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Abstract 30 

We have little information on how and why soil microbial community assembly will respond to predicted 31 

increases in aridity by the end of this century. Here, we used correlation networks and structural equation 32 

modeling to assess the changes in the abundance of the ecological clusters including potential winner and 33 

loser microbial taxa associated with predicted increases in aridity. To do this, we conducted a field survey 34 

in an environmental gradient from eastern Australia, and obtained information on bacterial and fungal 35 

community composition for 120 soil samples, and multiple abiotic and biotic factors. Overall our 36 

structural equation model explained 83% of the variance in the two mesic modules. Increases in aridity 37 

led to marked shifts in the abundance of the two major microbial modules found in our network, which 38 

accounted for >99% of all phylotypes. In particular, the relative abundance of one of these modules, the 39 

Mesic-Module-#1, which was positively related to multiple soil properties and plant productivity, 40 

declined strongly with aridity. Conversely, the relative abundance of a second dominant module (Xeric-41 

Module-#2) was positively correlated with increases in aridity. Our study provides evidence that network 42 

analysis is a useful tool to identify microbial taxa that are either winners or losers under increasing aridity 43 

and therefore potentially under changing climates. Our work further suggests that climate change, and 44 

associated land degradation, could potentially lead to extensive microbial phylotypes exchange and local 45 

extinctions, as demonstrated by the reductions of up to 97% in the relative abundance of microbial taxa 46 

within Mesic-Module-#1.  47 
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Introduction 55 

Climate change is leading to a drier and hotter world and resulting in major soil degradation processes 56 

(Huang et al. 2016). Drylands already occupy over 45% of Earth’s landmass, with their cover expected 57 

to further increase by up to 23% by the end of this century (Huang et al. 2016). In drylands, soil bacteria 58 

and fungi are the most diverse and abundant organisms, and play critical roles in maintaining the rates 59 

and stability of multiple ecosystem functions, including litter decomposition, primary production, soil 60 

fertility and gas exchange (Delgado-Baquerizo et al. 2017). However, the diversity and abundance of 61 

fungi and bacteria are also highly vulnerable to climate change (Maestre et al. 2015). Microbial 62 

communities exhibit complex connections involving a large number of inter- and intra-dependent 63 

interactions, making it very difficult to predict how entire microbial communities are likely to respond 64 

to global environmental change (Rillig et al. 2015; Shi et al. 2016). Some taxa can potentially benefit 65 

from increases in aridity (winners), while other taxa will be hindered as aridity increases (losers; sensu 66 

Eldridge et al. 2018a). Identifying potential winner and loser taxa in response to increases in aridity could 67 

have potential future implications for the management of microbial communities under global change 68 

scenarios. Network analysis has recently been proposed as a promising approach to describe this 69 

complexity and to obtain deeper insights into the organization of microbial associations in terrestrial 70 

ecosystems (Shi et al. 2016). The structure of ecological networks, which integrates biodiversity, 71 

community composition, and ecosystem functioning (Tylianakis et al. 2008), is also regarded as a key 72 

attribute of biotic communities. Thus, taking a whole-network approach has the potential to advance our 73 

knowledge of microbial community and ecosystem responses to global change drivers (e.g., climate 74 

change) at both local and global scales (Barberán et al. 2012; Rillig et al. 2015; Neilson et al. 2017).  75 

Recent studies have demonstrated that soil microbial taxa strongly associate with each other, and 76 

lead to the formation of well-defined modules (nodes of fungi or bacteria, also called ecological clusters) 77 

of taxa, providing evidence for tightly synchronized responses among bacteria and fungi (Shi et al. 2016). 78 

Moreover, previous studies have provided evidence that specific taxa of fungi and bacteria can share 79 

certain environmental preferences (Barberán et al. 2012; Rillig et al. 2015). Thus, they share similar 80 

predictors, such as location (distance from the equator), climate (e.g. aridity and temperature) and soil 81 

properties (e.g. pH and nutrients; Ramirez et al. 2014, Tedersoo et al. 2014; Maestre et al. 2015). This 82 

suggests that particular bacterial and fungal taxa may strongly co-occur in soils across environmental 83 

gradients. Unlike traditional analyses, more focus on the microbial diversity and community composition 84 
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and, the identification of highly connected modular structures representing important ecological units 85 

(Shi et al. 2016; Delgado-Baquerizo et al. 2018a) provide a unique opportunity to integrate highly multi-86 

dimensional data (i.e., such as those from microbial communities), allowing more robust statistical 87 

inferences on the major predictors of entire microbial communities (Duran-Pinedo and others, 2011; Shi 88 

et al. 2016).  89 

Microbial modules have recently been reported to represent highly dynamic ecological structures 90 

that respond to changing environmental conditions. For example, Nuccio et al. (2016) and Shi et al. 91 

