
P versus NP
Frank Vega
CopSonic, 1471 Route de Saint-Nauphary 82000 Montauban, France
vega.frank@gmail.com

Abstract
P versus NP is considered as one of the most important open problems in computer science. This
consists in knowing the answer of the following question: Is P equal to NP? The precise statement
of the P versus NP problem was introduced independently by Stephen Cook and Leonid Levin.
Since that date, all efforts to find a proof for this problem have failed. Another major complexity
class is P-Sel. P-Sel is the class of decision problems for which there is a polynomial time algorithm
(called a selector) with the following property: Whenever it’s given two instances, a “yes” and a
“no” instance, the algorithm can always decide which is the “yes” instance. It is known that if NP
is contained in P-Sel, then P = NP .

We consider the problem of computing the sum of the weighted densities of states of a Boolean
formula in 3CNF . Given a Boolean formula φ with m clauses, the density of states n(E) for some
integer 0 ≤ E ≤ m counts the number of truth assignments that leave exactly E clauses unsatisfied
in φ. The weighted density of states m(E) is equal to E × n(E). The sum of the weighted densities
of states of a Boolean formula in 3CNF with m clauses is equal to

∑m

E=0 m(E). We prove that we
can calculate the sum of the weighted densities of states in polynomial time.

Given two Boolean formulas φ1 and φ2 in 3CNF with n variables andm clauses, the combinatorial
optimization problem SELECTOR-3SAT consists in selecting the formula which is satisfiable, where
every clause from φ1 and φ2 can be unsatisfied for some truth assignment. We assume that the
formula that is satisfiable has the minimum sum of the weighted densities of states. In this way,
we solve SELECTOR-3SAT with an exact polynomial time algorithm. We claim this problem is a
selector of 3SAT and thus, P = NP .
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1 Introduction

The P versus NP problem is a major unsolved problem in computer science [7]. This is
considered by many to be the most important open problem in the field [7]. It is one of the
seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US
1,000,000 prize for the first correct solution [7]. It was essentially mentioned in 1955 from
a letter written by John Nash to the United States National Security Agency. However, a
precise statement of the P = NP problem was introduced in 1971 by Stephen Cook in a
seminal paper [7]. In 2012, a poll of 151 researchers showed that 126 (83%) believed the
answer to be no, 12 (9%) believed the answer is yes, 5 (3%) believed the question may be
independent of the currently accepted axioms and therefore impossible to prove or disprove,
8 (5%) said either do not know or do not care or don’t want the answer to be yes nor the
problem to be resolved [14].

The P = NP question is also singular in the number of approaches that researchers
have brought to bear upon it over the years [10]. From the initial question in logic, the
focus moved to complexity theory where early work used diagonalization and relativization
techniques [10]. It was showed that these methods were perhaps inadequate to resolve P
versus NP by demonstrating relativized worlds in which P = NP and others in which
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P 6= NP [4]. This shifted the focus to methods using circuit complexity and for a while this
approach was deemed the one most likely to resolve the question [10]. Once again, a negative
result showed that a class of techniques known as “Natural Proofs” that subsumed the above
could not separate the classes NP and P , provided one-way functions exist [21]. There
has been speculation that resolving the P = NP question might be outside the domain of
mathematical techniques [10]. More precisely, the question might be independent of standard
axioms of set theory [10]. Some results have showed that some relativized versions of the
P = NP question are independent of reasonable formalizations of set theory [15].

A major complexity class is Sharp-P (denoted as #P ) [24]. This can be defined by the
class of function problems of the form “compute f(x)”, where f is the number of accepting
paths of a nondeterministic Turing machines, where this machine always accepts in polynomial
time [24]. In previous years there has been great interest in the verification or checking of
computations [18]. Interactive proofs introduced by Goldwasser, Micali and Rackoff and Babi
can be viewed as a model of the verification process [18]. Dwork and Stockmeyer and Condon
have studied interactive proofs where the verifier is a space bounded computation instead of
the original model where the verifier is a time bounded computation [18]. In addition, Blum
and Kannan have studied another model where the goal is to check a computation based
solely on the final answer [18]. More about probabilistic logarithmic space verifiers and the
complexity class NP has been investigated on a technique of Lipton [18]. We show some
results about the logarithmic space verifiers applied to a problem in the class #P .

