
Katia Isabelle Palmar Duarte

BSc

Limitations in the Support to Modularity in
MATLAB: a Survey-based Empirical Study

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Miguel Pessoa Monteiro, Assistant Professor, Faculdade
de Ciências e Tecnologia
da Universidade Nova de Lisboa

Co-adviser: Fernando Brito e Abreu, Associate Professor,
ISCTE

Examination Committee

Chairpersons:
Raporteurs:

Members:

march, 2017

Limitations in the Support to Modularity in MATLAB: a Survey-based Em-
pirical Study

Copyright © Katia Isabelle Palmar Duarte, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this disser-

tation through printed copies reproduced on paper or on digital form, or by any other

means known or that may be invented, and to disseminate through scientific reposito-

ries and admit its copying and distribution for non-commercial, educational or research

purposes, as long as credit is given to the author and editor.

This document was created unsing the (pdf)LATEX processor, based in the “unlthesis” template[1], developed at the Dep.
Informática of FCT-NOVA [2]. [1] https://github.com/joaomlourenco/unlthesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/unlthesis
http://www.di.fct.unl.pt

To my mom and dad

Acknowledgements

I would first of all like to thank my advisers, Professor Miguel Monteiro of the Faculty of

Science and Technology of the New University of Lisbon and Professor Fernando Brito

and Abreu of ISCTE. Without their support and help provided during the creation of

the research questions, the pilot test and the data analysis. They were always ready to

help whenever I ran into a trouble spot or had a question about my research or writing.

I would also like to thank the experts who were involved in the pilot test phase for

this research project: Professor Miguel Monteiro, Professor Manuel Ortigueira, Professor

Paulo Gil, Professor Luís Palma, Professor Arnaldo Batista, Professor Francisco Monteiro,

Professor Glauco Carneiro and Professor João Cardoso. Without their participation and

feedback, the survey validation could not have been successfully conducted.

I would also like to acknowledge the help given towards the advertising of the survey

in the communities by their administrators, and to thank all of the participants.

Finally, I must express my profound gratitude to my parents for providing me with

unfailing support and continuous encouragement throughout my years of study. This

accomplishment would not have been possible without them. Thank you.

vii

Abstract

This research compares modularity mechanisms provided in MATLAB with those of a

mainstream programming language (Java) and describes the results of a survey-based

study on the opinion of the MATLAB community about the limitations to the support

of modularity provided by that language and its consequences in the light of Software

Engineering theory. Social networks and email were used to broadcast the questionnaire

to potential participants.

Four research questions were set at the start of the study, which originated eight

hypotheses. Topics covered include: MATLAB developers’ relationship with code tan-

gling, code duplication avoidance, modularity, code maintainability and code structure.

We analyzed if the opinions on those issues were different on industry and academia.

Main results are as follows. Developers are aware of code tangling in MATLAB

software and care about it. They tend not to use the sole available tool to help them

visualize code structure, but would like to have one. Developers from both industry and

academia feel the same way about MATLAB code maintainability and code duplication

avoidance.

Internal validity of the used research instrument was guaranteed, doubtful responses

were discarded and results are statistically significant. However, external validity (gen-

eralization) of results cannot be claimed due to the sample size and its questionable

representativeness.

Keywords: MATLAB; Software Engineering; Modularity; Unmodularized Concerns;

Code Tangling; Surveys; Empirical Study.

ix

Resumo

Esta pesquisa compara os mecanismos de modularidade fornecidos pelo MATLAB com

os de uma linguagem de programação mainstream (Java) e descreve os resultados de

um estudo baseado em pesquisas sobre a opinião da comunidade de programadores

MATLAB acerca das limitações ao suporte da modularidade e suas consequências. As

redes sociais e o e-mail foram os mecanismos usados para partilhar o questionário com

potenciais participantes.

Quatro questões de pesquisa foram estabelecidas no início do estudo, que depois

vieram a originar oito hipóteses. Os tópicos abordados incluem: relacionamento dos

programadores de MATLAB com código emaranhado, evitar código duplicado, modu-

laridade, manutenção de código e estrutura de código. Analisamos se as opiniões sobre

essas questões eram diferentes na indústria e no meio acadêmico.

Os principais resultados obtidos são os seguintes. Os programadores estão cientes e

preocupam-se com a existência de código emaranhado em código MATLAB. Os progra-

madores tendem a não usar a única ferramenta disponível para ajudá-los a visualizar a

estrutura de código, mas gostariam de ter uma. Os programadores que usam MATLAB,

tanto na indústria como no meio académico, sentem a mesma coisa sobre a manutenção

de código em MATLAB e evitar código duplicado.

A validade interna do instrumento de pesquisa utilizado foi garantida, as respostas

duvidosas foram descartadas e os resultados são estatisticamente significativos. No

entanto, a validade externa (generalização) dos resultados não pode ser reivindicada

devido ao tamanho da amostra e sua representatividade questionável.

Palavras-chave: MATLAB; Engenharia de Software; Modularidade; Facetas não modu-

larizadas; Código Emaranhado; Questionários; Estudo Empírico.

xi

Contents

List of Figures xvii

List of Tables xix

Listings xxi

Glossary xxiii

Acronyms xxv

1 Introduction 1

1.1 The Problem: Limitations in the Support to Modularity in MATLAB . . 2

1.2 The Approach: Survey-based Empirical Study 3

1.3 Research Objectives . 3

1.4 Research Questions . 4

1.5 Hypothesis Formulation . 4

1.6 Document Structure . 6

2 MATLAB Programming Language 7

2.1 Introduction . 7

2.2 History . 7

2.3 Basic Syntax . 8

2.3.1 Variables . 8

2.3.2 Arrays . 9

2.3.3 Operators . 9

2.3.4 Statements . 10

2.3.5 Functions . 12

2.3.6 Toolboxes . 13

2.4 M-files . 14

xiii

CONTENTS

2.4.1 Function Files . 14

2.4.2 Script Files . 14

2.5 GNU Octave compatibility with MATLAB 15

2.5.1 GNU Octave History . 15

2.5.2 Similarities . 15

2.5.3 Differences . 16

2.6 Conclusion . 18

3 MATLAB Modularity Study 19

3.1 Introduction . 19

3.2 PIMETA instantiation of MATLAB Grammar 19

3.3 Comparing modularity between MATLAB and Java 24

3.4 Limitations in the Support to Modularity in MATLAB 28

3.5 Conclusion . 30

4 Study Design 31

4.1 Introduction . 31

4.2 Research Paradigms . 31

4.3 Types of Empirical Studies . 32

4.3.1 Survey . 33

4.3.2 Case Study . 33

4.3.3 Experiment . 34

4.4 Survey Design . 34

4.5 Variables . 36

4.5.1 Dependent Variables . 36

4.5.2 Independent Variables . 37

4.6 Planning . 37

4.7 Participants . 38

4.7.1 Communities . 39

4.7.2 Participants Filter . 40

4.8 Sampling . 40

4.8.1 Sampling Methods . 42

4.8.2 Calculate a Sample Size . 44

4.9 Instrumentation . 44

4.9.1 Create the Questions . 45

4.9.2 Response Formats . 46

xiv

CONTENTS

4.10 Data Collection . 47

4.11 Survey Software . 47

4.12 Analysis Procedure . 48

4.13 Validity Evaluation . 49

4.14 Conclusion . 49

5 Execution 51

5.1 Introduction . 51

5.2 Questionnaire Structure . 51

5.3 Sample . 54

5.4 Pilot Test . 56

5.5 Questionnaire Execution . 56

5.5.1 Social Networks . 57

5.6 Data Collection Performed . 58

5.7 Threats to Validity . 59

5.8 Conclusion . 60

6 Analysis 61

6.1 Introduction . 61

6.2 Internal Consistency . 61

6.2.1 Kendall tau distance . 62

6.2.2 Principal component analysis . 65

6.2.3 Cronbach’s alpha . 66

6.3 Participants Profile . 67

6.4 Descriptive Statistics . 72

6.5 Hypothesis Testing . 74

6.5.1 One-Sample Chi-Square Test . 75

6.5.2 Spearman’s Correlation Test . 75

6.5.3 Mann-Whitney U Test . 76

7 Conclusions and Future Work 79

7.1 Summary . 79

7.2 Results . 80

7.3 Contributions . 85

7.4 Research Limitations . 86

7.5 Future Work . 88

xv

CONTENTS

Bibliography 91

A MATLAB Feature and Dependency Types 97

B Formulas 99

C Modularity in MATLAB - Pilot Test 101

D Feedback from Pilot Test 111

E Questions created for the survey 115

F Invitation Texts 117

F.1 Post . 117

F.2 Email . 117

G Modularity in MATLAB 119

xvi

List of Figures

1.1 Code tangling [5] . 2

3.1 PIMETA Meta-class diagram . 20

3.2 Composite Pattern in PIMETA diagram . 21

3.3 PIMETA instantiation extract for MATLAB Grammar 23

3.4 PIMETA instantiation extract for Java . 25

3.5 Graph from PIMETA meta-class diagram . 27

4.1 Popper’s hypothetic-deductive method steps 35

4.2 Hypothetic-deductive method schema [29] 36

4.3 Survey plan activity diagram . 37

4.4 Venn Diagram for Population and Samples 41

4.5 Sampling Activity Diagram . 42

5.1 Questionnaire activity diagram . 54

6.1 Kendall tau distance . 63

6.2 Kendall tau distance results . 64

6.3 Results of Kendall Tau distance in graphs 64

6.4 Question 23 - How many years of experience do you have programming in MAT-
LAB? . 68

6.5 Question 24 - Last time I programmed in MATLAB program was 68

6.6 Question 29 - How would you classify the nature of your work when using
MATLAB: . 69

6.7 Question 33 - Using the United Nations - International Standard Industrial
Classification, where do you care out your work? 70

6.8 Question 34 - I use MATLAB to perform this kind of work: 70

6.9 Question 25 - I normally deal with MATLAB programs with... 71

6.10 Question 31 - How many toolboxes you tend to use? 71

xvii

List of Figures

6.11 Question 37 - Which languages are you familiar with? 72

7.1 Code tangling histogram . 81

7.2 Code structure histogram . 81

7.3 Modularity histograms per group . 82

7.4 Code tangling histograms per group . 83

7.5 Code maintenance histograms per group . 84

7.6 Code duplication avoidance frequencies per group 84

7.7 Code structure histograms per group . 85

xviii

List of Tables

1.1 Main Research Questions . 4

1.2 Sub-questions for each Research Question 4

2.1 Arithmetic Operations . 10

2.2 Relational Operators . 10

2.3 Input and Output Arguments . 13

3.1 CNC values comparison between MATLAB and Java 27

3.2 CCM comparison between MATLAB and Java 28

3.3 CCC Categories . 29

4.1 Conditions affecting the choice of empirical study 32

4.2 Online Communities . 40

4.3 Probabilistic Sampling Methods . 43

4.4 Non-Probabilistic Sampling Methods . 43

4.5 Conditions affecting the choice of questionnaire delivery 47

4.6 Comparing Survey Software’s . 48

4.7 Chapter Summary . 50

5.1 Relation between the questionnaire and the research questions 53

5.2 Sample Size Calculations . 55

5.3 Delivery dates of the questionnaire per community 56

5.4 Questionnaire links per communities . 57

5.5 Response and Completion Rate . 59

6.1 Variables grouped by factors . 66

6.2 Cronbach’s alpha per Component . 66

6.3 Cronbach’s alpha intraclass correlation score 67

6.4 Cronbach’s alpha for Code Structure . 67

xix

List of Tables

6.5 Measures of Variability . 73

6.6 Measures of Central Tendency . 74

6.7 Chi-Square Test Result . 75

6.8 Spearman’s Correlation Test Result . 76

6.9 Mann-Whitney U Test Results . 77

A.1 MATLAB Feature Types . 97

A.2 Features Aggregations . 98

A.3 Dependencies Types . 98

B.1 Z Values . 99

B.2 Determining the size of the sample . 100

B.3 Rates Formulas . 100

E.1 Questions related to the identification the subject opinion on code tangling

and scattering . 115

E.2 Questions related to the identification the subject habits and opinions about

MATLAB legacy code . 116

E.3 Questions related to the identification the subject background and habits

when it comes to programming in MATLAB 116

xx

Listings

2.1 Examples of Variables Assignment . 8

2.2 Examples of Declaring Arrays . 9

2.3 If Statement . 11

2.4 Switch Statement . 11

2.5 While Statement . 11

2.6 For Statement . 12

2.7 Example of a function . 12

2.8 Example of a nested function . 13

2.9 Times table code with the use of the do-until statement 18

3.1 CNC metric for the PIMETA diagram . 26

3.2 CCM metric for the PIMETA diagram . 28

xxi

Glossary

.mltbx Packaged custom toolbox.

CCC Concerns that are directly responsible for code tangling and scattering, resulting

in loss of modularity.

concern A concern is considered to be, in software engineering, any concept, feature,

requirement of the problem or set of responsibilities that we would like to localize

on its own module.

convenience sampling The nearest and most convenient persons are selected as sub-

jects.

data logging The process of using a computer to collect data through sensors, analyze

the data and save and output the results of the collection and analysis. Data

logging also implies the control of how the computer collects and analyzes the

data.

dynamic language Dynamic programming language is a language that doesn’t force

the check type-safety during compile-time. In other words, executes most of its

logic during at runtime. Some of these languages can be, also considered, scripting

languages.

module A module in MATLAB, can be expressed as a function or m-file.

MOF A set of standard interfaces that can be used to define and manipulate a set of

interoperable meta-models and their corresponding models.

positivism Positivism is a philosophy where only the knowledge gained through obser-

vations can be considered trustworthy. In empirical studies that means, that the

researcher and its research are limited to the data collection and its interpretation

through an objective approach, to concluded anything..

xxiii

GLOSSARY

quasi-experiment In this research, quasi-experiment means that the participants for

our questionnaire were not chosen at random, but the participants themselves

choose if they wanted to participate or not.

xxiv

Acronyms

AOP Aspect-Oriented Programming.

CCC Crosscutting Concerns.

CCM Cyclomatic Complexity Metric.

CNC Coefficient of Network Complexity.

FEUP Faculdade de Engenharia da Universidade do Porto.

IP Internet Protocol.

ISCTE-IUL ISCTE-Instituto Universitário de Lisboa.

MATLAB MATrix LABoratory.

MOF Meta-Object Facility.

OOP object-oriented paradigm.

PIMETA Paradigm Independent Meta-model.

PP procedural paradigm.

xxv

C
h
a
p
t
e
r

1
Introduction

MATrix LABoratory (MATLAB) is a programming language used by the scientific, engi-

neering and research communities. There is currently about 1500 books based on the

language (and its software companions), and it’s translated in 27 different languages.

MATLAB is used in different areas like scientific computing, control systems, signal pro-

cessing, image processing, simulation, computational finance [34], among other fields.

The different uses given to programs created with MATLAB means, that the develop-

ers may have different levels of programming knowledge (and academic backgrounds),

which results in a huge diversity of developers with different skills. These differences be-

tween MATLAB developers, will probably affect the importance that each of them give

towards modularity concerns/aspects and the limitations in the support to modularity

given by the language.

Another factor that may influence the said importance, is the amount of legacy code

that a developer uses when developing their solutions, or when maintaining solutions

created by others. According to Joost Visser in its book ’Building Maintainable Software’

[54], sometimes there are newly built systems for which the maintainability was so low
that it was no longer possible to effectively modify them—even before the systems went into
production. Modifications introduced more bugs than they solved. Although the quote and

the book are related to code written in Java, the same concept can be applied to any other

programming language (in our case MATLAB) and that may create a new problem. If

solutions written in MATLAB have these issues regarding their level of maintainability

1

CHAPTER 1. INTRODUCTION

(and readability) from the beginning, then the developers may not even get to see or

feel the limitations in the support to modularity that language suffers.

In this dissertation, we focus on the symptoms and consequences caused by the

limitations in the support to modularity and how MATLAB developers feel regarding

this situation. More about the limitations can be read in Section 1.1 and 3.4.

1.1 The Problem: Limitations in the Support to Modularity in

MATLAB

Figure 1.1 captures one of the symptoms that the limitations in the support to mod-

ularity in MATLAB causes, code tangling. The figure represents two different imple-

mentations of the “Discrete Fourier Transform” function, which is often used in signal

processing.

On the left, we have a clean version of the function with a single concern. On

the right, there is a more complex version of the function that, besides taking care

of the original concern, it also cares about data type specialization. The data type

specialization concern can be detected through the eight occurrences, in twenty-two

lines of code, of the ‘quantize’ (marked in green) and ‘quantizer’ (marked in yellow)

functions. Therefore, making the function on the right, an extreme case of code tangling.

Figure 1.1: Code tangling [5]

Code tangling and other symptoms, in this study, are just the visible consequences

2

1.2. THE APPROACH: SURVEY-BASED EMPIRICAL STUDY

caused by MATLAB limitations in the support to modularity, something that we al-

ready know. What we are going to research is whether MATLAB developers feel and/or

acknowledge these limitations, and the consequences that they bring to their code.

1.2 The Approach: Survey-based Empirical Study

The approach taken is to gather the required data needed to establish, that MATLAB

developers do care about the limitations and consequences presented in the previous

section. To do that, we choose to create a survey-based empirical study to tackle the prob-

lem. The use of this approach and its overall process, help us verifying and understand

what is the opinion from the MATLAB developers’ community, about the impact of

these limitations in their code and programming habits.

The study, starts with a description about what are Crosscutting Concerns (CCC),

since they are the visible result from the limitations provided in the code. It’s important

to note that, although CCC is related to the concept of Aspect-Oriented Programming

(AOP), this dissertation doesn’t cover issues specifically pertaining AOP. Specifically,

MATLAB extensions, that help the language support this programming paradigm. 1

After that learning curve, we start our empirical study by creating our hypothesis

and from there, our research questions. This knowledge helps us build a more appropri-

ate survey, so the answers can be more focused in the problem we are studying. Finally,

we choose the best way to sample the population of MATLAB developers, to make the

process of delivering the questionnaire easier and faster.

1.3 Research Objectives

The main objective for this dissertation is assessing whether MATLAB developers recog-

nize the limitations to modularity in MATLAB, and that it creates some difficulties while

programming. That proof will enable us to validate (scientifically), past and current

works related to this problem, and motivate further developments. Those developments

will occur in a more focused and clear way, since it will have concrete knowledge about

what these developers (in both, the industrial and academic world) feel towards these

limitations.

Our second objective is to proceed to the categorization of MATLAB developers.

That categorization is done using questions to gather background information, and de-

pending on the response given by the subject about the problem. With that information,

1To learn more about this theme, see papers [4] and [5].

3

CHAPTER 1. INTRODUCTION

we can make some correlations so we can associate each type of answers to a specific

use.

1.4 Research Questions

At the start of our empirical study, we defined what were the questions for which we

set out to obtain answers. In other words, we described and refined our objectives. This

helped setting a more concrete context to our study by detailing and adding focus to

our problem[56]. The following list is comprised with our four main research questions.

1. Do MATLAB developers suffer from software legacy problems?

2. Which are the modularity traits in MATLAB?

3. Which factors influence the modularity practices of a MATLAB developer?

4. Can structure visualization features help MATLAB developers in understanding legacy software?

Table 1.1: Main Research Questions

After defining our main research questions, we proceeded by creating a group of

specific questions for each of them.

1.1 Do MATLAB developers deal with large programs produced by other developers (legacy software)?

1.2 Are the code in those legacy software hard to understand?

1.3 Do MATLAB developers experience difficulties in understanding the structure of legacy software?

2.1 Is cohesion / tangling a concern for MATLAB developers?

2.2 Is coupling / scattering a concern for MATLAB developers?

3.1 The application domain influences the modularity practices of MATLAB developers?

3.2 Developers’ background influences their modularity practices in MATLAB?

Table 1.2: Sub-questions for each Research Question

1.5 Hypothesis Formulation

According to Eric M. Rogers, hypothesis is a “... single tentative guesses–good hunches–
assumed for use in devising theory or planning experiment, intended to be given a direct

4

1.5. HYPOTHESIS FORMULATION

experimental test when possible." [47]

When it comes to formulate a hypothesis, we need to make it clear and formal. We

also need to present the necessary background to understand where the hypotheses

are derived from [21]. The background to our problem is given in Section 1.1 and 3.4.

Considering the effects of these limitations in the code and the impact that it can have

in the developers works, the following formal null hypotheses were created:

Hypothesis 1. MATLAB developers don’t find or care about tangling of concerns.

Hypothesis 2. While developing, be either creating or maintaining a system, MAT-

LAB developers never felt the necessity of using a tool to help visualize the code struc-

ture.

Hypothesis 3. There are no evidences that the limitations in the support to modu-

larity in MATLAB, affect the maintainability (and readability) of the code.

Hypothesis 4. The academic and industrial professional background of a developer

doesn’t influence the importance given to the limitations (and its consequences) in the

support to modularity in MATLAB.

Hypothesis 5. The academic and industrial professional background of a developer

doesn’t influence the importance given occurrences of code tangling in MATLAB code.

Hypothesis 6. The academic and industrial professional background of a developer

doesn’t influence the importance given to MATLAB code maintenance.

Hypothesis 7. The academic and industrial professional background of a developer

doesn’t influence the importance given to code duplication avoidance while developing

software in MATLAB.

Hypothesis 8. The academic and industrial professional background of a MATLAB

developer doesn’t influence the importance given to code structure.

The statistical significance level (α) for testing the null hypothesis is 5% (0,05). α is

the probability of a Type I error. In other words, we are calculating the probability of

incorrectly rejecting the null hypothesis [27]. A lower level would be viable given a large

5

CHAPTER 1. INTRODUCTION

enough sample size, which will not be the case here due to limited time and number of

participants.

