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Increasesin aridity lead to drastic shiftsin the assembly of dryland complex microbial networks
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Abstract

We have little information on how and why soil nabral community assembly will respond to predicted
increases in aridity by the end of this centurytdleve used correlation networks and structurahtgn
modeling to assess the changes in the abundative etological clusters including potential winaad
loser microbial taxa associated with predictedeases in aridity. To do this, we conducted a Beid/ey

in an environmental gradient from eastern Australiad obtained information on bacterial and fungal
community composition for 120 soil samples, and tipl@ abiotic and biotic factors. Overall our
structural equation model explained 83% of thearare in the two mesic modules. Increases in aridity
led to marked shifts in the abundance of the twg@nmaicrobial modules found in our network, which
accounted for >99% of all phylotypes. In particutae relative abundance of one of these moduies, t
Mesic-Module-#1, which was positively related to Iiple soil properties and plant productivity,
declined strongly with aridity. Conversely, theatéte abundance of a second dominant module (Xeric-
Module-#2) was positively correlated with increasearidity. Our study provides evidence that netwo
analysis is a useful tool to identify microbial &that are either winners or losers under incregeesiiality

and therefore potentially under changing clima@sr work further suggests that climate change, and
associated land degradation, could potentially teagktensive microbial phylotypes exchange andlloc
extinctions, as demonstrated by the reductiongpdbi97% in the relative abundance of microbiabtax
within Mesic-Module-#1.

Key words. Global Change Ecology; Ecological networks; Fungi; Bacteria; Soil functions; Climate

change; Plant-soil interactions.
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I ntroduction

Climate change is leading to a drier and hotterddvand resulting in major soil degradation processe
(Huang et al. 2016). Drylands already occupy o 4f Earth’s landmass, with their cover expected
to further increase by up to 23% by the end of ¢kistury (Huang et al. 2016). In drylands, soiltbea
and fungi are the most diverse and abundant onganiand play critical roles in maintaining the sate
and stability of multiple ecosystem functions, udihg litter decomposition, primary production, Isoi
fertility and gas exchange (Delgado-Baquerizo eR@l 7). However, the diversity and abundance of
fungi and bacteria are also highly vulnerable tonate change (Maestre et al. 2015). Microbial
communities exhibit complex connections involvingaage number of inter- and intra-dependent
interactions, making it very difficult to predicoWw entire microbial communities are likely to resgdo

to global environmental change (Rillig et al. 20851 et al. 2016). Some taxa can potentially bénefi
from increases in aridity (winners), while othexaawill be hindered as aridity increases (losesasu
Eldridge et al. 2018a). Identifying potential wim@ad loser taxa in response to increases in acditld
have potential future implications for the managetred microbial communities under global change
scenarios. Network analysis has recently been gexp@s a promising approach to describe this
complexity and to obtain deeper insights into thgaaization of microbial associations in terrestria
ecosystems (Shi et al. 2016). The structure ofogpchl networks, which integrates biodiversity,
community composition, and ecosystem functioningi@hakis et al. 2008), is also regarded as a key
attribute of biotic communities. Thus, taking a \Wnetwork approach has the potential to advance ou
knowledge of microbial community and ecosystem eaesps to global change drivers (e.g., climate
change) at both local and global scales (Barberah 2012; Rillig et al. 2015; Neilson et al. 2017

Recent studies have demonstrated that soil midrtébia strongly associate with each other, and
lead to the formation of well-defined modules (n@défungi or bacteria, also called ecological tHus)
of taxa, providing evidence for tightly synchrordaesponses among bacteria and fungi (Shi et 46)20
Moreover, previous studies have provided evideheg $pecific taxa of fungi and bacteria can share
certain environmental preferences (Barberan e2@l2; Rillig et al. 2015). Thus, they share similar
predictors, such as location (distance from theatary climate (e.g. aridity and temperature) aoidl s
properties (e.g. pH and nutrients; Ramirez et @142 Tedersoo et al. 2014; Maestre et al. 20155 Th
suggests that particular bacterial and fungal &g strongly co-occur in soils across environmental

gradients. Unlike traditional analyses, more fomashe microbial diversity and community compositio
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and, the identification of highly connected modudtnuctures representing important ecological units
(Shi et al. 2016; Delgado-Baquerizo et al. 2018ayide a unique opportunity to integrate highly trul
dimensional data (i.e., such as those from mictatmaamunities), allowing more robust statistical
inferences on the major predictors of entire mi@bbommunities (Duran-Pinedo and others, 2011, Shi
et al. 2016).

