the common used gaus-
sian functions in Eq. 3.7)

3. Computing optimal values of weights from the hidden to the output layer
using a least-square method (or another optimization method).

For problems with small training data generally a RBF is placed in each in-
put sample and the radius is chosen in order to ensure overlapping among func-
tions, otherwise, for larger datasets, we can choose instead a random subset of
input samples or use a clustering algorithm to determine RBFs coordinates.

It’s worth noting that while MLP networks construct a global model, RBF
networks, since they use exponentially decaying functions such as Gaussian,
construct local approximations of non-linear relationships between input and
output.
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3.2 OTHER METHODOLOGIES

There are a large variety of methods of interpolation and approximation,
most of these methodologies can be found inside common technical computing
software packages like MATLAB [162] or R [191].

3.2.1 Nearest Neighbour (NN)

This is a very simple method of interpolation, widely used to estimate un-
known data providing as estimation the closest known point according to the
following formula:

t = ti (3.8)

where t is the parameter to be estimated and ti is the datum of the ith closest
point, therefore:

i = min(dj) (3.9)

for j = 1, . . . , n where n is the number of known points and d a N-dimensional
distance measure as the Euclidean Distance:

dj =

√

√

√

√

N
∑

i=1

(xi − xj)2 (3.10)

3.2.2 Support Vector Machines

Support Vector Machines (SVM) [220] are often associated to neural net-
works because they are universal approximators, able to perform classifica-
tion and regression, but in many situations they outperform neural networks
[33, 214]. SVMs perform a non-linear mapping on input vector into a high-
dimensional space called feature space and construct an hyper-plane which
separates the data following the structural risk minimization principle [220].
The application to regression problem is called Support Vector Regression (SVR)
and was proposed in 1996 [63].

An interesting introduction to SVM and SVR could be found in [94, 179].

3.3 AMBIENT TEMPERATURE MODELING

The design of efficient solar based energy production systems and sustain-
able buildings strongly depends on simulations where the accuracy estimation
of several environmental parameters is crucial. Among these, the most im-
portant ones are: solar radiation and ambient temperature. The first one is
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relatively simple to be modelled, because it mainly depends only on the ge-
ographical coordinates and the day of the year, and some work has already
been done [117, 140, 206]. The second one is tougher because it depends on
a high number of variables which are not always measured (e.g. wind). In
this work we are facing the latter problem and we will show how, in the case
of sustainable buildings design, an effective ambient temperature modelling
tool can remarkably improve (about 20%) the energy consumption estimation
error. Thus, when approaching this task two principal problems often rise:

• available data are based on monthly averages;

• existing data regard few places generally nearby airports

Concerning the first problem, algorithms which estimate reliable hourly val-
ues given the monthly ones already exist [69]. The second problem is slightly
harder. So far, users of building simulation systems need to provide the tool
with the most reliable meteorological data related to the location of interest.
When these kind of data are not available for the specific required location it is
common practice to use the data of the nearest unknown location (the Nearest
Neighbour algorithm, NN). Unfortunately, this approach is not completely ap-
propriate since climate is a highly non linear system and depends on a large
number of variables. Indeed, locations geographically close to each other often
have different environmental behaviours (e.g. example temperature profiles)
and it is the cause of large errors.

Classical modelling approaches involve different interpolation techniques.
Spatial interpolation makes it possible to estimate any meteorological charac-
teristic (such as a maximum temperature) at locations away from those for
which direct measurements exist. In this way, estimates can be made for scales
up to continents and grid spatial resolution is typically in the order of several
kilometres. The interpolation methods vary in complexity and accuracy, from
simple Thiessen tessellation and inverse square distance [88] to more complex
methods such as Truncated Gaussian Filter [119, 217], kriging and co-kriging
methods and variations of spline interpolation [105, 116, 169]. The choice of
methods is partly determined by the speed of computation required and na-
ture of the modeled phenomena, whereas methods such as Thiessen polygon
methods are very fast, kriging and multivariate splines require more compu-
tational effort. Applications range from [109], where meteorological stations
were spatially interpolated over the whole of Europe using a multidimensional
Regularized Spline with Tension (RST) [105] in order to get daily tempera-
ture profiles, to [187], where a procedure based on sets of equations to pre-
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dict monthly mean values of relative humidity, ambient temperature and wind
velocity for Indian locations is presented, to [110], where a method based on
probability density functions to estimate daily temperature profiles is presented
and applied to a few Australian localities.

Because of their capacity, neural networks are used for many different ap-
plications and tasks, works about the prediction and forecasting of indoor tem-
perature and relative humidity can be found [132, 159, 19, 216] as well for
the estimation and prediction of solar radiation [67, 145, 174] and ambient
temperature [115, 86, 212, 75].

There are several applications of computational intelligence techniques in
the field of modelling environmental parameters [6, 204, 207, 213, 8] which
have provided interesting results.

In this context we are investigating neural network-based approaches in
order to get more precise environmental estimation tools for ambient temper-
ature.

3.4 HYBRID TRAINING ALGORITHM FOR NEURAL NETWORKS

As we stated before, the training task consists of the determination of the
optimal weight coefficients respect to a specific error measure. Thus it may be
formulated in an optimization form as follows:



















minE(x) =
N
∑

k=1

(y(k)− ŷ(k))2

ŷ(k) = F (x,u(k))
x ∈ Rp×q

(3.11)

where y is the target data, ŷ is the neural network output, x the vector of
neural weights (and other parameters, e.g. bias), u is the input vector. Thus
any optimization algorithm may be used to cope with this problem and given
the complexity of the neural training problem in many real-world applications,
we may use Evolutionary Computation algorithms.

The most common Evolutionary Algorithm is probably the Genetic Algorithm
(GA), a class of algorithms inspired by natural evolution, proposed in the ’70s
[106], used for solving optimization and search problems in a wide domain. A
GA operates starting from a population of solutions (represented with binary
string or real-valued vectors) through a simple cycle of stages:

1. Evaluation of each string using a specified performance function (called
fitness function)
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2. Selection of the best strings

3. Manipulation to create a new population of solutions

This class of algorithms allows us to approach all kinds of problems, the
only requirement is the presence of a performance function, which leads the
“evolution” of the solutions toward the optimal.

3.4.1 Hybridizing Back-Propagation and Genetic Algorithm

Back-propagation (BP) and Genetic Algorithms (GA) previously introduced
have been both use to train neural networks. Despite the success of such algo-
rithms, each has its own merits and drawbacks.

The merits of BP are that the adjustment of weights is always towards the
descending direction of the error function and that only some local information
is needed. On the other hand, BP also has its disadvantages. For example, the
error curve is generally so complex that there are a lot of local minima making
the convergence of the algorithm very sensitive to the initial values.

GAs are parallel stochastic optimisation algorithms and compared to BP,
they are more qualified for neural networks only whether the requirement of a
global searching is considered. However, the price paid for GA is the slowness
which is mainly due to the random initialisation of the genes and to the slow
but crucial exploration mechanisms employed. Another shortcoming of GA is
that the method cannot ensure convergence and achievement of the optimum.
From this, it is easy to observe the complementarity between BP and GA.

GA and BP can be combined in different ways and two categories can be
defined [201]: supportive, where one of these methodologies plays the pri-
mary role and the other one a supporting role, and collaborative, where they
work together to solve the problem. The proposed hybrid approach, called
BPGA, can be considered a supportive combination of BP and GA, indeed BP
is first used to train several neural networks (a small fraction of the total GA’s
population size) for approximately 106 cycles with no early stopping criterion.
Then, the weights of the BP computations are encoded into several chromo-
somes of the GA’s initial population together with other randomly generated
chromosomes (see figure 3.3).

The algorithm consists of two main stages:

1. Training of several ANNs with the back-propagation algorithm for a spec-
ified number of epochs, enough to reach the convergence
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Figure 3.3: BPGA method

2. Using the GA to optimize the ANNs obtained at the end of the BP training,
encoded in real-value vectors inside the individuals.

Therefore, in the proposed method the main advantage is that the searching
domain of the GAs is reduced and thus, the convergence time is shortened.
Moreover, the feature of parallel optimisation of GAs may help the BP networks
to get out of the local minima which they tend to plunge into.

3.5 EXPERIMENTAL SETUP FOR AMBIENT TEMPERATURE MODELLING

In this work we compared six different methodologies on the modelling of
temperature for Italian localities. The available data are the three geograph-
ical coordinates (latitude , longitude, height above sea level), the day of the
year (1–365) and the monthly average temperature, therefore for each local-
ity in the database there are twelve different temperature values, referring to
the value of the middle day of the month. By a preliminary analysis we se-
lected nine homogeneous areas in the Italian territory from the point of view
of climatic characteristics (as reported in table 3.1), and so the whole data set,
composed of 740 localities, has been split into nine subsets according to Italian
defined climate areas. As required by NNs implementation procedure, each
subset has been partitioned into two parts in order to proceed to the training
and testing phases with different sets. In figure 3.4 the distribution of the con-
sidered localities on the territory is shown and table 3.1 shows the data set
partitioning.

We considered all the following algorithms:

1. Nearest Neighbor (NN)
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Table 3.1: Data set partitioning

Regions Training size Testing size

Area1 Valle d’Aosta, Piemonte, Lombardia 76 17

Area2
Trentino Alto Adige, Veneto,

161 18
Friuli Venezia-Giulia, Emilia-Romagna

Area3 Liguria, Toscana, Umbria 90 11
Area4 Marche, Abruzzo 43 13
Area5 Lazio, Campania 71 9
Area6 Puglia, Molise 66 8
Area7 Basilicata, Calabria 53 6
Area8 Sardegna 36 5
Area9 Sicilia 47 10

TOTAL 20 643 97

2. MLP Neural Network trained with back-propagation (BP)

3. MLP Neural Network trained with Genetic Algorithm (GA)

4. Support Vector Regression (SVR)

5. Radial Basis Function Networks (RBF)

6. MLP Neural Network trained with Genetic Algorithm with initial back-
propagation solutions (BPGA)

MLP Neural Networks’ architecture consists of 4 input neurons (latitude,
longitude, height above the sea level and day of the year), 6 to 10 hidden
neurons and one output neuron. Hidden and output neurons’ transfer function
is the logistic sigmoid function.

We implemented back-propagation and Genetic Algorithms in C++, for
SVR we used the MATLAB interface for libSVM [37].

Algorithms’ parameters are shown in table 4.6.
Tests have been carried out using all the data available for Italian locali-

ties in the database managed by ENEA (Italian Energy, New Technology and
Environment Agency) [209].

3.6 RESULTS

3.6.1 Monthly Temperatures

In table 3.3 and 3.4 we report the average and maximum absolute errors
(with the standard deviations in brackets) averaged over 30 runs obtained on
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Figure 3.4: Subdivision of data in training (white circle) and testing (black
diamond) datasets

the testing sets.
Experimentation clearly shows the effectiveness of the proposed BPGA ap-

proach. In fact, it outperforms all the other methods in terms of average and,
more relevantly, it gives better performances than SVR even on maximum abso-
lute estimation error. Furthermore, it is interesting to point out that the BPGA
average standard deviation is very little (0.02◦ C), meaning that the method
is robust and reliable compared to the other NN-based methods. To stress this
achievement, in figure 3.5 we can see a graph representing table 3.3.

The reasons for this are mainly due to the fact that the searching domain of
the GA is cut down by the BP initialisation and that the GA’s parallel optimisa-
tion gets the BP out of the local minima in which it gets stuck.

Moreover, it is interesting to note that such results have been achieved us-
ing as input only the information available for every locality (i.e. geographical
coordinates), without taking into account other important environmental pa-
rameters, like pressure, humidity and wind, which are accessible only for few
localities (mainly those with an airport).
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Table 3.2: Algorithms parameters

Algorithm Parameters

Genetic Algorithm Population size: 100; Crossover rate: 0.9;
Mutation rate: 0.1; Stop criterion: 106 per-
formance requests; Elitism: 1-elitism

Back-propagation Learning-rate: 1.0

RBF Networks MATLAB newrb algorithm; Maximum number
of neurons: 50; Spread: 700

SVR Typology: ε-SVR; Kernel: Radial Basis
Function; ε value: 0.1; Cost: 400

Table 3.3: Validation results: average absolute error (◦C). In bold is shown the
minimum error for each area.