1.6 Document Structure

The dissertation is organized, excluding the current chapter, as follows:

• Chapter 2: MATLAB programming language gives the necessary background

information about MATLAB. This also includes a short comparison between MAT-

LAB and GNU Octave and the languages syntax. This chapter is part of the related

work/literature review done for this research.

• Chapter 3: MATLAB Modularity Study is the result about a study regarding mod-

ularity in MATLAB. It contains sections about a comparison between modularity

in oriented-object and the procedural paradigm, and about the limitations to the

support in MATLAB. This chapter is part of the related work/literature review

done for this research.

• Chapter 4: Study Design describes the outcome of the survey planning phase,

including a study about the research paradigms, a description of the types of em-

pirical studies and comparison between the conditions for each of them. It also

includes an explanation about the survey design, variables, planning of the survey

research, a research about the target population, methods to sample the partic-

ipants, instrument, data collection procedure, analysis procedure and validity

evaluation.

• Chapter 5: Execution describes each step taken in the execution of the study. It

includes sampling, description about the pilot test step, execution of the question-

naire, data collection performed and threats to the study validity.

• Chapter 6: Analysis resumes the data collected and the treatment given to it. That

analysis includes a descriptive, multivariate, covariance and inferential analysis,

as well as hypothesis testing.

• Chapter 7: Conclusions and Future Work presents a summary of the study, in-

cluding results, contributions, research limitations found during the study and

future work.

6

C
h
a
p
t
e
r

2
MATLAB Programming Language

2.1 Introduction

The following chapter can be considered the first part of our related work/literature

review. The chapter revolves around the necessity of making an overview of how the

MATLAB programming language works, considering that this is part of the topic behind

our survey-based empirical study. This aspect, makes this chapter more of a program-

ming language review, instead of a normal literature review.

The overview of MATLAB starts with a small description of its uses and history, the

basic syntax that can be used to program, how we can structure our code in m-files

and a brief comparison of MATLAB with GNU Octave, one of the most similar clone

languages available [50].

2.2 History

MATLAB is an interpreted, procedural, imperative (like C and Fortran), proprietary

and dynamic language, with an interactive environment. The language was initially

used by the applied mathematics community because of its ability to allow matrix data

manipulations [6]. Later, it expanded to other fields like scientific computing, control

systems, signal processing, image processing, simulation, computational finance among

other fields [34].

7

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

MATLAB was created in the Computer Science Department at the University of New

Mexico, in the late 1970s by Cleve Moler1. After being acquired by MathWorks in 1984,

it underwent a complete redesign (and continuous updates) by starting to use toolboxes.

One of those is Simulink (only available in MATLAB), that is used to do simulation and

control system design.

2.3 Basic Syntax

Like any other programming language, MATLAB has a basic syntax. That syntax is

composed by variables, arrays, operators, statements, functions and toolboxes. In this

section, we will describe the syntax available in MATLAB.

2.3.1 Variables

As it was described in the beginning of this chapter, MATLAB focus is matrix data

manipulations making the variables, by default, matrices and arrays. Considering that,

it’s an interpreted language there is no need to declare if the variables are of type integer,

string or combinations of the two, before assigning a value [10]. Integer variables

include numeric values such as negative infinite, positive negative, and zero value.

See some examples of variables in Algorithm 2.1.

1 % Numeric Value

2 value = 4;

3

4 % String value

5 string = 'Hello';

6

7 % Array with values from 1 to 10

8 array = [1:10];

9

10 % Matrix 3-by-3

11 matrix = [3 6 9 54; 10 34 79];

12

13 % Variable with function assigned to it

14 function = myfun();

Listing 2.1: Examples of Variables Assignment

1To learn more about the creator of MATLAB, see http://www.mathworks.com/company/aboutus/

founders/clevemoler.html.

8

http://www.mathworks.com/company/aboutus/founders/clevemoler.html
http://www.mathworks.com/company/aboutus/founders/clevemoler.html

2.3. BASIC SYNTAX

Variables can either be global or local. They are usually local variables, which means

that they can only be accessed in the function where they are declared. In the case of

global variables, those variables are declared once and all the functions that call it, share

a single copy of the variable [12].

2.3.2 Arrays

Array or cell array is a data structure where each cell is indexed and can have any type

of data [8]. This data can be empty, a list of text string, numeric values or a combination

of the last two.

There are different ways to declare an array, see examples in Algorithm 2.2.

1 % Array with values from 1 to 10

2 a = [1 2 3 4];

3

4 % Matrix 3-by-3

5 m = [1 2 3; 4 5 6; 7 8 10]

6

7 % Matrix 3-by-3 with 1

8 o = ones(3,3)

9

10 % Matrix 5-by-1 with 0

11 z = zeros(5,1)

Listing 2.2: Examples of Declaring Arrays

2.3.3 Operators

Operators are symbols that tell the compiler to perform a certain mathematical or logical

operation. Although, MATLAB is designed to operate (primarily) with matrices and

arrays, these operators can work with scalar and non-scalar values. These operators and

elementary operations can be divided into five different groups [40]:

• Arithmetic Operations (Table 2.1);

• Relational Operations (Table 2.2);

• Logical Operations;

• Set Operations;

• Bit-Wise Operations.

9

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

When it comes to arithmetic’s (see Table 2.1), there are two types of operations:

array operations and matrix operations [3]. While array operations execute element-by-

element operation, matrix follows the rules from linear algebra.

Operator for Array Operator for Matrix Function for Array Function For Matrix
Addition A+B A+B plus(A, B) plus(A, B)

Subtraction A-B A-B minus(A, B) minus(A, B)
Multiplication A.*B A*B times(A, B) mtimes(A, B)
Right Division B./A B/A rdivide(A, B) mrdivide(B, A)
Left Division A. A ldivide(B, A) mldivide(A, B)

Exponentiation (A^B) A.^B A^B power(A, B) mpower(A, B)
Transpose A.’ A’ transpose(A) ctranspose(A)

Table 2.1: Arithmetic Operations

Relational operators perform element-by-element comparisons between arrays with,

either the same size or if one is a scalar (see Table 2.2) [2]. The results given by these

operators are a logical array, that shows where the relational is true.

Operator Function
Less than A lt(A, B)

Greater than A gt(A, B)
Less than or equal to A <= B le(A, B)

Greater than or equal to A >= B ge(A, B)
Equal to A == B eq(B, A)

Not equal to A ~=B ne(A, B)
Array equality - isequal(A, B, ...)

Array equality (treating NaN values) - isequaln(A, B, ...)

Table 2.2: Relational Operators

Logical operations return logical values (0 = false and 1 = true) to show, if the

condition that is being tested was full field. Set operations are used to perform joins,

unions and intersections between two arrays. Bit-wise operators are used to set, shift or

compare a specific bit/value in one array.

2.3.4 Statements

Control statements require that the programmer use one (or more) condition(s) to eval-

uate the code. Then, controlling the flow of execution of the program itself. To create

those conditions, the programmer can use the operators visible in Table 2.1 and 2.2,

plus other operators like bit-wise, logical and set ones. Some of those statements are

10

2.3. BASIC SYNTAX

represented here [9], and in the following algorithms (from Algorithm 2.3 to Algorithm

2.6).

1 a = 5;

2

3 %check the boolean condition

4 if a == 10

5 % if condition is true

6 fprintf('Value of a is 10\n');

7 elseif(a == 15)

8 % if elseif condition is true

9 fprintf('Value of a is 20\n');

10 else

11 fprintf('None of the values are matching\n');

12 end

Listing 2.3: If Statement

1 grade = 'B';

2

3 switch(grade)

4 case 'A'

5 fprintf('Excellent!\n');

6 case 'B'

7 fprintf('Well done\n');

8 case 'C'

9 fprintf('Well done\n');

10 case 'D'

11 fprintf('You passed\n');

12 case 'F'

13 fprintf('Better try again\n');

14 otherwise

15 fprintf('Invalid grade\n');

16 end

Listing 2.4: Switch Statement

1 fib = ones (1, 10);

2 i = 3;

3

4 while (i <= 10)

5 fib (i) = fib (i-1) + fib (i-2);

6 i++;

7 end

11

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

Listing 2.5: While Statement

1 % creates a matrix 1-by-10

2 fib = ones (1, 10);

3

4 % for cycle where i value goes from 3 to 10

5 for i = 3:10

6 fib (i) = fib (i-1) + fib (i-2);

7 end

Listing 2.6: For Statement

These statements are the building blocks to create more complex algorithms in

MATLAB.

2.3.5 Functions

A function can be created with the use of operators (Section 2.3.3), statements (Section

2.3.4) and other functions, where it can have as many inputs and output values. When it

to comes to the name of the function to be valid, this needs to begin with an alphabetic

character[11]. Otherwise, it can contain other letters, number, or underscores. See an

example in Algorithm 2.7.

1 % Function that finds the maximum value in the array. It returns

2 % the value and its position in the array.

3

4 % function [output1, output2, ...] = myfunction(input1, ...)

5 function [value, index] = my_max(array)

6

7 j = length(array);

8 % Starts value with negative infinite. So, that in the

9 % beginning any number will become the maximum value, even if

10 % it is a negative one.

11 max_value = -inf;

12

13 for i = 1:j

14 if array(i) > value

15 value = array(i);

16 index = i;

17 end

18 end

19 end

12

2.3. BASIC SYNTAX

Listing 2.7: Example of a function

In the case of a function having other functions in it, we call it a nested function.

See example in Algorithm 2.8.

1 function show_string

2 a = 10;

3 fprintf('Old value of a %d\n', a);

4 b = 20;

5 c = 'Hello';

6 output(c);

7 fprintf('New value of a %d\n', p);

8

9 function output(string)

10 disp(string)

11 p = a * b;

12 end

13 end

Listing 2.8: Example of a nested function

MATLAB offers a list of available functions2 to help speed up the process of devel-

oping programs. A couple of those functions can be seen in Table 2.1, Table 2.2 and

Table 2.3.

To learn more about functions and how do they work inside a m-file, go to Section

2.4.1.

Description
nargin Returns the number of input arguments specified for a function.

nargin(’fun’)
Returns the number of declared inputs for the M-file function
fun or -1 if the function has a variable of input arguments.

nargout Returns the number of output arguments specified for a function.
nargout(’fun’) Returns the number of declared outputs for the m-file function fun.

Table 2.3: Input and Output Arguments

2.3.6 Toolboxes

Toolboxes are created by a collection of MATLAB files, and when it’s created MATLAB

generates a single file using .mltbx for filename extension. [51]. These files can be either
2For a complete list of MATLAB functions, see the following website http://www.mathworks.com/

help/matlab/functions.html.

13

http://www.mathworks.com/help/matlab/functions.html
http://www.mathworks.com/help/matlab/functions.html

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

m-files (see Section 2.4), data, documents, apps, or examples.

2.4 M-files

MATLAB allows the programmer to write two types of m-files, functions files and script

files. The names of both kinds of file must end with an extension of .m, so it can always

be MATLAB-compatible [48].

2.4.1 Function Files

Except for simple one-shot programs, it is not practical to have to define all the functions
you need each time you need them. Instead, you will normally want to save them in a file
so that you can easily edit them, and save them for use at a later time [19]. That specific

file is called a function file. Functions files can accept inputs and return outputs, while

the internal variables are only local to the function. This file, normally starts with the

keyword function.

Unlike Java, in MATLAB it’s not required that the main function have the same

name as the m-file. So, the common name is used for reasons of clarity and good style.

When the function and the file name differ, the file name must be used to call the main

function (first function in the m-file). All the subsequent functions are called local

functions, and are called by the main function and other local functions in the same

m-file [30]. Local functions are easy to identify in a m-file since they must end with the

end keyword.

Another type of functions available are private functions. This type is only accessible

to other functions in a specific location, like local functions. They can be found in a

subfolder with the name private. Private functions are only available to functions

founded in the folder immediately above to the private one. They are used to separate

code into different files, or to share it between multiple, related functions [45].

2.4.2 Script Files

Script files are m-files containing MATLAB statements, variables, operators and func-

tion calls. These files don’t accept input or return outputs, which means that they can

only work on data that is hard-coded into the file. In other words, data that is in the

workspace [49].

They’re useful when the task in hand, doesn’t require changes. They are used to

specify a sequence of commands just as if you had typed these commands into the

14

2.5. GNU OCTAVE COMPATIBILITY WITH MATLAB

command window. This way, they make all the variables created within the script been

added to the workspace, for the current session. Furthermore, if any variable in the

script have the same name as a current one in the workspace, then those variables in

the workspace are updated with the new value.

2.5 GNU Octave compatibility with MATLAB

In this section, we will make a brief comparison between these two languages, MATLAB

and GNU Octave, as it’s explained in Section 2.1. To note that GNU Octave offers to

its developers an identical basic syntax as the one described in Section 2.3, with minor

differences that are explained in Subsection 2.5.3.

2.5.1 GNU Octave History

GNU Octave is an interpreted language similar to MATLAB (where it provides support

to matrix data types and operations) and distributed under the GNU General Public

License3 terms [1]. GNU Octave is a structured programming language, with the possi-

bility to use some of the most common C libraries functions, and certain UNIX systems

calls and functions [18]. It’s considered open-source, so any developer can contribute

with new features and functions to the language.

The GNU Octave project started in 1988, with the idea of being a software a com-

panion to a chemical reactor design textbook, written by two Professors from the Uni-

versities of Texas and Wisconsin-Madison. In 1992, by the hands of John W. Eaton, the

project was launched into a full-time development and its popularity started reaching

new highs. Today, it’s used by thousands of people in teaching, research, and commer-

cial applications. An example, it’s a project created to find vulnerabilities related to

guessing social security numbers, through the access to a large-scale parallel computer

at Pittsburgh Supercomputing Center 4.

2.5.2 Similarities

GNU Octave is an open-source clone of MATLAB and the one with the most similari-

ties[50], making these two languages have many features in common. These specific

features enable the developers to write their code in one language, and still maintain (at

3GPL is published by the Free Software Foundation (learn more about it at http://www.gnu.org/).
4To learn more about the project and how was GNU Octave used see https://www.psc.edu/

publicinfo/news/2009/70809_SSVulnerabilities.php.

15

http://www.gnu.org/
https://www.psc.edu/publicinfo/news/2009/70809_SSVulnerabilities.php
https://www.psc.edu/publicinfo/news/2009/70809_SSVulnerabilities.php

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

a certain level) the ability to interpret it, in the other. This happens because they both

offer:

• Matrices as the main data type;

• Native support for complex numbers;

• Powerful built-in math functions;

• Extensive functions libraries;

• Extensibility regarding user-defined functions (or UDF) 5.

To help the developers develop in GNU Octave, in a more compatible way to MAT-

LAB, they can use it in traditional mode6. This mode makes GNU Octave interpret the

code in a MATLAB-compatible mode

2.5.3 Differences

Even with the high compatibility between programs created in MATLAB and GNU

Octave, there are still some differences. If they are considered minor differences, the de-

velopers can solve them by using user preference variables. They also can be irrelevant,

when they don’t affect the execution of the m-files. These differences can be caused

by the ability GNU Octave gives, to customize the language to be either MATLAB-

compatible or to use new and different features. Some of these differences presented in

the following list, were previous listed by Lessa et al.[32] and by Sysnet7 webpage[13]:

• In GNU Octave the relational operators are called comparison operations [17]),

and all the available functions can be seen here at http://octave.sourceforge.

net/function_list.html.

• In GNU Octave, toolboxes are actually called packages, and they’re created by

the developers as they need it8. These packages may lack some of the features

given by MATLAB toolboxes, and they might not duplicate exactly the MATLAB

functions or interface [15].
5UDF is a programmed routine with parameters set by the user of the system. The name of the function,

in MATLAB, is determined by the name of the file containing the function.
6To learn more about this topic go to https://www.gnu.org/software/octave/doc/interpreter/

Command-Line-Options.html.
7Service made available by the Institute for Computational Engineering and Sciences from the Univer-

sity of Texas at Austin.
8To see the list of packages available go to http://octave.sourceforge.net/packages.php.

16

http://octave.sourceforge.net/function_list.html
http://octave.sourceforge.net/function_list.html
https://www.gnu.org/software/octave/doc/interpreter/Command-Line-Options.html
https://www.gnu.org/software/octave/doc/interpreter/Command-Line-Options.html
http://octave.sourceforge.net/packages.php

2.5. GNU OCTAVE COMPATIBILITY WITH MATLAB

• Some functions from MATLAB are not available in GNU Octave. That happens

because of the large number of toolboxes, and proprietary libraries that belongs

to MATLAB[39]. A clear example of this, is the Simulink toolbox;

• To end statements in GNU Octave, we can use either end or endif, endwhile and

endfor. MATLAB only accepts end;

• Similar functions can have different names in each language;

• GNU Octave supports C-based operators like ++, –, +=, *= and /=;

• GNU Octave accepts ~= and != as not-equal comparison, while MATLAB only

accepts the former;

• Comments in MATLAB start with %, although GNU Octave can also use # to start

a comment;

• GNU Octave developers have the possibility to use the do-until statement [20].

See an example in Algorithm 2.9;

• MATLAB uses ^ for exponentiation. GNU Octave also accepts the following syn-

tax, **;

• GNU Octave use ‘ and ‘’ as string delimiters, while MATLAB only use ‘;

• GNU Octave can use the logical operators | or & (for matrices), and || or &&

(for scalars). In case of using the scalar operators, the MATLAB compiler gives a

warning that, those operations have short-circuiting behavior9.

Finally, although MATLAB and GNU Octave have object-oriented capabilities in

common, they have different implementations10. MATLAB can be extended by adding

new objects using m-scripts, while in GNU new objects are implemented like C++

classes [35]. These capabilities are not part of our study, since the previous studies

about limitations in modularity are related to the procedural paradigm version of each

language.

9Logical short-circuiting evaluates the second operand, without first completely evaluating the result
given by the first operand.

10To learn more about these capabilities, see the following links: http://www.mathworks.com/

discovery/object-oriented-programming.html and https://www.gnu.org/software/octave/doc/

interpreter/Object-Oriented-Programming.html.

17

http://www.mathworks.com/discovery/object-oriented-programming.html
http://www.mathworks.com/discovery/object-oriented-programming.html
https://www.gnu.org/software/octave/doc/interpreter/Object-Oriented-Programming.html
https://www.gnu.org/software/octave/doc/interpreter/Object-Oriented-Programming.html

CHAPTER 2. MATLAB PROGRAMMING LANGUAGE

1 do

2 number = input('Give a number between 1 and 10: ');

3 until (number >= 1 & number <= 10)

4

5 for i = 1:10

6 printf('%d x %2d = %2d\n', number, i, number*i);

7 end

Listing 2.9: Times table code with the use of the do-until statement

2.6 Conclusion

This chapter described the programming language review based on MATLAB. The most

important facts that may contribute for our research study is the principal programming

paradigm that MATLAB follows, the procedural paradigm.

It was also discovered that it’s possible to program MATLAB in clone languages

such as GNU Octave. That ability occurs because the similarities between these two

languages are significant, and the differences can be either considered bug by the GNU

Octave interpreter or are special features that only work in GNU Octave. Examples

of such features are the ‘Do-Until Statement’ and the possibility to use specific end

statements for each statement, instead of the MATLAB-compatible one.

The discovery of this level of compatibility between (at least) these two programming

languages changed and helped defining our target population. Now, instead of only

wanting to questioning MATLAB developers who work with the MathWorks workspace,

we can ask any MATLAB developer regardless of its workspace of choice.

18

C
h
a
p
t
e
r

3
MATLAB Modularity Study

3.1 Introduction

The present chapter is the second part of our related work/literature review. This chap-

ter starts with a brief explanation about what is modularity, followed by a Paradigm

Independent Meta-model (PIMETA) instantiation with the procedural programming

model of MATLAB and a section comparing MATLAB to Java. Finally, we explain in

more detail the limitations in the support to modularity found in MATLAB, that are

summarized in Section 1.1.

The idea of modularity in Computer Software has been around for almost six decades

[41]. Making modularity an important Software Engineering principle, with a strong

impact on software maintenance and reusability. According to Myers, it’s the single
attribute of software that allows a program to be intellectually manageable [38]. Modularity

in a software engineering, can be seen when a system (in this case, a programming

language) is composed by features that when interacting with each other creates a de-

pendency.

3.2 PIMETA instantiation of MATLAB Grammar

The PIMETA diagram was created as way to exemplify the relationships and/or de-

pendencies that a paradigm causes when implemented in a certain language, since it

brings a group of atomic and modular features. Atomic features are features that don’t

19

CHAPTER 3. MATLAB MODULARITY STUDY

allow the aggregation to other features. Consequently, modular features (also known as

modules) are features that can aggregate other features. Those aggregated features can

be other modular features or atomic ones.

The meta-model represented in Figure 3.1 can be logically divided into two different

parts. The division is represented by the double line and inspired by the Meta-Object

Facility (MOF).

Figure 3.1: PIMETA Meta-class diagram

The top layer depicts Level M2 (or UML meta model) and it’s the definition of con-

cepts like classes, attributes, associations. In our diagram, the top layer is composed

by the Paradigm, Formalism, FeatureType, ModularFeatureType, AtomicFeatureType and

DependencyType meta-classes. These features allow to represent a paradigm, and more

20

3.2. PIMETA INSTANTIATION OF MATLAB GRAMMAR

specially a programming language, with the features and dependencies that they of-

fer and how they can be organized. The Paradigm meta-class is meant to represent

paradigms like procedural paradigm (PP) or object-oriented paradigm (OOP), while the

Formalism is meant to represent languages like MATLAB or Java. The DependencyType
meta-class that represents the different dependencies between features, like functions

can call other functions in MATLAB. Finally, we have the abstract meta-classes Feature-
Type, ModularFeatureType and AtomicFeatureType. These three meta-classes put together

create a structural design pattern where a group of objects are to be treated in the same

way as a single instance of an object, called composite pattern (see figure 3.2). This

design pattern was described at first in the book Design Patterns: Elements of Reusable
Object-Oriented Software [55] from 1994.