A set L1 ⊆ {0, 1}∗ is defined to be p-selective if there is a function f : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ so that

f is computable in polynomial time,
f(x, y) = x or f(x, y) = y,
x ∈ L1 or y ∈ L1 implies that f(x, y) ∈ L1.

The function f is a selector for L1. P-Sel is the class of decision problems defined on languages
which are p-selective [22]. It is known that if NP is contained in P-Sel, then P = NP [22].
We claim a possible selector for 3SAT and thus, P = NP .

2 Materials & Methods

2.1 Polynomial time verifiers
Let Σ be a finite alphabet with at least two elements, and let Σ∗ be the set of finite strings
over Σ [3]. A Turing machine M has an associated input alphabet Σ [3]. For each string w
in Σ∗ there is a computation associated with M on input w [3]. We say that M accepts w if
this computation terminates in the accepting state, that is M(w) = “yes” [3]. Note that M
fails to accept w either if this computation ends in the rejecting state, that is M(w) = “no”,
or if the computation fails to terminate, or the computation ends in the halting state with
some output, that is M(w) = y (when M outputs the string y on the input w) [3].

The language accepted by a Turing machineM , denoted L(M), has an associated alphabet
Σ and is defined by:

L(M) = {w ∈ Σ∗ : M(w) = “yes”}.

Moreover, L(M) is decided by M , when w /∈ L(M) if and only if M(w) = “no” [8]. We
denote by tM (w) the number of steps in the computation of M on input w [3]. For n ∈ N
we denote by TM (n) the worst case run time of M ; that is:

TM (n) = max{tM (w) : w ∈ Σn}
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where Σn is the set of all strings over Σ of length n [3]. We say that M runs in polynomial
time if there is a constant k such that for all n, TM (n) ≤ nk + k [3]. In other words, this
means the language L(M) can be decided by the Turing machine M in polynomial time.
Therefore, P is the complexity class of languages that can be decided by deterministic Turing
machines in polynomial time [8]. A verifier for a language L1 is a deterministic Turing
machine M , where:

L1 = {w : M(w, c) = “yes” for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time
verifier runs in polynomial time in the length of w [3]. A verifier uses additional information,
represented by the symbol c, to verify that a string w is a member of L1. This information
is called certificate. NP is also the complexity class of languages defined by polynomial time
verifiers [20].

A decision problem in NP can be restated in this way: There is a string c with M(w, c) =
“yes” if and only if w ∈ L1, where L1 is defined by the polynomial time verifier M [20].
The function problem associated with L1, denoted FL1, is the following computational
problem: Given w, find a string c such that M(w, c) = “yes” if such string exists; if no
such string exists, then reject, that is, return “no” [20]. The complexity class of all function
problems associated with languages in NP is called FNP [20]. FP is the complexity class
that contains those problems in FNP which can be solved in polynomial time [20].

To attack the P versus NP question the concept of NP-completeness has been very
useful [13]. A principal NP-complete problem is SAT [13]. An instance of SAT is a Boolean
formula φ which is composed of:

1. Boolean variables: x1, x2, . . . , xn;
2. Boolean connectives: Any Boolean function with one or two inputs and one output, such

as ∧(AND), ∨(OR), ⇁(NOT), ⇒(implication), ⇔(if and only if);
3. and parentheses.

A truth assignment for a Boolean formula φ is a set of values for the variables in φ. On the
one hand, a satisfying truth assignment is a truth assignment that causes φ to be evaluated
as true. On the other hand, a truth assignment that causes φ to be evaluated as false is
a unsatisfying truth assignment. A Boolean formula with a satisfying truth assignment is
satisfiable and without any satisfying truth assignment is unsatisfiable. The problem SAT

asks whether a given Boolean formula is satisfiable [13].
A literal in a Boolean formula is an occurrence of a variable or its negation [8]. A Boolean

formula is in conjunctive normal form, or CNF , if it is expressed as an AND of clauses,
each of which is the OR of one or more literals [8]. A Boolean formula is in 3-conjunctive
normal form or 3CNF , if each clause has exactly three distinct literals [8]. Another relevant
NP-complete language is 3CNF satisfiability, or 3SAT [8]. In 3SAT , it is asked whether a
given Boolean formula φ in 3CNF is satisfiable.