Microbial modules have recently been reported poegent highly dynamic ecological structures
that respond to changing environmental conditidfms. example, Nuccio et al. (2016) and Shi et al.
(2016) showed that the modularity of microbial netks from plant rhizospheres responds to biological
activity during a growing season. Much less is knptwowever, about how changes in climate, such as
predicted increases in aridity (Huang et al. 20&8gct the network of associations among bactand|
fungal taxa within drylands (Neilson et al. 201IAcreasing aridity may alter the relative abundaoice
modules both directly (i.e. via reductions in wadgailability; Maestre et al. 2015), and indirectlya
changes in solil properties and plant attributesg@o-Baquerizo et al. 2016). For example, incre@se
soil pH associated with increasing aridity canuefice the diversity and community composition df so
bacteria and fungi (Rousk et al. 2010; Maestrel.eP@l5), and as such could affect soil microbial
networks.

Here we applied network analyses and statisticaleing to data from a regional survey (>1000
km) spanning a wide range of aridity conditions #mee within-plot vegetation types (Fig. 1) totténe
hypothesis that increases in aridity such as thaeeasted under climate change will result in sl
shifts in the relative abundance of microbial meduleading to a new network of microbial assoorei
in soils in ecosystems from eastern Australia. Momgortantly, we aim to identify a list of winnené

loser taxa in response to potential increasesdityam eastern Australia (Huang et al. 2016).

Material and Methods

Sudy area

We conducted this study at twenty locations frostea Australia (Fig. 1A). Locations for this study

were chosen to include a wide range of aridity levacluding arid, semiarid and dry-subhumid

ecosystems. The total annual precipitation and ne@aperature in this region ranged from 280 mm to

1167 mm and from 12.8° C to 17.5°C, respectivehe bcations included in this study showed a wide
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variety of vegetation types (e.g., grasslands, ldhnds, savannas, dry seasonal forests and open
woodlands dominated by trees). Perennial plantroovinese plots ranged between 18 to 98%.

Soil sampling

Soils were sampled in in the Australian summer @A&014). Within each site we selected a 30 m x 30
m plotwhich represented the dominant vegetatiohiwieach location. Plant cover and richness were
measured within each plot as explained in Maedtral.e(2015). We collected three composite soil
samples (three 0-5 cm depth soil cores) from bérthatvegetation (N-fixing shrubs, grasses, anesjre
and in open areas between plant patches at eachitsé same plant taxa were present across thdetemp
gradient of aridityEucalyptus spp.,Acacia spp. and the C3 native graRsytidosperma spp. A total of
120 soil samples (20 sites x 6 within-plot compomsamples) were collected in this study. Note wWeat
used a stratified sampling design to maximize wiiot spatial variability, which is critical forulding
co-occurrence networks based on correlations. @mping design also allows the comparison of
information collected across plots, which otherw(ise., random sampling design) might have differed
in terms of spatial variability. Soil samples wesieved (2 mm mesh). Then, portion of soil was
immediately frozen at -20 °C for molecular analysdsile the rest of the soil was air-dried, andeto

for one month, before physicochemical analyses.

Soil properties.

Soil total organic C content was determined ushgrhethod described in Maestre et al. (2015). Soll
total N was measured with a CNH analyzer (Leco CBB\Series, LECO Corporation, St Joseph, MI,
USA). Soil pH was measured in all the soil sample2.5 soil/water suspension). Total P was measure
after digestion with sulphuric acid using a SKALARRn++ Analyzer (Skalar, Breda, The Netherlands).
Soil total P was positively and significantly cdated with microbial biomass @@ = 0.18; P = 0.049),
Olsen inorganic Pp = 0.45; P < 0.001) and plant leaf P contépt= 0.23; P = 0.027), and, therefore, is

a good surrogate of P availability. Total P ranfedn 17 to 600 mg P kgsoil. Soil total organic C
ranges from 0.7 to 12%. Soil pH ranged from 4.8.fo

Surrogates of ecosystem functioning.