Figure 3.2: Composite Pattern in PIMETA diagram

In our case, FeatureType meta-class is the component, the abstract meta-class that

defines the methods that the ModularFeatureType and AtomicFeatureType meta-classes,

composite and leaf respectively, and must be implemented by them. Meta-class Mod-
ularFeatureType implements the methods from the textitFeatureType and adds others,

while AtomicFeatureType is a meta-class that is not extended or inherited by others.

The bottom depicts the Level M1 (or the UML model). Level M1 is the instantiation

of the UML meta model and it contains the application-specific models. In our diagram,

the bottom layer is composed by the Feature, ModularFeature, AtomicFeature and Depen-
decy classes. These classes represent the organization and analysis of a programming

language, where ModularFeature, AtomicFeature and Dependecy classes always have a

correspondent meta-class in Level M2 Metamodel.

The PIMETA instantiation of the PP with the MATLAB grammar formalism, can be

observed in the object diagram depicted in Figure 3.3. Due to the space and readability

21

CHAPTER 3. MATLAB MODULARITY STUDY

limitations this diagram only contains the relationship between the Paradigm, Formalism,

FeatureType, ModularFeatureType and AtomicFeatureType meta-classes. See Appendix A

for further details in the instantiation of MATLAB grammar.

22

3.2. PIMETA INSTANTIATION OF MATLAB GRAMMAR

Figure 3.3: PIMETA instantiation extract for MATLAB Grammar

23

CHAPTER 3. MATLAB MODULARITY STUDY

3.3 Comparing modularity between MATLAB and Java

Comparing the levels of modularity offered between MATLAB and Java, it is basically

the same, as comparing modularity between a PP and an OOP one. There are some

works like the paper by Ferrett and Offutt (2002) [16], that compares the modularity

of procedural and object-oriented software using empirical studies. The conclusions

described that:

The modules of the object-oriented programs were found to be half the size of those
of the procedural programs and the average number of parameters per module
for the object- oriented programs was approximately half that of the procedural
programs. Thus, the object-oriented programs were twice as modular as the
procedural programs.

To assess the truth behind the previous statement, we used the instantiation of

the PIMETA diagram for MATLAB and Java, to calculate the Coefficient of Network

Complexity (CNC) and the Cyclomatic Complexity Metric (CCM). The instantiation for

Java, shown in Figure 3.4, was done by Sergio Marques in is MSc dissertation [33]. The

MATLAB instantiation can be seen in Figure 3.3.

24

3.3. COMPARING MODULARITY BETWEEN MATLAB AND JAVA

Figure 3.4: PIMETA instantiation extract for Java

25

CHAPTER 3. MATLAB MODULARITY STUDY

CNC metric is used to calculate the degree of complexity of a critical path network,

or a graph in our case. This metric was first proposed by Richard Kaimann in the paper

with the same name as the metric in 1974 [24]. The complexity can be calculated by

dividing the quotient of activities squared by events or preceding work items squared

by work items. In this case, we adapt the CNC metric to use in graphs such as the one

in Figure 3.5, where we divide the number of arcs by the number of nodes. Next, we

have the mathematical formula of the metric and its adaptation to OCL for the PIMETA

diagram.

CNC =
number_arcs

number_nodes

1 ModularAggregationsSize(): Integer = ModularFeatureType.allInstances->select(

formalism->includes(self)).featureType->size

2

3 DependencyRelationsSize(): Integer = DependencyType.allInstances->select(

formalism->includes(self))->size * 2

4

5 FeatureTypesSize(): Integer = FeatureType.allInstances->select(formalism->

includes(self))->size

6

7 CNC_FeatureTypes(): Real =

8 ModularAggregationsSize() / FeatureTypesSize()

9

10 CNC_DependencyTypes(): Real =

11 DependencyRelationsSize() / FeatureTypesSize()

Listing 3.1: CNC metric for the PIMETA diagram

26

3.3. COMPARING MODULARITY BETWEEN MATLAB AND JAVA

Figure 3.5: Graph from PIMETA meta-class diagram

The number of arcs can be the number of modular features, the number of depen-

dencies multiplied by two because of the number of associations between the meta-class

FeatureType and DependencyType, or the combination of both. The number of nodes are

the number of elements that belong to the meta-class FeatureType. In other words, all

the features that a programming language have.

MATLAB Java
Features 2.222 3

Dependencies 2.222 6

Table 3.1: CNC values comparison between MATLAB and Java

CCM was one of the first complexity measures developed by Thomas McCabe in

1976[36]. This software metric is used to calculate the control flow charts. In a sim-

ple way, it calculates the number of linearly independent paths that exist through the

source code. In our case, is more through the number of possible dependencies between

features. The original formula for this software metric is:

CCM = number of arcs - number of nodes + number of entry or exit points

In the CCM formula, the number of arcs and the number of nodes are the same as

for the last formula. The number of entry or exit points, in our case, is 2. Next, we have

the CCM metric adaptation to OCL for the PIMETA diagram.

27

CHAPTER 3. MATLAB MODULARITY STUDY

1 ModularAggregationsSize(): Integer = ModularFeatureType.allInstances->select(

formalism->includes(self)).featureType->size

2

3 DependencyRelationsSize(): Integer = DependencyType.allInstances->select(

formalism->includes(self))->size * 2

4

5 FeatureTypesSize(): Integer = FeatureType.allInstances->select(formalism->

includes(self))->size

6

7 CCM_FeatureTypes(): Real =

8 ModularAggregationsSize() - FeatureTypesSize() + 2

9

10 CCM_DependencyTypes(): Real =

11 DependencyRelationsSize() - FeatureTypesSize() + 2

Listing 3.2: CCM metric for the PIMETA diagram

MATLAB Java
Features 13 24

Dependencies 13 57

Table 3.2: CCM comparison between MATLAB and Java

After calculating this two complexities, we can say that the level of modularity in

Java is superior than in MATLAB. However, there is a threat to the validity of results

described in Table 3.1 and 3.2. Our MATLAB instantiation has had only one iteration

and therefore it may not be detailed enough to compare the complexities results against

Java. The PIMETA instantiation of Java doesn’t have such problems, since it’s the result

of numerous iterations.

3.4 Limitations in the Support to Modularity in MATLAB

In the latest years, the scientific community in Portugal has done some research work

related to modularity in MATLAB, which contributed to new perspectives – which

comprises the basis for this dissertation – are mainly explained in papers SPLAT 2006

[6] and CoRTA 2010 [37] papers.

The problem described in Section 1.1, as it is described there is related to the lim-

itations in the support to modularity in MATLAB programs. One of the symptoms

28

3.4. LIMITATIONS IN THE SUPPORT TO MODULARITY IN MATLAB

that help identify this problem, and is explained that Section, is the symptom of tan-

gling. To recap, code tangling can be identified, when each individual function or m-file

contains code related to more than one concern, such as illustrated in Figure 1.1. In

that figure, we can observe code related to the primary concern been intertwined with

code pertaining other concerns, which may hamper the code understandability [31] and

maintainability.

The other symptom, that helps pinpoint these limitations, is called scattering. Code

scattering is the representation of unmodularized concerns, in the form of small code

fragments, spread throughout many functions or/and m-files instead of being localized

within a single module. A visible consequence to code scattering is the creation of

duplicated code through the program. That symptom causes difficulties towards the

maintainability, understandability and the ability to reuse the code.

To help with the identification of these symptoms, we can use the functions in

the Table 3.3. That table was created using a token-based approach, which extracts all

names, filters out most keywords and variable names and assumes the rest are functions.

Token in this context means certain words, that can be functions, that appear multiple

times through a program. The idea was that the number of occurrences of a function

in a piece of MATLAB code can be used as an indicator of code tangling. This part of

the study and the Table 3.3 are based on the paper by Cardoso et al. (2013) [7] and the

paper by Monteiro et al. (2010) [37].

Table 3.3: CCC Categories

Categories Description
Examples of MATLAB

Functions

Messages and monitoring
Messages to the user, warnings,
errors, graphics visualization,
monitoring, etc.

plottools, semilogx,
semilogy, loglog, plotyy,
plot3, grid, title, xlabel;

I/O data
Reading data from file, writing
data to file, saving an image,
loading an image, etc.

imwrite, imread,
imformats, hgsave,
saveas, hgload, save;

Verification of function
arguments and return values

Default shapes and values for the
arguments that may not be passed
in certain function calls.

nargchk, nargin, nargout,
varargin, varargout;

Data type verification
and specialization

Check whether a variable is of
certain type, configuring the
assignment of data types to
variables, etc.

quantize, quantizer, fi,
isscalar, isstruct, isempty,
iscell;

System
Code that verifies certain system
environment properties, to pause
execution, etc.

pause, print, printopt,
wait, last, input, syntax,
run, tic, start;

29

CHAPTER 3. MATLAB MODULARITY STUDY

Categories Description
Examples of MATLAB

Functions

Memory allocation/
deallocation

The use of the ‘zeros’ function is
most of times used to allocate a
specific array size. This avoids the
reallocation for each new item to be
stored in an array. Use of the ‘clear’
instruction that appears in some
MATLAB functions is another
example.

clear, delete, zeros,
persistent, global;

Parallelization
Use of parallel primitives such as
‘parfor’.

parfor, spmd, feval, demote,
cancel, submit, resume;

Dynamic properties

Constructing, inline, function,
objects(inline), executing a
string containing MATLAB
expressions(‘eval’), etc.

eval, eval, evalc, evalin,
inline.

3.5 Conclusion

This chapter presented our implementation of the PIMETA instantiation for MATLAB

grammar, a comparison between MATLAB and Java and a study about the limitations

to the support in MATLAB.

Concerning the modularity limitations, there is some research done about the de-

tection and effects about non-modularized concerns in object-oriented systems. An

example of that research, is the seminal paper on AspectJ [25]. The problem is that, as

we verified in Section 3.3 and Chapter 2, MATLAB follows mainly a PP and that the

level of modularity in Java is superior than in MATLAB. We notice this even without

taking in account that the typical uses for MATLAB are different than the ones given to

OO languages[37]. These reasons among others, means that MATLAB may give rise to

new and different code symptoms that don’t exist in Java, which significantly reduces

their usefulness in the new context.

Nevertheless, we don’t know if the MATLAB community feels this problem, while

coding in MATLAB. So, the first step we need to take, before trying to find a solution or

study which are the concerns that standouts the most in MATLAB, is to assert if this is

a problem or not for MATLAB developers.

30

C
h
a
p
t
e
r

4
Study Design

4.1 Introduction

This chapter presents the planning for our empirical study. It serves as a blueprint for

the execution of the survey and interpretation of its results.

The design is based on the problem, hypothesis and research questions that support

it, and are described in Chapter 1. A matching research paradigm is then selected,

along a type of empirical study that better suites our needs. Following that, the details

for our survey design are discussed, including its variables, planning, how we choose

our participants, sample methods, instrumentation and the procedures for the data

collection and analysis. Finally, we discuss the problems that may occur regarding the

validity of our study.

4.2 Research Paradigms

Empirical studies can be approached through two different types of research paradigms,

exploratory and explanatory. There is a need to clarify that these two research paradigms

don’t mutually exclude each other, but that they complement each other.

Exploratory research finds the answers to the problem through observations given

by the subjects. This entails the use of a flexible research type of design (also referred

as a qualitative research) because of the variation that takes place during observations.

31

CHAPTER 4. STUDY DESIGN

This design is used when the desired result is to study the beliefs, and understandings

of the population [57].

Explanatory research, meanwhile, is more focused in comparing at least two groups

and identify the cause-effect relationship between them, or just quantifying a relation-

ship. For those reasons, plus the fact that this type of research tends to be conducted in

a controlled set up, the design used is a fixed one. Fixed design or quantitative research,

entails that the main conditions in the study can’t be modified in the middle of the study.

This design will test the effect that a certain treatment (or form of tackling a problem)

can have into solving the problem [57].

4.3 Types of Empirical Studies

According to Wohlin et al. [57] and Pfleeger [42], there are some conditions that should

be taken in consideration when deciding which type of empirical study, the researcher

will use. Depending on those conditions, there are three major types of research strate-

gies that can be used: surveys, case study and experiment. See Table 4.1 (based on Table

I from paper [53]) for a short comparison between strategies.

Survey Case Study Experiment
Level of Control Low Low High

Difficulty of Control High High Low
Level of Replication Low Low High
Cost of Replication Low Low High
Investigation Cost Low Medium High

Design Type Fixed Flexible Fixed

Data Type
Qualitative &

Quantitative data
Qualitative &

Quantitative data
Quantitative data

Table 4.1: Conditions affecting the choice of empirical study

In the rest of this section, we give a brief explanation about each type of empirical

study. However, for this study we decided to use the survey approach as suggested by

this chapter and dissertation title. The main factor contributing for this choice is the

type of design chosen, fixed design. After making that choice, we have two possible

options, survey and experiment. Out of these two, the one that gives the best conditions

overall, for our type of study, is the survey.

32

4.3. TYPES OF EMPIRICAL STUDIES

4.3.1 Survey

In his book[57], Wohlin et al. describes survey research as follows:

A survey is a system for collecting information from or about people to describe,
compare or explain their knowledge, attitudes and behavior.

One of the defining characteristic in this type of study is the selection of a sample

that represent the population in question, with the data analysis techniques are used to

generalize the results gathered.

Survey research can be conduct through the use of three different types of instru-

ments: questionnaires, interviews and data logging techniques. However, the instrument

that researcher tend to use more is the questionnaire. That occurs because it’s the cheap-

est instrument, and the easier and faster to construct and deliver to its population.

A condition to use this empirical study is to have a clear idea of what are the research

questions. The major challenge is control of the sampling bias and ensuring that the

questions are written in a way that every participant understands them, especially when

the target population has different backgrounds.

4.3.2 Case Study

Yin introduces case studies in his book [58] as:

An empirical inquiry that investigates a contemporary phenomenon within its
real-life context, especially when the boundaries between phenomenon and con-
text are not clearly evident.

Case study can use different types of instruments to acquire data. Those instruments,

in case of the data type being qualitative, can be either interviews or direct observation

of the participants.

A condition to use this empire study is to have a clear idea of what is the research

question related to how or why the phenomena happens. This helps the researcher

to derive the study proposition, which in turn declares what is the final objective of

the study and how to select the cases and the type of data he wishes to collect [14]. A

major challenge is that the data collection and its analysis are more susceptible to open

interpretation and bias.

33

CHAPTER 4. STUDY DESIGN

4.3.3 Experiment

Experiments are a type of empirical study where the main objective is to test a hypoth-

esis where we have at least more than one independent and dependent variable. After

creating a testable hypothesis, the next step is to determine how the variables are related

and if there is a cause-effect relationship between them, with each combination being

called a treatment [14].

4.4 Survey Design

There are different types of survey designs that are created through the combinations of

design, instrument, distribution and scientific method used. In this section, we explain

the design and scientific method we used, while instrument and distribution method

are described in Section 4.9 and Section 4.10, respectively.

There are two types of design research, descriptive and experimental. The main

difference between these two designs is the way we manipulate our variables. In the de-

scriptive design, we already know what are our variables and we only going to observer

them, making this type of research and observational study. On the other hand, in the

experimental design the variables may change according to response gathered from the

experiment done. With that in mind, it makes sense to choose the descriptive design,

since we know already what our problem and its variables.

A descriptive design can be divided into three big groups: cross sectional, cohort

and case control. Cross sectional and case control both question the subjects about

their past, while cohort control is more focused on the future. Sometimes, there can be

some doubt in whether to choose cross sectional or case control, considering that both

look at past actions. The biggest difference between them, is that cross sectional gives

a snapshot of what is happening on the matter, and case control is a retrospective type

of study [43]. Seeing that we are going to ask our subjects about their recent experience

with MATLAB, we will use case control as our descriptive design.

According to the characteristics displayed in our research, with the formulation of

our hypothesis and the type of empirical study been use is survey research, we can

say that we have adopted a hypothetic-deductive positivist scientific method. The

hypothetic-deductive method comes from the declaration of the hypothesis in Chapter

1, while the positivist (or positivism) is because the survey research follows this philoso-

phy. The hypothetic-deductive scientific method was proposed by Karl R. Popper in his

book [44], and consists in offering possible solutions to our problem. So, the researcher

34

4.4. SURVEY DESIGN

then, through the application of various tests, will try to refute the hypothesis thus cre-

ating new knowledge. This knowledge may help other researchers identifying similar

or new problems. The steps proposed by Popper for this specific scientific method are

described in Figure 4.1, followed by a brief explanation for each step.

Figure 4.1: Popper’s hypothetic-deductive method steps

• Knowledge of the Problem: Consider the problem and try to make sense of it.

That can be done through gathering data, and/or considering previous explana-

tions. See Section1.1.

• Hypothesis Formulation: Try to state an explanation, when nothing else is yet

known by formulating a hypothesis regarding the problem. See Section 1.5.

• Assume hypothesis is true: In this step, we will build our empirical study around

the belief that our hypothesis, H0, is true.

• Hypothesis Testing: Look for scientific evidence that conflicts with the hypothesis

H0. That evidence is obtained through the data gathered with the help of the

instrument, used in the empirical study.

If the hypothesis is proven false, we must go back to the hypothesis formulation and

create a new one. Figure 4.2, based on the diagram created by Lakatos and Marconi [29],

demonstrates this cycle through the use of an activity diagram.

35

CHAPTER 4. STUDY DESIGN

Figure 4.2: Hypothetic-deductive method schema [29]

4.5 Variables

4.5.1 Dependent Variables

Dependent variables, are normally just a single variable per hypothesis. The dependent

variables chosen for this study are modularity for Hypothesis 4, code tangling for Hypoth-
esis 5, code duplication avoidance for Hypothesis 7, code structure for Hypothesis 8 and

code maintenance for Hypothesis 3 and Hypothesis 6. Although, it is possible to choose

other dependent variables, the ones that made the most sense regarding the hypotheses

proposed at the beginning of our study and dissertation (see Section 1.5).

36

4.6. PLANNING

4.5.2 Independent Variables

Independent variables are the ones we can change and control during our research [57].

In this survey-based empirical study we have 4 variables. Code tangling, code struc-

ture, modularity and participant background. The first three independent variables

correspond to the first three hypotheses, in the same order. The last independent vari-

able, participant background, is used in hypothesis 4 to 8. This variable is about if the

participants develop MATLAB software in an academic or industrial background.

4.6 Planning

The survey research ran from April 4 to September 23, 2016. This time frame encom-

passes the realization of the pilot test, the delivery of the questionnaire to the partic-

ipants and the data analysis. Most of the assigned time was dedicated towards the

broadcasting of the questionnaire throughout the communities.

The research followed the activity diagram described in Figure 4.3.

Figure 4.3: Survey plan activity diagram

37

CHAPTER 4. STUDY DESIGN

1. Choose Participants. The first thing we did, is define our target population, out

of all the MATLAB developers.

2. Pilot test. In this step, we tested our questionnaire. After each pilot iteration, we

perfected the questionnaire following received feedback.

3. Sample Population. Before we begin our survey study, we need to sample the

population created with the help of step 1 – Choose Participants.

4. Broadcast Questionnaire. The broadcast of our questionnaire starts with the de-

livery of an invitation to answer it, through the chosen social networks commu-

nities and email. If the number of responses per week decreases, we send a new

broadcast to all the participants to remind them about our questionnaire.

5. Questionnaire Execution (15 minutes). All the participants who are, either in-

vited by email to respond to our questionnaire or decide to do it after seeing one of

the broadcast invitations, needs around 15 minutes to complete it. After reading

the questionnaire introduction, explaining our research problem and accepting

the conditions of the questionnaire, they get access to the questionnaire. When

they reach the end, the participants can opt to leave their email and later receive

the preliminary results.

6. Data analysis. With all the other steps completed, analysis of the collected data

begins.

4.7 Participants

Identification and selection of possible participants for our study is an important step,

since our ability to extrapolate the result gathered from the questionnaire to our popu-

lation is related to the representativeness of the sample.

In this study, instead of using all the population of MATLAB programmers, we

decided that for our results to be more realistic to use a target population. The target

are developers who had worked in large projects using MATLAB and recently, or at least

in the last 10 years.

For our pilot test, we invited Universities Professors. Those Professors are considered

specialist in either programming and maintaining software created in MATLAB, or in

the topic of the problem described in Section 1.1.

38

4.7. PARTICIPANTS

For our questionnaire, we decided to find MATLAB and GNU Octave developers

communities available online. The outcome of that search is presented in the next

subsection, and in a summarized form in Table 4.7.1. The other selection method used,

to gather participants for our questionnaire, was to create a filter and search through

all of the papers in Google Scholar1 until we had at least 25 papers, and then collect

the author’s emails and send them the questionnaire. For further details, see Subsection

4.7.2.

4.7.1 Communities

There are multiple communities of MATLAB and GNU Octave developers online. Those

communities exist so they can share their success stories, test theories, share code, and

interact with others. Some of those communities can be found in social networks like

LinkedIn2 and Facebook, or at MATLAB Central3. Table 4.2 contains some information

about a couple of communities reachable online, by any MATLAB or GNU Octave de-

velopers. The data collection that yielded this table initially took place in January 10th,

and was revised in April 1st, 2016.

MATLAB and GNU Octave communities in LinkedIn are very active ones where

participants with different backgrounds share their doubts and thoughts about these

two languages. The MATLAB communities have over 6.958 members, while the GNU

Octave have about 386.

MATLAB Central is an online forum launched in 2001 by MathWorks. Here the

MATLAB developers can access as registered community members to all the capabilities

normal in an online community, plus the fact that they can interact with MathWorks

technical experts and suggest product improvements.