An important complexity is Sharp-P (denoted as #P ) [24]. We can also define the class
#P using polynomial time verifiers. Let {0, 1}∗ be the infinite set of binary strings, a function
f : {0, 1}∗ → N is in #P if there exists a polynomial time verifier M such that for every
x ∈ {0, 1}∗,

f(x) = |{y : M(x, y) = “yes”}|

where | · · · | denotes the cardinality set function [3].
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2.2 Logarithmic space verifiers
A logarithmic space Turing machine has a read-only input tape, a write-only output tape,
and read/write work tapes [23]. The work tapes may contain at most O(logn) symbols [23].
In computational complexity theory, L is the complexity class containing those decision
problems that can be decided by a deterministic logarithmic space Turing machine [20].
NL is the complexity class containing the decision problems that can be decided by a
nondeterministic logarithmic space Turing machine [20].

We can give a certificate-based definition for NL [3]. The certificate-based definition of
NL assumes that a logarithmic space Turing machine has another separated read-only tape
[3]. On each step of the machine, the machine’s head on that tape can either stay in place or
move to the right [3]. In particular, it cannot reread any bit to the left of where the head
currently is [3]. For that reason, this kind of special tape is called “read-once” [3].

I Definition 1. A language L1 is in NL if there exists a deterministic logarithmic space
Turing machine M with an additional special read-once input tape polynomial p : N → N
such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p([x]) such that M(x, u) = “yes”

where by M(x, u) we denote the computation of M where x is placed on its input tape, and
the certificate u is placed on its special read-once tape, and M uses at most O(log[x]) space
on its read/write tapes for every input x, where [. . .] is the bit-length function [3]. M is called
a logarithmic space verifier [3].

An interesting complexity class is Sharp-L (denoted as #L). #L has the same relation to
L as #P does to P [2]. We can define the class #L using logarithmic space verifiers as well.

I Definition 2. Let {0, 1}∗ be the infinite set of binary strings, a function f : {0, 1}∗ → N
is in #L if there exists a logarithmic space verifier M such that for every x ∈ {0, 1}∗,

f(x) = |{u : M(x, u) = “yes”}|

where | · · · | denotes the cardinality set function [2].

A logarithmic space transducer is a Turing machine with a read-only input tape, a
write-only output tape, and read/write work tapes [23]. The work tapes must contain at most
O(logn) symbols [23]. A logarithmic space transducer M computes a function f : Σ∗ → Σ∗,
where f(w) is the string remaining on the output tape after M halts when it is started with
w on its input tape [23]. We call f a logarithmic space computable function [23]. We say that
a language L1 ⊆ {0, 1}∗ is logarithmic space reducible to a language L2 ⊆ {0, 1}∗, written
L1 ≤l L2, if there exists a logarithmic space computable function f : {0, 1}∗ → {0, 1}∗ such
that for all x ∈ {0, 1}∗:

x ∈ L1 if and only if f(x) ∈ L2.

The two-way Turing machines may move their head on the input tape into two-way (left and
right directions) while the one-way Turing machines are not allowed to move the head on the
input tape to the left [16]. Hartmanis and Mahaney have investigated the classes 1L and
1NL of languages recognizable by deterministic one-way logarithmic space Turing machine
and nondeterministic one-way logarithmic space Turing machine, respectively [16].

I Lemma 3. NL is closed under nondeterministic logarithmic space reductions to every
language in 1NL.
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Proof. Suppose, we have two languages L1 and L2 ∈ 1NL, such that there is a nondetermin-
istic logarithmic space Turing machine M which makes a reduction from x ∈ L1 into
M(x) ∈ L2. Besides, we assume there is a nondeterministic one-way logarithmic space
Turing machine M ′ which decides L2. Hence, we only need to prove that M ′(M(x)) is a
nondeterministic logarithmic space Turing machine. The solution to this problem is simple:
We do not explicitly store the output result of M in the work tapes of M ′. Instead, whenever
M ′ needs to move the head on the input tape (this tape will be the output tape of M), then
we continue the computation of M on input x long enough for it to produce the new output
symbol; this is the symbol that will be the next scanned symbol on the input tape of M ′.