(2016) showed that the modularity of microbial networks from plant rhizospheres responds to biological 92 

activity during a growing season. Much less is known, however, about how changes in climate, such as 93 

predicted increases in aridity (Huang et al. 2016), affect the network of associations among bacterial and 94 

fungal taxa within drylands (Neilson et al. 2017). Increasing aridity may alter the relative abundance of 95 

modules both directly (i.e. via reductions in water availability; Maestre et al. 2015), and indirectly (via 96 

changes in soil properties and plant attributes; Delgado-Baquerizo et al. 2016). For example, increases in 97 

soil pH associated with increasing aridity can influence the diversity and community composition of soil 98 

bacteria and fungi (Rousk et al. 2010; Maestre et al. 2015), and as such could affect soil microbial 99 

networks.  100 

Here we applied network analyses and statistical modeling to data from a regional survey (>1000 101 

km) spanning a wide range of aridity conditions and three within-plot vegetation types (Fig. 1) to test the 102 

hypothesis that increases in aridity such as those forecasted under climate change will result in substantial 103 

shifts in the relative abundance of microbial modules, leading to a new network of microbial associations 104 

in soils in ecosystems from eastern Australia. More importantly, we aim to identify a list of winner and 105 

loser taxa in response to potential increases in aridity in eastern Australia (Huang et al. 2016).  106 

 107 

Material and Methods  108 

Study area 109 

We conducted this study at twenty locations from eastern Australia (Fig. 1A). Locations for this study 110 

were chosen to include a wide range of aridity levels including arid, semiarid and dry-subhumid 111 

ecosystems. The total annual precipitation and mean temperature in this region ranged from 280 mm to 112 

1167 mm and from 12.8º C to 17.5ºC, respectively. The locations included in this study showed a wide 113 
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variety of vegetation types (e.g., grasslands, shrublands, savannas, dry seasonal forests and open 114 

woodlands dominated by trees). Perennial plant cover in these plots ranged between 18 to 98%.  115 

Soil sampling  116 

Soils were sampled in in the Australian summer (March 2014). Within each site we selected a 30 m x 30 117 

m plotwhich represented the dominant vegetation within each location. Plant cover and richness were 118 

measured within each plot as explained in Maestre et al. (2015). We collected three composite soil 119 

samples (three 0-5 cm depth soil cores) from beneath the vegetation (N-fixing shrubs, grasses, and trees) 120 

and in open areas between plant patches at each site. The same plant taxa were present across the complete 121 

gradient of aridity: Eucalyptus spp., Acacia spp. and the C3 native grass Rhytidosperma spp. A total of 122 

120 soil samples (20 sites x 6 within-plot composite samples) were collected in this study. Note that we 123 

used a stratified sampling design to maximize within-plot spatial variability, which is critical for building 124 

co-occurrence networks based on correlations. Our sampling design also allows the comparison of 125 

information collected across plots, which otherwise (i.e., random sampling design) might have differed 126 

in terms of spatial variability. Soil samples were sieved (2 mm mesh). Then, portion of soil was 127 

immediately frozen at -20 ºC for molecular analyses, while the rest of the soil was air-dried, and stored 128 

for one month, before physicochemical analyses.  129 

Soil properties.  130 

Soil total organic C content was determined using the method described in Maestre et al. (2015). Soil 131 

total N was measured with a CNH analyzer (Leco CHN628 Series, LECO Corporation, St Joseph, MI, 132 

USA). Soil pH was measured in all the soil samples (1: 2.5 soil/water suspension). Total P was measured 133 

after digestion with sulphuric acid using a SKALAR San++ Analyzer (Skalar, Breda, The Netherlands). 134 

Soil total P was positively and significantly correlated with microbial biomass P (ρ = 0.18; P = 0.049), 135 

Olsen inorganic P (ρ = 0.45; P < 0.001) and plant leaf P content (ρ = 0.23; P = 0.027), and, therefore, is 136 

a good surrogate of P availability. Total P ranged from 17 to 600 mg P kg-1 soil. Soil total organic C 137 

ranges from 0.7 to 12%. Soil pH ranged from 4.8 to 9.1.  138 

Surrogates of ecosystem functioning.  139 

We measured: (1) the activities of three soil enzymes using the method explained in Bell et al. (2013): α-140 

glucosidase (starch degradation), N-acetyl-β-Glucosaminidase (chitin degradation) and phosphatase 141 