NN GA BP BPGA RBF SVR

Area1 1.07 1.16(±0.05) 0.80(±0.15) 0.66(±0.01) 1.01(±0.0) 0.71(±0.0)
Area2 1.47 1.12(±0.13) 0.86(±0.18) 0.66(±0.02) 0.97(±0.0) 0.68(±0.0)
Area3 0.93 0.81(±0.07) 1.12(±0.35) 0.70(±0.03) 0.89(±0.0) 0.68(±0.0)
Area4 1.0 1.98(±0.08) 0.79(±0.04) 0.66(±0.01) 1.29(±0.0) 0.74(±0.0)
Area5 1.59 0.77(±0.10) 0.60(±0.02) 0.53(±0.02) 0.90(±0.0) 0.57(±0.0)
Area6 1.28 0.85(±0.13) 0.72(±0.07) 0.64(±0.01) 0.80(±0.0) 0.70(±0.0)
Area7 1.28 1.06(±0.08) 0.75(±0.20) 0.65(±0.04) 1.33(±0.0) 0.78(±0.0)
Area8 0.65 0.84(±0.10) 0.99(±0.39) 0.54(±0.03) 0.81(±0.0) 0.64(±0.0)
Area9 3.11 1.88(±0.60) 1.10(±0.09) 0.50(±0.02) 0.96(±0.0) 0.82(±0.0)

Avg. 1.3 1.12(±0.15) 0.86(±0.17) 0.62(±0.02) 0.99(±0.0) 0.70(±0.0)

Finally, as an example we report a graph (figure 3.6) comparing the real
monthly temperature to the one estimated by the nearest neighbour (NN)
method and by the proposed approach (BPGA) over five localities belonging
to Area 9.

3.6.2 Daily Temperature Estimation and Thermal Load Computation

As already stated in previous sections, one of the inputs of the proposed
neural model is the day of the year (1–365) and the training data set has one
“typical” day for each month (the middle day of the month) since data refer to
monthly temperature. Therefore, such a kind of model can be used to provide



39 CHAPTER 3. Ambient Temperature Modelling

Table 3.4: Validation results: maximum absolute error (◦C). In bold is shown
the minimum error for each area.

NN GA BP BPGA RBF SVR

Area1 7.2 3.5(±0.20) 2.60(±0.60) 2.70(±0.02) 3.8(±0.0) 1.97(±0.0)
Area2 6.8 5.10(±0.30) 2.48(±0.65) 2.40(±0.10) 3.71(±0.0) 2.72(±0.0)
Area3 3.5 3.66(±0.10) 2.95(±0.80) 2.50(±0.05) 3.26(±0.0) 2.23(±0.0)
Area4 4.2 5.40(±0.15) 2.99(±0.07) 2.77(±0.02) 5.39(±0.0) 2.21(±0.0)
Area5 4.4 2.63(±0.12) 1.47(±0.13) 1.55(±0.05) 2.51(±0.0) 1.64(±0.0)
Area6 4.0 2.73(±0.11) 2.15(±0.40) 2.32(±0.02) 2.48(±0.0) 1.97(±0.0)
Area7 2.7 2.74(±0.25) 1.66(±0.36) 1.65(±0.15) 5.42(±0.0) 1.86(±0.0)
Area8 3.0 3.14(±0.10) 2.24(±0.34) 1.75(±0.05) 2.16(±0.0) 2.1(±0.0)
Area9 9.10 5.10(±1.50) 2.93(±0.47) 1.77(±0.02) 2.35(±0.0) 2.25(±0.0)

Avg. 4.99 3.78(±0.30) 2.39(±0.42) 2.16(±0.05) 3.78(±0.0) 2.2(±0.0)

Figure 3.5: Comparison of average error and standard deviations of BP and
BPGA.

daily temperature estimation over all the days of the year. This feature is very
important when dealing with important design parameters like thermal load,
where the daily ambient temperature estimation accuracy is critical.

Thus, we ran our models over all the 365 days of a year using as test case
the city of Rome (for which real hourly temperature data are available) and
then we provided the thermal load computation module with the neural-based
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Figure 3.6: Comparison of the temperature modelling testing results (area9)

method outcome. In the thermal load computation we set the solar radiation to
zero in order to see differences affected only by ambient temperature. The test
was carried out on buildings with three different surface-volume (S/V) ratios
(0.6, 0.5, 0.4) and three different windowing percentages (15%, 30%, 60%).

Thus, we had 9 different kinds of buildings (table 3.5) and we compared
the different results of the thermal load calculation obtained by providing the
simulation code (TRNSYS software [134]) with three different inputs:

1. hourly temperature from real data

2. hourly temperature estimate computed with the proposed approach

3. monthly average temperature (according to Italian regulation)

In the case A we provided hourly temperature data taken from meteoro-
logical stations (usually airports) and in case B hourly data estimated by our
BPGA algorithm are considered. In case C temperature data are provided to
software from a database which refers to data contained in Italian regulation,
all the 101 Italian provinces. In the latter case commercial software we used
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Table 3.5: Thermal load estimation test cases

S/V Windowing

BUILDING1 0.6 15%

BUILDING2 0.6 30%

BUILDING3 0.6 60%

BUILDING4 0.5 15%

BUILDING5 0.5 30%

BUILDING6 0.5 60%

BUILDING7 0.4 15%

BUILDING8 0.4 30%

BUILDING9 0.4 60%

Table 3.6: Results of the thermal load estimation (kWh) on the city of Rome
with different setups: real temperature (A), daily temperature estimated with
BPGA (B), and monthly temperature (C)

Case A Case B Case C
BUILDING1 21 719 20 975 20 810
BUILDING2 28 012 27 086 26 841
BUILDING3 38 502 37 250 36 900
BUILDING4 37 315 36 020 35 745
BUILDING5 46 837 45 274 44 878
BUILDING6 64 251 62 135 61 572
BUILDING7 69 954 67 510 66 923
BUILDING8 88 530 85 526 84 739
BUILDING9 120 874 116 831 115 750

Average Thermal Load (kWh) 128 394 123 980 122 880
Average Absolute Error (kWh) 4 413 5 513

Absolute Percentage Error 3.4 4.25

applies a NN (see 3.2.1) approach whether the temperature of a location not
in the database is requested.

From table 3.6 we can see that the daily estimation of the proposed neural
model clearly outperforms the final thermal load computation reducing the
error of about 20% compared to the monthly estimation.

We performed the same experiment we carried out on Rome on other 4
locations not present in the Italian regulation on which TRNSYS simulations
are commonly based. At the time that we are writingwe had available real
hourly data of year 2003.
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Table 3.7: Thermal load and heating costs estimation on BUILDING2 for diffent
localities. In brackets absolute percentage error is shown.

Input
Type

Casaccia Piubego Montalto Portici

Thermal
Load
(kWh)

A 29205 34610 26951 13607
B 29755 (1.9%) 35418 (2.3%) 27022 (0.3%) 25776 (89.4%)
C 26274 (10%) 36928 (6.7%) 30217 (12.1%) 20858 (53.2%)

Heating
Cost (e)

A 2684 3181 2477 1251
B 2734 (1.9%) 3255 (2.3%) 2484 (0.3%) 2369 (89.4%)
C 2415 (10%) 3394 (6.7%) 2777 (12.1%) 1917 (53.2%)

In table 3.7 thermal load and heating costs computed for the three different
inputs are shown, in this case only one building typology has been considered.
Costs are estimated considering a Lower Heat of Combustion of natural gas of
9.6 kWh/m3 with 0.85 of efficiency and a cost of 0.6 e/m3 with a distribution
efficiency of 0.8. As we stated before in the presented simulations solar irradia-
tion has been set to zero, hence estimated heating costs should be higher than
real ones.

3.7 CONCLUSIONS

In this chapter we tackled the issue of ambient temperature modelling
since it is one of the most important environmental parameters when design-
ing effective sustainable buildings. To solve this problem we proposed a hy-
brid approach based on computational intelligence techniques in order to pro-
vide ambient temperature for those places where such data are not available.
Indeed, we combined the back-propagation algorithm and the simple Genetic
Algorithm (BPGA) to effectively train neural networks in such a way that the
BP algorithm initializes a few individuals of the GA’s initial population.

Experiments concerned monthly estimation of unknown places and daily
estimation for thermal load computation.

For the first problem, tests were performed over all the available Italian
localities and results showed a remarkable improvement in accuracy compared
to the single (BP and GA) and traditional methods (the Nearest Neighbour
algorithm, NN). In particular, with respect to the NN approach (the most used
in commercial software) the average modelling error is halved (from 1.3◦ C to
0.62◦ C) and the maximum is reduced by one third in the worst case (from 9◦

C to 2.8◦ C). Moreover, The BPGA method showed very high robustness and
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reliability (i.e. very low standard deviations).
In the second problem, we first compared the thermal load on 9 different

building topologies in the city of Rome for which the software simulator we
used (TRNSYS) has data. Then we focussed on one building and performed
the same experiment on other locations for which the soft- ware simulator has
no data and we compared the economic effect of the different approaches to
the real situation by calculating the heating cost. This experimentation showed
that the average estimation cost error is cut from 8.25% to 1.95% and it seems
that the main benefit is when we have to deal with localities for which data
are not known by the software simulator. This is a remarkable result because
thermal load and cost consumption are the most important parameters in sus-
tainable buildings and a bad estimation of these parameters might severely
affect the design phase.

The reason for the success of the proposed approach is due to the fact
that the BPGA algorithm combines BP and GA in such a way that the virtues
of the single methods are enhanced. Indeed, the BP is first applied so that
the searching domain of GA is trimmed down, reducing there- fore the GA
convergence time, and then the parallel GA optimisation extricates the BP from
the local minima which it plunges into.

Therefore, the main advantage of this method is that we have a non-linear
interpolation tool capable of providing a reliable daily and monthly tempera-
ture estimate, which is critical for thermal load and heating cost estimations.





CHAPTER 4

Combined Cycle Power Plant Start-up
Optimization

“New systems generate new problems.”
Murphy’s Technology Law

ORGANIZATION OF THE CHAPTER

In this chapter we describe two different approaches of Evolutionary Computation
to the optimization of the start-up phase of a Combined Cycle Power Plant.

1. A brief introduction of process optimization is presented in Section 4.1,
focusing on the optimization of combined cycle plants

2. In Section 4.2 we present the specific application of Evolutionary Algorithms
to the start-up phase optimization

3. Section 4.3 introduce the fuzzy modelization of the problem

4. The single-objective approach is described in Section 4.4 presenting the
algorithms used and the results of the experimentations.

5. In Section 4.5 the multi-objective approach is analyzed with the results
of its application on the real problem.

6. Section 4.6 concludes the chapter.

45
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4.1 PROCESS OPTIMIZATION WITH EVOLUTIONARY COMPUTATION

With the class of Evolutionary Computation we refer to a population-based
stochastic optimization process inspired by the principles of natural evolution.
This approach allows to solve optimization problems where both the objective
function and the constraints are black-box functions, without any information
about Hessian or gradient. A large variety of algorithms and techniques go
under the name of Evolutionary Computation but we can describe the generic
procedure with the following simple equation:

x
t+1 = s(v(xt)) (4.1)

where x is the population of solution at time t, v is a variation (mutation)
operator, and s is the selection operator. There are a variety of solution rep-
resentations and operators and the effectiveness of the algorithm depends on
the choice of them, which is usually problem dependant. A complete overview
can be found in [55, 65].

Evolutionary Algorithms can be applied virtually to any problem where
an objective function (fitness function) can be defined. This function, which
works as a performance index, is the first and the most critical choice when de-
signing an evolutionary algorithm application. These algorithm allow to cope
effectively with real-world problems, which normally include non-linear con-
straints, non-stationary conditions, noisy data, and other characteristics that
makes them usually too hard for classical optimization techniques. The prob-
lem of find the best parameters for an industrial process, commonly referred
with the name of ‘process optimization’, normally show all the characteristics
listed previously.