IfM ′ only needs to read currently from the work tapes, then we just pause the computation
of M on the input x and continue the computation of M ′ until this needs to move to the
right on the input tape. We can always continue the simulation, because M ′ never moves
the head on the input tape to the left. We only accept when the machine M enters in the
halting state and M ′ enters in the accepting state otherwise we reject. It is clear that this
simulation indeed computes M ′(M(x)) in a nondeterministic logarithmic space. In this way,
we obtain x ∈ L1 if and only if M ′(M(x)) = “yes” which is a clear evidence that L1 is in
NL. J

We can give an equivalent definition for NL, but this time the output is a string which
belongs to a language in 1NL.

I Definition 4. A language L1 is in NL if there exists another nonempty language L2 ∈ 1NL
and a deterministic logarithmic space Turing machine M with an additional special read-once
input tape polynomial p : N→ N such that for every x ∈ {0, 1}∗:

x ∈ L1 ⇔ ∃ u ∈ {0, 1}p([x]) such that M(x, u) = y, where y ∈ L2

and by M(x, u) = y we denote the computation of M where x is placed on its input tape, and
y is the remaining string in the output tape on M after the halting state, and the certificate u
is placed on its special read-once tape, and M uses at most O(log[x]) space on its read/write
tapes for every input x, where [. . .] is the bit-length function [3]. We callM an output-one-way
logarithmic space verifier. This definition is still valid, because of Lemma 3.

According to the previous definition, we can redefine #L as follows:

I Definition 5. Let {0, 1}∗ be the infinite set of binary strings, a function f : {0, 1}∗ → N is
in #L if there exists another nonempty language L2 ∈ 1NL, and a nondeterministic one-way
logarithmic space Turing machine M ′ which decides L2, and an output-one-way logarithmic
space verifier M such that for every x ∈ {0, 1}∗,

f(x) = |{(u, p) : M(x, u) = y, where y ∈ L2 and p is an accepting path of M ′(y)}|

and | · · · | denotes the cardinality set function. This definition is still valid under the result of
Lemma 3.

3 Results

I Definition 6. Given a Boolean formula φ with m clauses, the density of states n(E) for
some integer 0 ≤ E ≤ m counts the number of truth assignments that leave exactly E clauses
unsatisfied in φ [11]. The weighted density of states m(E) is equal to E × n(E). The sum of
the weighted densities of states of a Boolean formula in 3CNF with m clauses is equal to∑m

E=0 m(E).
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We define a new problem:

I Definition 7. EXACTLY-THRICE
INSTANCE: A unary string 0q and a collection of binary strings, such that each element

in the collection represents a power number in base 2 with a bit-length lesser than or equal to
q. The collection of numbers is represented by an array N .

QUESTION: Is there an element repeated exactly thrice in N?

I Theorem 8. EXACTLY-THRICE ∈ 1NL.

Proof. Given an instance (0q, N) of EXACTLY-THRICE, then we can read its elements
from left to right on the input tape, verify that every element in the collection is a binary
string, and finally check whether every element in N has a bit-length lesser than or equal
to q. In addition, we can nondeterministically pick a binary integer d between 1 and q and
accept in case of there exists the number 2d−1 exactly thrice in N .

We can make all this computation in a nondeterministic one-way using logarithmic space.
Certainly, the verification of the membership of 2d−1 in N could be done in logarithmic
space, since it is trivial to check whether a binary string represents the power 2d−1. Besides,
we can store a logarithmic amount of symbols, because of d has an exponential more succinct
representation in relation to the unary string 0q [20]. Moreover, the variables that we could
use for the iteration of the elements in N have a logarithmic space in relation to the length
of the instance (0q, N).