(organic phosphorus mineralization), (2) the availability of dissolved organic carbon and inorganic N 142 

from K2SO4 extracts measured as described in Delgado-Baquerizo et al. (2016), and (3) aboveground net 143 
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primary productivity (ANPP) for the whole of 2014 and for March 2014, the month in which soil 144 

sampling was conducted, using NDVI obtained from satellite data as described in Delgado-Baquerizo et 145 

al. (2018a).     146 

Environmental variables 147 

For each site we calculated the aridity level [1 − Aridity Index (AI), where AI is precipitation/potential 148 

evapotranspiration] using AI data from the database in Maestre et al. (2015). We used aridity rather than 149 

mean annual precipitation because aridity is a more appropriate variable which includes both mean annual 150 

precipitation and potential evapotranspiration. Furthermore, this variable provides an integrative measure 151 

of the long-term water availability at each site. Finally, we identified the soil type in each plot using 152 

available data from the ISRIC (global gridded soil information) Soil Grids (https://soilgrids.org/ 153 

#!/?layer=geonode:taxnwrb_250m), which provide global information on soil classification (USDA 154 

classification) at a 250m resolution. 155 

Molecular analyses 156 

Soil DNA was extracted from 0.25 g of soil samples (defrosted) using the Powersoil® DNA Isolation Kit 157 

(Mo Bio Laboratories, Carlsbad, CA, USA). We quantified the total abundance bacteria and fungi in all 158 

soil samples using 96-well plates on a CFX96 Touch™ Real-Time PCR Detection System (Foster city, 159 

California, USA; qPCR). We used the primer sets: Eub 338-Eub 518 and ITS 1-5.8S described in Maestre 160 

et al. (2015) for qPCR analyses. We then employed amplicon sequencing using the Illumina MiSeq 161 

platform to characterize the community composition of bacteria and fungi in our samples . We used the 162 

341F/805R (bacteria) and FITS7/ITS4 (fungi) primer sets (Maestre et al. 2015) for these analyses. 163 

Bioinformatic processing was performed using a combination of QIIME (Caporaso et al. 2010), 164 

USEARCH (Edgar 2010) and UCLUST (Edgar 2010). Operational Taxonomic Units (OTUs; phylotypes 165 

hereafter) were defined as clusters of 97% sequence similarity using UCLUST (Edgar 2010). Taxonomy 166 

was assigned using against the Greengenes database version 13_850 for 16S rDNA OTUs (DeSantis et 167 

al. 2006). For fungal ITS sequences, taxonomy was assigned using the UNITE database V6.9.7 (E<10-5) 168 

(Koljalg et al. 2013). We filtered the OTU abundance tables for both primer sets to remove singletons. 169 

We then rarefied to an even number of sequences per samples to ensure an equal sampling depth (11789 170 

and 16222 for 16S rDNA and ITS respectively).  171 

Network analyses 172 



 

7 

 

We first built a single correlation network between the phylotypes within the abundance table using the 173 

following protocol aiming to identify modules of strongly co-occurring microbial taxa. Prior to these 174 

analyses, we filtered out the rarest phylotypes by removing those with less than five reads in at least one 175 

sample across all samples. This resulted in a network with 25084 phylotypes as nodes (10570 bacterial 176 

and 14514 fungal phylotypes, respectively). We then calculated all pairwise Spearman correlation 177 

coefficients among these microbial taxa and kept all positive correlations. This non-parametric method 178 

measures the strength and direction of association between two ranked variables. We focused exclusively 179 

on positive correlations because they provide useful information on the co-occurrence of particular 180 

microbial taxa that may respond in a similar manner to particular environmental conditions such as 181 

increases in aridity (Barberan et al. 2012). This approach ultimately allowed us to address our research 182 

question on the role aridity in regulating the relative abundance of the main microbial modules composed 183 

by bacterial and fungal taxa strongly co-occurring with each other. This led to a network with 62,388,880 184 

links, which corresponds to just 19.8% of all possible links (falling within the expected range from 185 

previous ecological networks; Stouffer and Bascompte 2011). In all instances, we weighted these links 186 

by their corresponding correlation coefficient. We then used the Markov Cluster Algorithm software (van 187 

Dongen 2000) to extract modules from the network. This algorithm is explicitly designed to efficiently 188 

handle large networks. Here, a single parameter controls the quality of the clustering output. Rather than 189 

using the default options, we adjusted the inflation parameter to maximize the modularity of the resulting 190 

partition, which is a quantitative measure of the quality of a given partitioning of nodes in a network 191 

(Newman 2004). We used an inflation parameter I = 2.8, which lead to a maximum modularity 192 

M=0.124951 based on the assignment of phylotypes to four separate modules. We then calculated the 193 

relative abundance of these modules by summing the relative abundances (%) of all phylotypes within 194 

each module. Finally, we computed the relative abundance of each module in each site as the average 195 

relative abundance in the site's samples weighted by the coverage of the corresponding microhabitats 196 