1Google Scholar is a free web search engine that indexes the paper/book o metadata of academic
literature across an array of publishing formats and disciplines. To see more about it go to https://

scholar.google.com/.
2Business-oriented social networking service with active communities of MATLAB and GNU Octave

developers. See more about LinkedIn at https://www.linkedin.com/.
3To learn more about MATLAB Central, see http://www.mathworks.com/matlabcentral/.

39

https://scholar.google.com/
https://scholar.google.com/
https://www.linkedin.com/
http://www.mathworks.com/matlabcentral/

CHAPTER 4. STUDY DESIGN

Link Members
MATLAB Central http://www.mathworks.com/matlabcentral/ 225.000

MATLAB (Facebook) https://www.facebook.com/groups/Matlab.Simulink.for.All/ 73.769
Matlab Programming (Facebook) https://www.facebook.com/groups/44152194130/ 26.055

MATLAB Users and Integrators (LinkedIn) https://www.linkedin.com/groups/134533 24.978
Matlab (LinkedIn) https://www.linkedin.com/groups/68980 13.792

Matlab for beginners and experts (LinkedIn) https://www.linkedin.com/grp/home?gid=1843503 6.958
MATLAB (Google+) https://plus.google.com/communities/112299668727392739262?hl=pt-PT 6.441

GNU Octave (Google+) https://plus.google.com/communities/112976184309608583944?hl=pt-PT 557
GNU Octave users and developers (LinkedIn) https://www.linkedin.com/groups/4044339 464

OCTAVE Programme (LinkedIn) https://www.linkedin.com/groups/4328430 386

Table 4.2: Online Communities

4.7.2 Participants Filter

When conducting a scientific research of this kind, where the population (and the

target population) is difficult to pinpoint, we can create a frame population that fits

our criteria using a search engine and a filter. Although this solution may give rise to

some limitations when we try to generalize our results to all the population, it’s still

considered a viable method. It helps the researcher overcome problems related to the

lack of a target population with well-defined number of members and, even, when there

is a lack of answers from other communities.

Since we are trying to find researchers that have a good knowledge about MATLAB

(or any of its clone language, e.g. GNU Octave and Scilab) we choose to use Google

Scholar as our search engine. As for filter or criteria, the main ones or key words are

“matlab” "software engineering" "modularity”. This translates to all the papers (and

books, but for our case we decided to discard those) that have these specific words

mentioned somewhere in it.

The result for this search, made on June 27, 2016, is of almost 2000 papers/books.

We believed that to be too big for what we had in mind, so we decided to restrict our

filter even more. That restriction is limiting the publishing date of the paper, to be

either from 2012 or earlier. From this search version, we restrict our results to 700

papers/books. With this result, we decided to only consider papers who had been cited

at least 5 times. So, in the end we were left with 26 papers and 79 available researcher

emails.

4.8 Sampling

Depending of the size of the sample, it’s possible to divide the survey into two categories:

census and sample survey. When we do a census, it means that we intend to contact and

survey the entire population. On the other hand, in a sample survey we choose to only

40

http://www.mathworks.com/matlabcentral/
https://www.facebook.com/groups/Matlab.Simulink.for.All/
https://www.facebook.com/groups/44152194130/
https://www.linkedin.com/groups/134533
https://www.linkedin.com/groups/68980
https://www.linkedin.com/grp/home?gid=1843503
https://plus.google.com/communities/112299668727392739262?hl=pt-PT
https://plus.google.com/communities/112976184309608583944?hl=pt-PT
https://www.linkedin.com/groups/4044339
https://www.linkedin.com/groups/4328430

4.8. SAMPLING

contact a part of the population, called sample. This is the most common option and

it enables the researcher to infer information about the population, while only using a

portion of it.

Since it’s a sample survey, we stat by defining our target population. According to

Houston, he says in his book [22], that:

A population consists of all members of an organization or group of people who
possess the desired traits, knowledge, experience, or characteristics of interest to
the survey project.

The problem is when the population is too big and/or unknown. In these case, we

may want to narrow down our population numbers. We can do that by adding certain

aspect that must be complied, thus creating our target population. This means that our

target population is a subset of our initial chosen population (see Figure 4.4). After

doing this step, we need to create a valid sample from our target population.

Figure 4.4: Venn Diagram for Population and Samples

A valid sample is a representative subset of the target population (see Figure 4.4).

If our sample isn’t representative, we will not be able to generalize our results to all

the population. For that, we use sampling methods that can be either probabilistic or

non-probabilistic. The next figure (Figure 4.5) explains through an activity diagram, all

the steps necessary to sample our population.

41

CHAPTER 4. STUDY DESIGN

Figure 4.5: Sampling Activity Diagram

4.8.1 Sampling Methods

A probabilistic sampling method helps making reliable inferences about the target

population, meaning, that we can draw statistical inferences from such samples. This

42

4.8. SAMPLING

is a method where anyone in the population can be chosen to participate in the survey.

All the members of the target population have a known, non-zero probability [27] of

being chosen and to enter the survey population sample. This way we can claim, that

the sample is truly a representative one and it eliminates any chance of the survey

results being deemed biased by the scientific community. Table 4.3 describes a set of

probabilistic sampling methods.

Definition

Simple Random Sample
Subjects are selected from a list of the population at
random.

Stratified Random Sample
The population is divided into a number of groups or
strata with a known distribution between groups.
Random sampling is then applied within the strata.

Systematic Sampling
The first subject is selected from the list of the population
at random and then every n:th person is selected from the list.

Cluster-Based Sampling
Term given to surveying individuals that belong to
defined groups.

Table 4.3: Probabilistic Sampling Methods

Non-probabilistic sampling methods are more commonly used, when either the

target is very small or when we are doing a pilot study to our survey. These methods

have a high risk of creating biased results, considering that we can’t guarantee that the

answers represent all the population. So, it’s very risky to draw any type of inferences.

See Table 4.4 for examples of non-probabilistic sampling methods.

Definition

Convenience Sampling
The nearest and most convenient persons are selected as
subjects.

Snowball Sampling

Involves asking people who have participated in a survey to
nominate other people they believe would be willing to take
part. Sampling continues until the required number of
responses is obtained. This technique is often used when the
population is difficult for the researchers to identify.

Quota Sampling
The type of sampling is used to get subjects from various
elements of a population. Convenience sampling is
normally used for each element.

Focus Group
Formed by specialists of the problem known to the creator of
the survey. Consists of 5 to 10 people and they are intended to
represent a part of the population.

Table 4.4: Non-Probabilistic Sampling Methods

43

CHAPTER 4. STUDY DESIGN

4.8.2 Calculate a Sample Size

While sampling, it’s very important to determine the appropriate sample size. Unfortu-

nately, there are three problems to take in account. First, if the sample size is too low

it can lead to poor results. The results will not produce verifiable conclusions, which

makes it impossible to generalize the results to all the population [27]. The second

problem is that poor sampling of strata will damage the capacity to compare different

subsets of the population [27]. Finally, there is the issue of how many risks we are

willing to take. The fewer risks, the larger the sample should be.

The risk determining the sample size, is directly correlated with two factors: confi-

dence level and precision range. If we want to have the minimum risk possible then we

need to use a high level of confidence and a small interval for the precision range. The

most often used confidence level used according to Renckly [46] is a 95 percent with

a +- 5 percent precision level as the absolute minimum. This means that out of 100

questionnaires sent, it is expected that 5 are unanswered.

Once the level of precision and confidence is chosen, we can use one of the formulas

in Table B.24 to determine the sample size that we are going to use. The first formula is

used if we want to show the results as percentages, while the second one is used if we

show them in averages of the responding sample. The latter formula is chosen, in case

we want to report said result in multiple ways, or if we are (for some reason) unable to

use one of the first two formulas.

After using one of the formulas from the Table B.2 to discover the computed sample

size (n), we proceed by adjusting it. This adjustment takes place by dividing the sample

size by the awaited response rate, this way getting the optimal sample size. If it’s

not possible to anticipate the response rate, we should assume that it will be at least

50%. This adjustment should be able to ensure that the questionnaire will get enough

responses without the need to care about the rate expected.

4.9 Instrumentation

The starting point to build a questionnaire is by defining the purpose and objectives.

After gathering that information, we start to decide which areas we are going to cover.

After that, we start creating the questions and choosing which response format is better

suited for each of them.

4Z Factor is chosen depending of the confidence level we wish to apply. To find out more about it see
Table of Z Values in Appendix B - Table B.1, from the book by Renckly [46] – page 57.

44

4.9. INSTRUMENTATION

Besides creating the questions, this process also involves other factors we need to

pay attention to. One is the number of questions we are going to ask. If it is too high,

that can lead to the respondents to give up on the questionnaire. The other is to take

special care in how we are going to organize them.

At the start of the questionnaire, we should write a short explanation about the

purpose of the study, also known as a cover note. That explanation will also provide a

realistic estimate of the time needed to complete the questionnaire, and the means for

the respondent to contact the author of the questionnaire, in case of doubts or questions.

Afterwards, we can use the following pattern proposed in the book by Renckly [46] in

how to structure the questionnaire.

• The easier questions should appear at the beginning, and they should spark the

interest of the respondents.

• Group related questions together.

• Demographic/background questions should be placed at the end of the question-

naire.

• Interpolate general questions with specific ones. This way the respondents don’t

get accustomed to a pattern.

4.9.1 Create the Questions

Once we know what we want to ask, we need to think of how we are going to pose

the questions. The book by Renckly [46] offers some helpful hints on how to create a

question:

• Keep the language simple, so we can avoid any misunderstanding.

• Keep the questions short to avoid ambiguity, and causing the respondents to be

confused.

• Each question should only treat one concept at a time.

• Try to avoid the use of "should" and "would" questions. Should questions appeal to

the respondents social/moral opinion, and the would questions to their personal

preference.

• Use some of the questions as an accuracy and consistency control.

45

CHAPTER 4. STUDY DESIGN

• Don’t use questions that may drive the respondent to some specific answer. That

means, that the questions shouldn’t be worded in a suggestive manner.

• Give the respondents all possible options for a response, including the case that

they don’t know the answer or simply don’t want to answer.

After creating the questions, we need to worry about what’s the most adequate

response format for each question. That format should make the question easier to

answer without consuming more time than is desirable.

4.9.2 Response Formats

To reduce the necessary time to complete the questionnaire, and help with the treatment

of the collected data, it’s preferable to standardize the response format. If the responses

are created in a standardized mode the surveyed population will know, beforehand,

what are their options for answers. This will, in the end, make the process of reading and

completing the questionnaire more accessible and faster for the surveyed population

[28].

There are many response formats available. These formats can go from the typical

‘yes’ or ‘no’ questions to open-ended questions. Next, we present some of the most

common response format used in surveys to collect data.

• Ranking format is used to prioritize what are the most important choices to the

respondents, after being given a list of choices.

• Selecting options format gives a list of options to choose from, and then, respon-

dents choose one of these options.

• Open-ended format are used when we want their full opinion without the risk of

it being biased.

• Rating scales format can become difficult to treat, if the endpoints aren’t equal

and opposite since they risk having biased responses. The most common and easy

to use is Likert scale. Likert scale have, at least, five different degrees of feelings,

i.e. strongly agree, somewhat agree, neither agree nor disagree, somewhat disagree and

strongly disagree [46].

46

4.10. DATA COLLECTION

4.10 Data Collection

A questionnaire has multiple ways to be delivered to its target population. It can be

done through interviews, mailed, or using modern technologies such as the internet. In

the first two options the questionnaire is normally presented in paper, although in the

interviews case it also can be done through an online questionnaire. See Table 4.55 to

see a small comparison between the types of delivery systems.

When the researcher chose to create, and deliver its questionnaire through the mail,

the advantages of that method is the lower cost and the absolute guarantee of anonymity.

Unfortunately, it also brings certain disadvantages like lower response rate, since we

can’t ask them to repeat the questionnaire, and lower control of the sample [52].

If the researcher decides to use the internet as a delivering system, then he has two

options, either deliver the questionnaire using an e-mail or broadcast the message with

the link to the questionnaire in a social network. If the delivery its done through email

with either a link to the questionnaire or the questionnaire itself, then it is directly sent

to the participant. However, if the researcher chooses to broadcast message type of de-

livery then he must choose a social network like LinkedIn, or Facebook, or a specialized

forum where the target population interacts.

Questionnaire
Factors

Mailed E-mail Broadcast in Social Network
Cost High Low Low
Application Time Medium Low Low
Sample Control High Medium Low
Response Rate High Medium Low
Direct Contact with Participant High High Medium
Contact Group Administrator None None High
Help to spread the questionnaire None Low Medium
Use of online software to create questionnaire Low Medium High
Automatic partial treatment of the data None Medium Medium

Table 4.5: Conditions affecting the choice of questionnaire delivery

4.11 Survey Software

After creating our questionnaire, we need to choose the best way to deliver it to the

participants. Our approach to the delivery is done through the internet, and for that

we need to select the most adequate survey software for our needs. That selection

5Table was partial created with the help from Quadro 5, page 13 from Vasconcellos and Guedes paper
[52].

47

CHAPTER 4. STUDY DESIGN

involves many factors such as, number of questions, expected number of responses,

money available, among others.

These factors may influence how we choose the best survey software for our research.

The following table (Table 4.6) compares Survey Monkey, Google Forms, Survey Gizmo

and Qualtrics.

Survey Monkey Google Forms Survey Gizmo Qualtrics

Free Version

10 questions
100 respondents
15 questions types
No exporting data

Unlimited surveys and questions
Unlimited respondents
Survey answers are automatically
collected in Google Spreadsheets
Add images or videos
Skip logic and page branching
Imbed survey into emails or
website
Add collaborators

Unlimited surveys and
questions
50 respondents
Several basic question
types
Basic reporting
Option to export to CSV

100 Responses
10 Outgoing Emails
8 Question Types
One Active Survey
Unlimited Questions
Summary Reports
Filtering
Survey Logic
Randomization
Online Reporting

Paid Version
More questions
More respondents
Exporting data

-

Skip logic and piping
Multiple users
API
Data encryption
Integration with 3rd party
software tools

Multiple active surveys
CSV/SPSS export
More responses

URL Link https://pt.surveymonkey.com/ https://docs.google.com/forms/ https://www.surveygizmo.com/ https://www.qualtrics.com/

Table 4.6: Comparing Survey Software’s

For our study, the software chosen to create and to help us deliver our questionnaire

was the paid version of Qualtrics.

4.12 Analysis Procedure

The web application used to create our questionnaire has built-in support to calculate

the descriptive statistics with a complete report. The report contains graphics and

tables with the respective information, such as average, variance, standard deviation

and total responses and respondents per question. Another functionality is the support

to cross-tabulation analysis. Cross-tabulation (or contingency table analysis) is a two

or more-dimensional table that records the number of participants that have the same

specific answers, thus providing information about a relationship between variables.

This analysis is normally used in questions with answers in nominal scale. Finally, all

of the data collected can be imported to SPSS 23.0, directly through a file with ‘.sav’

extension. SPSS will be used to perform all the other statistical analysis like internal

consistency and hypothesis testing.

48

https://pt.surveymonkey.com/
https://docs.google.com/forms/
https://www.surveygizmo.com/
https://www.qualtrics.com/

4.13. VALIDITY EVALUATION

4.13 Validity Evaluation

There are a few aspects in a questionnaire that can give rise to threats to its validity. For

that reason, we need to verify that the questionnaire does measure the characteristics

that are intended to be measured [26].

Campbell and Stanley defined two types of threats to validity, while Cook and Camp-

bell extended that list to four types of threats. The four threats are conclusion, internal,

construct and external validity [57][14]:

• Conclusion validity is occasionally indicated as a statistical conclusion validity.

Threats to this validity are associated to problems that affect the capability to draw

any type of conclusion between the treatment given to the data collected, and the

outcome of the experimentation. These problems can be caused by the wrong

choice of statistical test, or wrong sample size.

• Internal validity concerns the study design, particularly the research instrument

used, and whether or not the results follow from the data. The most common

errors include choosing the wrong statistical analysis, or failing to handle the

variables properly.

• Construct validity relates to threats to how the experiment context reflects the

questionnaire created, that is being study.

• External validity is related to conditions that may limit the generalization of the

results gathered from our experiment. This tends to happen because we may have

problems in sampling used.

Finally, we have another threat to the validity that our research may suffer, reli-

ability. Reliability focus on whether our research results are the same, when others

researcher replicate our study. In the case of not happening, it can mean that the re-

search introduced any form of bias in the research [14].

4.14 Conclusion

This Chapter presents a blueprint for our survey study, as well as a study about how

we can organize/prepare a survey-base empirical study. All the options chosen for the

creation and execution of our study can be seen in the following table.

49

CHAPTER 4. STUDY DESIGN

Research Paradigm Explanatory Research
Design Type Fixed Design or Quantitative Research
Type of Empirical Study Survey
Survey Design Descriptive Design: Case Control
Scientific Method Hypothetic-deductive Positivist

Participants
Social Networks Communities: LinkedIn and Facebook;
Researchers Community (Created through a filter)

Instrumentation Questionnaire

Questionnaire Delivery
Broadcast in Social Network;

E-mail
Survey Software Qualtrics

Table 4.7: Chapter Summary

Table 4.7 presents in a condensed way, all the strategies and procedures that we will

use during the execution of our survey study.

50

C
h
a
p
t
e
r

5
Execution

5.1 Introduction

This chapter describes each step in the production and execution of our questionnaire.

At first, we explain how we divided the questions per groups, what type of response

format we selected and which questions we choose for internal validation of the ques-

tionnaire. The next section refers to the sample methods and communities used during

the execution. The other sections are related to the pilot test phase, the actual execution

of the questionnaire and the data collected from it. At last, we identified possible the

threats to validity of our study.

5.2 Questionnaire Structure

This section explains the process we followed to build our questionnaire. Here we

explain how the questions were created, and how we structured the questionnaire.

The creation phase of the questions started with a brainstorming for questions re-

lated to each research question and further refined sub-questions. This process took

some iterations until we stabilized the set of questions that appeared in pilot test ver-

sion of the questionnaire. After that, we decided which response format was the most

adequate for each question.

For response format, we choose to use mostly a five point Likert scale. That scale

51

CHAPTER 5. EXECUTION

goes from ‘strongly agree’ to ‘strongly disagree’, to make easier and faster for the par-

ticipants to choose the correct answer. Regarding the questions about the participants’

background the response format chosen is selecting options, where some of them are

either multiple or single answer.

After selecting the questions and their respective formats, we start to build the

proper questionnaire in Qualtrics. The first thing we did was choose the most impor-

tant questions to show up in our questionnaire. Out of 66 questions created, we decided

to include 37. This process occurred by seeing which of the questions were the most im-

portant per research sub-question. See Appendix E -Table ?? for the relation between the

questions in the questionnaire and their respective research sub-question, and the same

in Table ?? for the questions that were left out of the final version of the questionnaire.

The other factor behind the choice we made was to have some questions for internal

validation of the answers gathered, accuracy and consistency control. Examples of that

from the final version of the questionnaire are shown next:

• 1. I usually find tangling of concerns in the same function or m-file, such as

described in the example provided.

• 7. How often do you see examples of tangling in your code?

• 6. When working in a MATLAB program, I try to avoid duplicated code whenever

possible.

• 13. When I program in MATLAB, I do not make an effort to eliminate duplicated

code.

• 8. I often think in terms of modularity when programming in MATLAB.

• 10. When I program in MATLAB, I try to divide my code in small modules (func-

tions or m-files) as a strategy to mitigate complexity.

• 17. In the past, I had to maintain a MATLAB program for a long period of time.

• 20. My MATLAB programs are mainly developed for solving short-term problems.

52

5.2. QUESTIONNAIRE STRUCTURE

• 18. Sometimes I feel the need to have a tool that helps visualize the structure of

my MATLAB code.

• 22. The dependency report tool offered by MathWorks is enough to visualize the

structure of my code.

Concerning the questionnaire structure, we decided to put 5 questions per page with

a page break at end of each group of questions from the same topic without allowing

participants to move backwards. This preventing was implemented after receiving

the feedback from Professor Glauco Carneiro (Appendix D) concerning our pilot test,

where he said that this ability would help us validate internally the answers, since the

participant cannot go back and change our answers. The main topics and their relation

to the research questions described in the section 1.4, can be seen in Table 5.1.

Questionnaire Sections Number of Questions Research Questions
Tangling/Scattering 13 2 & 3

MATLAB Legacy Code 9 1 & 4
Background Information 15 3

Table 5.1: Relation between the questionnaire and the research questions

Figure 5.1, describes the above paragraph by means of an activity diagram.

53

CHAPTER 5. EXECUTION

Figure 5.1: Questionnaire activity diagram

5.3 Sample

The study had two different phases in the creation and delivery of the instrument, pilot

test and the actual execution of the questionnaire. That led to two separate phases for

our sampling study.

In the pilot test, we used the Focus Group sampling method. The sample was com-

posed by 12 developers with extensive knowledge of MATLAB and, in some cases about

the limitations in the support to modularity. These developers are University Profes-

sors from FCT-UNL (mainly from the Electrical Engineering Department), Computer

Science and Telecommunications Department in ISCTE-Instituto Universitário de Lis-

boa (ISCTE-IUL), Faculdade de Engenharia da Universidade do Porto (FEUP) and from

other Universities.

Regarding the execution of the questionnaire, we started by defining our target

population. In our case is, all the MATLAB developers, in either the industrial or

academic world, with recent experience programming big projects. Unfortunately, we

found out that, there wasn’t enough reliable information in the MathWorks site or

any other forum, that gave us those numbers and contacts. Faced with this difficulty,

we decided to use a frame population, i.e., a discriminated group where we can find

54

5.3. SAMPLE

elements from our target population. The frame populations used in the study, that

fit most of our requisites for our initial target population, are the byproduct of the

research done and described in Section 4.7. That research gave us a list of communities

(see Table 4.2) available in popular social networks, where the participants are MATLAB

developers, even if with different backgrounds and experience levels.