We never need to move to the left on the input tape for the acceptance or rejection of
the elements in EXACTLY-THRICE in a nondeterministic logarithmic space. We describe
this nondeterministic one-way logarithmic space computation in the Algorithm 1. In this
algorithm, we assume a value does not exist in the array N into the cell of some position
i when N [i] = undefined. To sum up, we actually prove that EXACTLY-THRICE is in
1NL. J

Let’s consider a function problem:

I Definition 9. #CLAUSES-3UNSAT
INSTANCE: Two natural numbers n, m, and a Boolean formula φ in 3CNF of n variables

and m clauses. The clauses are represented by an array C, such that C represents a set of
m set elements, where C[i] = Si if and only if Si is exactly the set of literals into a clause ci

in φ for 1 ≤ i ≤ m. Besides, each variable in φ is represented by a unique integer between 1
and n. In addition, a negative or positive integer represents a negated or non-negated literal,
respectively.

ANSWER: The sum of the weighted densities of states of the Boolean formula φ.

I Theorem 10. #CLAUSES-3UNSAT ∈ FP .

Proof. We are going to show there is a deterministic Turing machine M , where:

#CLAUSES-3UNSAT = {w : M(w, u) = y,∃ u such that y ∈ EXACTLY-THRICE}

when M runs in logarithmic space in the length of w, u is placed on the special read-
once tape of M , and u is polynomially bounded by w. Given an instance (n,m,C) of
#CLAUSES-3UNSAT, we firstly check whether this instance has an appropriate represent-
ation according to the constraints introduced in the Definition 9. The constraints for the
Definition 9 are the following ones:
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ALGORITHM 1: ONE-WAY-ALGO
Data: (0q, N) where (0q, N) is an instance of EXACTLY-THRICE
Result: A nondeterministic acceptance or rejection in one-way logarithmic space
// Get the length of the unary string 0q as a binary string
q ←− length(0q);
// Generate nondeterministically an arbitrary integer between 1 and q

d←− random(1, q);
t←− 0;
// Initial position in N

i←− 1;
while N [i] 6= undefined do

s←− 0;
// N [i][j] represents the jth digit of the string in N [i]
for j ← 1 to q + 1 do

if j = q + 1 then
if N [i][j] 6= undefined then

// There exists an element with bit-length greater than q

return “no”;
end

end
else if (j = 1 ∧N [i][j] 6= 1) ∨ (j > 1 ∧N [i][j] = 1) ∨N [i][j] /∈ {0, 1, undefined} then

// The element N [i] is not a binary string
return “no”;

end
else if N [i][j] = undefined then

// Break the current for loop statement
break;

end
else

// Store the current position of digit N [i][j] in N [i]
s←− s+ 1;

end
end
if s = d ∧ t < 4 then

// The element N [i] is equal to 2d−1

t←− t+ 1;
end
i←− i+ 1;

end
if t = 3 then

// The element 2d−1 appears exactly thrice in N

return “yes”;
end
else

return “no”;
end
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ALGORITHM 2: CHECK-ALGO
Data: (n,m,C) where (n,m,C) is an instance of #CLAUSES-3UNSAT
Result: A logarithmic space subroutine
if n < 1 ∨m < 1 then

// n or m is not a natural number
return “no”;

end
for i← 1 to m+ 1 do

if (i < m+ 1 ∧ C[i] = undefined) ∨ (i = m+ 1 ∧ C[i] 6= undefined) then
// C does not contain exactly m sets
return “no”;

end
end
for i← 1 to n do

t←− 0;
foreach j ← 1 to m; C[j] = {x, y, z} do

// abs(. . .) denotes the absolute value operation
if abs(x) < 1 ∨ abs(y) < 1 ∨ abs(z) < 1 ∨ abs(x) > n ∨ abs(y) > n ∨ abs(z) > n then

// C does not contain exactly n variables from 1 to n

return “no”;
end
if t = 0 ∧ (i = abs(x) ∨ i = abs(y) ∨ i = abs(z)) then

// Store the existence of the variable i in C

t←− 1;
end

end
if t = 0 then

// C does not contain the variable i

return “no”;
end

end
for i← 1 to m− 1 do

for j ← i+ 1 to m do
// ∩ denotes the intersection set operation
if C[i] ∩ C[j] = C[i] then