We measured: (1) the activities of three soil enzymsing the method explained in Bell et al. (20d3)
glucosidase (starch degradation), N-acgt@ucosaminidase (chitin degradation) and phospgleata
(organic phosphorus mineralization), (2) the avmlity of dissolved organic carbon and inorganic N
from KoSQy extracts measured as described in Delgado-Baquetrid. (2016), and (3) aboveground net
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primary productivity (ANPP) for the whole of 201#dfor March 2014, the month in which soil
sampling was conducted, using NDVI obtained fromelfte data as described in Delgado-Baquerizo et
al. (2018a).

Environmental variables

For each site we calculated the aridity level [Ardity Index (Al), where Al is precipitation/potéal
evapotranspiration] using Al data from the databaddaestre et al. (2015). We used aridity rathant
mean annual precipitation because aridity is a rappeopriate variable which includes both mean ahnu
precipitation and potential evapotranspirationtikemmore, this variable provides an integrative snea

of the long-term water availability at each sitendly, we identified the soil type in each ploting
available data from the ISRIC (global gridded smformation) Soil Grids (https://soilgrids.org/
#l/?layer=geonode:taxnwrb_250m), which provide gloimformation on soil classification (USDA
classification) at a 250m resolution.

Molecular analyses

Soil DNA was extracted from 0.25 g of soil samfl@gsfrosted) using the Powersoil® DNA Isolation Kit
(Mo Bio Laboratories, Carlsbad, CA, USA). We quheti the total abundance bacteria and fungi in all
soil samples using 96-well plates on a CFX96 ToudR&al-Time PCR Detection System (Foster city,
California, USA; qPCR). We used the primer sets: Eub 338-Eub 518 and ITS 1-5.8S described in Maestre
et al. (2015) for gPCR analyses. We then employegliaon sequencing using the lllumina MiSeq
platform to characterize the community compositdiacteria and fungi in our samples . We used the
341F/805R (bacteria) and FITS7/ITS4 (fungi) prinsets (Maestre et al. 2015) for these analyses.
Bioinformatic processing was performed using a doation of QIIME (Caporaso et al. 2010),
USEARCH (Edgar 2010) and UCLUSEdgar 2010)Operational Taxonomic Units (OTUs; phylotypes
hereafter) were defined as clusters of 97% sequanakarity using UCLUSTEdgar 2010). Taxonomy
was assigned using against the Greengenes datadragmn 13 850 for 16S rDNA OTUs (DeSantis et
al. 2006). For fungal ITS sequences, taxonomy wakaed using the UNITE database V6.9.7 (EJ10
(Koljalg et al. 2013). We filtered the OTU abundartables for both primer sets to remove singletons.
We then rarefied to an even number of sequencesapaples to ensure an equal sampling depth (11789
and 16222 for 16S rDNA and ITS respectively).

Network analyses



173 We first built a single correlation network betweble phylotypes within the abundance table usieg th
174  following protocol aiming to identify modules ofrghgly co-occurring microbial taxa. Prior to these
175  analyses, we filtered out the rarest phylotypesanyoving those with less than five reads in attleas

176  sample across all samples. This resulted in a mktwith 25084 phylotypes as nodes (10570 bacterial
177 and 14514 fungal phylotypes, respectively). We tlafculated all pairwise Spearman correlation
178  coefficients among these microbial taxa and kdpp@ditive correlations. This non-parametric method
179  measures the strength and direction of associb@bmeen two ranked variables. We focused exclusivel
180 on positive correlations because they provide uisaformation on the co-occurrence of particular
181  microbial taxa that may respond in a similar maneparticular environmental conditions such as
182  increases in aridity (Barberan et al. 2012). Tipigraach ultimately allowed us to address our rebear
183  question on the role aridity in regulating the tielmabundance of the main microbial modules coregos
184 by bacterial and fungal taxa strongly co-occursith each other. This led to a network with 62, 388,