The communities used for the study are the MATLAB Users and Integrators and

Matlab from LinkedIn, and MATLAB from Facebook. The choice behind these three

communities refers, not only to the fact that they are the biggest communities in their

respective social network, but also because they (at the time of the study) were the

communities where the members interacted more with each other. That gives the post a

greater chance of being watched/seen by members the post inviting them to participate

in our study, and in turn a higher number of answers. This type of questionnaire delivery

system (message broadcast through social network) means that we can’t say for sure that

our sampling is probabilistic or non-probabilistic, making this a quasi-experiment.

For the answers gathered from these three communities to be considered verifiable

conclusions, regarding the frame population in question, we calculated the optimal

sample size. For MATLAB Users and Integrators, we need at least 400 answers and in

the Matlab one, we need 374. The MATLAB community in Facebook, we need at least

382. These values are calculated based on the 3rd formula in Table B.2, as you can see

in Table 5.2.

MATLAB
(Facebook)

MATLAB Users and Integrators
(LinkedIn)

Matlab
(LinkedIn)

Data

n = ?
N = 73 769 (frame population size)

d = +- 5 = 0.05 (precision level)
Z = 95% = 1.96 (confidence level)

n = ?
N = 24 978 (frame population size)

d = +- 5 = 0.05 (precision level)
Z = 95% = 1.96 (confidence level)

n = ?
N = 13 792 (frame population size)

d = +- 5 = 0.05 (precision level)
Z = 95% = 1.96 (confidence level)

Calculation n =
73769 ∗ 1.962 ∗ 0.25

(0.052 ∗ [73769− 1]) + (1.962 ∗ 0.25)
n =

24978 ∗ 1.962 ∗ 0.25
(0.052 ∗ [24978− 1]) + (1.962 ∗ 0.25)

n =
13792 ∗ 1.962 ∗ 0.25

(0.052 ∗ [13792− 1]) + (1.962 ∗ 0.25)
Result n = 382 n = 400 n = 374

Table 5.2: Sample Size Calculations

Another community used in this study is the academic one. In other words, spe-

cialists/researchers who have published or wrote/co-wrote papers related to MATLAB.

This community was created through the filter described in Subsection 4.7.2. Consider-

ing that we created this community through a specific process of exclusion, the type of

sample used is non-probabilistic and the specific method is convenience sampling. For

this case, we used all the members of the community, which makes a total of 79 people.

The total sample for the pilot test is of 12 participants. For the questionnaire itself,

from the four communities, the total number of expected participants is 1235.

55

CHAPTER 5. EXECUTION

5.4 Pilot Test

Pilot test entails trying out the survey instrument that we created, see Appendix C,

before sharing it with our intended population. With this tryout, we expect to ensure

that the questionnaire is easy to understand and will collect the correct data.

This phase of our research occurred between April 4 and May 17, 2016 with a pop-

ulation of 12 invited participants (see Section 4.7). Where those invited participants,

created our focus group (see Table 4.4) and through the feedback received (see Ap-

pendix D) from them, we refined and improved our instrument. That final version of

our questionnaire and the one used in the execution can be seen in Appendix G.

Furthermore, it was timed how long took the participants to complete the question-

naire. That information available in Appendix D, it gave an average of 10 minutes to

complete the all questionnaire. However, since not all of the possible participants have

the same level of knowledge that our invited participants do, we put the time frame to

complete the questionnaire around 15 minutes. Finally, it’s important to note that the

data collected in this phase, is not used in the analysis described in Chapter 6.

5.5 Questionnaire Execution

This phase of our research comprises the execution of the questionnaire. In other words,

the broadcast of the questionnaire through the communities chosen and that are de-

scribed in Section 4.7.

The process of delivering the questionnaire, started right after we finished the pilot

tests phase. Unfortunately, since we had to complete some steps before launching the

questionnaire in a social networks community (see Subsection 5.5.1), the execution of

our questionnaire only started in May 20 and it end in September 02, 2016. The dates

referring to the launching and closing of the questionnaire for each community can be

seen in Table 5.3.

Start Date End Date
MATLAB (Facebook) 15/06/2016 05/07/2016

MATLAB Users and Integrators (LinkedIn) 20/05/2016 02/09/2016
Matlab (LinkedIn) 12/07/2016 02/09/2016

Researchers 29/06/2016 02/09/2016

Table 5.3: Delivery dates of the questionnaire per community

56

5.5. QUESTIONNAIRE EXECUTION

Another thing we must consider in this phase is, how we are going to understand

where the answers came from. In specific, which community gave that answer. For

this point, we decide to use the final version of our questionnaire and replicate it for

each community. This way, we can differentiate the answers per community and, even,

compare answers between communities. The questionnaire, and all its versions, are

made available through a different anonymous link. Table 5.4 shows the associations

made between the community and its respective anonymous link.

URL Link
MATLAB (Facebook) https://iscteiul.co1.qualtrics.com/SE/?SID=SV_3xdwD37B9L4rjoh

MATLAB Users and Integrators (LinkedIn) https://iscteiul.co1.qualtrics.com/SE/?SID=SV_eL1aYvlilL77IxL

Matlab (LinkedIn) https://iscteiul.co1.qualtrics.com/SE/?SID=SV_3lTKxNv4qEuIrVX

Researchers https://iscteiul.co1.qualtrics.com/SE/?SID=SV_5dyExSnuTQrVEjj

Table 5.4: Questionnaire links per communities

In the next subsection, we explain in more detail the process for which we must

pass, so we can distribute the questionnaire in our chosen social network communities.

Although, we use another delivering method, that is sending an email with and invi-

tation and the link towards the researchers/academic community created by us (see

Subsection 4.7.2). We consider this method, the internet version of the traditional mode

of inviting someone to participate in a study. The only thing you need to do is write a

similar email to ours, see Appendix F.2, and send it to your community by email.

5.5.1 Social Networks

For each community, or in this case social networks, there is a certain protocol/pattern

that helps us distribute our research instrument. In this dissertation, since we used two

LinkedIn communities and one from Facebook, we will only explain the process for

these two cases.

A common phase, to both social networks, is to do a similar research to the one

represented in Subsection 4.7.1, and then ask to join those communities or groups. This

way, we can see how the community members participate (in other words, their content),

and how often. Only after gathering these data, combined with the total number of

members (at that precise moment), are we able to choose our preferred communities to

execute our questionnaire. After this initial process, our decisions on how to deliver the

questionnaire changes depending on the social network in question.

In LinkedIn, the first step after reading the group rules (if there is any) is to ask

the group administrator (or one of them, in case of multiple administrators) permission

57

https://iscteiul.co1.qualtrics.com/SE/?SID=SV_3xdwD37B9L4rjoh
https://iscteiul.co1.qualtrics.com/SE/?SID=SV_eL1aYvlilL77IxL
https://iscteiul.co1.qualtrics.com/SE/?SID=SV_3lTKxNv4qEuIrVX
https://iscteiul.co1.qualtrics.com/SE/?SID=SV_5dyExSnuTQrVEjj

CHAPTER 5. EXECUTION

to use his group in our research, with private messages. This step will bring a couple

of benefits in the long haul. One of them, is the administrator help announcing our

message and/or questionnaire. This process can be done through the broadcast of a per-

sonal message to each member or by highlighting (putting at the top of the group page)

our post with the message and the questionnaire, making our questionnaire reaching

most of the community participants. Finally, you only need to create the post with all

the necessary information. See our example in Appendix F, Section F.1.

With Facebook communities, considering that the nature of this social network is

less serious and professional than LinkedIn, there is no specific need to contact the

group administrator to ask permission to use his group. So, the only thing we need to

do is create our post with the invitation to our questionnaire plus the link to it, and

keep repeating the process until we have all the necessary answers or the time has run

out.

The post in both cases, should be short and clear, so it doesn’t misguide potential

participants. See our message in Appendix F.1. Finally, the post can be written in a

more informal way in Facebook than in LinkedIn, because the different uses of the two

networks.

5.6 Data Collection Performed

During the pilot test, all the invited participants accepted the challenge. Unfortunately,

the same did not occur during the execution of the questionnaire (to read more about

this limitation go to Section 7.4). Of the expected 1235 participants, only 42 decided to

participate in our study by responding to our questionnaire.

The first community to which we broadcast our study was the MATLAB Users and

Integrators. Unfortunately, even updating our broadcast message we had a poor recep-

tion to our request. So, we decided to try other options, like the two other communities

from LinkedIn and Facebook and the research community. However, at the end of the

questionnaire delivery, the community that had more participants was the one we chose

to use initially.

In total, we had 10 partial and 32 complete responses, with one of the complete

response being a negative one. In other words, a participant decided to not answer to

our study after reading the description and terms proposed by us. These numbers make

for a total completion rate of 76.19%. However, since response rate is calculated when

we have a definitive number of participants approached (something that happens when

the questionnaire is broadcast through email), we can’t calculate. This occurs because 3

58

5.7. THREATS TO VALIDITY

of 4 communities used are social networks, and the participants are the ones who chose

if they want to respond or not.

Table 5.5 describes the response (when available) and completion rate for each com-

munity, plus the anticipated values of participants and the number of complete and

partial responses. The formulas used for the calculations performed in this Section, can

be seen in Appendix B – Table B.3.

Sample
(Participants)

Complete
Responses

Partial
Responses

Response
Rate (%)

Completion
Rate (%)

Pilot Test 12 12 0 100 100
MATLAB (Facebook) 382 3 3 - 50

MATLAB Users and Integrators (LinkedIn) 400 20 6 - 76.92
Matlab (LinkedIn) 374 4 0 - 100

Researchers 79 5 1 6.33 83.33

Table 5.5: Response and Completion Rate

5.7 Threats to Validity

During the execution of our research study there were some deviations regarding the

number of communities used and participants’ distribution. We initially expected a

much higher response and completion rate for each community that received the invi-

tation to participate in our survey. These were discussed above in Section 5.6.

During and after closing the questionnaires in the communities that we deliver it,

we noted and it was noted (in one case) by a participant, the following threats to validity

of our instrument and possibly the final results:

• Ineffective explanation. One of our participants with a higher understanding of

MATLAB and software engineering/modularity concepts, pointed out that our

explanation for ‘concerns’ was too generalized. That could create a possible mis-

understand of what are the limitations and the concerns. Although that is true,

we tried to make the explanation as simple as possible, so people with less knowl-

edge regarding software engineering or modularity could still participate. This

problem is related to the construct validity.

• Ambiguous questions. Another threat that our participant pointed out was that,

some of our questions can be considered ambiguous. Those concerns came up in

questions that didn’t specify whose code did the participant worked. This problem

is related to the construct validity.

59

CHAPTER 5. EXECUTION

• Lack of motivation, concentration or reading/understanding ability. The num-

ber of answers previewed in the beginning of the execution, for each community,

in Section 5.3, was not met. We only had 41 responses and out of these answers,

10 were partial responses. This can mean that our questionnaire was that either

too long (37 questions) or the type of language was too technical in some cases.

This problem is related to reliability.

• Participants experience. The only community that we knew beforehand, what

kind of experience they had was the researchers’ community. The participants

from the other three communities in social networks, although they have experi-

ence programming MATLAB, they may not have experience regarding concepts

about modularity or/and software engineering. So, the participants experience

is a significant factor for the understanding of the problem and type of answers

that they give. This threat is related to the internal validity of our study. Also, the

varied participant experience can be considered a positive trait, since it enables us

to do cross-tabulation between the research questions and factors related to the

participant experience, work areas, among other factors.

• Low and restricted number of participants/responses. This problem may con-

tribute to results that don’t represent our population, making this a threat to

external validity. Since we applied convenience sampling and quasi-experiment

instead of a probabilistic method of sampling, we may not be able to extend our

results to the entire population. However, our sample was not restricted to a group

of developers with specific skills/characteristics.

5.8 Conclusion

The execution generally proceeded well and as initially planned but suffered from lack

of willing participants from all the communities contacted through the questionnaire

execution. An evaluation of the validity revealed that some of the participants may not

have understood all the concepts pertaining the problem we are researching or there

was some ambiguity in the questions. Those threats may have been the reason behind

the lack of answers and the existing of 10 partial responses in 41.

60

C
h
a
p
t
e
r

6
Analysis

6.1 Introduction

This Chapter summarizes the treatments given to the collected data. Several analyses

were made regarding the representativeness of the population and how the background

of each participant affects their opinion regarding our problem.

Another part of our analysis, is the analysis of the internal consistency of our survey.

That analysis is carried out by means of the process of comparing the answers given to

certain questions. For more information, about which questions see Section 5.2, by each

participant.

6.2 Internal Consistency

As described in Section 5.6, we have a total of 41s responses with 31 positive and

complete responses and 10 partials. The first step in our data analysis is to verify its

internal consistency. The questions involved in this analysis will be only the questions

that have Likert-scale as a response format, i.e., question 1 through 22 except 4 and 5.

We started by running principal component analysis test. This test is used is to
reduce a larger set of variables into a smaller set of ’articifial’ variables, called ’principal
components’, which account for most of the variance in the original variables [23]. At this

phase, we only will use this analysis to help see if we need to change the scale used in

any question. After a couple of iterations, we concluded that the questions 13, 15, 16, 20

61

CHAPTER 6. ANALYSIS

and 22 had to invert its scale. This scale inversion occurred because our questions were

created in the negative. In other words, instead of asking the participant if he agreed

with something, we would ask if he didn’t agree. This is a common method to help the

researcher verify if the participant was paying attention to the questionnaire or not.

After this process we were able to start calculating the Kendall tau rank distance

between the scrutiny questions described in section 5.2

6.2.1 Kendall tau distance

Kendall tau rank distance (also known as bubble-sort distance) is a metric that counts

the number of pairwise disagreements between two ranking lists created by Maurice

Kendall. The bigger the distance between the lists, the most different they are. The

mathematical formula is the following:

K(t1, t2) = |(i, j) : i < j, (t1(i) < t1(j)∧ t2(i) > t2(j))∨ (t1(i) > t1(j)∧ t2(i) < t2(j))|

Our adaptation of the Kendall tau rank distance metric can be seen in the following

pseudo-code. In this case, as we want to compare the answers given between the screen-

ing questions described in section 5.2, and we have 10 cases where the participants gave

up in the middle of the questionnaire, our formula is as follows.

mean(kendall(X, Y) = X[i] && Y[i] ? abs(X[i]-Y[i]) : 0)

We first verify that there is answer to both questions, if not then the distance is

considered zero. If it’s true, then the distance is the absolute value of the difference

between the value in the first question and the value in the second question. These

results can be observed in the columns colored in orange, in Figure 6.1.

62

6.2. INTERNAL CONSISTENCY

Figure 6.1: Kendall tau distance

63

CHAPTER 6. ANALYSIS

Afterwards, we calculate the mean of all the values in each column with the Kendall

tau distance metric results, to see if the mean is either 0 or 1. The results of this step in

the metrics calculation can be observed in the next figure:

Figure 6.2: Kendall tau distance results

According to these results, the answers given in questions 17 – 20 and 18 – 22 are

not in the same order. This means that some participants responded at random in those

questions and without certainty that they did the same in the other questions, we need

to remove the responses of some participants. To see which participants answers we

would remove, we created two graphs, a histogram and a scatter plot.

(a) Histogram (b) Scatter Plot

Figure 6.3: Results of Kendall Tau distance in graphs

The histogram and scatter plot in Figure 6.3 are the graphical representation of the

results obtained in the last column of the table in Figure 6.1. The figures job is to help

us decided which participants’ responses we should remove, to make our survey more

internal consistent.

The standard procedure for the removal of all cases is to remove those who are

contained in the last quartile of the scatter plot (see Figure 6.3). That would be removing

25% of the responses obtained, making our sample go from 41 to 30. However, our

available sample is already relatively small. Therefore, to minimize the number of

responses removed and at the same time increase the internal consistency, it was decided

to remove just 10% of the responses.

64

6.2. INTERNAL CONSISTENCY

10% of our sample means removing the participants who didn’t passed this formula:

∑
(kendall results per row) < 8

Applying this formula to our data, we manage to remove the responses of 5 (12%)

participants, making our sample decrease from 41 to 36. The participants whose re-

sponses were removed from our sample have the following participant id: 5, 11, 32, 35

and 42.

6.2.2 Principal component analysis

After removing the five participants’ responses from our data collection, we started

the actual principal component analysis that we explained at the beginning of this

section. For us to accept the result given by this analysis the data needs to first pass five

assumptions. Those assumptions are:

1. Variables should be able to the measured at the continuous level, like ratio or

interval or ordinal(Likert-scale) variables.

2. There needs to be a linear relationship between variables.

3. Sample adequacy.

4. Data should be suitable for data reduction.

5. There should be no significant outliers.

Our data failed assumption 3 when we run the test. One way to test assumption 3

is to run the Kaiser-Meyer-Olkin (KMO) Measure of Sampling Adequacy for the overall

data set and the result should be bigger than 0.5/0.6. In our case the KMO is 0.264.

However, we still can factorize our set of variables into a smaller one. This can

only happen since we were the ones who created and known the questionnaire, which

enables us to make a good judgment in how to reduce the variables number. With this

knowledge and with the help of the Cronbach test, we manage to reach a final reliable

group of factors. See Table 6.1.

65

CHAPTER 6. ANALYSIS

Factors Variables/Questions
Code Tangling VAR01; VAR02; VAR03; VAR07; VAR11; VAR12

Code Duplication Avoidance VAR06; VAR13
Modularity VAR08; VAR10; VAR19; VAR21

Code Structure VAR14; VAR16; VAR18; VAR22
Clone Recurrence VAR09
Code Maintenance VAR15; VAR17; VAR20

Table 6.1: Variables grouped by factors

6.2.3 Cronbach’s alpha

Cronbach’s alpha (α) is an indicator of internal consistency and can be used to measure

the reliability, in our case of the factors that we created and are shown in Table 6.1. A

downside for us is that we need to have at least three variables to run it. This means

that we can’t calculate the alpha for the Clone Avoidance and Clone Recurrence factors.

A sufficient level of reliability as measured by the alpha is 0.7 or more. The result

of the application of this measure in our factors can be observed in Table 6.2.

Factors Variables/Questions α
Code Tangling VAR01; VAR02; VAR03; VAR07; VAR11; VAR12 0.737

Code Duplication Avoidance VAR06; VAR13 -
Modularity VAR08; VAR10; VAR19; VAR21 0.726

Code Structure VAR16; VAR18; VAR22 0.511
Clone Recurrence VAR09 -
Code Maintenance VAR15; VAR17; VAR20 0.779

Table 6.2: Cronbach’s alpha per Component

As we can see, for all the factors except Code Structure, the Cronbach’s alpha is

between 0.7 and 0.8. This indicates an acceptable level of internal consistency between

our variables in each factor for this specific sample, according to Table 6.3.

66

6.3. PARTICIPANTS PROFILE

Cronbach’s alpha Internal Consistency
α ≥ 0.9 Excellent

0.9 >α ≥ 0.8 Good
0.8 >α≥ 0.7 Acceptable
0.7 >α ≥ 0.6 Questionable
0.6 >α ≥ 0.5 Poor

0.5 >α Unacceptable

Table 6.3: Cronbach’s alpha intraclass correlation score

However, the Code Structure factor suffered some modifications when comparing

with the original table regarding the number of variables/questions. This happen be-

cause when we run the Cronbach’s alpha the result was unacceptable with 0.452. A way

solve this problem, according to Table 6.4, was to remove VAR14 and rise the internal

consistency of the factor from 0.452 to 0.511, making it poor.

Cronbach’s Alpha if Item Deleted
VAR14 0.511
VAR16 0.300
VAR18 0.179
VAR22 0.478

Table 6.4: Cronbach’s alpha for Code Structure

Unfortunately, VAR14 didn’t fit in another factor without affecting the alpha. So, we

decided to not include this question in our study.

6.3 Participants Profile

For this section, we used the available sample after the internal consistency process

done to the data collected and described in the previous section, which is a sample of 36

positive answers. For this section in particular, we are going to only use the complete

responses and the answers given to questions in the Background Information survey

section (see Appendix G). This happens because we can’t profile the participants who

chose not to complete the survey. Our available sample, with these conditions, for this

specific analysis is reduced from 36 to 27 responses.

More than half of our sample of 27 participants, 67% (18), have over 10 years of

experience programming in MATLAB, while only 15% (4) have less than 1 year. The

other 18% (5) have between 1 and 9 years of experience. Most of these developers

67

CHAPTER 6. ANALYSIS

are still programming in MATLAB, especially in the research field (53% participants

selected this option), with just 11.11% (3) admitting to not have used it in over 2 years.

See the following graphs for more information.

Graph 6.4: Question 23 - How many years of experience do you have programming in
MATLAB?

Graph 6.5: Question 24 - Last time I programmed in MATLAB program was ...

68

6.3. PARTICIPANTS PROFILE

Graph 6.6: Question 29 - How would you classify the nature of your work when using
MATLAB:

74.07% of participants out of 27 said that they don’t work with a developing team

when developing a MATLAB system. The ones that do worked in teams with 1 to 7 or

more developers, besides them.

27 participants work, mostly (29.62%) in the Professional, scientific and technical ac-
tivities and in the Education field, each. The other fields selected by our participants

were Manufacturing with 14.81% (4), Information and communication with 7.40% (2),

Financial and Insurance Activities with 7.40% (2), and Public Administration and defence;
Compulsory Social Security, Agriculture, forestry and fishing and Other Service Activities
with 3.70% (1) each. The type of work that they performed when developing in MAT-

LAB, in their respective fields, is mostly data analysis with 25% (20) and simulation with

23% (15). These fields are closely followed by signal processing with 18% (15), image

processing and machine learning with 12% each. Some of the participants mentioned

performing other types of work when using MATLAB. These works are chip simula-

tion, system identification, control system and modelling, optimization and financial

modeling. See the next graphs for more detailed information.