// The array C is not exactly a “set” of set elements
return “no”;

end
// | · · · | denotes the cardinality set function
if |C[i]|+ |C[j]| 6= 6 then

// C[i] or C[j] does not contain exactly three elements
return “no”;

end
end

end
// The instance (n,m,C) is appropriate for #CLAUSES-3UNSAT
return “yes”;
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ALGORITHM 3: VERIFIER-ALGO
Data: (n,m,C,A) where (n,m,C) is an instance of #CLAUSES-3UNSAT and A is a

certificate
Result: An output-one-way logarithmic space verifier
if CHECK-ALGO(n,m,C) = “no” then

// (n,m,C) is not an appropriate instance of #CLAUSES-3UNSAT
return “no”;

end
else

output 0m;
end
// Minimum current variable during the iteration of the array A

x←− 0;
for i← 1 to n+ 1 do

if i = n+ 1 then
if A[i] 6= undefined then

// The array A contains more than n elements
return “no”;

end
end
else if A[i] = undefined ∨ abs(A[i]) < 1 ∨ abs(A[i]) > n ∨ abs(A[i]) ≤ x then

// The certificate A is not appropriate
return “no”;

end
else

// abs(. . .) denotes the absolute value operation
x←− abs(A[i]);
y ←− A[i];
for j ← 1 to m do

if y ∈ C[j] then
// Output the number 2j−1 when the set C[j] contains the literal y

output , 1;
if j − 1 > 0 then

output 0j−1;
end

end
end

end
end
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1. The array C must contain exactly m sets and,
2. each variable must be represented by a unique integer between 1 and n and,
3. there are no two equals sets inside of C and finally,
4. every set element must contain exactly three distinct literals.

All these requirements are verified in the logarithmic space Algorithm 2, where this
subroutine decides whether the instance has an appropriate representation according to the
Definition 9. After that verification, we use a certificate as an array A, such that this consists
in an array of n different integer numbers in ascending absolute value order. We read at once
the elements of the array A and we reject whether this is not an appropriate certificate: That
is, when the absolute value of the numbers are not sorted in ascending order, or the array
A does not contain exactly n elements, or the array A contains a number that its absolute
value is not between 1 and n, since every variable is represented by an integer between 1 and
n in C.

While we read each element x of the array A, then we copy the binary numbers 2j−1 that
represent the sets C[j] which contain the literal x just creating another instance (0q, N) of
EXACTLY-THRICE, where the value of q is equal to m. Since the array A does not contain
repeated elements, then we could correspond each certificate A to a truth assignment for
φ with a representation of all the variables in φ, such that the literals in A are false where
the literals are represented by positive or negative integers according to the Definition 9.
We know a set C[j] that represents a clause is false if and only if the three literals in C[i]
are false. Therefore, the evaluation as false into the literals of the array A corresponds to a
unsatisfying truth assignment in φ if and only if we write some number 2j−1 thrice to the
output tape, where 2j−1 represents a set C[j] for some 1 ≤ j ≤ m.

Furthermore, we can make this verification in logarithmic space such that the array A is
placed on the special read-once tape, because we read at once the elements in the array A.
Indeed, the variables that we could use for the iteration of the elements in A and C have a
logarithmic space in relation to the length of the instance (n,m,C). Hence, we only need
to iterate from the elements of the array A to verify whether the array is an appropriate
certificate and write to the output tape the representation as a power of two of the sets in C
that contain the literals in A. This logarithmic space verification will be the Algorithm 3.
We assume whether a value does not exist in the arrays A or C into the cell of some position
i when A[i] = undefined or C[i] = undefined, respectively.

The Algorithm 3 is an output-one-way logarithmic space verifier, since this never moves
the head on the special read-once tape to the left, where it is placed the certificate A.
Moreover, for every unsatisfying truth assignment represented by the array A, then the
output of this output-one-way logarithmic space verifier will always belong to the language
EXACTLY-THRICE, where we know that EXACTLY-THRICE ∈ 1NL as a consequence of
Theorem 8. In addition, every appropriate certificate A is always polynomially bounded by
the instance (n,m,C).