In Figure 4.1 is shown the conceptual scheme of the process seen as a black-
box. The process parameters x are the real object of the whole optimization,
in fact the main objective is generally to minimize (or maximize) a cost func-
tion f(x) with respect to inequality and equality constraints. An optimization
problem involving multiple objective functions is known as a multiobjective
optimization problem (MOP).

Since in MOPs objectives can be conflicting, such problems may lead to a
set of solution instead of a single solution. Solutions belonging to this set are
the result of a trade-off between conflicting objectives.

Given the complexity of real-world systems and industrial plants and the
uncertainties involved in some design decisions, heuristic algorithms (and also
Evolutionary Algorithms) are often applied in their design and improvement.
Particularly, interactions among the various system components, the very large
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Figure 4.1: A process seen as a black-box

number of possible design alternatives, and the lack of accurate cost data for all
plant components at an early stage of the design process make the optimization
of real-world systems a difficult task.

4.1.1 Genetic Algorithms for Single and Multi-Objective Optimization

Genetic Algorithms (GAs) are probably the most known evolutionary algo-
rithms, popularized by the work of John Holland [106]. Like others evolution-
ary algorithms its main application is for optimization purposes and it achieves
its goal use a set (called population) of solution candidates to search the most
promising areas of the solution space.

The simple (or canonical) GA follows the algorithm described in Algorithm 1
and originally it was designed with a binary string representation, proportional
selection, single-point crossover and uniform mutation.

A real-value representation can be used instead of the binary one, which
was considered at the beginning the best representation due to the Schema
Theory, the original theoretical explanation of the GAs effectiveness proposed
by Holland. Otherwise, a real-value representation gives several advantages:
the discretization involved by the use of a binary string can be avoided thus,
in case of continuous problems, representing more directly the variables object
of optimization. Moreover, with a real-valued representation is simpler the
definition of specific operators for a particular problem is simpler.

During the decades, a large amount of selection, mutation, and crossover
operators and genetic algorithms variants have been presented. For an inter-
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Algorithm 1 Simple Genetic Algorithm

1: P 0 ← InitalizePopulation(N)
2: t ← 0
3: while !StopCondition do
4: Evaluate(P t)
5: P t

offspring ← ApplyReproduction(P t) {Apply reproduction operators}
6: P t+1 ← Selection(P t) {Select population for generation t+ 1}
7: t ← t+ 1
8: end while

esting review see the book of Eiben and Smith [65] and the work by Reeves
[193].

Multi-Objective GAs

Many real-world problems require the simultaneous optimization of two or
more objective functions. Sometimes these objectives may be in conflict one
with another, e.g. maximize the output of a power generator and minimize its
emissions and consumptions. In multi-objective case instead of a single fitness
function f(x) we have a N-dimensional vector f(x) = [f1(x), f2(x), . . . , fN (x)].
Obviously, in this case the definition of optimality is different from the tradi-
tional single-objective case.

The simplest approach is to ‘convert’ the multi-objective problem to a single-
objective one aggregating the various objective in a single one, sometimes each
one with a weight expressing its ‘importance’. Otherwise, we can use the Pareto
theory with its concepts of Pareto optimality (or efficiency) and Pareto front,
producing at the end of the optimization a set of non-dominated solutions
(called Pareto-optimal set). A solutions x is defined non-dominated if doesn’t
exist another solution which is better than it in at least one objective (see Figure
4.2 for an example).

The first implementation of Multi-objective Evolutionary Algorithms (MOEAs)
was proposed by Schaffer in 1984 [202], called Vector Evaluated Genetic Algorithm
(VEGA). A Weight Based Genetic Algorithm subsequently was proposed by
Hajela and Lin [56]. The first algorithm that uses the non-dominated classifica-
tion is the Multi-objective Genetic Algorithm (MOGA) proposed by Fonseca and
Fleming in 1993 [81]. They proposed to assign a rank to each solution based
on the number of solutions that dominates that one. This rank allows in some
cases to compare two solutions without any fix-up like weights or other param-
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Figure 4.2: Illustration of Pareto dominance: solutions x1 and x2 are non-
dominated and thus they make a Pareto-optimal set. A solution inside the grey
area would be dominated by them.

eters. Subsequently many algorithms used non-dominated classification as the
well-known Non-Dominated Sorting Genetic Algorithm (NSGA) proposed by
Deb in 1994 [210] and then upgraded with elitism in 2000 with the name of
Elitist Non-Dominated Sorting Genetic Algorithm (NSGA-II) [57, 56]. A survey
about MOEAs can be found in [47].

To compare the quality of two solutions NSGA-II uses the ranking level
approach. Given a population, this approach assigns rank level 1 to all non-
dominated solution of the entire population, then it assigns rank 2 to all non-
dominated solution of the population without solution of rank 1 and so on until
all the solutions have been sorted.

In order to maintain a population as diverse as possible, a crowding dis-
tance value is assigned to each solution. This value describes how much is
‘crowded’ the solution space surrounding the solution, in fact it is high for iso-
lated solutions and low for solutions with many neighbours of the same rank.
Extreme solutions are always taken, with an infinity crowding value, and other
solutions are compared to their nearest neighbours (see figure 4.3).

Algorithm 2 shows the pseudo-code of ranking level sorting of solutions in
population. This algorithm is then used iteratively by NSGA-II during its op-
timisation process. Since Non-Dominated Sorting procedure is common and
well-known in literature we omit to present its pseudocode. Subsequently
the crowding distance value assignment algorithm is presented (Algorithm 3).
Finally NSGA-II pseudocode is presented in Algorithm 4).
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Figure 4.3: Crowding Distance

Algorithm 2 Ranking Level Sorting

Require: P {Initial Population}
1: j ← 1
2: while P '= ∅ do
3: Pi ← NonDominatedSorting(P ) {Returns all non dominated individu-

als}
4: P ← P\Pi

5: j ← j + 1
6: end while
7: P ← P ∪ Pi∀ i = 1, ..., j
8: return P {Population ordered by rank level}

4.1.2 Application to Combined Cycle Power Plants

Combined cycle power plants (CCPP) are a combination of a gas turbine
and a steam turbine generator for the production of electric power in a way
that a gas turbine generator generates electricity and the waste heat is used
to make steam to generate additional electricity via a steam turbine. The dif-
ference between this kind of power plant and a cogeneration plant is that the
steam generated is used exclusively in the production of power, instead in co-
generation plants it can be used also for other purposes. As other industrial
plants there is a large variety of optimization problems related to this typol-
ogy of plants, some applications of computational intelligence can be found in
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Algorithm 3 Crowding Distance Sorting

Require: P {Population belonging to the same rank level}
Require: M {Cardinality of objectives}

1: for 1 ≤ m ≤ M do
2: AscendingOrderSort(P ,fm) {Population sorted respect to fm values}
3: d(1,m) ← d(|P |,m) ← ∞
4: for 2 ≤ j ≤ |P |− 1 do

5: d(j,m) ← d(j,m) +
f(j+1,m)−f(j−1,m)

fmax
m −fmin

m

6: end for
7: end for
8: return P {Population with crowding distance value assigned}

Algorithm 4 NSGA-II

Require: N {PopulationSize}
1: P ← InitalizePopulation(N)
2: P ← RankingLevelSorting(P )
3: for all rank levels do
4: Pi ← CrowdingDistanceSorting(Pi)
5: P ← P ∪ Pi

6: end for
7: while !StopCondition do
8: Pselected ← Selection(P ) {Based on rank and crowding distance}
9: Poffspring ← Crossover(Pselected)

10: Pmutated ← Mutation(Poffspring)
11: P ← P ∪ Pmutated {Applying Elitism}
12: P ← RankingLevelSorting(P )
13: for all rank levels do
14: Pi ← CrowdingDistanceSorting(Pi)
15: P ← P ∪ Pi

16: end for
17: ReplacePopulation(P,N) {Takes the best N individuals of P}
18: end while
19: return P1 {Returns individuals belonging to the first rank}



4.1. Process Optimization with Evolutionary Computation 52

[218, 136, 5].
For such plants, one of the most critical operations is the start-up stage

because it requires the concurrent fulfilment of conflicting objectives (for in-
stance, minimize pollutant emissions and maximize the produced energy). The
problem of finding the best trade-off among conflicting objectives can be ar-
ranged like an optimisation problem. This class of problems can be solved in
two ways: with a single-objective function managing the other objectives, like
thermal stress, as constraints, and with a multi-objective approach.

Evolutionary algorithms have already been applied to the combined cycles
power plants optimization. An application to the minimization of the produc-
tion cost of complex combined cycle power plants is proposed in [136] where
both the design configuration (process structure) and the process variables are
optimized simultaneously. The work presented in [59] applies an evolutionary
algorithm to optimize the feedwater preheating section in a steam power plant
from a thermodynamic viewpoint. A power plant design problem is analyzed
in [25] and the optimization, concerning techno-economic aspects, is carried
out through multiobjective evolutionary algorithms.

At present, the problem of CCPP start-up optimization has been tackled
in the first way using simulators. As example, in [7] through a parametric
study, the start-up time is reduced while keeping the life-time consumption of
critically stressed components under control. In [215] an optimum start up
algorithm for CCPP, using a model predictive control algorithm, is proposed
in order to cut down the start-up time keeping the thermal stress under the
imposed limits. In [36] a study aimed at reducing the start-up time while
keeping the life-time consumption of the more critically stressed components
under control is presented.

In all the reported examples it is clear that the global start-up operations
are not optimised. Therefore, in this chapter we propose an approach based on
fuzzy sets in order to overcome the exposed drawbacks. Thus, for each single
objective we define a fuzzy set and then we properly combine them in order to
get a new objective function taking into account all the operational goals. We
applied this method to a large artificial data set of different start-up conditions
and we compared the best solution we found with the one given by the process
experts.

In the last decade the application research of fuzzy set theory [243] has be-
come one of the most important topics in industrial applications. In particular,
in the field of industrial turbines for energy production, it has been mainly ap-
plied to fault diagnosis [182, 71], sensor fusion [85] and control. Particularly,
in the last area in [26] it is proposed a fuzzy control system in order to mini-
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mize the steam turbine plant start-up time without violating maximum thermal
stress limits. In [163] it is presented a start-up optimization control system
which can minimize the start-up time of the plant through cooperative fuzzy
reasoning and a neural network making good use of the operational margins
on thermal stress and NOx emissions.

EAs, as stochastic techniques, need an high number of evaluations of the
fitness function to find the optimal solution and when the function is expensive
(computationally or economically), as in real-world applications, it could be
approximated to reduce the number of time-consuming calls, see [118] for a
survey about this kind of approach.

4.2 THE COMBINED CYCLE POWER PLANT START-UP OPTIMIZATION

PROBLEM

In this chapter we will use an Evolutionary algorithm to optimize the whole
start-up process, this because EA will offer an easy and adaptable way to find
an optimum in a complex function without the need of a deep knowledge of
the process. This kind of algorithms are able to self-learn the trend of the
objective function and seek for the best solutions in few steps compared with
other optimisation algorithms.

Our main contribution is the application of computational intelligence meth-
ods to the global start-up optimization of such plants with a method for reduc-
ing the computational load of the optimization process.

In order to let the EA to work fine, we need to define a unique function that
can represent the state of our process, considering a lot of variables (consump-
tion, emissions, time, etc.) and merging them in a representative value. For
this reason we have used a fuzzy set based fitness function which allows us to
group many variables into a single value.