185  links, which corresponds to just 19.8% of all pbksilinks (falling within the expected range from
186  previous ecological networks; Stouffer and Bascompte 2011). In all instancesywighted these links
187 by their corresponding correlation coefficient. iWen used the Markov Cluster Algorithm softwaren(va
188  Dongen 2000) to extract modules from the netwotks Rlgorithm is explicitly designed to efficiently
189  handle large networks. Here, a single parametdralsrihe quality of the clustering output. Rattiean

190  using the default options, we adjusted the inflaparameter to maximize the modularity of the rasgl

191  partition, which is a quantitative measure of thaldy of a given partitioning of nodes in a networ
192  (Newman 2004). We used an inflation parameter 1.8 #hich lead to a maximum modularity
193 M=0.124951 based on the assignment of phylotypdeunseparate modules. We then calculated the
194 relative abundance of these modules by summingeflagve abundances (%) of all phylotypes within
195 each module. Finally, we computed the relative dance of each module in each site as the average
196 relative abundance in the site's samples weighyetihd coverage of the corresponding microhabitats
197  (vegetation and open areas). Using this approaetoeus on the relative abundance of modules, rathe
198 than on individual taxa.

199 After obtaining this co-occurrence network andedéhg the modules within this network, we
200 proceeded to cross-validate our network using depandent approach. To do this we first calculated
201  pairwise SparCC correlations between bacteriafangal nodes using the Fastspar algorithm (Friedman
202 & Alm, 2017), with 100 bootstraps and 100 permuotadi to control false discovery rate. For these
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analyses we used a more conservative approach thi@ndescribed above and used a minimum
correlation coefficient of 0.4 and P < 0.05. Figale used the algorithm introduced by Vincentlet a
(2008) to extract modules from the network. Thatreé abundance of these modules was calculated as
the average of the standardized relative abundafzessore) of all phylotypes within each module.
Satistical analyses

We evaluated the effect of aridity on the relaeindance of different microbial clusters (or megl
using linear regressions. To account for the sphafiaence of the data (latitude and longitudeg used
spatial autoregressive analyses. We used struagtetion modeling (SEM, Grace 2006) to evaluate
the direct and indirect effects of aridity and atimeportant predictors of soil microbial commungilke

the distance from the equator, soil type and ptagse(total C, P and pH), within-plot vegetatiompey
(trees, shrubs, grasses), plant cover and rictarebmicrobial attributes (fungal and bacterial atance
and ratio), on the relative abundance of detectedoivial modules. Thus, we used SEM to furtherifstar
the effects of aridity on the relative abundanceeath microbial module aftertaking into account
statistically various environmental factors simo#ausly (see ow priori model in Fig. S1). Changes
in soil properties, plant attributes and microl@lndance due to increasing aridity could potdmptial
affect the role that the environment plays in mtab associations, and this will likely influendeet
assembly of microbial networks in terrestrial eamiments. Furthermore, increases in aridity have bee
shown to reduce soil microbial abundance (Maegted. 2015), to decouple nutrient cycles (Delgado-
Baquerizo et al. 2013), and to raise abiotic sthestrylands (Vicente-Serrano et al. 2012). Thud, s
properties, plant community attributes and micrbamundance need to be considered when evaluating
the role of increasing aridity as a driver of mizied community assembly.

Before conducting SEMs, soil total organic C anthltphosphorus were log-transformed to
improve linearity. Microbial abundance was introddan the model as the average of the abundance of
bacteria and fungi (after legtransformation and z-score standardization). Wk sti to allow the
inclusion of the fungal:bacterial ratio in our mgdehich otherwise would be highly correlated wikie
abundance of total bacteria and fungi. Note thainekided the this ratio in our model to providettier
evidence that changes in the contribution from &liagd bacterial phylotypes to each module consdier
the abundance of these organisms. Soil organic £highly related to soil total N (Spearmap’'s-
0.820;p < 0.001), and its inclusion represented soil oigaratter in our models (Delgado-Baquerizo et

al. 2013). Because of this, total N was not exgidncluded in the model. In our SEM model, the
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different within-plot vegetation types (grassedjhiRg shrubs and trees) were categorical variabliés

two levels: 1 (particular microhabitat; e.g., theaad O (remaining microhabitats + open areas)indpo

so allowed for comparison in the effect of a speaifithin-plot vegetation type (e.g. trees) on each
microbial module with the average of the remainregetation types and open areas. Note that for our
baseline condition (i.e. procedural control), wéesked the composite samples from open areas, and,
therefore, did not explicitly include it in our meldGrace 2006). Using the same approach, we included
in our model the most common soil types: Ustox g0 of semiarid and subhumid climates) and Albolls
(Mollisols of wet soils), which were found in 95%aur studied sites.