69

CHAPTER 6. ANALYSIS

Graph 6.7: Question 33 - Using the United Nations - International Standard Industrial
Classification, where do you care out your work?

Graph 6.8: Question 34 - I use MATLAB to perform this kind of work:

Regarding the participants programming practices, most of them only deals with

MATLAB programs with 1 to 5 m-files and toolboxes, closely followed by programs

with 6 to 10 and 11 to 15 m-files (see graphs 6.9 and 6.10). In those m-files, 66.67% of

the 18 participants said to work with 2 to 10 functions per m-file, while 18.52% usually

work just 1 function.

70

6.3. PARTICIPANTS PROFILE

Graph 6.9: Question 25 - I normally deal with MATLAB programs with...

Graph 6.10: Question 31 - How many toolboxes you tend to use?

Finally, 88.89% (24) of our available sample (27 participants) admit using only Math-

Works workspace to program in MATLAB, while 3.70% (1) says to only use GNU OC-

TAVE workspace. The rest of the participants uses a mix of MathWorks, GNU OCTAVE

and Scilab workspaces, and all of them are familiar with other programming languages.

46% (21) of the participants claimed to be familiar with C/C++, 22%(10) with Python

and 17% (8) with Java and other programming languages, each. Graph 6.11 depicts the

frequency of the familiarity of our participants with these programming languages.

71

CHAPTER 6. ANALYSIS

Graph 6.11: Question 37 - Which languages are you familiar with?

6.4 Descriptive Statistics

The following descriptive analysis is a continuation of the analysis performed in the

previous section. In this section, the analysis will be done to the questions pertaining the

6 factors created in section 6.2, that belong to the first two groups of our questionnaire,

Tangling/Scattering (1-13) and MATLAB Legacy Code (14-22).

The available sample for this analysis will vary between 36 and 28. We begin with

a sample of 36 participants, but at end of the first page of the questionnaire 19.44% of

the participants gave up, making the available sample go from 36 to 29 participants.

Finally, the second group of questions (MATLAB Legacy Code group) has an available

sample of 28 throughout all of its questions. These questions have all in common a

Likert-scale composed by five Likert-type items. That scale for all the questions except

for question 7, goes from “Strongly disagree” to “Strongly agree”, while the scale from

question 7 goes from “Never” to “Always”.

Likert-type items fall into the ordinal measurement scale. Descriptive statistics

recommended for ordinal measurement scale items include mode and/or median for

central tendency and frequencies for variability. In this analysis, we use frequencies and

percentages for measures of variability, along with the sample size for each question (to

help reading the values). See Table 6.5.

72

6.4. DESCRIPTIVE STATISTICS

Strongly
disagree

Somewhat
disagree

Neither agree
nor disagree

Somewhat
agree

Strongly
agree

Sample
Size

VAR01 3 (8.3%) 0 (0%) 6 (16.7%) 18 (50%) 9 (25%) 36
VAR02 4 (11.1%) 4 (11.1%) 6 (16.7%) 12 (33.3%) 10 (27.8%) 36
VAR03 3 (8.3%) 3 (8.3%) 1 (2.8%) 18 (50%) 11 (30.6%) 36
VAR06 3 (10.3%) 0 (0%) 1 (2.7%) 9 (31%) 16 (55.2%) 29
VAR07* 1 (3.4%) 6 (20.7%) 8 (27.6%) 12 (41.4%) 2 (6.9%) 29
VAR08 2 (6.9%) 2 (6.9%) 0 (0%) 15 (51.7%) 10 (34.5%) 29
VAR09 4 (13.8%) 7 (24.1%) 3 (10.3%) 11 (37.9%) 4 (13.8%) 29
VAR10 1 (3.4%) 3 (10.3%) 4 (13.8%) 6 (20.7%) 15 (51.7%) 29
VAR11 2 (6.9%) 2 (6.9%) 7 (24.1%) 14 (48.3%) 4 (13.8%) 29
VAR12 3 (10.3%) 8 (27.6%) 6 (20.7%) 9 (31%) 3 (10.3%) 29
VAR13 12 (41.4%) 10 (34.5%) 2 (6.9%) 4 (13.8%) 1 (3.4%) 29
VAR14 11 (39.3%) 6 (21.4%) 6 (21.4%) 3 (10.7%) 2 (7.1%) 28
VAR15 7 (25%) 5 (17.9%) 6 (21.4%) 5 (17.9%) 5 (17.9%) 28
VAR16 6 (21.4%) 10 (35.7%) 5 (17.9%) 5 (17.9%) 2 (7.1%) 28
VAR17 3 (10.7%) 1 (3.6%) 6 (21.4%) 14 (50%) 4 (14.3%) 28
VAR18 1 (3.6%) 2 (7.1%) 4 (14.3%) 13 (46.4%) 8 (28.6%) 28
VAR19 0 (0%) 0 (0%) 2 (7.1%) 10 (35.7%) 16 (57.2%) 28
VAR20 5 (17.9%) 3 (10.7%) 6 (21.4%) 12 (42.9%) 2 (7.1%) 28
VAR21 0 (0%) 3 (10.7%) 2 (7.1%) 11 (39.3%) 12 (42.9%) 28
VAR22 2 (7.1%) 4 (14.3%) 18 (64.3%) 4 (14.3%) 0 (0%) 28
*This question Likert-type items are in this order: "Never", "Sometimes", "About half the time",
"Most of the time" and "Always"

Table 6.5: Measures of Variability

As for measures of central tendency, we use all the available statistics, i.e., mode and

median. In one case, VAR20, we don’t specify since the value obtained is not an integer

value. So, we cannot match a Likert- scale item. See Table 6.6.

73

CHAPTER 6. ANALYSIS

Median Mode
VAR01 Somewhat agree Somewhat agree
VAR02 Somewhat agree Somewhat agree
VAR03 Somewhat agree Somewhat agree
VAR06 Strongly agree Strongly agree

VAR07
About half

the time
Most of the time

VAR08 Somewhat agree Somewhat agree
VAR09 Somewhat agree Somewhat agree
VAR10 Strongly agree Strongly agree
VAR11 Somewhat agree Somewhat agree

VAR12
Neither agree
nor disagree

Somewhat agree

VAR13 Somewhat disagree Strongly disagree
VAR14 Somewhat disagree Strongly disagree

VAR15
Neither agree
nor disagree

Strongly disagree

VAR16 Somewhat disagree Somewhat disagree
VAR17 Somewhat agree Somewhat agree
VAR18 Somewhat agree Somewhat agree
VAR19 Strongly agree Strongly agree
VAR20 - Somewhat agree
VAR21 Somewhat agree Strongly agree

VAR22
Neither agree
nor disagree

Neither agree
nor disagree

Table 6.6: Measures of Central Tendency

6.5 Hypothesis Testing

For this part of our analysis, instead of using the questions related to each dependent

and independent variable, we use the factors that we created in Table 6.2. To use these

factors, we need to combine first the answers given to all the questions that belong to

a component into one single variable, that will be then used in the test. The method

used to create this new variable (with the same name of the component) was by using

the next formula:

74

6.5. HYPOTHESIS TESTING

IF (MOD(MEDIAN(VAR[01,. . . ,22])), 1) != 1)

MEAN(VAR[01,. . . ,22]))

ELSE

MOD(VAR[01,. . . ,22])

This process creates 6 new variables. These variables except Code Structure follow the

next order 1 = “Strongly disagree” up to 5 = “Strongly agree”. In variable Code Structure,

we had to invert this scale which means that in this case 1 = “Strongly agree” and 5 =
“Strongly disagree”.

Regarding the type of hypothesis tests that can be done with variables, in our case

we can only do non-parametric tests. This happens because our variables are ordinal

ones with a discrete distribution, which invalidates the assumptions needed to run

parametric tests. The hypothesis tests used in our analysis are One-Sample Chi-Square,

Spearman’s Correlation and Mann-Whitney U.

6.5.1 One-Sample Chi-Square Test

One-Sample Chi-Square (χ2) tests the hypothesis that each item in the Likert-scale (or

proportions), as likely to be selected as the others. A guideline for reading the results

in Table 6.5.1 is provided here:

• Significance levels equal to or less than 0.05 indicates that there is a statically

difference between the proportions.

• χ2 value describes the test statistic for a χ2 test. It is used to describe the shape of

the distribution of the χ2 test.

Hypothesis Independent Variable Significance χ2 df
1 Code Tangling 0.000 24.833 4
2 Code Structure 0.003 15.929 4

Table 6.7: Chi-Square Test Result

There were statistically differences between proportions at p < 0.003 level in both

hypotheses.

6.5.2 Spearman’s Correlation Test

Spearman’s correlation test or Spearman’s rho (ρ) is a non-parametric measure of rank

correlation between two variables on at least an ordinal variable (or interval, or ratio

75

CHAPTER 6. ANALYSIS

scale). This test assesses how well the relationship between the variables can be mea-

sured using a monotonic function. The test was named after Charles Spearman.

We only have one hypothesis that can use this test, hypothesis 3. This hypothesis

has one dependent variable and one independent, that are the equivalent to two of

our factors. Modularity is our independent variable, while code maintenance is the

dependent one. A guideline for reading the results in Table 6.5.2 is provided here:

• Significance levels equal to or less than 0.05 indicates an evidence that the limita-

tions in modularity affects the code maintenance.

• Value is the correlation strength between the two variables.

• Asymptotic standard error approximates the standard error, based upon some

mathematical simplification.

Hypothesis
Dependent

Variable
Independent

Variable
Significance Value

3 Code Maintenance Modularity 0.069 0.349

Table 6.8: Spearman’s Correlation Test Result

There were no statically significant at the p < 0.05 level.

6.5.3 Mann-Whitney U Test

Mann-Whitney U test is the non-parametric alternative version to the independent

sample t-test. It is used to compare two sample means from the same population and

see if they’re equal or not. This test is normally used, when our variables are ordinal or

the assumptions for the t-test are not met.

This test has a set of assumptions that need to pass, before we use it. Those assump-

tions are:

• Sample drawn from the population is random.

• Independence within the samples and mutual independence is assumed.

• Ordinal variables, only.

All these assumptions were checked before we started our analysis. A guideline for

reading the results in Table 6.9 is provided here:

76

6.5. HYPOTHESIS TESTING

• U is the result to the calculation of the Mann-Whitney U, see the mathematical

formula beneath, where Ri is the rank of the sample size, N1 is the sample of the

first group (industry) and N2 of the second (research).

U = n1n2 +
n2(n2 + 1)

2
−
∑n2
i=n1+1Ri

• Exact Significance levels equal to or less than 0.05 indicate a significance difference

between the participants that develop software in MATLAB in the industry vs. the

ones who do it in the academic world.

Mean Rank

Hypothesis
Dependent

Variable
Independent

Variable
U

Exact Sig.
[2*(1-tailed sig)]

Industry
(13)

Research
(14)

4 Modularity

Participant
Background

61.5 0.155 16.27 11.89

5
Code

Tangling
68 0.280 12.33 15.64

6
Code

Maintenance
85.5 0.793 14.42 13.61

7
Code Duplication

Avoidance
83 0.720 13.38 14.57

8
Code

Structure
89 0.943 14.15 13.86

Table 6.9: Mann-Whitney U Test Results

None of the hypothesis tested using the Mann-Whitney U test had a significance

level beneath 0.05.

77

C
h
a
p
t
e
r

7
Conclusions and Future Work

7.1 Summary

The background and one of the hypothesis for this research was to evaluate if the MAT-

LAB developers feel/see the outcome provoked by the limitations in the support to mod-

ularity offered by the language and its programming paradigm (PP). A survey-based

empirical study was designed and executed to validated our hypotheses. The limitations

that we refer to, in this dissertation and the questionnaire, are code tangling and code

scattering. However, in the questionnaire code scattering was translated to duplicated

code. To be noted that these two concepts are not synonyms of each other, duplicated

code is a symptom of code scattering. This exchange of concepts, only happened be-

cause we though that our target population would not have an extensive knowledge of

software engineering and, code scattering is not an easy concept to explain in a short

introduction.

A review of the existing literature or related work was not found, considering that

it’s the first time a study with this problem was done. However, we did a program-

ming language review regarding MATLAB and a brief comparison between MATLAB

and one of its clone language, GNU Octave. This helped us defining our target pop-

ulation, because instead of only searching for developers that used MATLAB in the

MathWorks workspace, we also accepted the ones who used a clone language. Another

advantage brought by this review, was the discovery that even though MATLAB is a

79

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

multi-paradigm language, the main paradigm (and the most used by the developers)

is the procedural programming paradigm. This leads us to another review and related

work research regarding the levels of modularity offered by a procedural language com-

paring to an oriented-object one, and the impacts they have in the modularity of the

language. In this topic, we explained in more depth the concepts of code tangling

and scattering, and we instantiate the procedural version of MATLAB to the PIMETA

meta-model.

Our survey research used as instrument the questionnaire and the delivery method

chosen were post the invitation to participate in our study in the communities of a

social networks, more specifically LinkedIn and Facebook, and through email towards

the researchers’ community. The social network delivery method was chosen as way

to reach a wider number of developers/possible participants. Unfortunately, out of

the four communities used we only received 42 responses. Out of the 32 complete

responses received, 15 participants sent comments and expressed their interested in

learning about the results and/or participating in future sections of the research.

7.2 Results

The following conclusions were drawn in respect to hypothesis created in Section 1.5,

together with the Chapter 6. Unfortunately, we can extrapolate these results to the

general population, i.e., all the MATLAB developers because of the existing limitations

in the research. Hypothesis 1. MATLAB developers don’t find or care about tangling of

concerns.

A one-sample chi-square test was used to analyze if proportions for each Likert-scale

item were uniforms, i.e., all the possible options had the same number of responses.

We could demonstrate that the five possible answers are not equally attractive to the

MATLAB developers, rejecting the test null hypothesis; χ2(4) = 24.83, p < .001.

If we compare this test result with the histogram in Figure 7.1, then we can safely

say that we reject Hypothesis 1. This means that MATLAB developers do find and care

about code tangling.

80

7.2. RESULTS

Graph 7.1: Code tangling histogram

Hypothesis 2. While developing, be either creating or maintaining a system, MAT-

LAB developers never felt the necessity of using a tool to help visualize the code struc-

ture.

A one-sample chi-square test was used to analyze if proportions for each Likert-scale

item were uniforms, i.e., all the possible options had the same number of responses.

We could demonstrate that the five possible answers are not equally attractive to the

MATLAB developers, rejecting the test null hypothesis; χ2(4) = 15.93, p = .003.

If we compare this test result with the histogram in Figure 7.2, then we can’t reject

the hypothesis we initially proposed because the majority of the developers disagree

with the statement. However, if we take in account the answers (see Tables 6.5 and

6.6) given to question 18 - Sometimes I feel the need to have a tool that helps visualize the
structure of my MATLAB code., is possible that the MATLAB developers don’t feel that

the MathWorks tool for visualizing the code structure is enough.

Graph 7.2: Code structure histogram

81

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Hypothesis 3. There are no evidences that the limitations in the support to modu-

larity in MATLAB, affect the maintainability (and readability) of the code.

A Spearman’s rank-order correlation was run to analyzed whether the code main-

tainability was affected by the modularity limitations in MATLAB. The result obtained

was that there was no correlation between the two variables with a ρ = 0.349, p = 0.069.

If the statistical significance level (α) for testing the null hypothesis was 10% instead of

5%, we would be able to reject the null hypothesis, and prove that there was correlation

between modularity and code maintenance. Even if it was a weak correlation due to the

small ρ value.

Hypothesis 4. The academic and industrial professional background of a developer

doesn’t influence the importance given to the limitations (and its consequences) in the

support to modularity in MATLAB.

A Mann-Whitney U test was conducted to determine whether there was a difference

in the academic community and in the industrial community about the importance

given to the limitations (and its consequences) in the support to modularity in MATLAB.

Results of that analysis indicated that even if there was a difference, we couldn’t reject

the null hypothesis, U = 61.5, p = .155.

Even though we can’t reject the hypotheses proposed initial, we can still take some

conclusions using the Figure below.

Graph 7.3: Modularity histograms per group

According to this histogram, we can say that MATLAB developers in the industry

care more about modularity than the ones that use MATLAB just for research. This may

be a side effect of the type of work produce by the developers in each side. Developers

82

7.2. RESULTS

in the industry tend to build long term solutions so the code needs to be prepared to

evolve, while in research it can be just proofs of concept.

Hypothesis 5. The academic and industrial professional background of a developer

doesn’t influence the importance given to code tangling in MATLAB code.

A Mann-Whitney U test was conducted to determine whether there was a difference

in the academic community and in the industrial community about the importance

given to code tangling in MATLAB code. Results of that analysis indicated that even if

there was a difference, we couldn’t reject the null hypothesis, U = 68, p = .280.

Even though we can’t reject the hypotheses proposed initial, we can still take some

conclusions using the Figure below.

Graph 7.4: Code tangling histograms per group

According to this histogram, we can say that MATLAB developers in the industry

care less about code tangling than the ones that use MATLAB just for research. But with

the help of the result obtained in Hypothesis 1, we can say that both groups care about

tangling of concerns in MATLAB code.

Hypothesis 6. The academic and industrial professional background of a developer

doesn’t influence the importance given to MATLAB code maintenance.

A Mann-Whitney U test was conducted to determine whether there was a difference

in the academic community and in the industrial community about the importance

given MATLAB code maintenance. Results of that analysis indicated we can’t reject the

null hypothesis, U = 85.5, p = .793.

Even though we can’t reject the hypotheses proposed initial, we can still take some

conclusions using the Figure below.

83

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Graph 7.5: Code maintenance histograms per group

According to this histogram, we can say that MATLAB developers in the industry

care the same about code maintenance than the ones that use MATLAB just for research.

Hypothesis 7. The academic and industrial professional background of a developer

doesn’t influence the importance given to code duplication avoidance while developing

software in MATLAB.

A Mann-Whitney U test was conducted to determine whether there was a difference

in the academic community and in the industrial community about the importance

given code duplication avoidance while developing software in MATLAB. Results of

that analysis indicated we can’t reject the null hypothesis, U = 83, p = .720.

Even though we can’t reject the hypotheses proposed initial, we can still take some

conclusions using the Figure below.

Graph 7.6: Code duplication avoidance frequencies per group

According to this histogram, we can say that MATLAB developers in the industry

84

7.3. CONTRIBUTIONS

care the same about code duplication avoidance than the ones that use MATLAB just

for research.

Hypothesis 8. The academic and industrial professional background of a MATLAB

developer doesn’t influence the importance given to code structure.

A Mann-Whitney U test was conducted to determine whether there was a difference

in the academic community and in the industrial community about the importance

given code structure. Results of that analysis indicated we can’t reject the null hypothe-

sis, U = 89, p = .943.

Even though we can’t reject the hypotheses proposed initial, we can still take some

conclusions using the Figure below.

Graph 7.7: Code structure histograms per group

According to this histogram, we can say that MATLAB developers that uses this

language in either the industry or academic world don’t care much about the concept

of code structure.

7.3 Contributions

Through the MATLAB modularity study, the execution of the survey-based empirical

study with the use of a questionnaire, the statistical analyses and hypothesis testing this

research reveals the following contributions:

• First step towards understanding if MATLAB developers acknowledge the modu-

larity limitations and its consequences in MATLAB code/systems.

85

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

• The MathWorks tool to visualize the code structure may not be enough for the

developers.

• There are some difficulties in trying to explain the concept of code scattering to

developers that don’t have a software engineering background.

• Finding that MATLAB developers feel and care about code tangling.

• PIMETA instantiation of the MATLAB grammar.

• Comparison of the modularity between MATLAB and JAVA, i.e., between procedu-

ral and object-oriented paradigms. The result of this study is that object-oriented

languages have higher level of modularity than MATLAB.

7.4 Research Limitations

The results of this empirical study are subject to the following limitations:

• Low number of responses: Although the expected sample size was of 1235, we

only had 32 completed responses and 10 partial. That number is too small to

generalize the results gathered to all the MATLAB developers.

• Low participant representativeness: Not every person that belongs to our tar-

get population can be found through the chosen communities. So, there are no

strong evidence that the response gathered can be translated to the opinion of all

the MATLAB developers. The survey research should be repeated with different

participants/communities to assert the external validity of the study.

• Low participant reliability: Not all of the participants who entered the ques-

tionnaire decided to answer it or complete it, thus creating partial responses. In

most cases, the respondents give up after reading the explanation or completing

the first questions. However, it’s probable that, a shorter and even more focused

survey, may produce more reliable results.

• Data pollution: The last limitation can be closely related with this one. Data

pollution occurs when there is ill intention by the participants, and that can in-

clude multiple submissions of the questionnaire by the same participant or, lack

of commitment to finish the questionnaire. Considering that our questionnaire

was anonymous and we had some partial responses, we must consider this a pos-

sible limitation to our study. A way to overcome this problem would be allowing

86

7.4. RESEARCH LIMITATIONS

only one response per Internet Protocol (IP) address and not accept the partial

responses.

• Researchers community: The community of researchers used in the study was

created thoughts non-probabilistic methods. That created a high risk for bias in

our research and the respective results, disabling us from generalizing our results

towards all community of MATLAB developers. A way to solve this problem is to

find a population with similar characteristics to one we used, that is well defined

and that lends itself to be sampled through some probabilistic method.

• Limited control over who participate: Three of the four communities used in this

research were from social networks, where we couldn’t control who responded

to our questionnaire and who didn’t. That power is relegated to the participants

of the community, making our control over the sample size and the number of

responses almost nonexistent. The solution for this limitation is like the one

presented in the last point.