Gas and steam turbines are an established technology available in sizes
ranging from several hundred kilowatts to over several hundred megawatts.
Industrial turbines produce high quality heat that can be used for industrial
or district heating steam requirements. Alternatively, this high temperature
heat can be recovered to improve the efficiency of power generation or used to
generate steam and drive a steam turbine in a combined-cycle plant. Therefore,
industrial turbines can be used in a variety of configurations:

• Simple Cycle (SC): a single gas turbine producing power only

• Combined Heat and Power (CHP): a simple cycle gas turbine with a heat
recovery heat exchanger which recovers the heat in the turbine exhaust
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and converts it to useful thermal energy usually in the form of steam or
hot water

• Combined Cycle (CC): high pressure steam is generated from recovered
exhaust heat and used to create additional power using a steam turbine

The last combination produces electricity more efficiently than either gas
or steam turbine alone because it performs a very good ratio of transformed
electrical power per CO2 emission. CC plants are characterized by high effi-
ciency and possibility to adapt operation to different load conditions but they
are an highly complex system which need the availability of powerful proces-
sors and advanced numerical solutions to develop high performance simulators
for modelling purposes.

4.2.1 Start-up phase

The start-up scheduling diagram is shown in figure 4.4. From zero to time
t0 (about 1200 sec) the rotor engine velocity of the gas turbine is set to 3000
rpm. From time t0 to t1 the power load is set to 10 MW and then the machine
keeps this regime up to time t2. All this initial sequence is fixed. From time t2 to
t3 (about 3600 sec) the machine must achieve a new power load, the initial set
point load indicated as X1, set point which has to be set optimal and then the
machine has to keep this regime up to time t4. The time lag t4 ’

Ä̀ı t3 is variable
and is another variable to optimize, here called X2, and during this interval
the steam turbine starts with the rotor reaching the desired velocity. Then the
turbines have to reach at time t5 the normal power load regime (270 MW for
the gas turbine) according to two load gradients which are variable depending
on the machine; the gradient for both, compressor and steam rotors, are the
last optimization variable taht we should use: X3 and X4. The sequence for
that procedure is that first steam turbine grow up with X4 gradient, then the
turbine rotor can grow up following the X3 gradient. In table 4.1 we report
the process control variables (input) and the output variables to be monitored.

Therefore, the problem we are tackling has four inputs and five outputs and
in order to optimise the overall start-up operations, the following objectives
need fulfilling:

1. minimise time (Y1)

2. minimise fuel consumption (Y2)

3. maximise energy production (Y3)
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Figure 4.4: combined cycle power plant start-up operation

Table 4.1: Process input and output variables

Input variables

Variable Meaning Operating range Unit measure

X1 Intermediate power load set point [20, 120] MW

X2 Intermediate waiting time [7500, 10000] sec

X3 Gas turbine load gradient [0.01, 0.2] MW/s

X4 Steam turbine load gradient [0.01, 0.2] %/s

Output variables

Y1 start-up time [11700, 29416] sec

Y2 fuel consumption [53000, 230330] Kg

Y3 energy production [6.45 · 108, 4.56 · 109] KJ

Y4 pollutant emissions [12.24, 32.58] Mg·sec

Nm3

Y5 thermal stress [8, 3939] -

4. minimise pollutant emissions (Y4)

5. minimise thermal stress (Y5)

In figure 4.10 a diagram with the correlation between each pair of objec-
tives is shown, some linear relations are visually evident, e.g. between fuel
consumption (Y2) and energy production (Y3).
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4.3 FUZZY SETS DEFINITION

In order to allow a process of optimization through a black-box techniques
such as Evolutionary Algorithms, we need to define a numerical quantity that
can evaluate the whole process of start-up, giving an index of how the given
configuration is effective, in harmony with the desired trend of the output val-
ues. The computed quantity will be used as a fitness value for our individuals
in the evolutionary environment. In collaboration with process experts, we
first defined the single fuzzy sets (see table 4.2) over the output variables (see
table 4.1 and figure 4.5) and we composed them in order to get a cost func-
tion ranging in the range [0, 1]. Therefore, we got an index representing the
global start-up performance. For every membership function, each linked to
one of the process output, we used sigmoid membership functions with two
parameters c and t:

sigmoid(x) =
1

1 + exp( c−x
t
)

(4.2)

These functions are used simply as they are, if we wish to maximize the
value, or used in a complementary mode, if we wish to minimize the output.
The resulting fuzzy output has the following form:

µ(y1, y2, y3, y4, y5) =
5

∑

i=1

wiµFi
(yi) (4.3)

Table 4.2: Fuzzy Sets

Fuzzy set Membership
function (µFi

)
Variable Weight (wi) t c Goal

F1 1− sigmoid Y1 0.2 8000 110000 Min

F2 1− sigmoid Y2 0.1 800 16200 Min

F3 sigmoid Y3 0.1 0.4 · 109 1.8 · 109 Max

F4 1− sigmoid Y4 0.3 2 25 Min

F5 1− sigmoid Y5 0.3 20 150 Min

This composition has been finally chosen because we found out that for
this problem the intersection was too restrictive (only one objective with a low
value is sufficient to severely affect the whole performance) and the union was
too lazy (only one objective with a high value is sufficient to have a high global
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Figure 4.5: Fuzzy sets diagram

performance). Thus, we have finally applied the weighted sum operator, which
is a good trade-off between intersection and union, which gives a global perfor-
mance proportional to the optimality degree of each single objective. To obtain
the weight for each fuzzy set in the previous composition we worked with the
designer of this kind of Turbo Gas, in order to achieve a good combination
of weights that can represent the theoretical directions that they try to reach



4.4. Single-Objective Optimization with Evolutionary Computation 58

when working on the start-up of this kind of process. With this function we try
to work in cooperation with human behaviour, learning from the experience,
instead of replacing the human factor.

Figure 4.6: Diagram of the fitness model

4.4 SINGLE-OBJECTIVE OPTIMIZATION WITH EVOLUTIONARY COMPUTATION

Evolutionary Computation methods have been used successfully in many
optimization problems. The ability to perform a parallel search exploring in
the solution space and exploiting the best solutions found is critical for the
most complex problems. In our case the solution’s genotype represents a start-
up sequence encoding the variables described in table 4.1.

We implemented a real-coded Genetic Algorithm with a number vector’s
genotype representing normalized process’ input variables. We choose a real-
values encoding because of the continuous search space and in this way we
avoided the discretization due to binary coding. The normalization of the in-
put variables, between 0 and 1, is to make mutation operators’ parameters
heterogeneous given that inputs’ variables differ strongly in magnitude (see ta-
ble 4.1). A Gaussian mutation operator is implemented adding a random value
following a normal distribution to the genotype’s genes, i.e.:

gim = gi +N (0,σ) (4.4)

where gi is the i-th gene and σ is the standard deviation of the gaussian distri-
bution. We used a Uniform Crossover with a binary Tournament Selection and
then as fitness function we use the fuzzy function shown in equation 4.3 (see
figure 4.6 for a diagram of the fitness model), which is within the range [0, 1].
Two termination criteria have been set for this algorithm: maximum number



59 CHAPTER 4. Combined Cycle Power Plant Start-up Optimization

Table 4.3: GA parameters

Parameter Value

Population Size 20

Mutation Rate 0.5

Mutation Amplitude (σ) 0.1

Crossover Rate 0.9

Tournament Pool Size 2

Max. number of generations 1000

Target fitness value 0.83

of generations and a target fitness value. Algorithm’s parameters selected after
a set of experimentations are shown in table 4.3.

4.4.1 Approximating the fitness function for computation load reduction

Algorithm 5 Calculate Approximate Fitness f(x)

Require: point x, archive R
1: if distance(x,Rx) < DISTANCE THRESHOLD then
2: j ← nearest(x,Rx) {Get the index of the nearest point from x inside the

archive}
3: f(x) ← Rf

j

4: else
5: if distance(x,Rx) < RANDOM THRESHOLD then
6: N ← neighbourhood(x) {Get the points which distance from x is be-

low the threshold}
7: f(x) ←

∑

i∈N
1

1+distance(x,Rx
i )
Rf

i

8: else
9: f(x) ← random(0, 1)

10: end if
11: end if

Evolutionary algorithms applied to computational expensive problems, like
the one considered in this paper, could be time consuming due to their stochas-
tic nature. To tackle this issue we implemented an approximation method
(pseudo-code is shown in algorithm 5) for the fitness with the purpose of re-
ducing the number of fitness function calls.
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All the points evaluated are stored into an archive R containing the point’s
n-dimensional coordinates and their fitness value in the last column, with the
following form:

R = [Rx
R

f ] =











x11 . . . x1n f1
x21 . . . x2n f2

...
...

...
...

xk1 . . . xkn fk











(4.5)

When the fitness value of a new point is requested, a search within the archive
is performed to find a similar point, considering two points similar if their eu-
clidean distance is below a certain threshold (DISTANCE THRESHOLD), in this
case we assume for the requested point the same fitness value of the similar
one already inside the archive. Differently, if there is not a similar point, the
method computes the fitness values in two ways: randomly, if the nearest point
inside archive distance is above a threshold (RANDOM THRESHOLD), otherwise
interpolating the fitness value of the nearest points (see figure 4.7). The in-
terpolated fitness of the requested point is obtained from a weighted sum of
the nearest points’ fitness values considering weights inversely proportional to
the euclidean distance of the points (see line 7 in algorithm 5). At the end of
each generation the best individual of the population is evaluated with the real
fitness function and added to the archive.

The archive represents the information we have collected on the fitness
model and the proposed method tries to approximate new points’ fitness with
an interpolation unless the point is too distant. In such case, randomness repre-
sents the lacks of information about that part of the fitness space and a random
value enhances the possibility of explore unknown areas with the probability
related to the fitness of the best individual. In fact, especially at the beginning
of the evolution, a random value has an higher probability to have a better
fitness value than the best solution already into the population.

4.4.2 Results

We performed 400 runs of the algorithm using the GA interfaced with the
software simulator used to compute the fitness function value. In figure 4.8a
is shown the distribution of the best solutions’ fitness values at the end of the
experimentations and in figure 4.8b the same for the number of generations.

The average number of generations is 414, i.e. the number of function calls
is 8280 because at each generation a number of fitness evaluations equal to the
population size is performed.
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Figure 4.7: Example of the proposed approximation method: fitness value
of requested point (square) is computed interpolating the fitness value of its
neighbours (r2 and r3), i.e. all the points below the RANDOM THRESHOLD

(Trandom) radius. The grey space is the part of the solution space where fit-
ness value is computed randomly. Tdistance represents DISTANCE THRESHOLD.

The same number of runs is performed with the fitness approximation
method, in figure 4.8c and 4.8d are shown respectively the distribution of the
best solutions’ fitness values and the same for the number of generations at the
algorithm’s stop. In table 4.4 there is a comparison of the performance of both
the approaches, with and without fitness approximation.

For DISTANCE THRESHOLD and RANDOM THRESHOLD we used respectively a
value of 0.01 and 0.1, chosen after a set of preliminary tests.

In the fitness approximation scheme we perform a single fitness function
evaluation for each generation (the best solutions at the end of the generation),
in this way an average run needs only 144 fitness function calls instead of the
8280 needed without fitness approximation.

We compared the optimal solutions found by both approaches with the so-
lution provided by the experts, in table 4.5 we show the value of the five output
variables (see table 4.1) for each solution and improvement of such solution
calculated as:

di =
|Yi − Y e

i |
rangemax

i − rangemin
i

(4.6)
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Figure 4.8: Results of experimentations

with Y e
i is the i-th output variable of the solution provided by experts, rangemax

i

and rangemin
i the operative ranges of the i-th variable (see table 4.1). The sign

of the deviation is put positive if the deviation is considered an improvement,
negative vice versa.

4.5 MULTI-OBJECTIVE OPTIMIZATION WITH EVOLUTIONARY COMPUTATION

We applied our implementation of the NSGA-II algorithm on the multiobjec-
tive optimisation of the problem described in Section 4.1.1 and we compared
it to the following algorithms:

1. RAND: A random search algorithm
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Table 4.4: Experimentation Results

Genetic Algorithm (GA)

Success Rate 79%

Average Number of Generations 414

Average Fitness Value 0.83

Average CPU Time per simulation 2070 hours

GA with Fitness Approximation

Success Rate 98%

Average Number of Generations 144

Average Fitness Value 0.85

Average CPU Time per simulation 36 hours

Table 4.5: Comparison between solution provided by plants manager and best
solutions of both approaches.