(vegetation and open areas). Using this approach, we focus on the relative abundance of modules, rather 197 

than on individual taxa.  198 

 After obtaining this co-occurrence network and detecting the modules within this network, we 199 

proceeded to cross-validate our network using an independent approach. To do this we first calculated all 200 

pairwise SparCC correlations between bacterial and fungal nodes using the Fastspar algorithm (Friedman 201 

& Alm, 2017), with 100 bootstraps and 100 permutations to control false discovery rate. For these 202 
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analyses we used a more conservative approach than that described above and used a minimum 203 

correlation coefficient of 0.4 and P < 0.05. Finally, we used the algorithm introduced by Vincent et al. 204 

(2008) to extract modules from the network. The relative abundance of these modules was calculated as 205 

the average of the standardized relative abundances (z-score) of all phylotypes within each module. 206 

Statistical analyses 207 

We evaluated the effect of aridity on the relative abundance of different microbial clusters (or modules) 208 

using linear regressions. To account for the spatial influence of the data (latitude and longitude), we used 209 

spatial autoregressive analyses. We used structural equation modeling (SEM, Grace 2006) to evaluate 210 

the direct and indirect effects of aridity and other important predictors of soil microbial communities like 211 

the distance from the equator, soil type and properties (total C, P and pH), within-plot vegetation type 212 

(trees, shrubs, grasses), plant cover and richness and microbial attributes (fungal and bacterial abundance 213 

and ratio), on the relative abundance of detected microbial modules. Thus, we used SEM to further clarify 214 

the effects of aridity on the relative abundance of each microbial module aftertaking into account 215 

statistically various environmental factors simultaneously (see our a priori model in Fig. S1). Changes 216 

in soil properties, plant attributes and microbial abundance due to increasing aridity could potentially 217 

affect the role that the environment plays in microbial associations, and this will likely influence the 218 

assembly of microbial networks in terrestrial environments. Furthermore, increases in aridity have been 219 

shown to reduce soil microbial abundance (Maestre et al. 2015), to decouple nutrient cycles (Delgado-220 

Baquerizo et al. 2013), and to raise abiotic stress in drylands (Vicente-Serrano et al. 2012). Thus, soil 221 

properties, plant community attributes and microbial abundance need to be considered when evaluating 222 

the role of increasing aridity as a driver of microbial community assembly.  223 

Before conducting SEMs, soil total organic C and total phosphorus were log-transformed to 224 

improve linearity. Microbial abundance was introduced in the model as the average of the abundance of 225 

bacteria and fungi (after log10-transformation and z-score standardization). We did so to allow the 226 

inclusion of the fungal:bacterial ratio in our model, which otherwise would be highly correlated with the 227 

abundance of total bacteria and fungi. Note that we included the this ratio in our model to provide further 228 

evidence that changes in the contribution from fungal and bacterial phylotypes to each module considered 229 

the abundance of these organisms. Soil organic C was highly related to soil total N (Spearman’s ρ = 230 

0.820; p < 0.001), and its inclusion represented soil organic matter in our models (Delgado-Baquerizo et 231 

al. 2013). Because of this, total N was not explicitly included in the model. In our SEM model, the 232 
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different within-plot vegetation types (grasses, N-fixing shrubs and trees) were categorical variables with 233 

two levels: 1 (particular microhabitat; e.g., trees) and 0 (remaining microhabitats + open areas).  Doing 234 

so allowed for comparison in the effect of a specific within-plot vegetation type (e.g. trees) on each 235 

microbial module with the average of the remaining vegetation types and open areas. Note that for our 236 

baseline condition (i.e. procedural control), we selected the composite samples from open areas, and, 237 

therefore, did not explicitly include it in our model (Grace 2006). Using the same approach, we included 238 

in our model the most common soil types: Ustox (Oxisols of semiarid and subhumid climates) and Albolls 239 

(Mollisols of wet soils), which were found in 95% of our studied sites.  240 

We then tested model goodness of fit using the Chi-square (χ2) test. A model has a good fit when 241 

0 ≤ χ2 ≤ 2 and 0.05 < p ≤ 1.00) and the root mean square error of approximation (RMSEA; the model has 242 

a good fit when RMSEA 0 ≤ RMSEA ≤ 0.05 and 0.10 < p ≤ 1.00. We then used the Bollen-Stine bootstrap 243 

test (the model has a good fit when 0.10 < bootstrap p ≤ 1.00) to confirm model fit and our results 244 

indicated that our a priori model had a good fit to our data. 245 

Finally, we used Spearman correlations to identify particular microbial taxa within a given module 246 

that are highly characteristic of particular aridity conditions (i.e., increase or decrease with aridity). In 247 

particular, we correlated the relative abundance of all phylotypes within each major module and aridity. 248 