• Saturation of members in communities from social networks: All of the online

communities used had at least 13 792 or more participants, and it was expected a

high response/completion rate. However, what occurred was the opposite. That

may have happened because of the saturation that communities in social networks

suffer nowadays. Most of the participants tend to participate in certain communi-

ties to say that they have a certain skill that area. Another, factor that occurs espe-

cially in LinkedIn, is HR recruiters that join those communities to filter through

possible future employees. These tendencies make almost impossible for all the

communities’ participants to see a post advertising a survey research, and those

who see might to even know much about the topic. A possible solution, that wasn’t

tested in this research would have been using small and active communities, for a

social network.

• Time constraint: This problem was particular felt when we sent the emails to the

researchers community. Unfortunately, we started that process at the end of June,

and many of the researchers contacted were unavailable due to their vacations. To

get more responses from these communities we should have chosen a better time

frame to send the email inviting them. An example of such time, would have been

at the beginning of a new semester.

87

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.5 Future Work

The validation of our initial problem can still be considered an open-end worth pur-

suing, regardless the findings that we gathered. That happens because not only our

sample is not representative of our target population, and the other limitations that

we discovered (see Section 7.4), there are other works that can be done to extend the

validation of the research. This section presents some of those directions.

• Validate the PIMETA instantiation of MATLAB. That could be done through more

iteration of the instantiation and a more profound study about all the features

and dependencies that MATLAB holds. A special case would be comparing the

PP instantiation of MATLAB versus the OOP instantiation of MATLAB.

• Replicate our survey-base empirical study, with the same hypothesis and research

questions. The questions itself, could be either improved versions of our or com-

pletely different questions, they only should be related to our problem. This way,

it would be possible with a bigger and different sample population, to test the

external validation and reliability of our study/results.

• Find a company that have a R&D or development department, where the em-

ployees’ use MATLAB as their principal programming language. After doing that

research, use that community to do a survey-based empirical study using the same

hypotheses or problem proposed in the dissertation. The survey could be applied

using questionnaires or interviews, and would serve to get feasible response from

the industrial community about our problem.

• Create a small questionnaire and deliver it to the developers whose work nature

occurs in the industrial work. That questionnaire focus would be to verify, if these

developers use MATLAB to create concept tests or for actual software develop-

ment. Depending of the type of response gather, it would be possible to create

specific target population for a similar study to ours, and verify which commu-

nity cares more about the modularity and the appearance of symptoms of the

limitations in their code.

• Further the state-of-the art in the study of modularity in MATLAB, especially

in the procedural paradigm version of the language since it’s the one that most

developers use. Much of the existing documentation is either related to Java or of

the AOP version of MATLAB. The research should be focused on how to find the

88

7.5. FUTURE WORK

occurrences of the symptoms in the code and what are the possible solutions to

eliminate or mitigate the existence of said occurrences.

• Create a catalog of refactoring and code smells like the one written by Martin

Fowler 1 . The creation of such book or handbook, would start by focusing the

research towards a database filled with MATLAB developers, and study the pro-

grams until it found common design patterns between them. This would probably

be an important tool for MATLAB developers, to help them fight the limitations

in the support to modularity. It would also, help them improve their capability to

refactor legacy code, and through that the maintainability of the code.

Although is not related to our research validation, in the last years MATLAB (Math-

Works and GNU Octave version), started to implement the OO paradigm. A recommen-

dation for future work, would be studying this version of MATLAB (and code produce

in it) and verify if that version can eliminate or mitigate some of the symptoms produce

by the limitations. In case the answer is positive, see if the developers are starting to be

adopted this version of MATLAB, as a possible way to improve the code maintainability

and eliminate code scattering and tangling.

1Fowler, Martin. Refactoring: improving the design of existing code. Pearson Education India, 2009.

89

Bibliography

[1] About GNU Octave. http://www.gnu.org/software/octave/about.html.

Accessed: 2015-12-31.

[2] Array Comparison with Relational Operators - MATLAB Simulink. http://www.

mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-

operators.html. Accessed: 2016-03-08.

[3] Array vs. Matrix Operations - MATLAB Simulink. http://www.mathworks.com/

help/matlab/matlab_prog/array-vs-matrix-operations.html. Accessed:

2016-03-06.

[4] T. Aslam, J. Doherty, A. Dubrau, and L. Hendren. “AspectMatlab: An aspect-

oriented scientific programming language”. In: Proceedings of the 9th International
Conference on Aspect-Oriented Software Development. ACM. 2010, pp. 181–192.

[5] J. M. Cardoso, J. Fernandes, and M. Monteiro. “Adding aspect-oriented features to

matlab”. In: workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT. 2006.

[6] J. M. Cardoso, J. Fernandes, and M. Monteiro. “Adding aspect-oriented features to

matlab”. In: workshop on Software Engineering Properties of Languages and Aspect
Technologies (SPLAT). 2006.

[7] J. M. Cardoso, J. M. Fernandes, M. P. Monteiro, T. Carvalho, and R. Nobre. “Enrich-

ing MATLAB with aspect-oriented features for developing embedded systems”.

In: Journal of Systems Architecture 59.7 (2013), pp. 412–428.

[8] Cell Arrays - MATLAB Simulink. http://www.mathworks.com/help/matlab/

cell-arrays.html. Accessed: 2016-05-02.

[9] Control Flow - MATLAB Simulink. http://www.mathworks.com/help/matlab/

control-flow.html. Accessed: 2016-01-06.

[10] Create Variables - MATLAB Simulink. http://www.mathworks.com/help/

matlab/matlab_prog/create-variables.html. Accessed: 2016-05-03.

91

http://www.gnu.org/software/octave/about.html
http://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html
http://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html
http://www.mathworks.com/help/matlab/matlab_prog/array-comparison-with-relational-operators.html
http://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html
http://www.mathworks.com/help/matlab/matlab_prog/array-vs-matrix-operations.html
http://www.mathworks.com/help/matlab/cell-arrays.html
http://www.mathworks.com/help/matlab/cell-arrays.html
http://www.mathworks.com/help/matlab/control-flow.html
http://www.mathworks.com/help/matlab/control-flow.html
http://www.mathworks.com/help/matlab/matlab_prog/create-variables.html
http://www.mathworks.com/help/matlab/matlab_prog/create-variables.html

BIBLIOGRAPHY

[11] Declare function name, inputs, and outputs - MATLAB function. http://www.

mathworks.com/help/matlab/ref/function.html. Accessed: 2016-04-06.

[12] Declare variables as global - MATLAB global. http://www.mathworks.com/help/
matlab/ref/global.html. Accessed: 2016-05-03.

[13] Differences between Octave and MATLAB - Sysnet Documentation 0.0.1. https:

//www.ices.utexas.edu/sysdocs/Octave-Matlab/. Accessed: 2015-11-23.

[14] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian. “Selecting empirical meth-

ods for software engineering research”. In: Guide to advanced empirical software
engineering. Springer, 2008, pp. 285–311.

[15] FAQ - Octave. http://wiki.octave.org/FAQ#Toolboxes. Accessed: 2016-04-

16.

[16] L. K. Ferrett and J. Offutt. “An empirical comparison of modularity of procedural

and object-oriented software”. In: Engineering of Complex Computer Systems, 2002.
Proceedings. Eighth IEEE International Conference on. IEEE. 2002, pp. 173–182.

[17] GNU Octave: Comparison Ops. https://www.gnu.org/software/octave/doc/
v4.0.1/Comparison-Ops.html#Comparison-Ops. Accessed: 2016-03-10.

[18] GNU Octave explained. http://everything.explained.today/GNU_Octave/.

Accessed: 2015-12-31.

[19] GNU Octave: Functions Files. https://www.gnu.org/software/octave/doc/

interpreter/Function-Files.html#Function-Files. Accessed: 2015-12-23.

[20] GNU Octave: The do-until Statement. https://www.gnu.org/software/octave/
doc/interpreter/The-do_002duntil-Statement.html. Accessed: 2016-01-05.

[21] M. Goulão, B. E. Abreu, et al. “Modeling the experimental software engineer-

ing process”. In: Quality of Information and Communications Technology, 2007.
QUATIC 2007. 6th International Conference on the. IEEE. 2007, pp. 77–90.

[22] A. Houston. Survey Handbook. 2003.

[23] How to perform a principal components analysis. https://statistics.laerd.

com/spss-tutorials/principal-components-analysis-pca-using-spss-

statistics.php. Accessed: 2017-03-10.

[24] R. A. Kaimann. “Coefficient of network complexity”. In: Management Science 21.2

(1974), pp. 172–177.

92

http://www.mathworks.com/help/matlab/ref/function.html
http://www.mathworks.com/help/matlab/ref/function.html
http://www.mathworks.com/help/matlab/ref/global.html
http://www.mathworks.com/help/matlab/ref/global.html
https://www.ices.utexas.edu/sysdocs/Octave-Matlab/
https://www.ices.utexas.edu/sysdocs/Octave-Matlab/
http://wiki.octave.org/FAQ##Toolboxes
https://www.gnu.org/software/octave/doc/v4.0.1/Comparison-Ops.html##Comparison-Ops
https://www.gnu.org/software/octave/doc/v4.0.1/Comparison-Ops.html##Comparison-Ops
http://everything.explained.today/GNU_Octave/
https://www.gnu.org/software/octave/doc/interpreter/Function-Files.html#Function-Files
https://www.gnu.org/software/octave/doc/interpreter/Function-Files.html#Function-Files
https://www.gnu.org/software/octave/doc/interpreter/The-do_002duntil-Statement.html
https://www.gnu.org/software/octave/doc/interpreter/The-do_002duntil-Statement.html
https://statistics.laerd.com/spss-tutorials/principal-components-analysis-pca-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/principal-components-analysis-pca-using-spss-statistics.php
https://statistics.laerd.com/spss-tutorials/principal-components-analysis-pca-using-spss-statistics.php

BIBLIOGRAPHY

[25] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold. “An

overview of AspectJ”. In: European Conference on Object-Oriented Programming.

Springer. 2001, pp. 327–354.

[26] B. Kitchenham and S. L. Pfleeger. “Principles of survey research part 4: ques-

tionnaire evaluation”. In: ACM SIGSOFT Software Engineering Notes 27.3 (2002),

pp. 20–23.

[27] B. Kitchenham and S. L. Pfleeger. “Principles of survey research: part 5: popu-

lations and samples”. In: ACM SIGSOFT Software Engineering Notes 27.5 (2002),

pp. 17–20.

[28] B. A. Kitchenham and S. L. Pfleeger. “Principles of survey research: part 3: con-

structing a survey instrument”. In: ACM SIGSOFT Software Engineering Notes
27.2 (2002), pp. 20–24.

[29] E. M. Lakatos and M. d. A. Marconi. “Fundamentos da metodologia científica”.

In: Fundamentos da metodologia científica. Altas, 2010.

[30] Local Functions - MATLAB Simulink. http : / / www . mathworks . com / help /

matlab/matlab_prog/local-functions.html. Accessed: 2016-01-27.

[31] C. I. V. Lopes. “D: A language framework for distributed programming”. PhD

thesis. Northeastern University, 1997.

[32] I. de M Lessa, G. de F Carneiro, M. J. T. Monteiro, B. E. Abreu, et al. “A multiple

view interactive environment to support MATLAB and GNU/Octave program

comprehension”. In: Information Technology-New Generations (ITNG), 2015 12th
International Conference on. IEEE. 2015, pp. 552–557.

[33] F. S. B. D. Marques. “Modularity Improvements with Aspect-Oriented Program-

ming”. PhD thesis. Universidade Nova de Lisboa, 2008.

[34] MATLAB - The Language of Technical Computing. http://www.mathworks.com/

products/matlab/. Accessed: 2015-12-30.

[35] MATLAB Programming/Advanced Topics/Object Oriented Programming - Wikibooks,
open books for an open world. https://en.wikibooks.org/wiki/MATLAB_

Programming/Advanced_Topics/Object_Oriented_Programming. Accessed:

2015-10-26.

[36] T. J. McCabe. “A complexity measure”. In: IEEE Transactions on software Engineer-
ing 4 (1976), pp. 308–320.

93

http://www.mathworks.com/help/matlab/matlab_prog/local-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/local-functions.html
http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
https://en.wikibooks.org/wiki/MATLAB_Programming/Advanced_Topics/Object_Oriented_Programming
https://en.wikibooks.org/wiki/MATLAB_Programming/Advanced_Topics/Object_Oriented_Programming

BIBLIOGRAPHY

[37] M Monteiro, J. M. Cardoso, and S. Posea. “Identification and characterization

of crosscutting concerns in MATLAB systems”. In: Conference on Compilers, Pro-
gramming Languages, Related Technologies and Applications (CoRTA 2010), Braga,
Portugal. Citeseer. 2010, pp. 9–10.

[38] G. J. Myers et al. Composite/structured design. Van Nostrand Reinhold, 1978.

[39] Octave - General - query on using matlab toolboxes in Octave. http://octave.

1599824.n4.nabble.com/query-on-using-matlab-toolboxes-in-Octave-

td4527064.html. Accessed: 2016-04-10.

[40] Operators and Elementary Operations - MATLAB Simulink. http://www.mathworks.

com/help/matlab/operators-and-elementary-operations.html. Accessed:

2016-01-06.

[41] D. L. Parnas. “On the criteria to be used in decomposing systems into modules”.

In: Communications of the ACM 15.12 (1972), pp. 1053–1058.

[42] S. L. Pfleeger. “Design and analysis in software engineering: the language of case

studies and formal experiments”. In: ACM SIGSOFT Software Engineering Notes
19.4 (1994), pp. 16–20.

[43] S. L. Pfleeger and B. A. Kitchenham. “Principles of survey research part 2: design-

ing a survey”. In: Software Engineering Notes 27.1 (2002), pp. 18–20.

[44] K. Popper. The logic of scientific discovery. Routledge, 2005.

[45] Private Functions - MATLAB Simulink. http://www.mathworks.com/help/

matlab/matlab_prog/private-functions.html. Accessed: 2016-01-27.

[46] R. T. Renckly. Air university sampling and surveying handbook. 1996.

[47] E. M. Rogers. “Physics for the inquiring mind”. In: (1960).

[48] Scripts vs. Functions - MATLAB Simulink. http://www.mathworks.com/help/

matlab/matlab_prog/scripts-and-functions.html. Accessed: 2015-12-23.

[49] Scripts vs. Functions - MATLAB Simulink. http://www.mathworks.com/help/

matlab/matlab_prog/scripts-and-functions.html. Accessed: 2016-04-23.

[50] N. Sharma and M. K. Gobbert. “A comparative evaluation of Matlab, Octave,

FreeMat, and Scilab for research and teaching”. In: Department of Mathematics
and Statistics (2010).

[51] Toolbox Distribution - MATLAB Simulink. http://www.mathworks.com/help/

matlab/creating-help.html. Accessed: 2016-04-16.

94

http://octave.1599824.n4.nabble.com/query-on-using-matlab-toolboxes-in-Octave-td4527064.html
http://octave.1599824.n4.nabble.com/query-on-using-matlab-toolboxes-in-Octave-td4527064.html
http://octave.1599824.n4.nabble.com/query-on-using-matlab-toolboxes-in-Octave-td4527064.html
http://www.mathworks.com/help/matlab/operators-and-elementary-operations.html
http://www.mathworks.com/help/matlab/operators-and-elementary-operations.html
http://www.mathworks.com/help/matlab/matlab_prog/private-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/private-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
http://www.mathworks.com/help/matlab/matlab_prog/scripts-and-functions.html
http://www.mathworks.com/help/matlab/creating-help.html
http://www.mathworks.com/help/matlab/creating-help.html

BIBLIOGRAPHY

[52] L. Vasconcelos and L. F. A. Guedes. “E-surveys: vantagens e limitações dos ques-

tionários eletrônicos via internet no contexto da pesquisa científica”. In: X SE-
MEAS, FEA-USP (2007).

[53] S. Vegas. “What Makes a Good Empirical Software Engineering Thesis?: Some

Advice”. In: (2015).

[54] J. Visser, S. Rigal, R. van der Leek, P. van Eck, and G. Wijnholds. Building Main-
tainable Software, Java Edition: Ten Guidelines for Future-Proof Code. O’Reilly

Media, Inc., 2016.

[55] J. Vlissides, R. Helm, R. Johnson, and E. Gamma. “Design patterns: Elements of

reusable object-oriented software”. In: Reading: Addison-Wesley 49.120 (1995),

p. 11.

[56] What Makes a Good Research Question? - Duke. http://twp.duke.edu/uploads/

media_items/research-questions.original.pdf. Accessed: 2016-03-24.

[57] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Ex-
perimentation in software engineering. 2012.

[58] R. K. Yin. Case study research: Design and methods. Sage publications, 2013.

95

http://twp.duke.edu/uploads/media_items/research-questions.original.pdf
http://twp.duke.edu/uploads/media_items/research-questions.original.pdf

A
p
p
e
n
d
i
x

A
MATLAB Feature and Dependency Types

This appendix presents the MATLAB Feature Types, their mutual aggregation possibili-

ties and their DependencyTypes with which PIMETA is instantiated.

Modular Feature Types Atomic Feature Types
Toolbox GlobalVariable

ScriptFile LocalVariable
FunctionFile InputValue

LocalFunction OutputValue
PrivateFunction

Table A.1: MATLAB Feature Types

97

APPENDIX A. MATLAB FEATURE AND DEPENDENCY TYPES

Aggregations
(Toolbox, Toolbox)

(Toolbox, ScriptFile)
(Toolbox, FunctionFile)
(ScriptFile, ScriptFile)

(ScriptFile, FunctionFile)
(ScriptFile, GlobalVariable)
(ScriptFile, LocalVariable)

(FunctionFile, GlobalVariable)
(FunctionFile, LocalVariable)

(FunctionFile, PrivateFunction)
(FunctionFile, LocalFunction)
(LocalFunction, LocalVariable)
(LocalFunction, LocalFunction)

(LocalFunction, PrivateFunction)
(LocalFunction, InputValue)

(LocalFunction, OutputValue)
(PrivateFunction, LocalVariable)

(PrivateFunction, PrivateFunction)
(PrivateFunction, InputValue)

(PrivateFunction, OutputValue)

Table A.2: Features Aggregations

DependencyTypes
DeclareGlobalVariable: (GlobalVariable, LocalFunction)

DeclareLocalFunction: (FunctionFile, LocalFunction)
DeclarePrivateFunction: (FunctionFile, PrivateFunction)
ScriptFileImportsFunctionFile: (ScriptFile, FunctionFile)

ScriptFileImportsLocalFunction: (ScriptFile, LocalFunction)
FunctionFileImportsPrivateFunction: (FunctionFile, PrivateFunction)

FunctionFileImportsToolbox: (FunctionFile, Toolbox)
ScriptFileImportsToolbox: (ScriptFile, Toolbox)

LocalFunctionReturnsOutputValue: (LocalFunction, OutputValue)
PrivateFunctionReturnsOutputValue: (PrivateFunction, OutputValue)

Table A.3: Dependencies Types

98

A
p
p
e
n
d
i
x

B
Formulas

This appendix presents all the mathematical formulas needed to calculate a sample size

and rates.

Confidence Level Z Factor
99.9 3.2905
99.7 3
99.5 2.807
99 2.5758
98 2.3263

95.5 2
95 1.96
90 1.6449
85 1.4395
80 1.2816

Table B.1: Z Values

99

APPENDIX B. FORMULAS

Type of Results Formulas Subtitles

Percentage n = P (1−P)
A2

Z2 + P (1−P)
N

n = sample size required;
N = number of people in the population;
P = estimated percentage of the population
possessing attribute of interest;
A = accuracy desired, expressed as a decimal;
Z = number of standard deviation units of the
sampling distribution corresponding to the desired
confidence level.

Average n = P 2

A2

Z2 + P 2
N

n = sample size required;
N = number of people in the population;
P = estimated standard deviation of the
attribute of interest in the population;
A = accuracy desired, expressed as a decimal;
Z = number of standard deviation units of the
sampling distribution corresponding to the desired
confidence level.

Multiple Ways n = NZ2∗0.25
(d2∗[N−1])+(Z2∗0.25)

n = sample size required;
N = total population size [known or estimated];
d = precision level [usually .05 or .1]
Z = number of standard deviation units of the
sampling distribution corresponding to the desired
confidence level.

Table B.2: Determining the size of the sample

Formulas
Completion Rate (%) (Complete number of surveys / Number of respondents who entered the survey) * 100

Response Rate (%) (Complete number of surveys / Number of emails sent) * 100

Table B.3: Rates Formulas

100

A
p
p
e
n
d
i
x

C
Modularity in MATLAB - Pilot Test

The purpose of the survey is to collect feedback from MATLAB programmers regarding

the symptoms of code tangling (as illustrated in the figure below). These symptoms

may hamper understandability and ease of maintenance.

The code example illustrates how different sections of code can be related to differ-

ent “concerns” or kinds of functionality, which programmers would ideally place into

separate functions or m-files. Note that languages other than MATLAB may provide

better support for modular organization.

101

APPENDIX C. MODULARITY IN MATLAB - PILOT TEST

Your participation in this research study is voluntary. You may choose not to partici-

pate. If you decide to participate in this research survey, you may withdraw at any time.

If you decide not to participate in this study or if you withdraw from participating at

any time, you will not be penalized.

We will do our best to keep your information confidential. All data is stored in a

password protected electronic format. To help protect your confidentiality, the surveys

will not contain information that will personally identify you. The results of this study

will be used for scholarly purposes only and may be shared in papers of the specialty.

The procedure involves filling an on-line survey that will take approximately 10 min-

utes. Your responses will be confidential and we do not collect identifying information

such as your name, email address or IP address.