Y1 Y2 Y3 Y4 Y5

Experts 21070 143557 2.5 · 109 25 10

GA (values) 14800 99282 1.5 · 109 21.6 54.3

GA with FA (values) 16569 115070 1.86 · 109 18.8 78.4

GA (improvement) 35% 25% -25% 17% -1%

GA with FA (improvement) 25% 16% -16% 30% -2%

2. WSGA: Weighted-Sum Genetic Algorithm

3. NSGA-II: Non-Dominated Sorting Genetic Algorithm

The RAND algorithm is a trivial random search in the input space, in this
case performing the same number of overall fitness evaluations of the other
algorithms. At the end of this sampling, all the non-dominated solutions are
considered inside the Pareto Front.

The WSGA applies a weighted sum of all objectives in order to reduce the
original multi-objective problem to a single objective one. At each run a GA
is executed with a different random convex combination of the weights of the
fitness function.

All the algorithms were executed 10 times and the resulting non-dominated
set of the union of the Pareto fronts obtained at the end of each run was taken.
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In order to fairly compare the algorithms, each one is run over the same num-
ber of fitness evaluations.

Each input variable (see Table 4.1) can assume 21 different values, we
encoded the decision variables with a Gray code binary string, whose minimal
length can be obtained by:

log221
4 ≈ 18 (4.7)

The encoding is simple, we enumerated all the solutions (with numbers from
1 to 214) assigning each value of the 18-bit string to a solution.

Table 4.6 describes the algorithms parameters used during our tests.

Table 4.6: Algorithm Parameters

NSGA-II WSGA
Population Size 100 50

Generations 50 30
Selection Binary Tournament
Crossover Single Point

Crossover Probability 0.75
Mutation Bitwise

Mutation Probability 1/18

To evaluate the performance of the different methodologies we used the
following metrics:

• Dominance Ratio

• Spacing

• Hypervolume

Dominance Ratio Suggested by Zitzler in 1999 [135], it compares two fronts
and returns the fraction of solutions of the first one dominated by the second
one, with respect to all the solutions of the first front. So given the fronts F 1

and F 2, the Dominance Ratio (DR) for the first front is defined as:

DR(F 1, F 2) =
∑|F1|

i=1 di

|F 1| di =

{

1 if∃j|F 1
i . F 2

j

0 otherwise
(4.8)

With |F 1| the size of the front F 1 and the symbol . indicating domination
property, i.e. i . j means that solution i is dominated by solution j.
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Therefore, a value of zero means that there are no solutions dominated by
the other front and, otherwise, a value of one implies that the first front is com-
pletely dominated by the second. Since dominance operator is not symmetric,
DR(F1,F2) is not always equal to 1 − DR(F2,F1). It’s clear that dominance
ratio considers only dominance and doesn’t describe totally the ‘shape’ of the
two fronts.

Spacing This metric, proposed by Schott in 1995 [203], evaluates relative
distance between consecutive solutions belonging to a set. A small spacing
value describes a uniform the distribution of solutions within a front. Since
in multi-objective problems is preferable to maintain the set of solutions as
diverse as possible, as mentioned earlier, a uniform distribution of solutions is
highly preferred.

Therefore given a front F of M objectives, spacing distance is given by:

S(F ) =

√

√

√

√

1

|F |

|F |
∑

i=1

(di − d)2 (4.9)

where:

di = min
k∈F

{

k '= i|
M
∑

m=1

|f i
m − fk

m|
}

(4.10)

d =

|F |
∑

i=1

di
|F | (4.11)

Hypervolume This metric was proposed by Zitzler and Thiele in 1999 [135].
It evaluates both dominance and spreading of solutions. This metric calculates
the hypervolume whose vertices are the solutions set and a reference point,
usually a vector of worst values each objective function can assume. Using the
hypervolume of two fronts allow the comparison of both spread of solutions
and their fitness on the various objectives. The calculation is computational
expensive especially with an high number of objectives and an estimation based
on Monte Carlo sampling[18] may be used. As reference point we considered
the worst values among all the solutions of the Pareto fronts considered.

Thus, given a front F, if the real Pareto P ∗ front is known, it is recommended
normalize hypervolume such that:
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HV =
HV(F )

HV(P ∗)
(4.12)

Even if in real-world problems the real optimal Pareto front usually is not
available, we computed, for a complete comparison of the selected algorithms,
the fitness values of all the points inside the solution space. Despite it was
computationally expensive (it took several days on a cluster with 1024 CPUs)
we have the real optimal Pareto front

In order to show graphically the behaviour of the algorithms we tested the
problem firstly for only two of the five objectives described in section 4.2. We
considered two clearly conflicting objectives: maximization of energy produc-
tion and minimization pollutant emissions. Subsequently we considered the
problem with all five objectives and we present in this case only the related
performance metrics results since the plot of Pareto fronts were not possible.

4.5.1 Results

We performed a multi-objective optimisation considering two objectives
and five objectives. In the first case we considered the maximisation of energy
production and minimisation of pollutant emissions and the overall number of
fitness evaluations is 15300. In the second case we have the same number of
fitness evaluations.
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Figure 4.9: Pareto Fronts plot on the 2-objectives problem

Figure 4.9 shows that the NSGA-II Pareto front is overlapping with the real
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one and therefore it dominates all the solutions of the other algorithms while,
as expected, the RAND front is dominated by both. The metrics values pre-
sented in Tables 4.7 and 4.8 reflect this situation. The columns labeled “2D”
are related to the experimentations with 2 objectives and, similarly, for the
problem with 5 objectives. The last line of Table 4.8 shows the number of
solutions for different Pareto fronts.

Table 4.7: Dominance Ratio

Real NSGA-II RAND WSGA

Dimensions 2D 5D 2D 5D 2D 5D 2D 5D

Real - - 0 0 0 0 0 0

NSGA-II 0 0.659 - - 0 0.406 0 0.008

RAND 1 0.637 1 0.014 - - 0.5 0.001

WSGA 1 0.5 1 0.1 0 0.1 - -

Table 4.8: Spacing, hypervolume and size of the real optimal Pareto front and
the ones obtained by the considered algorithms

Real NSGA-II RAND WSGA

2D 5D 2D 5D 2D 5D 2D 5D

Spacing 0.015 0.007 0.002 0.07 0.013 0.023 0.004 0.376

Hypervolume 0.93 0.394 0.898 0.348 0.069 0.37 0.338 0.129

Size 20 15608 11 261 4 2435 4 10

For the 5-objectives problem we can’t plot directly the Pareto Fronts and so
we have to establish the comparison between the algorithms on the metrics’
values. We can observe that the size of fronts of the algorithms shows an
evident variability: from 10 (WSGA) to 2435 (RAND) and the same we can
assert the same for spacing, WSGA shows that the solutions in its front cover a
larger space than other two algorithms.

4.5.2 Discussion

In two dimensions the results we obtain aren’t much different from the
ones we expected: the ability of Evolutionary Computation based algorithms
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like NSGA-II permits to explore effectively the solution space and find the best
solutions, achieving a Pareto front far better than those obtained with WSGA
or random search.

With 5 dimensions the situation changes drastically. The RAND algorithm
becomes the best algorithm, achieving a Pareto front which dominates about
the 40% of solutions of the NSGA-II’s front and the nearest hypervolume to the
optimal one. A probable explanation of this situation should be found in the
last line of Table 4.8, where we can observe that the size of the real optimal
Pareto front is about 800 times larger than the optimal one with two objectives.
This means that random search is more effective because it’s simpler to find
randomly good solutions than in the 2D space.

It’s an interesting observation the fact that the solution proposed from the
plant manager results dominated in both the problem spaces, in 2 and 5 dimen-
sions, by all the algorithms we tested. Therefore, all the solutions provided by
the algorithms should be considered “better” (from a multiobjective point of
view) than the real used ones.

4.6 CONCLUSIONS

When in an optimization problem the objectives are conflicting and sub-
ject to operational constraints, like in industrial applications, black-box ap-
proaches like Evolutionary Algorithms might give good performances due to
their stochastic nature, assuming that an effective problem’s representation
could be found. We coped the start-up phase multi-objective optimization prob-
lems with two different methodologies: single-objective reduction with expert
knowledge modelling and Pareto-based optimization, both applying evolution-
ary algorithms.

A major drawback for stochastic algorithms such EAs can be the high num-
ber of fitness evaluations needed in order to explore the solution space and
find the optimal solutions. In applications where fitness function is particularly
time-consuming, like the one in this paper, we tried, with the fitness approx-
imation approach, to interpolate the fitness value of the new points from the
solutions already evaluated assuming a static environment where the fitness
value of a solutions doesn’t change during the time. Despite the interpolation
we implemented is not complex it provides better performances in the appli-
cation of a genetic algorithm, leading to a reduction of the overall number
of fitness function evaluations avoiding the evaluations of similar or identical
solutions.

For the single-objective approach, we obtained in our tests a strong reduc-
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tion of the number of fitness evaluations and a consequent decrease of the
time needed for the optimization of the start-up phase from 2070 hours to 36
for 100 simulations. All the solutions found lead to a start-up sequence which
is better than the already used one according to the plants operator and the
results which show (see table 4.5) an improvement in three objectives and a
worsening (in energy production).

We underlined the capability of multiobjective optimisation techniques of
providing a set of feasible solutions among which a decision can be taken.
We made our experimentations on a precise software simulator of a combined
cycle plant considering two and five objectives functions.

Considering only a subset of the objectives (maximisation of energy output
and minimisation of pollutant emissions) we observe that NSGA-II algorithm
works far better than a random search and a combined single-objective algo-
rithm, finding solutions on the real optimal Pareto front. With all the objec-
tives the situation changes and the results of a random search outperform the
Evolutionary Computation based approach. This fact may be explained by an
intrinsic weakness of NSGA-II algorithm for particular problems, confirming
the results presented in [131].

Despite these results seem inconsistent, we think that it is not simple to
estimate the performances of a set of algorithms when increasing the number
of considered objectives, because in real problems the objectives function to
minimise (or maximise) are heterogeneous, i.e. the relation between results
in low and high dimensional space is not straightforward. In the real case we
considered, a deeper study of objective functions is needed, in order to explore
mutual relations between them. However, an improved algorithm which has
demonstrated its effectiveness for other multi-objective problems (e.g. HaD-
MOEA [225]) might be applied in the future.

Although the primary goal of this paper is to highlight the application of
multiobjective optimisation to a real world problem, comparisons can be ex-
tended also to other MOEA for a more complete overview.

Moreover this work raises the issue of reducing the computational load
of stochastic algorithms such the ones we used of real problems, where the
evaluation of a solution is based on the execution of a software simulator,
which reflects the complexity of the problem it simulates. We think that such
problem can be coped with by considering an algorithm which uses both the
real fitness function and an approximated one, in order to lower the number
of executions of the computationally expensive software simulator.
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Figure 4.10: Plot of relations between objectives



CHAPTER 5

Load Forecasting with Neural Networks

“Rule of Accuracy: When working toward the solution of a problem,
it always helps if you know the answer.

Corollary: Provided, of course,
that you know there is a problem.”

ORGANIZATION OF THIS CHAPTER

This chapter is divided in 8 sections with the aim of describing a particular
application of neural networks to short-term load forecasting.

1. Section 5.1 gives a brief introduction about the application of neural net-
works to the forecasting, describing the most common predictive struc-
tures. Moreover, neural ensembles are presented and for sake of com-
pleteness, traditional statistical models are outlined.

2. A brief introduction about short-term load forecasting is presented in
Section 5.2.

3. Section 5.3 presents the specific application object of this chapter and
consequently in Sections 5.4 and 5.5 used models are described.

4. Results of the real-world application are shown in Sections 5.6 and 5.7
and finally Section 5.8 gives some concluding remarks.