These analyses were conducted using the R statistical software (http://cran.r-project.org/). Spearman 249 

correlations were also used to explore the link between the relative abundance of a given module and 250 

surrogates of multiple ecosystem functions including soil enzyme activities, available nutrients and 251 

ANPP. 252 

 253 

Results  254 

We found that communities of fungi and bacteria grouped into four largely independent microbial 255 

modules across our environmental gradient, accounting for 41.7, 57.7, 0.50 and 0.09% of the microbial 256 

phylotypes, respectively (Fig. 1B). Each module represented a discrete, tightly correlated microbial 257 

cluster, including phylotypes of both fungi and bacteria whose relative abundance was more strongly 258 

associated with each other than with phylotypes from other clusters (Fig. 2). We retained in our network 259 

analyses the first three modules, which accounted for 99.9% of microbial phylotypes. Module #4 was not 260 

ubiquitous (i.e., it was present at only one site), and was therefore removed from further statistical 261 

modeling. The relative abundances of Modules #1 and 2 were highly negatively correlated (ρ = -0.999; 262 
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P < 0.001). Modules 1 (ρ = 0.276; p = 0.002) and 2 (ρ = 0.283; p = 0.002) were also related to Module 263 

#3. Modules #1 and #3 were dominated by fungal taxa, while Module #2 had a higher relative 264 

contribution from bacteria (Figs. 2 and S1). Module #1 comprised 28% phylotypes of bacteria and 58% 265 

phylotypes of fungi, and Module #2 comprised 61% phylotypes of bacteria and 31% phylotypes of fungi 266 

(Fig. 2A). 267 

Aridity was strongly negatively and positively related to the relative abundance of Module #1 268 

(hereafter Mesic Module #1; defined as microbial taxa preferring more mesic environments) and #2 269 

(hereafter Xeric Module #2; defined as microbial taxa preferring more arid environments), respectively, 270 

accounting for 99.4% of all taxa in all locations across our environmental gradient (i.e. standardized by 271 

microsite coverage; Figs. 2A and 2B). Module #3 was not significantly related to aridity (Figs. S2 and 272 

S3). Similar results were found at the sample level (Fig. S3).These results were maintained when we 273 

controlled for the spatial influence of the data (Figs. 2B). The relative abundances of Mesic Module #1 274 

and Xeric Module #2 were strongly positively related to the relative abundances of the same modules but 275 

calculated as the standardized sum of the relative abundance of each OTU within each module (Spearman 276 

ρ >0.94; p < 0.001). Moreover, similar results were found for the cross-validation network. The SparCC 277 

Module #1 was significantly and positively related to Mesic Module #1 (Pearson´s r = 0.47; p < 0.001), 278 

and SparCC Module #2 was significantly and positively related to Xeric Module #1 (Pearson´s r = 0.50; 279 

p < 0.001). The SparCC analyses yielded an additional dominant module (SparCC Module #3), which 280 

was also significantly and positively correlated to Mesic Module #1 (Pearson´s r = 0.34; p < 0.001). More 281 

importantly, SparCC Module #1 was negatively related to aridity (Pearson´s r = 0.27; p  = 0.003), while 282 

SparCC Module #2 was positively related to aridity (Pearson´s r = 0.50; p = 0.004).  283 

 Overall, our structural equation model explained 83% of the variation in both Mesic Module #1 284 

and Xeric Module #2. Aridity had a direct negative effect on the relative abundance of Mesic Module #1, 285 

while having a positive effect on the relative abundance of Xeric Module #2 (Figs. 3A). Moreover, 286 

although the impacts of aridity on the relative abundance of the main modules were largely direct, we 287 

also found that increases in aridity affected the assembly of the microbial correlation network indirectly 288 

by shifting soil types from Albolls to Ustox, declining total plant cover and by increasing soil total P and 289 

pH (Fig. 3A). We also found some direct and indirect effects of vegetation type on the relative abundance 290 

of microbial modules (Fig. 3A). For example, the presence of trees had indirect negative and positive 291 

effects on Mesic Module #1 and Xeric Module #2, respectively, via soil pH and P. The relative abundance 292 
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of Mesic Module #1 was positively correlated with multiple surrogates of ecosystem functioning, 293 

including nutrient availability, enzyme activities and plant primary productivity (Table S1). 294 

In general, we found that 2806 and 4676 microbial phylotypes within Mesic Module #1 and Xeric 295 

Module #2 were negatively and positively correlated with aridity, respectively (P<0.05; Table S2). In 296 

particular, we found multiple microbial taxa from genus Rubrobacter, Geodermatophilus and 297 

Streptomyces or class Thermomicrobia and phylotypes Preussia minima, Alternaria triticimaculans, 298 