Consequently, we demonstrate that #CLAUSES-3UNSAT belongs to the complexity
class #L under the Definition 5. Certainly, every truth assignment in φ corresponds to a
single certificate in our output-one-way logarithmic space verifier. In addition, the number of
accepting paths in the Algorithm 1 for the generated instance (0q, N) of EXACTLY-THRICE
is exactly the number of unsatisfied clauses for a single truth assignment.

The number of accepting paths in the Algorithm 1 for a single instance is equal to the
number of different powers of two that exist exactly thrice in the array N . Actually, this
corresponds to the number of unsatisfied clauses for the truth assignment that represents
the certificate A. We know that #L is contained in the class FP [2], [6], [3]. As result, #L
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remains in the class FP under the Definition 5 as a consequence of Lemma 3. In conclusion,
we show that #CLAUSES-3UNSAT is indeed in FP . J

Let’s consider an interesting problem:

I Definition 11. SELECTOR-3SAT
INSTANCE: Two Boolean formulas φ1 and φ2 in 3CNF with simultaneously n variables

and m clauses, where every clause from φ1 and φ2 can be unsatisfied for some truth assignment.
The clauses in the Boolean formula φj is represented by a set Sj, such that Sj represents
a set of m set elements, where Si,j ∈ Sj if and only if Si,j is exactly the set of literals into
a clause ci in φj for 1 ≤ i ≤ m and j ∈ {1, 2}. Besides, each variable from the formulas
φ1 and φ2 is represented by a unique integer between 1 and n within the sets S1 and S2,
respectively. In addition, a negative or positive integer represents a negated or non-negated
literal, respectively.

ANSWER: The Boolean formula that is satisfiable between φ1 and φ2 when φ1 ∈ 3SAT
or φ2 ∈ 3SAT .

ALGORITHM 4: SELECTOR-ALGO
Data: (S1, S2) where (S1, S2) represents two Boolean formulas in 3CNF with n variables and

m clauses
Result: A polynomial time algorithm
if (S1, S2) is not an appropriate instance of SELECTOR-3SAT then

return “no”;
end
else if POLY-ALGO(S1) ≤ POLY-ALGO(S2) then

return S1;
end
else

return S2;
end

I Theorem 12. SELECTOR-3SAT ∈ FP .

Proof. Consider the Algorithm 4, where POLY-ALGO is a polynomial time algorithm for
#CLAUSES-3UNSAT. Indeed, POLY-ALGO converts a set of clauses S in an appropriate
instance of #CLAUSES-3UNSAT and solve it. We state that the Algorithm 4 solves
SELECTOR-3SAT. Certainly, given two Boolean formulas φ1 and φ2 in 3CNF with n

variables and m clauses, then they comply that the one which is satisfiable contains the
minimum sum of the weighted densities of states, when every clause from the formulas φ1 and
φ2 can be unsatisfied for some truth assignment. Moreover, the Algorithm 4 is computable
in polynomial time due to the Theorem 10.

Diophantine equations of the form
∑m

E=0 E × xE = c are solvable in polynomial time for
arbitrary values of m [13]. We can apply this Diophantine equation such that c is the value
of the sum of the weighted densities of states from a Boolean formula φ in 3CNF , E × xE is
the value of each term E × n(E), where n(E) corresponds to the unknown value of xE . If a
Boolean formula φ in 3CNF with n variables is unsatisfiable, then

∑m
E=1 x

′
E = 2n is true.