5.1 FORECASTING WITH NEURAL NETWORKS

Most time series forecasting methods use statistical approaches or artifi-
cial intelligence algorithms. The most applied methods are Box-Jenkins ap-

71
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proaches, exponential and Holt-Winters methods and Neural Networks (NN)
based methods. A general introduction to time series applications can be found
in Brockwell and Davis [29] and a good survey on various methodologies ap-
plied to load forecasting is in Feinberg and Genethliou [74].

Theoretically, neural networks are able to model data as well as traditional
statistical methods [227]. This ability, with their inherently nonlinearity, makes
them a well-suited method for forecasting problems.

5.1.1 Neural Networks Structure for Forecasting

Neural networks have been applied successfully to a wide variety of fore-
casting problems. The main issue to solve the problem of forecasting with
neural networks is the selection of the best structure to use. As we have seen
in Chapter 3 there are several neural network structures, each one with its ad-
vantages and drawbacks for prediction tasks. The choice of the best structure
is considered problem-dependant, for this reason there are in literature works
suggesting empirical rules to build a neural network for a particular problem,
see for example [44, 194].

Most widely used are feed-forward neural networks such as multilayer per-
ceptrons (MLPs), and their weights training is usually performed with the well-
known back-propagation algorithm.

The simplest neural network-based prediction structure we can consider for
the forecasting is the one which takes in input the lagged samples of the output
as:

x̂t+1 = f(xt, . . . , xt−N ) (5.1)

The value N is the length of the data window considered and it constitutes,
together with the choice of the lags, a critical design factor, particularly case
depending. The structure described by Eq. 5.1 can be expanded to introduce
additional inputs (I), obtaining the following one:

x̂t+1 = f(xt, . . . , xt−N , It+1, . . . , It−K) (5.2)

The number of inputs nodes is a critical variable for the forecasting applica-
tion, in fact a low number may not provide enough information for an accurate
forecasting and a too high number could make the training less effective, due
to a larger and more complex solution space. The choice of the number of
hidden layers used and the nodes included into each of them is usually made
following some rules of thumb [120, 238].

Another factor that may affect performance of neural network for time se-
ries forecasting is the number of output neurons. If the we want to forecast at
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time t + 1 starting from time t (forecasting horizon of one period), then the
number of output neurons is obviously one. When the forecasting horizon is
greater than one, the number of output neurons varies according to the ap-
proach being used. The ‘direct’ forecast method puts the number of output
neurons equals to the forecast horizon (see Figure 5.1a). On the other hand,
if the iterative forecast method is adopted, the number of output neurons is
equal to one. The predicted value is used as an input for the successive period
prediction, until the end of the forecast horizon (see Figure 5.1b). This way
of forecasting is the same approach that is used in Box-Jenkins models (see
5.4.2).













(a) Direct Method





 





(b) Iterative Method

Figure 5.1: Neural network approaches for forecasting horizons greater than
one

In order to measure the forecast accuracy there are many error measures
that can be used, each of them trying to represent with a value the accuracy
of a specific model on a dataset. The most simple is the Mean Squared Error
(MSE), used normally for the back-propagation algorithm, but some more spe-
cific measures for forecasting problems are the following: Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Coefficient of Variation of
Root Mean Square Error (CV-RMSE), Mean Bias Error (MBE), and others. See
the work by Hyndman and Koehler [112] for an insight about error measures.

Many competitions have been organized in an attempt to stimulate the de-
velopment of neural network approaches in time series forecasting. The NN3
and NN5 competitions [2] focused on systematic approaches for predicting
a large number of time series of a similar nature over forecasting horizons
of 18 and 56 steps ahead, respectively. Also ESTSP conference (European
Symposium on Time Series Prediction) and NISIS (Nature-inspired Smart Information
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Systems) organized various competitions in the past, see for example [200,
155].

An interesting comparison between traditional statistical methods and neu-
ral networks can be found in Remus and O’Connor [194] and the work by
Zhang et al. [238] gives an exhaustive review of the application of neural
networks to forecasting application.

5.1.2 Neural Networks Ensembles

The term ‘ensemble’ describes a group of learning machines that work to-
gether on the same task, in the case of neural networks they are trained on the
same data, run together and their outputs are combined as a single one [99].

Generally speaking, we can divide all the ensemble methods in three ap-
proaches: in the first one, all the predictors are created starting from a different
subset of the training dataset, in the second one the various models work on
the same dataset which samples are weighted following a particular strategy.
In the last approach the models interact during the training phase and their
outputs combined in some way.

Bagging [28] is a popular ensemble method that creates estimators training
each of them with a random subset of training data. Instead, boosting meth-
ods [83] give more importance to the training samples which are predicted
incorrectly more frequently than others. However, also a simple majority rule
might be considered an ensemble method, as it is shown in the famous work
by Hansen and Salamon [99].

An ensemble method different from the ones cited above is the Negative
Correlation Learning (NCL) introduced by Liu and Yao [156]. This method
adds a correlation penalty term to the error function used for the back-propagation
algorithm in order to create some ‘specialists’ inside the ensemble.

Some examples on the application of neural network ensembles to forecast-
ing can be found in [4, 237, 161, 17].

5.1.3 Other models

Commonly, a time series model (or Box-Jenkins model) is certainly con-
sidered the first choice in approaching a forecasting problem, especially the
autoregressive integrated moving average model (ARIMA) which considers the
nonstationarity of the data, presented in the landmark work of Box and Jenkins
[27]. In this model future value of a signal is assumed to be a linear function of
past observations with the addition of an error term (assumed with zero mean
and indipendently and identically distributed).
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Once introduced the backshift and the first difference operators as:

Bkxt = xt−k (5.3)

∇nxt = (1−B)nxt (5.4)

∇N
s xt = (1−Bs)

Nxt (5.5)

a seasonal ARIMA model denoted as ARIMA(p, d, q) × (P,D,Q)s has the fol-
lowing form:

ΦP (B
s)φ(B)∇D

s ∇dxt = α+ΘQ(B
s)θ(B)et (5.6)

where xt is the value of the signal at time t and et the error term (supposed
to be a white noise process). The terms d and D represent the degree of dif-
ferencing and the operators ΦP (Bs) and ΘQ(Bs) are respectively the seasonal
autoregressive and the seasonal moving average operators of orders P and Q
as:

ΦP (B
s) = 1− Φ1B

s − Φ2B
2s − . . .− ΦPB

Ps (5.7)

ΘQ(B
s) = 1−Θ1B

s −Θ2B
2s − . . .−ΘQB

Qs (5.8)

The non-seasonal operators φ(B) and θ(B) are similar to the seasonal ones
(eqs. 5.7 and 5.8) but considering the seasonality s = 1.

The ARIMA model can be extended adding additional (exogenous) inputs
I, such a model is called ARIMAX, the same the SARIMA model becomes a
SARIMAX model. Thus, the equation 5.6 becomes:

ΦP (B
s)φ(B)∇D

s ∇dxt = ΓIt + α+ΘQ(B
s)θ(B)et (5.9)

ARIMA (and SARIMA) modelling is used by many as a sophisticated bench-
mark for evaluating alternative proposals. Various implementations of ARIMA/ARIMAX
models for STLF has been described in literature, see Cho et al. [43] and Fan
and McDonald [72], and the review by Hagan and Behr [96].

5.2 SHORT-TERM LOAD FORECASTING

Short-term load forecasting is the forecasting of energy demand usually
from one hour to one week. For this kind of problem various factors should
be considered, such as weather data or, more in general, all the factors influ-
encing the load/consumption pattern. This means that for an accurate load
forecasting exogenous variables may be considered and they differ according
to customer type: residential, commercial, and industrial.
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Load Forecasting should be considered a critical task for the management,
scheduling and dispatching in power systems, and it concerns with the pre-
diction of energy demand in different time spans. Especially for the future
energy networks (smart grids), to achieve a greater control and flexibility than
in actual electric grids, a reliable forecasting of load demand could help to
avoid dispatch problems given by unexpected loads, and give vital information
to make decisions on power generation and purchase, especially with energy
markets becoming more and more competitive. Furthermore, accurate pre-
diction would have a significant impact on operation management, e.g. pre-
venting overloading and allowing an efficient energy storage. In fact, in an
environment where the fluctuations of energy market may strongly influence
the energy consumption (e.g. time-based pricing), forecasting the demand, us-
ing all the information provided by metering and sensing technologies, is vital
in order to have an effective management of peaks (Demand Response).

The ability of predict future behaviours and energy demand is part of the
intelligence required by future distribution networks, where information tech-
nology will be strongly applied (see EU ADDRESS project [1]). An intensive
use of Distributed Generation raise new challenges, such the need of a ‘dis-
tributed intelligence’ in order to deal with data originated in diverse places
and performing effective choices in a dynamic environment. An example of
this new scenario is presented in Vale et al. [219] where various optimization
heuristics are applied to economic dispatch problem in smart grids. Similar
considerations can be made whether a smaller scale is considered: predict fu-
ture situations may be critical for Energy Management Systems (EMS) (if we
consider generation or transmission systems) or Building Management Systems
(BMS) for single buildings.

Many excellent results in real applications with neural networks to STLF
have been presented, the work of [132] is a good example. To make easier the
comparison between traditional forecasting methods and less traditional ones
(e.g. neural networks), ASHRAE has organized two interesting benchmarks in
1993 and 1996 [183, 139, 95].

A review of the application of neural networks to STLF can be found in
Hippert et al. [103] and Metaxiotis et al. [167]. In this thesis a survey about
the application of various computational intelligence techniques to building
energy forecasting can be found in Section 2.3.
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5.3 APPLICATION TO REAL DATA

In the following sections we present an application of linear and non-linear
models to the problem of short-term load forecasting using real data from an
office building.

Load data usually exhibits seasonality, sometimes showing more than one
periodicity: in fact the load at a given moment may be dependent on the load
on the previous hour but also on the previous day and so on.

A good forecasting has to be accurate and, very important, it must have
a maximum error as low as possible. In fact, the effectiveness of an energy
management system (EMS) may be strongly affected by the error peaks and a
predictor with a low variance might be preferred to a predictor with a better av-
erage error but with higher error peaks. On Smart Grids, underestimating the
energy demand may have a negative impact on the Demand Response and it
makes the control of overload conditions harder. On the other hand, an over-
estimation may creates an unexpected surplus of production. In both cases,
higher is the estimation error and higher are the managing costs involved, e.g.
an energy district could be forced to buy energy from the grid at higher costs
than it would have in case of a better prediction.

5.3.1 Real Data

The following data, used in this work, has been collected in ENEA Casaccia
Research center near Rome, in Italy:

1. Electricity hourly load data: measured in one of the building of the cen-
ter, named C59, taking into account lighting, air conditioning/heating
and appliances.

2. Weather data: ambient temperature and solar irradiance measured with
a sensor inside the center.

3. Occupancy data: number of people inside the C59 building has been esti-
mated using the data provided by the badge readers at the main entrance
of the center.

All the data has been collected for an entire year but for this work we de-
cided to focus on a period of 13 weeks, starting from 1/9/2009 to 31/11/2009,
for a total of 2184 hourly samples1. In the period considered the load has an

1Datasets are available at http://dia.uniroma3.it/~defelice/download.html

http://dia.uniroma3.it/~defelice/download.html
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Figure 5.2: Data distribution during the day, the color displays the frequency
of the load at a specific hour of the day

average value of 17.43 kW, a minimum of 8.58 kW and a maximum of 54.9
kW.

As expected, load data presents a clear periodicity which is summarized by
the autocorrelation plot in Figure 5.3, where a weekly seasonality is stronger
than the daily one.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15−0.5

0

0.5

1

days

Figure 5.3: Autocorrelation Function (ACF) of the signal limited to 15 days

Number of people inside the C59 building during the working time nor-
mally varies from 45 to 70. Relation between occupancy and energy demand
is shown in Figure 5.4.



79 CHAPTER 5. Load Forecasting with Neural Networks

0 20 40 60 80 1000

10

20

30

40

50

60

occupancy

lo
ad

 (k
W

)

 

 

 
y = 0.0013*x2 + 0.26*x + 12

Figure 5.4: Relation between building occupancy and energy load. The grey
line is the interpolation provided by a quadratic curve with the equation shown.