Pleosporales sp., Fusarium tricinctum and Phoma macrostoma, Tulostoma melanocyclum, Geastrum 299 

pectinatum, Laccaria sp. and Mortierella wolfii to be strongly positively related to aridity (potential 300 

winners; Fig. 4; Table S2). On the contrary, we found that microbial phylotypes including 301 

Cladophialophora sp., Trichoderma spirale, Oidiodendron sp., Helotiales sp., Pochonia bulbillosa, 302 

Umbelopsis gibberispora and isabellina, Burkholderia tuberum, Sphingomonas wittichii, 303 

Mycobacterium celatum and Actinomadura vinacea were strongly negatively correlated with aridity 304 

(potential losers; Fig. 4; Table S2). The complete list of taxa predicting aridity changes within each 305 

module is available in Table S2. 306 

 307 

Discussion 308 

Increases in aridity lead to dramatic changes in the assembly of soil microbial communities  309 

Our findings support the hypothesis that increases in aridity lead to significant changes in the relative 310 

abundance of modules of tightly co-occurring fungal and bacterial phylotypes. In particular, our results 311 

indicate that certain microbial modules will be susceptible to increases in aridity, particularly in the 312 

transition between semi-arid and arid areas (where Mesic Module #1 shifted to Xeric Module #2). 313 

Previous studies have shown that increases in aridity negatively affect microbial diversity and abundance 314 

(Maestre et al. 2015). Here, we provide solid evidence that increases in aridity, just as those predicted 315 

under climate change, can promote marked changes in the assembly of complex microbial networks at 316 

the regional scale, leading to substantial turnover of entire microbial communities. These changes may 317 

result in local extinctions in terrestrial ecosystems. Moreover, we were able to identify particular taxa of 318 

fungi and bacteria at the OTU level (phylotype level) that are strongly negatively (losers) or positively 319 

(winners) related to increases in aridity in eastern Australia. These results provide a regional list of 320 

particular microbial phylotypes that could be highly vulnerable to predicted increases in aridity in this 321 

century. These results have implications for our understanding of processes related to land degradation 322 
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and desertification, such as overgrazing and land clearance, which are likely to become more pronounced 323 

as we move to a drier and more unpredictable climate.  324 

An important result from our study was that increases in aridity shifted the network of associations 325 

from a dominance by fungal phylotypes (in terms of OTU relative abundance and number of phylotypes) 326 

associated with bacteria (Mesic Module #1) to bacterial phylotypes co-occurring with fungi (Xeric 327 

Module #2). In support of these results, our SEM showed that the fungal:bacterial ratio declined with 328 

increasing aridity. Soil bacteria and fungi include mutualistic, neutral, pathogenic and parasitic 329 

relationships, and their complex associations are linked to essential ecosystem processes such as litter 330 

decomposition (Kobayashi and Crouch 2009). Changes in the relative contribution of phylotypes of 331 

bacteria and fungi to the network of microbial associations might then alter soil functioning in terrestrial 332 

ecosystems. Bacteria and fungi are known to be involved in different processes that are fundamental for 333 

sustaining a functional ecosystem (van der Heijden et al. 2008). For example, bacterial-dominated 334 

microbial communities often lead to fast cycling of nutrient (e.g. nitrification) and to open nutrient 335 

cycling (i.e., lower capacity to retain nutrients in the system; van der Heijden et al. 2008). Moreover, 336 

slow-growing organisms such as soil fungi have been reported to promote the resistance of nutrient 337 

cycling to climate change compared with fast-growing organisms such as bacteria (van der Heijden et al. 338 

2008). Thus, by promoting changes in the contribution of bacteria over fungi phylotypes to the network 339 

of associations, increases in aridity might indirectly impact the provision and resistance of essential 340 

ecosystem functions and services such as litter decomposition and nutrient cycling (Kobayashi and 341 

Crouch 2009). 342 

Direct and indirect effects of aridity on the relative abundance of microbial modules.   343 

We found that aridity regulated the relative abundance of main microbial modules both directly, i.e. via 344 

reductions in water availability, and indirectly, via changes in soil type, soil properties such as soil P and 345 

pH, and total plant cover, which are known to be impacted by aridity (Delgado-Baquerizo et al. 2013; 346 

Maestre et al. 2015). Part of these effects might be associated with the fact that soils in Australian 347 

drylands are old, acidic and nutrient-depleted, compared with other drylands (Eldridge et al. 2018b). For 348 

example, increases in soil pH associated with increasing aridity may explain the observed changes in the 349 

assembly of these networks. Soil pH has been widely reported to be an important driver of microbial 350 

communities in terrestrial ecosystems. However, this is not always the case for drylands where pH is 351 

typically high, and microbial communities are less sensitive to changes in pH (Maestre et al. 2015; 352 



 

13 

 