We then tested model goodness of fit using thesghare %) test. A model has a good fit when
0<y?><2and 0.05 9 < 1.00)and the root mean square error of approximation (RMSEA; the model has
a good fit when RMSEA 8 RMSEA< 0.05 and 0.10 §<1.00. We then used the Bollen-Stine bootstrap
test (the model has a good fit when 0.10 < bogigtra 1.00) to confirm model fit and our results
indicated that oua priori model had a good fit to our data.

Finally, we used Spearman correlations to ide@sticular microbial taxa within a given module
that are highly characteristic of particular agdionditions (i.e., increase or decrease with gfidin
particular, we correlated the relative abundancallgihylotypes within each major module and ayidit
These analyses were conducted using the R statistiftware (http://cran.r-project.org/). Spearman
correlations were also used to explore the linkviken the relative abundance of a given module and
surrogates of multiple ecosystem functions inclgdsoil enzyme activities, available nutrients and
ANPP.

Results

We found that communities of fungi and bacteriaugex into four largely independent microbial
modules across our environmental gradient, accogritir 41.7, 57.7, 0.50 and 0.09% of the microbial
phylotypes, respectively (Fig. 1B). Each modulerespnted a discrete, tightly correlated microbial
cluster, including phylotypes of both fungi and tesi@ whose relative abundance was more strongly
associated with each other than with phylotypesifather clusters (Fig. 2). We retained in our nekvo
analyses the first three modules, which accourdefl9.9% of microbial phylotypes. Module #4 was not
ubiquitous (i.e., it was present at only one sitg)d was therefore removed from further statistical
modeling. The relative abundances of Modules #12anére highly negatively correlateg € -0.999;
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P < 0.001). Modules Ip(= 0.276;p = 0.002) and 2p(= 0.283;p = 0.002) were also related to Module
#3. Modules #1 and #3 were dominated by fungal ,taxale Module #2 had a higher relative
contribution from bacteria (Figs. 2 and S1). Mod#lecomprised 28% phylotypes of bacteria and 58%
phylotypes of fungi, and Module #2 comprised 61%lptypes of bacteria and 31% phylotypes of fungi
(Fig. 2A).

Aridity was strongly negatively and positively rdd to the relative abundance of Module #1
(hereafter Mesic Module #1; defined as microbiadat@referring more mesic environments) and #2
(hereafter Xeric Module #2; defined as microbialat@referring more arid environments), respectively
accounting for 99.4% of all taxa in all locatiorng@ss our environmental gradient (i.e. standardimed
microsite coverage; Figs. 2A and 2B). Module #3 wassignificantly related to aridity (Figs. S2 and
S3). Similar results were found at the sample I¢#ed. S3).These results were maintained when we
controlled for the spatial influence of the datggé-2B). The relative abundances of Mesic Module #
and Xeric Module #2 were strongly positively rethte the relative abundances of the same modules bu
calculated as the standardized sum of the relabwadance of each OTU within each module (Spearman
p >0.94;p < 0.001). Moreover, similar results were foundtfog cross-validation network. The SparCC
Module #1 was significantly and positively relatedViesic Module #1 (Pearson’s r = 0.4% 0.001),
and SparCC Module #2 was significantly and podyivelated to Xeric Module #1 (Pearson’s r = 0.50;
p < 0.001). The SparCC analyses yielded an additidmainant module (SparCC Module #3), which
was also significantly and positively correlatedtesic Module #1 (Pearson’s r = 0.845 0.001). More
importantly, SparCC Module #1 was negatively ralatearidity (Pearson’s r = 0.27;= 0.003), while
SparCC Module #2 was positively related to aridiRgarson’s r = 0.5@;= 0.004).