Energy demand is commonly influenced by weather, due to the effects of
HVAC systems and lighting. In the C59 building the heating system is inde-
pendent from the external temperature and no evident correlation (like for the
occupancy) may be observed.

5.4 FORECASTING MODELS

In this section we provide a brief description of the models involved in this
work.

5.4.1 Naive model

In order to perform a meaningful comparison for the forecasting, a naive
model should be introduced in order to quantify the improvement given by
more intelligent and complex forecasting techniques. For seasonal data a naive
model might be defined as:

xt = xt−S (5.10)

with S the appropriate seasonality period. This model gives a prediction at
time t presenting the value observed exactly a period of S steps before. For
this work, after the considerations of the previous section, we put the value of
S = 168 which corresponds to a week given that the data considered is hourly
data.
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5.4.2 Box-Jenkins models

Given the seasonality of the used data (as described in section 5.3.1) the
seasonal variant of the ARIMA models, called SARIMA, has been chosen (see
Section 5.1.3).

In this paper the selection process for the values of p, d, q, P,D and Q has
been performed with the method proposed by Hyndman and Khandakar [111],
implemented with R software [191], which explores the model space selecting
the best model via AIC (Akaike Information Criterion) measure.

The model obtained and used in this work has the following orders: p =
2, d = 1, q = 1, P = 1, D = 1, Q = 1 (see Eq. 5.6).

5.4.3 Neural Networks

After a set of preliminary tests where we tested several inputs lags combi-
nations, we selected the lags L corresponding to the previous 24 hours plus
one-week and two-weeks lags, thus having L = [1, 2, . . . , 24, 168, 336]. The
resulting NN model is the following:

xt = f(xt−1, . . . , xt−24, xt−168, xt−332) (5.11)

As in Eq. 5.2 the model with external data is obtained adding to the previ-
ous the information with the same lags, It, It−1, . . . , It−24, It−168, It−332.

In our work we selected two typologies of feed-forward neural networks:
multi-layer perceptrons (MLPs) and radial-basis function networks (RBFs).

In the MLP design phase, after a set of preliminary tests, we have chosen
the value of 64 hidden neurons2. The activation functions has been set to
an hyperbolic tangent for the hidden layer and linear transfer function for the
output layer. Finally, the chosen training algorithm is the Levenberg-Marquardt
back-propagation with the initial value of the damping parameter set to 0.1.
Training algorithm stop criteria has been set to the reaching of 1000 epochs.

For the RBFs we proceeded in the same way for the selection of hidden neu-
rons as for MLPs, opting for networks with 128 Gaussian basis functions into
the hidden layer. The training part consists of a random selection of input sam-
ples as initial coordinates of the hidden functions and then a scaled-conjugate
gradient (SCG) algorithm for the optimization of weights and function coordi-
nates.

2this value is near to the one suggested by the rule of thumb which states that n.neurons =
n.inputs

2
+

√
dataset size
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5.5 NEURAL NETWORKS ENSEMBLES

In this work two kinds of neural networks ensembles are examined: a sim-
ple averaging one and one based on the negative correlation among errors.

The first one is the simplest way to combine M neural networks, an arith-
metic mean of their outputs (yi) performed as:

yens(xk) =
1

M

M
∑

i=1

yi(xk) (5.12)

In this method all the NNs are trained separately and then, for each input xk,
the ensemble output is computed with an average of all the outputs of the NNs
within the ensemble. The computation of this ensemble is performed on a set
of 100 MLP NNs trained as described in Section 5.4.3

The second ensembling method considered in this paper is called Regularized
Negative Correlation Learning (RNCL) and it has been proposed by Chen and
Yao in [42]. This method improves the Negative Correlation Learning (NCL)
adding a regularization term with the objective of reduce the overfitting prob-
lem. Regularization helps the network to avoid overfitting, i.e. improving
generalization, penalizing large weights which may lead to rough outputs. In
this work RBF Neural Networks are used for the RNCL ensemble, preferred to
MLP networks for computational reasons.

5.6 STLF UNIVARIATE APPROACH

In this section we apply the selected models, built using only a part of the
available data, on the prediction of hourly load on the remaining part of the
dataset not used for the calibration/training.

The building hourly energy consumption dataset has been divided in two
parts (see Figure 5.5): the first consists of 12 weeks (2016 hourly samples)
and has been used for the models calibration (training) and the last one, con-
sisting of a single week (168 samples), is the testing/validation part used for
the evaluation of the models performances.

The calibration/training of the models has been performed on the first part
and then 1-24 hours ahead prediction is carried out on the remaining part
of the dataset (see Figure 5.6), obtaining at the end of the test phase 145
prediction windows (the number of intervals of 24 hours within the testing
part).

The testing part has been subdivided in two equal parts (T1 and T2) in
order to provide more detailed information on the behaviour of the forecasting



5.6. STLF Univariate Approach 82

0 200 400 600 800 1000 1200 1400 1600 1800 20000

20

40

60

hours

kW

Figure 5.5: Dataset used for the comparison, the dashed line separates training
from the testing part.

               























Figure 5.6: During the testing phase a 24-hours prediction is performed on the
testing part of the dataset

models.
We considered a forecasting method where the predicted value at time t is

used as input for the successive prediction at time t+ 1 and this for time t+ 2
and so on, this is a common approach for the Box-Jenkins models and thus we
used the same for NNs (see Section 5.1.1).

Two performance criteria such as MSE and MAE were used to compare the
selected models, their formula is given below:

MAE =
1

N

N
∑

i=1

|yi − ŷi| (5.13)
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MSE =
1

N

N
∑

i=1

(yi − ŷi)
2 (5.14)

In addition, the maximum absolute error is considered given its critical impor-
tance for the STLF problem as discussed in Section 5.3.

In Table 5.1 the performances of the selected models are shown, both on
the training and the testing parts of the dataset.

Table 5.1: Models performances: univariate approach (all the values are
rounded to two decimals). In brackets the standard deviation where needed
and in bold the best model error for the testing part.

Training Testing T1 Testing T2

Model MAE MSE MAE MSE Max MAE MSE Max

Naive 2.45 14.97 2.11 7.61 7.35 2.28 6.4 6.36

SARIMA 1.14 4.34 1.89 5.52 7.15 1.24 2.17 4.79

MLP best
training

0.67 1.41 2.06 9.1 23.95 2.22 13.55 24.11

Average MLP
1.03 3.65 2.34 10.9 12.53 2.49 21.67 15.69

(0.38) (2.19) (0.79) (17.88) (9.22) (1.47) (59.29) (15.2)

MLP
Ensemble

1.02 2.92 1.38 2.95 8.32 1.09 2.4 5.88

RBF best
training

1.17 3.36 1.72 4.36 8.15 1.21 2.14 4.51

ANN RBF 3.11 29.51 2.96 19.44 12.49 3.20 19.91 15.39

RNCL 1.51 5.98 1.47 3.34 7.28 1.07 2.82 8.53

As expected, all the proposed models give better results than the naive
model. MLP neural networks show a high variance in their performances and
in order to obtain a more significant error measure, we can use the median
error, which is less sensitive to outliers, instead of the mean error: the average
MAE becomes 2.13 and 2.21, respectively for T1 and T2 and the MSE becomes
7.27 and 8.25. It’s worth noting that the lowest testing MAE for the MLPs is
1.36 and 0.91, respectively for T1 and T2, and the lowest testing MSE is 2.99
and 1.78, values very near to the errors obtained by the MLP ensemble. For
the RNCL ensemble the situation is slightly different: the best testing MAE is
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1.58/1.61 and the MSE is 3.88/4.22, values definitely higher than the ones
made by the ensemble. We can observe how RBF networks achieve an higher
average error and standard deviation than MLP networks and this difference
is reflected by the performance of their respective ensembles. The SARIMA
model, despite its average results are higher than ANN ensembles, achieves a
low maximum absolute error in T1 and near to the best one in testing T2.

As is evident in Figure 5.7, the numbers shown in the Table 5.1 are not able
to capture all the differences between behaviours of the various models. In this
figure the errors for each look-ahead and, more important, the variance of such
errors are shown. In general, we can observe a degradation of performance
with higher look-ahead horizons, and the testing part T1 seems to be more
challenging than the other part, which lead to lower absolute errors because a
weekend is involved (see Figure 5.5).

Figure 5.8 gives an overview of the forecasting errors during the testing
weeks (considering both T1 and T2). Obviously there are some part of the
testing data where all the models show low accuracy in their prediction, and
as expected higher errors are present during the start of the working time
(around 8 AM) and during lunchtime (12-13).

5.7 STLF WITH EXTERNAL DATA

In this section we investigate how the forecast of the selected models is
affected by the introduction of external data, e.g. building occupancy. As
discussed in section 5.3.1, for the particular problem we are coping with, the
introduction of weather data might not improve the forecasting and so they
have not been used.

In this section, three kind of external data has been considered:

1. Information about the hour of the day

2. A 1/0 flag whether the sample has been collected in a workday or not

3. Building occupancy

The calculation of the first two kind of external data is trivial but for the
building occupancy we should need to predict the value for the same interval
of the load forecast. In this work we make the assumption that we will be able
to know the exact value of such data in the future, otherwise we would have to
forecast that value and then using the predicted value to perform the electric
load forecast.
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Figure 5.7: Univariate approach: 24-hours ahead forecasting absolute errors
on both T1 and T2. In light grey the area between the 1st and the 3rd quartiles.

Experimental settings are the same used in the previous section, we put for
sake of comparison again the results of the naive model (see Section 5.4.1).

According to Table 5.2 all the models, except SARIMA, improves their per-
formance in at least one of the two testing parts. The testing part T2 exhibits
the most evident error reduction due to the introduction of external data, MLP
ensemble reduced its MAE from 1.09 to 0.75 and it has almost halved the MSE
(from 2.4 to 1.27) and similar results have been obtained for RNCL. Differently
from the results without external data, MLP ensemble exhibits a lower testing
error than the best testing one among the MLP networks. In fact the best test-
ing network shows a MAE of 1.37/0.98 and a MSE of 3.25/2.48. It’s worth
noting that the maximum error has been reduced respect to the errors shown
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(c) RNCL

Figure 5.8: Absolute errors (in kW) made during testing parts T1 and T2 for
the univariate approach models. On the Y axis there are the various forecasting
windows and on the X axis the hour of the day of each of the 24 prediction
errors. Note that the color scale is not the same in each plot.

in Table 5.1 for all the models, apart from SARIMA, in both the testing sets.
RBF networks present a marked improvement, halving the MSE in both testing
parts and clearly reducing both MAE and maximum errors.

The average absolute error for the 24-hours prediction is shown in Figure
5.9 and with respect to Figure 5.7 the introduction of external data seems to
have reduced the variance of the errors (the grey area) for the ANN-based
models. Additional information is provided in Figure 5.10, where, after a com-
parison with Figure 5.8, we can see in which part of the dataset additional data
has reduced the error.

5.8 DISCUSSION

In Figure 5.11 testing absolute errors are shown, arranged in ascending or-
der, for all the MLP and RBF networks on testing set T1 (we omitted T2 for
sake of clearness). It’s evident how neural network ensembles exhibits an er-
ror lower or at least equal than the best network, both for MLP and RBFs. This
means that ensembling allows, thank to the exploitation of all the informa-
tion ‘contained’ within the trained networks, to achieve an effective forecast-
ing overcoming the drawbacks of neural networks: overfitting and the high
variability of the performance of common training algorithms due to the their
tendency to get stuck in local minima.

Another interesting observation, comparing Figures 5.11b and 5.11a, is that
after the introduction of external data RBF networks trained with RNCL gives
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Table 5.2: Models performances: approach with occupancy, hour of the day
and workday flag (all the error values are rounded to two decimals). In brack-
ets the standard deviation where needed and in bold the best model error for
the testing part.