Neilson et al. 2017). Similarly, increases in soil P with aridity may play a major role in driving the soil 353 

microbial networks studied, as Australian environments are known to be strongly P-limited, with reported 354 

consequences for the biodiversity and functioning of biotic communities (Lambers et al. 2013). 355 

Reductions in plant cover associated with increases in aridity might also alter the complete microbial 356 

network of associations via reductions in resource inputs (e.g. litter and rhizodeposition) and exacerbating 357 

specific harsh environmental conditions (e.g. amount of radiation). Our findings indicate that soil 358 

variables such as pH and total P –linked to changes in soil type with increases in aridity–, and plant cover, 359 

which are important predictors of microbial community composition and diversity (Tedersoo et al. 2014; 360 

Maestre et al. 2015), are also key drivers of the complex network of bacterial and fungal phylotypes 361 

associations in soils. Some of these findings have strong implications for forecasting climate change 362 

impacts on microbial networks. For example, trees had indirect negative and positive effects, 363 

respectively, on Mesic Module #1 and Xeric Module #2 via soil pH and soil P. Interestingly, plant cover 364 

and richness had multiple direct effects on the relative abundance of Mesic Module #1 and Xeric Module 365 

#2. These results highlight the importance of microsite differentiation in controlling the assembly of 366 

complex microbial networks via changes in local soil properties. Moreover, this result further suggests 367 

that changes in vegetation functional composition in response to increasing aridity will have indirect 368 

consequences for the relative abundance of key microbial modules in terrestrial environments. For 369 

example, increases in aridity are linked to reduced cover of trees (Table S3). Further, the cover of trees 370 

was positively/negatively linked to the relative abundance of Mesic Module #1 and Xeric Module #2, 371 

respectively (Table S3). Thus, changes in the relative abundance of this within-plot vegetation type could 372 

impact the assembly of microbial networks in terrestrial ecosystems, with potential collateral effects for 373 

ecosystem functioning. These results are in accordance with a recent study evaluating changes in 374 

microbial diversity along a regional aridity gradient in Chile (Neilson et al. 2017). 375 

Our SEM model supports the hypothesis that increasing aridity will lead to the turnover of entire 376 

microbial communities in terrestrial ecosystems by shifting the relative abundance of well-defined 377 

microbial modules (from Mesic Module #1 to Xeric Module #2). Given the observed links between 378 

network structure and ecosystem functioning, we expect these shifts to have strong implications for 379 

ecosystem functioning under a changing climate. For example, we found that the relative abundance of 380 

Mesic Module #1 was positively related to variables such as the activity of phosphatase, the amount of 381 

available soil C and inorganic N and ANPP, which are all linked to ecosystem functions and services such 382 
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as nutrient cycling, organic matter decomposition and mineralization and food production (Table S1). 383 

Thus, our results propose the idea that changes in the complex network of microbial associations derived 384 

from increased aridity might negatively impact ecosystem processes linked to the provision of key 385 

ecosystem services. Moreover, these findings further support the results of a previous metagenomics 386 

study reporting large differences in potential soil functioning between arid and humid environments 387 

(Fierer et al. 2012). Future endeavors exploring modules of microbial communities co-occurring in 388 

terrestrial ecosystems should further evaluate the functional attributes of microbial modules so that we 389 

can gain further functional insights on the role of microbial networks in regulating ecosystem functioning.   390 

Winners and losers microbial taxa in response to increasing aridity.  391 

We identified microbial taxa that are potentially vulnerable (losers) or might benefit (winners) from 392 

predicted increases in aridity throughout this century (Huang et al. 2016; Neilson et al. 2017). Microbial 393 

losers are expected to be phylotypes unable to tolerate the increasingly harsh conditions associated with 394 

aridity, including water scarcity or extreme radiation derived from reductions in plant coverage. Here, we 395 

found that increases in aridity may reduce the relative abundance of some microbial phylotypes within 396 

Mesic Module #1, which are linked to the performance of plants via symbiosis such as Burkholderia 397 

tuberum (capable of symbiotic nitrogen fixation with some legumes; Esqueda et al. 2012) and 398 

Oidiodendron sp. (ericoid mycorrhiza; Smith and Read 2008). In addition, we found that important taxa 399 

such as Helotiales sp. (saprobes) and Sphingomonas wittichii (involved in toxin degradation) might be 400 

negatively influenced by increases in aridity, with consequences for overall ecosystem functioning. 401 

Interestingly, the parasitic nematode Pochonia bulbillosa was also found to decline with increases in 402 

aridity, suggesting that, as found with soil animals and vascular plants (Vicente-Serrano et al. 2012), 403 

associated microbial phylotypes will also be negatively impacted by increases in aridity.  404 