Certainly, if the Boolean formula φ has n variables, then φ has exactly 2n possible truth
assignments. Besides, if another Boolean formula ψ in 3CNF with n variables is satisfiable,
then

∑m
E=1 x

′′
E < 2n is true. In this way, if we have that

∑m
E=1 x

′′
E <

∑m
E=1 x

′
E , then we

should also have that
∑m

E=0 E × x′′E <
∑m

E=0 E × x′E .
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This is based on if n(E) > 0 for some Boolean formula φi and n(E) = 0 for another
Boolean formula φk, then there are more chances that the other values n(E′) in φi are greater
than the values of n(E′) in φk as much as E′ is more close to E and the values of n(E′) in
φi are lesser than the values of n(E′) in φk when E′ is less close to E, where the tuple of φi

and φk represents an instance of SELECTOR-3SAT: Note that, as much as E′ and n(E′)
increase their values, then m(E′) increases its value as well, where this happens exactly when
E′ is less close to E. In general, as much as m(E′) increases its value, then the sum of the
weighted densities of states increases its value in the same way. In conclusion, we show that
SELECTOR-3SAT is in FP . J

I Theorem 13. P = NP .

Proof. The combinatorial optimization problem SELECTOR-3SAT could be used for a
possible selector of 3SAT [22]. We claim that given two Boolean formulas φ1 and φ2 in 3CNF
that represents an instance of SELECTOR-3SAT, such that this tuple of formulas consists in
a pair of a satisfiable and an unsatisfiable formula, then the problem SELECTOR-3SAT can
always select the satisfiable formula. Certainly, we could extend this to use it for every pair
of Boolean formulas φ1 and φ2 in 3CNF with not necessarily the same amount of variables
and clauses.

For example, we could modify every pair of Boolean formulas φ1 and φ2 in 3CNF
into another tuple of Boolean formulas φ′1 and φ′2 in 3CNF that represents an instance of
SELECTOR-3SAT, such that φi is satisfiable if and only if φ′i is satisfiable for i ∈ {1, 2}.
Indeed, we can add an arbitrary number of variables and clauses to a Boolean formula ψ
in 3CNF , such that ψ remains satisfiable or unsatisfiable after the modification. In this
way, we can polynomially add a number of variables and clauses to the Boolean formulas φ1
and φ2 in 3CNF until we obtain another equivalent tuple of Boolean formulas φ′1 and φ′2 in
3CNF that represents an instance of SELECTOR-3SAT. For that reason, we could prove
that P = NP as a consequence of Theorem 12. J

4 Conclusions

No one has been able to find a polynomial time algorithm for any of more than 300 important
known NP-complete problems [13]. A proof of P = NP will have stunning practical
consequences, because it possibly leads to efficient methods for solving some of the important
problems in NP [7]. The consequences, both positive and negative, arise since various
NP-complete problems are fundamental in many fields [7].

Cryptography, for example, relies on certain problems being difficult. A constructive
and efficient solution to an NP–complete problem such as 3SAT will break most existing
cryptosystems including: Public-key cryptography [17], symmetric ciphers [19] and one-way
functions used in cryptographic hashing [9]. These would need to be modified or replaced by
information-theoretically secure solutions not inherently based on P–NP equivalence.

There are positive consequences that will follow from rendering tractable many currently
mathematically intractable problems. For instance, many problems in operations research
are NP–complete, such as some types of integer programming and the traveling salesman
problem [13]. Efficient solutions to these problems have enormous implications for logistics
[7]. Many other important problems, such as some problems in protein structure prediction,
are also NP–complete, so this will spur considerable advances in biology [5].

Since all the NP–complete optimization problems become easy, everything will be much
more efficient [12]. Transportation of all forms will be scheduled optimally to move people



F. Vega 13

and goods around quicker and cheaper [12]. Manufacturers can improve their production to
increase speed and create less waste [12]. Learning becomes easy by using the principle of
Occam’s razor: We simply find the smallest program consistent with the data [12]. Near
perfect vision recognition, language comprehension and translation and all other learning tasks
become trivial [12]. We will also have much better predictions of weather and earthquakes
and other natural phenomenon [12].

But such changes may pale in significance compared to the revolution an efficient method
for solving NP–complete problems will cause in mathematics itself [7]. Research mathem-
aticians spend their careers trying to prove theorems, and some proofs have taken decades
or even centuries to find after problems have been stated [1]. For instance, Fermat’s Last
Theorem took over three centuries to prove [1]. A method that is guaranteed to find proofs
to theorems, should one exist of a “reasonable” size, would essentially end this struggle [7].
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