Training Testing T1 Testing T2

Model MAE MSE MAE MSE Max MAE MSE Max

Naive (no
ext. data)

2.45 14.97 2.11 7.61 7.35 2.28 6.4 6.36

SARIMA 1.13 4.31 1.91 5.61 8.00 1.20 2.07 5.18

MLP best
training

0.36 0.70 3.51 20.28 18.00 2.20 11.83 24.53

Average MLP
1.20 3.25 2.46 12.13 13.84 2.34 11.61 13.00

(0.31) (1.52) (0.83) (16.8) (16.62) (1.00) (10.61) (6.01)

MLP
Ensemble

0.74 1.47 1.42 3.30 7.98 0.75 1.27 4.79

ANN RBF
best train-
ing

1.06 2.48 1.36 3.03 6.43 0.88 1.61 7.05

Average
ANN RBF

1.65 7.71 1.97 7.99 8.22 1.77 8.98 10.74

RNCL 1.15 3.35 1.33 2.71 5.37 0.92 1.62 4.52

a more effective forecast than MLP networks, as it is shown also in Tables 5.1
and 5.2. More in general, the information provided by external data seems to
help the non-linear models to improve their modelling, in Figure 5.12b and
5.12c is evident how the new information provided helped the forecast, e.g.
the peak present at about time 100 in both the ANN-based models disappeared
after the introduction of new data. Differently, the SARIMA model, which is
linear, didn’t show an improvement with the use of external data and indeed
the difference of performance between it and the ANN-based models drastically
increased in the second part of the experimentations.

Compared to a naive model both a time-series SARIMA model and neu-
ral networks exhibit better performances and the latter have shown a drastic
improvement when additional data is included in input.

The results underlines how creating an ensemble of neural networks con-
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Figure 5.9: Forecasting with external data: 24-hours ahead forecasting abso-
lute errors on both T1 and T2. In light grey the area between the 1st and the
3rd quartiles.

sents to overcome a critical problem of such methods, the high variance of the
performances, which may be a big limit for their applicability to engineering
fields where the reliability (low variance of results) is commonly preferred to
the overall average accuracy. Our results indicate that even a simple ensem-
bling method as the arithmetic mean of the outputs allows to improve appre-
ciably the error of the single neural networks.

RNCL ensemble, and more in general RBF networks, shows the interesting
ability of achieving a marked error reduction after the introduction of external
data, a phenomenon that deserves further examination in future.
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Figure 5.10: Absolute errors (in kW) made during testing parts T1 and T2
models with external data. On the Y axis there are the various forecasting
windows and on the X axis the hour of the day of each of the 24 prediction
errors. Note that the color scale is not the same in each plot.
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Figure 5.11: Testing MAE for MLP and RBF networks
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Figure 5.12: Average absolute error for each 24-hours window: comparison
between the SARIMA, MLP ensemble and RNCL models with and without the
use of external data



CHAPTER 6

Conclusions and Future Work

This thesis work tries to summarize all the work done with my research group
at ENEA during my Ph.D. on the challenging field of optimization and model-
lization of a variety of energy systems. The majority of the projects involved
complex and noisy systems with a little knowledge about their dynamics, for
this reason the choice of black-box methods was natural in many cases.

The following list is a brief summary of the novel contributions from this
thesis:

• A review of the applications of computational intelligence in building
energy systems is presented (Chapter 2): this is the first survey of this
kind on this topic (previous work were focused on a smaller area of tech-
niques)

• A technique to improve the effectiveness of neural networks training for
modelling purposes has been presented in Chapter 3 and its application
has been investigated on a particular modelling problem

• A fitness approximation technique has been applied in Chapter 4 in order
to achieve in a reasonable amount of time the optimisation of the start-
up phase of a combined-cycle heat power plant, in the same chapter a
multi-objective evolutionary computational approach has been studied
and experimented.

• Neural networks ensembles has been applied for the first time on a short-
term load forecasting problem (Chapter 5) and their performances have
been evaluated and investigated on real data.

91
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All the Computational Intelligence (CI) paradigms have gained interests in
the last decades for several reasons, one of them is surely their novelty and so
the number of issue still open, but another important reason for their success is
the possibility to apply them easily to any problem where data is available. In
the case of optimization problems there is just another condition: the existence
of a performance (fitness) function that allows to decide which solution is the
best among a set of two or more.

The objective of Chapter 2 is to show the various application of computa-
tional intelligence to the emerging field of building energy systems optimiza-
tion, control and forecasting. Although the survey examines scientific works
ranging from 1995 to 2010, about a third of the considered works is concen-
trated in the last two years, giving an idea of the trend about the application
of CI in this field. Another interesting point is the fact that among all the CI
methodologies, neural networks are probably the most used, indeed in this
survey almost half of the work reviewed uses them for modelling or predic-
tion purposes. In fact, while in optimization problems the utilization of evo-
lutionary computation is often an alternative to traditional methods (which in
some cases shows similar performances), for modelling and forecasting pur-
poses neural networks shows an incomparable easiness of application even in
applications where traditional methods are inapplicable.

All the conclusions we can draw from the survey are in some way under-
lined in the following chapters, each focused on a specific application.

In Chapter 3, neural networks are used for modelling Italian ambient tem-
perature for the purpose of giving a precise estimation to use inside a software
simulator. An hybrid approach between a genetic and the back-propagation
algorithm tries to overcome classical limitations of neural networks training,
obtaining a better accuracy than common training methods. The interesting
part lies not into the resulting errors, but in the simplicity with the two meth-
ods were combined to achieve a new algorithm. Moreover, the work presented
in Chapter 3 underlines how it was possible to improve a well-known thermal
energy systems simulator (TRNSYS) achieving a better accuracy in estimating
thermal loads and thus heating costs.

Totally different is the application described in Chapter 4, which is about
the optimization of a large combined cycle power plant. In that case both a
single- and a multi-objective optimization algorithms are used, both based on
Evolutionary Computation methods. The main issue was the difficulty to de-
cide a single performance function, in fact a problem of this complexity has
several factors to take into consideration, normally in contrast one with each
other, e.g. the energy output with the pollutant emissions. Two strategies in
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fact were proposed: each of them with its advantages and drawbacks. It’s
obvious that the single-objective approach led to a simpler optimization frame-
work than multi-objective approach, but in the first case a fuzzy logic-based
representation of the knowledge of operators, gained through experience, has
been used as fitness function, adding in that way a further ‘layer’ of complex-
ity to the whole framework. In the multi-objective case we obtain at the end
of the optimization a set of solutions instead of a single optimal one, an in-
teresting feature of this class of optimization algorithms, but this is also the
reason because a comparison between single- and multi-objective approach is
not straightforward.

However, both the evolutionary algorithm-based approaches for the start-
up optimization revealed how it is simple to set up an optimization framework,
which incorporates problem-specific knowledge and various constraints, using
a software simulator as performance function. Although we weren’t able to
experiment our solutions on the real plant (for a lot of practical reasons), the
application presented is an evident example of the advantages of black-box
optimization with evolutionary algorithms.

In Chapter 5 the last real-world application of this thesis is presented. A
common practical problem of load forecasting, which is gaining importance
year after year, is tackled with neural networks ensembles. The comparison
with standard benchmarks highlights some interesting features of neural net-
work ensembles: the easiness of exploitation of additional information and the
low error variance (and so the reliability). The forecasting methodology pro-
posed in this chapter and applied on a single building may be extended on sev-
eral buildings with a larger number of additional inputs with a little effort, due
to neural network modelling structure. The use of ensemble, which represent
the novelty of this specific application, allowed to reduce the error variance
implicit by the classical training algorithms for neural networks, making this
approach an interesting candidate for a realistic industrial application.

6.1 DISCUSSION AND FUTURE WORK

All the works presented in this thesis have shown some interesting (and
working) application of computational intelligence to energy systems. As all
the good research works, they have raised as many questions as the answers
provided.

The first consideration is about the existing diverse computational intelli-
gence techniques. Month after month, a large amount of new articles about
these methods are published on scientific journal and presented on interna-
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tional conferences, many of them presenting new algorithms and variants of
existing algorithms. When approaching a real-world problem the first question
is the most critical: “what would be the best approach for this application?”.
Many researchers in the last years are making order on the huge amount of al-
gorithms and variants (and acronyms), trying to give best practises and sugges-
tions, supported by theoretical studies and experimentations on benchmarks.
For example, many researchers are still using Genetic Algorithms because of
their presence on the most popular software packages (e.g. MATLAB) with-
out considering other, sometimes simpler, meta-heuristics. It’s important to
start with the simplest effective algorithm (e.g. Evolution Strategies for evo-
lutionary computation optimization or back-propagation for neural networks)
remembering the principle of Ockham’s Razor.

The use of valid benchmarks is a critical point for engineering works (like
the ones presented in this thesis). In fact it’s very important to evaluate the per-
formance of a technique comparing it with standard methodologies, in order
to understand the effectiveness of the proposed method and, more important,
to investigate the reason of its success (or failure). Moreover, if the first goal of
an engineering research work is to propose a solution applicable in real-world
problems, it’s fundamental to compare innovative and experimental solutions
with the state-of-the-art, in other words comparing it with the first method
an engineering would use to cope with that specific problem. For this reason,
in the short-term load forecasting work at Chapter 5 we compared the pro-
posed neural network ensemble-based forecasting methodology with both a
traditional time series and a naive method and not only with another neural
network-based method. For this reason, in the future, both the works presented
in Chapter 3 and 4 will be extended with a more rigorous comparison.

The work on ambient temperature modelling is based on a hybrid approach
with back-propagation networks and genetic algorithms, the comparison may
be extended with traditional interpolation methods (e.g kriging) and other
combinations for the hybrid approach (using Evolution Strategies instead of
a GA or support vector machines instead of neural networks). Similarly, the
application of evolutionary algorithm on the plant start-up optimization prob-
lem may be extended with other black-box optimization approaches like quasi-
Newton approximation methods or other evolutionary algorithms, both single-
and multi-objective.

Finally, the survey presented at Chapter 2 might be extended to larger en-
ergy systems, like power systems.



Appendix A

Computational Intelligence in Software
Packages

This appendix gives a list of some of the most common software implementa-
tions of neural networks and computational intelligence algorithms.

NEURAL NETWORKS

• MATLAB [http://www.mathworks.com/]: there are implementation of
various typologies of neural networks (MLP, RBF, GRNN etc) with the
Neural Network toolbox.

• R [http://www.r-project.org/]: the package nnet introduces feed-
forward neural networks with a single hidden layer.

• WEKA [http://www.cs.waikato.ac.nz/ml/weka/]: this open-source project
is a collection of data mining and classification algorithms, among them
neural networks.

• SAS Enterprise Miner [www.sas.com/technologies/analytics/datamining/]:
SAS software includes neural networks for the prediction and modelling
part.

EVOLUTIONARY COMPUTATION

• MATLAB [http://www.mathworks.com/]: within the Optimization Toolbox
there are a Genetic Algorithm and an implementation of NSGA-II. More
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evolutionary algorithms are present in GEATbx [http://www.geatbx.com/]
toolbox. An implementation of GP for MATLAB is provided by GPLAB
[http://gplab.sourceforge.net/].

• NEO Software [neo.lcc.uma.es/software/index/]: NEO (Networking
and Emerging Optimization) group of Universidad De Malaga offers sev-
eral types of Evolutionary Algorithms and metaheuristics.

• Optimization Algorithm Toolkit (OAT) [optalgtoolkit.sourceforge.net/]:
this java-based open-source project presents various optimization algo-
rithms and common benchmark problems with a nice graphic interface
and some statistical tools.

• CMA-ES Source Code [www.lri.fr/~hansen/cmaes_inmatlab.html]: var-
ious implementations in several programming languages of CMA-ES al-
gorithm are provided on Nikolaus Hansen webpage of Machine Learning
and Optimization group (TAO) at INRIA.

• ParadisEO [http://paradiseo.gforge.inria.fr/]: this C++ frame-
work implements various metaheuristics: among them evolutionary com-
putation for single- and multi-objective problems.

http://www.geatbx.com/
http://gplab.sourceforge.net/
neo.lcc.uma.es/software/index/
optalgtoolkit.sourceforge.net/
www.lri.fr/~hansen/cmaes_inmatlab.html
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