We also found multiple phylotypes whose relative abundance increased with aridity. Winners, i.e. 405 

phylotypes which can potentially benefit from increases in aridity along this century, are expected to be 406 

thermophilic and highly resistant to desiccation and radiation. Interestingly, taxa from Xeric Module #2 407 

included a wide variety of taxa typical from desert ecosystems, which are noted radiation and desiccation 408 

tolerant desert bacteria including phylotypes from the genus Rubrobacter, Geodermatophilus, 409 

Streptomyces or from the class Thermomicrobia (Mohammadipanah and Wink 2016). All these taxa were 410 

strongly positively correlated with aridity. We also found fungal phylotypes typical from drylands, such 411 

as Tulostoma melanocyclum, Preussia minima and Geastrum pectinatum, to be strongly positively related 412 
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to aridity (Esqueda et al. 2004). We also found that increasing aridity had a strong positive correlation 413 

with the relative abundance of multiple fungal pathogens of plants, including Alternaria triticimaculans, 414 

Pleosporales sp, Pleosporaceae sp, Fusarium tricinctum and Phoma macrostoma. We also found that the 415 

relative abundance of Mortierella wolfii, a well-known pathogen of humans and other animals that can 416 

cause bovine abortion and pneumonia (Davies and Wobeser 2010), increased with aridity. Other fungal 417 

taxa such as Capronia peltigerae –a parasite of living lichens– also increased in the most arid places, 418 

where biocrust-forming lichens are often abundant (Liu et al. 2017). Building on from previous efforts 419 

aiming to identify the role of aridity in regulating microbial communities in drylands (Maestre et al. 2015; 420 

Neilson et al. 2017), our study improves our understanding and provides evidence for potential winner 421 

and loser taxa in response to increases in aridity in Australia.  422 

Conclusions 423 

All things considered, our findings present strong evidence that increases in aridity will lead to critical 424 

shifts in the assembly of complex microbial networks of fungi and bacteria, potentially leading to massive 425 

phylotype exchange and local extinctions in terrestrial ecosystems, as demonstrated by the reductions of 426 

up to 97% in the relative abundance of microbial taxa within Mesic Module #1. Our results thus fill major 427 

gaps in our understanding of how complex networks of microbial associations respond to increases in 428 

aridity, which will promote land degradation in drylands worldwide, and provide solid evidence of the 429 

vulnerability of microbial networks to climate change. Considering the primacy of microbial 430 

communities in ecosystem functioning, the reported changes in the assembly of microbial co-occurrence 431 

networks are likely to have far-reaching consequences for the provision of important ecosystem functions 432 

and services like litter break-down, nutrient cycling and plant productivity, and hence need to be 433 

considered when assessing the consequences of climate change and associated land degradation on the 434 

functioning of terrestrial ecosystems.    435 
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 562 

Figure 1. Location of the study sites studied (a), and correlation network including multiple nodes (taxa) 563 

from bacteria and fungi (b). Color patterns in panel (a) indicate aridity (1 – aridity index) gradients. 564 

Different colors in panel (b) correspond with different modules.  565 
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 583 

Figure 2. Community composition and association with increases in aridity for Mesic Module #1 and 584 

Xeric Module #2. Panel (A) shows the overall bacterial and fungal community composition for Mesic 585 

Module #1 and Xeric Module #2. Panel (B) shows the relationships between aridity and the relative 586 

abundance of microbial modules at the site level. Results of regressions are as follows: Mod#1. Ordinary 587 

least squares (OLS) (continuous line), R2 = 0.566, P < 0.001, AICc = 6.184; Spatial autoregressive 588 

analyses (SAR), R2 = 0.451, P = 0.001, AICc = 10.847; Mod#2. OLS (continuous line), R2 = 0.565, P < 589 

0.001, AICc = 6.251; SAR, R2 = 0.453, P = 0.001, AICc = 10.819. Separate regressions at the sample 590 

level are shown in Fig. S3.  591 
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 594 

Figure 3. Structural equation model fitted to the relative abundance of microbial Modules #1 and #2 (a) 595 

and standardized total effects (direct plus indirect effects) derived from them (b). Numbers adjacent to 596 

arrows are path coefficients (P values), and are indicative of the effect size of the relationship. R2 = the 597 

proportion of variance explained. P = Soil total P; C = Soil total organic C; F:B ratio = fungal: bacterial 598 

ratio. Vegetation = within-plot vegetation type (trees, shrubs and grasses). Mods #1 and #2 = Mesic 599 

Module #1 and Xeric Module #2, respectively. P-values as follow: *P < 0.05; **P < 0.01.  600 
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 615 

Figure 4. Relationships between aridity and the relative abundance of selected phylotypes within Mesic 616 

Module #1 and Xeric Module #2. A more completed list of examples for phylotypes within Mesic Module 617 

#1 and Xeric Module #2 and their correlation (Spearman) to aridity is available in Table S2.  618 