Do you agree to the above terms? By clicking Yes, you consent that you are willing

to answer the questions in this survey.

Yes

No

—————————————– Tangling/Scattering —————————————–

1. I often come across tangling of concerns in the same function or m-file, such as

described in the example provided.

102

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

2. It is easier to understand code where multiple concerns (such as described in the

example provided) are not tangled with each other in the same module (function

or m-file).

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

3. Code tangling in MATLAB may reduce understandability in the long term for the

original programmer or by other programmers.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

4. When working in a MATLAB system, I try to avoid duplicated code whenever

possible.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

103

APPENDIX C. MODULARITY IN MATLAB - PILOT TEST

5. I often think in terms of modularity when programming in MATLAB.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

6. When I work on a MATLAB program, I normally find duplicated code across the

various m-files.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

7. When I program in MATLAB, I try to divide my code in small modules (functions

or m-files) as a strategy to mitigate complexity.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

8. I consider symptoms of code tangling to be something normal.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

9. My problems of code tangling are caused by lack of modularity mechanisms in

MATLAB.

104

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

10. Duplicated code is not an issue for me when I program in MATLAB.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

————————————– MATLAB Legacy Code ————————————–

11. The first thing I do, when I start maintaining a MATLAB system is to visualize

and analyze the source code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

12. I do not expect anybody besides me to run or improve my MATLAB programs.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

13. While maintaining a MATLAB program, I did not experience any difficulties in

understanding the code or its structure.

Strongly agree

105

APPENDIX C. MODULARITY IN MATLAB - PILOT TEST

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

14. In the past, I had to maintain a MATLAB program for a long period of time.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

15. Sometimes I feel the need to have a tool that helps visualize the structure of my

MATLAB code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

16. Good modularity brings benefits to the maintainability of a MATLAB program.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

17. My MATLAB programs are mainly developed for solving short-term problems.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

106

18. When I develop a MATLAB program, I make a strong effort to make it reusable.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

19. The dependency report tool offered by MathWorks is enough to visualize the

structure of my code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

———————————— Background Information ————————————

20. How many years of experience do you have programming in MATLAB?

Less than 1 year

1 to 4 years

5 to 9 years

More than 10 years

21. Last time I programmed in MATLAB program was ...

less than 1 year ago.

between 2 to 3 years ago.

over 4 years ago.

Other:

22. I have experience in dealing with large MATLAB systems.

Yes

No

107

APPENDIX C. MODULARITY IN MATLAB - PILOT TEST

23. What do you use MATLAB for?

2 Modeling

2 Prototyping of hardware platforms

2 Calculator

2 Scientific computation

2 Others:

24. How would you classify the nature of your work when using MATLAB:

Industry

Research

Student

25. In what industry do you carry out your work?

2 Energy Production

2 Financial Services

2 Automotive

2 Industrial Automation and Machinery

2 Communication Infrastructure

2 Software Library Development

2 Computer Electronics

2 Other:

26. What is your area of study?

2 Energy Production

2 Financial Services

2 Automotive

2 Industrial Automation and Machinery

2 Communication Infrastructure

2 Software Library Development

2 Computer Electronics

2 Other:

108

27. When I use MATLAB I work in the following application domain:

2 Signal Processing

2 Image Processing

2 Data Analysis

2 Production Analytics

2 Machine Learning

2 Simulation

2 Other:

28. What is your area of study?

2 Energy Production

2 Financial Services

2 Automotive

2 Industrial Automation and Machinery

2 Communication Infrastructure

2 Software Library Development

2 Computer Electronics

2 Other:

29. When I use MATLAB I work in the following application domain:

2 Signal Processing

2 Image Processing

2 Data Analysis

2 Production Analytics

2 Machine Learning

2 Simulation

2 Others:

30. I normally work with a team of developers rather than alone, when I am develop-

ing a MATLAB system.

Yes

No

109

APPENDIX C. MODULARITY IN MATLAB - PILOT TEST

31. How many developers (besides yourself) make up the developing team:

32. Are you familiar with other programming languages?

Yes

No

33. Which languages are you familiar with?

2 C/C++

2 GNU Octave

2 Python

2 Java

2 Others:

110

A
p
p
e
n
d
i
x

D
Feedback from Pilot Test

Professor Miguel Monteiro

Date: April 4th

Time: 00:09:55

Feedback:

• Lack of illustrative figure in the first page with questions.

• Question: How would you classify the nature of your work when using MATLAB".

Missing option "Teaching" – not the same as "Student".

Professor Manuel Ortigueira

Date: April 5th

Time: 00:05:37

Feedback:

• Tangling is a concept a bit hard to understand and the examples for “concerns”,

at the begin, are not the ones I normal see/use.

• I hoped that the questions were about the concerns illustrated in the image at the

beginning of the questionnaire.

Professor Paulo Gil & Professor Luís Palma

Date: April 6th

111

APPENDIX D. FEEDBACK FROM PILOT TEST

Time: 00:10:48 & 00:08:00

Feedback:

• The concepts of concern and tangling are a bit confusing.

• Question: What is your area of study?. It would help that in the option “Other:” to

write more than one option.

Professor Arnaldo Batista

Date: April 13th

Time: 00:06:32

Feedback:

• The concept of tangling should be explained in a simpler way.

Professor Francisco Monteiro

Date: April 14th

Time: 00:18:07

Feedback:

• It’s not clear what you mean with large program.

• Question: Which languages are you familiar with?. It’s pointless to indicate GNU

Octave as an option since they have the same syntax as MATLAB.

Professor Glauco Carneiro

Date: April 24th

Time: 00:00:00

Feedback:

• It’s not clear what you mean with large program.

• The navigation should only let the person go forward. This way, it may help to

validate the answers (internally) since we can’t go back and change our answers.

• Add question: Beyond the "concerns" highlighted in the previous figure, can you
identify other concerns?.

• Add question: How often do you see examples of tangling in your code?

112

• Don’t talk about "concerns" per say, the industrial people won’t understand. In-

stead use the words concepts and/or functionalities.

• Question: For which purpose(s) do you use MATLAB?. Change response format to

open-end.

• Question: How would you classify the nature of your work when using MATLAB:.
Change response format to selecting multiple options and add option "Other".

• Question: Experience with "large" MATLAB programs. It’s too subjective! Create an

ordinal scale.

Professor João Cardoso

Date: April 24th

Time: 00:17:10

Feedback:

• Add question: I normally deal with MATLAB programs with....

• Add question: I normally deal with MATLAB m-files with....

• Add question: How many toolboxes you tend to use.

• Add question: Which toolboxes do you use the most?.

• Add question: Which workspace do you use when programming MATLAB?.

113

A
p
p
e
n
d
i
x

E
Questions created for the survey

Variable
Name

Research
Question

Type Question
Response

Format
VAR01 2.1 Numerical I usually find tangling of concerns in the same function or m-file, such as described in the example provided. Likert Scale

VAR02 2.1 Numerical
It is easier to understand code where multiple concerns (such as described in the example provided) are not
tangled with each other in the same module (function or m-file).

Likert Scale

VAR03 2.1 Numerical
Code tangling in MATLAB may reduce understandability in the long term for the original programmer or by
other programmers.

Likert Scale

VAR04 3.1 Numerical Beyond the "concerns" highlighted in the previous figure, can you identify other concerns? Selecting Option
VAR05 3.1 Short Text If yes, please name the ones you can think of. Open-ended
VAR06 2.2 Numerical When working in a MATLAB program, I try to avoid duplicated code whenever possible. Likert Scale
VAR07 2.1 Numerical How often do you see examples of tangling in your code? Likert Scale
VAR08 3.2 Numerical I often think in terms of modularity when programming in MATLAB. Likert Scale
VAR09 2.2 Numerical When I work on a MATLAB program, I normally find duplicated code across the various m-files. Likert Scale

VAR10 3.2 Numerical
When I program in MATLAB, I try to divide my code in small modules (functions or m-files) as a strategy to
mitigate complexity.

Likert Scale

VAR11 2.1 Numerical I consider symptoms of code tangling to be something normal. Likert Scale
VAR12 2.1 Numerical My problems of code tangling are caused by lack of modularity mechanisms in MATLAB. Likert Scale
VAR13 2.2 Numerical When I program in MATLAB, I do not make an effort to eliminate duplicated code. Likert Scale

Table E.1: Questions related to the identification the subject opinion on code tangling
and scattering

115

APPENDIX E. QUESTIONS CREATED FOR THE SURVEY

Variable
Name

Research
Question

Type Question
Response

Format

VAR14 4 Numerical
The first thing I do, when I start maintaining a MATLAB program, is visualize and analyze the source code
using a tool such as Mathworks’ Dependency Report.

Likert Scale

VAR15 1.1 Numerical I do not expect anybody besides me to run or improve my MATLAB programs. Likert Scale

VAR16 1.3 Numerical
While maintaining a MATLAB program, I did not experience any difficulties in understanding the code or its
structure.

Likert Scale

VAR17 1.1 Numerical In the past, I had to maintain a MATLAB program for a long period of time. Likert Scale
VAR18 4 Numerical Sometimes I feel the need to have a tool that helps visualize the structure of my MATLAB code. Likert Scale
VAR19 1.2 Numerical Good modularity brings benefits to the maintainability of a MATLAB program. Likert Scale
VAR20 1.1 Numerical My MATLAB programs are mainly developed for solving short-term problems. Likert Scale
VAR21 1.2 Numerical When I develop a MATLAB program, I make a strong effort to make it reusable. Likert Scale
VAR22 4 Numerical The dependency report tool offered by MathWorks is enough to visualize the structure of my code. Likert Scale

Table E.2: Questions related to the identification the subject habits and opinions about
MATLAB legacy code

Variable
Name

Research
Question

Type Question
Response

Format
VAR23 3.2 Numerical How many years of experience do you have programming in MATLAB? Selecting Option

VAR24A 3.2 Numerical Last time I programmed in MATLAB program was ... Selecting Option
VAR24B 3.2 Short Text Last time I programmed in MATLAB program was ... (Other) Open-ended
VAR25 3.2 Numerical I normally deal with MATLAB programs with... Selecting Multiple Options
VAR26 3.1 Short Text For which purpose(s) do you use MATLAB? Open-ended
VAR27 3.2 Numerical I normally work with a team of developers rather than alone, when I am developing a MATLAB system. Selecting Option
VAR28 3.2 Short Text How many developers (besides yourself) make up the developing team: Open-ended

VAR29A 3.1 Numerical How would you classify the nature of your work when using MATLAB: Selecting Multiple Options
VAR29B 3.1 Short Text How would you classify the nature of your work when using MATLAB: (Other) Open-ended
VAR30 3.2 Numerical I normally deal with MATLAB m-files with... Selecting Option
VAR31 3.1 Numerical How many toolboxes you tend to use? Selecting Option
VAR32 3.1 Short Text Which toolboxes do you use the most? Open-ended
VAR33 3.1 Numerical Using the United Nations - International Standard Industrial Classification, where do you care out your work? Selecting Option

VAR34A 3.1 Numerical How would you classify the nature of your work when using MATLAB: Selecting Multiple Options
VAR34B 3.1 Short Text How would you classify the nature of your work when using MATLAB: (Other) Open-ended
VAR35 3.2 Numerical Which workspace do you use when programming MATLAB? Selecting Multiple Options

VAR36A 3.2 Numerical Are you familiar with other programming languages? Selecting Option
VAR36B 3.2 Numerical Which languages are you familiar with? Selecting Multiple Options
VAR36C 3.2 Short Text Which languages are you familiar with? (Others) Open-ended

Table E.3: Questions related to the identification the subject background and habits
when it comes to programming in MATLAB

116

A
p
p
e
n
d
i
x

F
Invitation Texts

F.1 Post

Modularity in MATLAB - Research Survey

Hi! I’m doing a survey as a part of my MSc dissertation. I would be grateful if you

could help me by answering it. It takes around 15 minutes to complete. This is the link

to it: https://iscteiul.co1.qualtrics.com/SE/?SID=SVeL1aY vlilL77IxL

Thank you for your attention.

F.2 Email

Dear participant,

I am a MSc student at the Faculty of Sciences and Technology of the Universidade

Nova de Lisboa in Portugal and, as part of the preparation of my dissertation, I am

conducting a survey on the subject of modularization in MATLAB code and its conse-

quences on the programmer’s work.

Through my research, I found a paper with your name on it as one of the authors.

Which made us think that you would be interested in participating in this study. For that,

I need your opinion and kindly ask for your support and involvement by answering the

following questionnaire: https://iscteiul.co1.qualtrics.com/SE/?SID=SV5dyExSnuTQrV Ejj

117

APPENDIX F. INVITATION TEXTS

Participation is voluntary and anonymous. Although there is no fixed time for

completing this questionnaire, we estimate that, overall, it should be around 10 minutes.

All data conducted in this survey will only be evaluated by me and my supervisors -

Professor Fernando Brito e Abreu (ISCTE-IUL) and Professor Miguel Monteiro (FCT-

UNL) - and included in an aggregated form in my MSc dissertation.

In the end of this questionnaire, you will be able to state if you want us to send you

the preliminary results of this study.

If you have further questions, please feel free to contact me at: k.duarte@campus.fct.unl.pt

Thanks for your support,

Katia Duarte

118

A
p
p
e
n
d
i
x

G
Modularity in MATLAB

The purpose of the survey is to collect feedback from MATLAB programmers regarding

the adoption of modularization practices.

The code example illustrates how different sections of code can be related to dif-

ferent “concerns”, which programmers would ideally place into separate modules - in

MATLAB, functions or m-files. Here, a "concern" is synonym of "abstraction", "concept",

or "additional functionality".

Ideally, each MATLAB function or m-file would contain code related to just one

concern. When more concerns are involved, we observe a "tangling of concerns" such

as illustrated here: code related to the primary concern appears intertwined with code

pertaining to other concerns, which may hamper understandability. Ideally, additional

concerns would be modules we would be able to plug and unplug. In the example, note

how the ’feedback’ argument is used to switch on and off the "Messages to the user"

concern.

119

APPENDIX G. MODULARITY IN MATLAB

Many other concerns may be found in MATLAB systems. For example, checking

of arguments to determine the "mode" under which the function will run, checking

whether a variable is of a certain type or shape; parallelization; specialized instructions

to force variables to keep using some specific type or shape, etc. Other languages may

provide features that prevent some of these symptoms to emerge.

Your participation in this research study is voluntary. You may choose not to par-

ticipate. If you decide to participate in this research survey, you may withdraw at any

time.

We will do our best to keep your information confidential. All data is stored in a

password protected electronic format. To help protect your confidentiality, the surveys

will not contain information that will personally identify you. The results of this study

will be used for scholarly purposes only and may be shared in papers of the specialty.

The procedure involves filling an on-line survey that will take approximately 10 min-

utes. Your responses will be confidential and we do not collect identifying information

such as your name, email address or IP address.

Do you agree to the above terms? By clicking Yes, you consent that you are willing

to answer the questions in this survey.

Yes

No

120

—————————————– Tangling/Scattering —————————————–

1. I usually find tangling of concerns in the same function or m-file, such as described

in the example provided.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

2. It is easier to understand code where multiple concerns (such as described in the

example provided) are not tangled with each other in the same module (function

or m-file).

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

121

APPENDIX G. MODULARITY IN MATLAB

3. Code tangling in MATLAB may reduce understandability in the long term for the

original programmer or by other programmers.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

4. Beyond the "concerns" highlighted in the previous figure, can you identify other

concerns?

Yes

No

5. If yes, please name the ones you can think of.

6. When working in a MATLAB program, I try to avoid duplicated code whenever

possible.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

7. How often do you see examples of tangling in your code?

Always

Most of the time

About half the time

Sometimes

Never

122

8. I often think in terms of modularity when programming in MATLAB.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

9. When I work on a MATLAB program, I normally find duplicated code across the

various m-files.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

10. When I program in MATLAB, I try to divide my code in small modules (functions

or m-files) as a strategy to mitigate complexity.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

11. I consider symptoms of code tangling to be something normal.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

12. My problems of code tangling are caused by lack of modularity mechanisms in

MATLAB.

123

APPENDIX G. MODULARITY IN MATLAB

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

13. When I program in MATLAB, I do not make an effort to eliminate duplicated

code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

————————————– MATLAB Legacy Code ————————————–

14. The first thing I do, when I start maintaining a MATLAB program, is visualize

and analyze the source code using a tool such as MathWorks’ Dependency Report.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

15. I do not expect anybody besides me to run or improve my MATLAB programs.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

16. While maintaining a MATLAB program, I did not experience any difficulties in

understanding the code or its structure.

124

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

17. In the past, I had to maintain a MATLAB program for a long period of time.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

18. Sometimes I feel the need to have a tool that helps visualize the structure of my

MATLAB code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

19. Good modularity brings benefits to the maintainability of a MATLAB program.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

20. My MATLAB programs are mainly developed for solving short-term problems.

Strongly agree

Somewhat agree

Neither agree nor disagree

125

APPENDIX G. MODULARITY IN MATLAB

Somewhat disagree

Strongly disagree

21. When I develop a MATLAB program, I make a strong effort to make it reusable.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

22. The dependency report tool offered by MathWorks is enough to visualize the

structure of my code.

Strongly agree

Somewhat agree

Neither agree nor disagree

Somewhat disagree

Strongly disagree

———————————— Background Information ————————————

23. How many years of experience do you have programming in MATLAB?

Less than 1 year

1 to 4 years

5 to 9 years

More than 10 years

24. Last time I programmed in MATLAB program was ...

less than 1 year ago.

between 2 to 3 years ago.

over 4 years ago.

Other:

126

25. I normally deal with MATLAB programs with...

2 1 to 5 m-files.

2 6 to 10 m-files.

2 11 to 15 m-files.

2 16 to 20 m-files.

2 21 to 50 m-files.

2 more than 51 m-files.

26. For which purpose(s) do you use MATLAB?

27. I normally work with a team of developers rather than alone, when I am develop-

ing a MATLAB system.

Yes

No

28. How many developers (besides yourself) make up the developing team:

29. How would you classify the nature of your work when using MATLAB:

2 Industry

2 Research

2 Teaching

2 Other:

30. I normally deal with MATLAB m-files with...

1 function.

2 to 5 functions.

5 to 10 functions.

more than 11 functions.

127

APPENDIX G. MODULARITY IN MATLAB

31. How many toolboxes you tend to use?

1 to 5

6 to 10

11 to 20

more than 21

32. Which toolboxes do you use the most?

33. Using the United Nations - International Standard Industrial Classification, where

do you care out your work?

Agriculture, forestry and fishing

Mining and quarrying

Manufacturing

Electricity, gas, steam and air conditioning supply

Water supply; sewerage, waste management and remediation

Construction

Wholesale and retail trade; repair of motor vehicles and motorcycles

Transportation and storage

Accommodation and food service activities

Information and communication

Financial and insurance activities

Real estate activities

Professional, scientific and technical activities

Administrative and support service activities

Public administration and defence; compulsory social security

Education

Human health and social work activities

Arts, entertainment and recreation

128

Other service activities

Activities of households as employers; undifferentiated goods- and services-

producing activities of households for own use

Activities of extraterritorial organizations and bodies

34. I use MATLAB to perform this kind of work:

2 Signal Processing

2 Image Processing

2 Data Analysis

2 Production Analytics

2 Machine Learning

2 Simulation

2 Other:

35. Which workspace do you use when programming MATLAB?

2 MathWorks

2 GNU Octave

2 Scilab

36. Are you familiar with other programming languages?

Yes

No

37. Which languages are you familiar with?

2 C/C++

2 Python

2 Java

2 Others:

If you wish to get the preliminary results of this study, just leave your email or

LinkedIn URL in this box.

129

	List of Figures
	List of Tables
	Listings
	Glossary
	Acronyms
	Introduction
	The Problem: Limitations in the Support to Modularity in MATLAB
	The Approach: Survey-based Empirical Study
	Research Objectives
	Research Questions
	Hypothesis Formulation
	Document Structure

	MATLAB Programming Language
	Introduction
	History
	Basic Syntax
	Variables
	Arrays
	Operators
	Statements
	Functions
	Toolboxes

	M-files
	Function Files
	Script Files

	GNU Octave compatibility with MATLAB
	GNU Octave History
	Similarities
	Differences

	Conclusion

	MATLAB Modularity Study
	Introduction
	PIMETA instantiation of MATLAB Grammar
	Comparing modularity between MATLAB and Java
	Limitations in the Support to Modularity in MATLAB
	Conclusion

	Study Design
	Introduction
	Research Paradigms
	Types of Empirical Studies
	Survey
	Case Study
	Experiment

	Survey Design
	Variables
	Dependent Variables
	Independent Variables

	Planning
	Participants
	Communities
	Participants Filter

	Sampling
	Sampling Methods
	Calculate a Sample Size

	Instrumentation
	Create the Questions
	Response Formats

	Data Collection
	Survey Software
	Analysis Procedure
	Validity Evaluation
	Conclusion

	Execution
	Introduction
	Questionnaire Structure
	Sample
	Pilot Test
	Questionnaire Execution
	Social Networks

	Data Collection Performed
	Threats to Validity
	Conclusion

	Analysis
	Introduction
	Internal Consistency
	Kendall tau distance
	Principal component analysis
	Cronbach's alpha

	Participants Profile
	Descriptive Statistics
	Hypothesis Testing
	One-Sample Chi-Square Test
	Spearman's Correlation Test
	Mann-Whitney U Test

	Conclusions and Future Work
	Summary
	Results
	Contributions
	Research Limitations
	Future Work

	Bibliography
	MATLAB Feature and Dependency Types
	Formulas
	Modularity in MATLAB - Pilot Test
	Feedback from Pilot Test
	Questions created for the survey
	Invitation Texts
	Post
	Email

	Modularity in MATLAB