Overall, our structural equation model explain8&8of the variation in both Mesic Module #1
and Xeric Module #2. Aridity had a direct negatefeect on the relative abundance of Mesic Modulge #1
while having a positive effect on the relative athaimce of Xeric Module #2 (Figs. 3A). Moreover,
although the impacts of aridity on the relative radbance of the main modules were largely direct, we
also found that increases in aridity affected tbseanbly of the microbial correlation network inditg
by shifting soil types from Albolls to Ustox, dedilng total plant cover and by increasing soil tétand
pH (Fig. 3A). We also found some direct and indiedftects of vegetation type on the relative abuceda
of microbial modules (Fig. 3A). For example, thegence of trees had indirect negative and positive
effects on Mesic Module #1 and Xeric Module #2pesgively, via soil pH and P. The relative abunaanc
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of Mesic Module #1 was positively correlated withultiple surrogates of ecosystem functioning,
including nutrient availability, enzyme activitiaad plant primary productivity (Table S1).

In general, we found that 2806 and 4676 microlhglqtypes within Mesic Module #1 and Xeric
Module #2 were negatively and positively correlated with aridity, respectively (P<0.05; Table S2). In
particular, we found multiple microbial taxa fromergus Rubrobacter, Geodermatophilus and
Streptomyces or classThermomicrobia and phylotypedPreussia minima, Alternaria triticimaculans,
Pleosporales sp., Fusarium tricinctum and Phoma macrostoma, Tulostoma melanocyclum, Geastrum
pectinatum, Laccaria sp. andMortierella wolfii to be strongly positively related to aridity (puotial
winners; Fig. 4; Table S2). On the contrary, we found that microbial phylotypes including
Cladophialophora sp., Trichoderma spirale, Oidiodendron sp., Helotiales sp., Pochonia bulbillosa,
Umbelopsis gibberispora and isabellina, Burkholderia tuberum, Sphingomonas wittichii,
Mycobacterium celatum and Actinomadura vinacea were strongly negatively correlated with aridity
(potential losers; Fig. 4; Table S2). The complete list of taxa predicting aridity chasgeithin each
module is available in Table S2.

Discussion

Increases in aridity lead to dramatic changes in the assembly of soil microbial communities

Our findings support the hypothesis that increasesidity lead to significant changes in the risfat
abundance of modules of tightly co-occurring fungadl bacterial phylotypes. In particular, our resul
indicate that certain microbial modules will be sstible to increases in aridity, particularly imet
transition between semi-arid and arid areas (widesic Module #1 shifted to Xeric Module #2).
Previous studies have shown that increases irtyandgatively affect microbial diversity and abunda
(Maestre et al. 2015). Here, we provide solid evagethat increases in aridity, just as those ptedic
under climate change, can promote marked changie iassembly of complex microbial networks at
the regional scale, leading to substantial turn@feantire microbial communities. These changes may
result in local extinctions in terrestrial ecosysse Moreover, we were able to identify particukasa of
fungi and bacteria at the OTU level (phylotype I¢tleat are strongly negatively (losers) or positw
(winners) related to increases in aridity in east®ustralia. These results provide a regional dist
particular microbial phylotypes that could be higkilinerable to predicted increases in aridityhis t

century. These results have implications for owtasstanding of processes related to land degradatio

11
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and desertification, such as overgrazing and lé&arance, which are likely to become more pronodnce
as we move to a drier and more unpredictable cimat

An important result from our study was that ince=ais aridity shifted the network of associations
from a dominance by fungal phylotypes (in term©®adU relative abundance and number of phylotypes)
associated with bacteria (Mesic Module #1) to halteohylotypes co-occurring with fungi (Xeric
Module #2). In support of these results, our SEMwad that the fungal:bacterial ratio declined with
increasing aridity. Soil bacteria and fungi includeutualistic, neutral, pathogenic and parasitic
relationships, and their complex associations iatedtl to essential ecosystem processes suchexs litt
decomposition (Kobayashi and Crouch 2009). Chamgeke relative contribution of phylotypes of
bacteria and fungi to the network of microbial asations might then alter soil functioning in testral
ecosystems. Bacteria and fungi are known to belwedan different processes that are fundamental fo
sustaining a functional ecosystem (van der Heijderal. 2008). For example, bacterial-dominated
microbial communities often lead to fast cycling raftrient (e.g. nitrification) and to open nutrient
cycling (i.e., lower capacity to retain nutrients in the system; van der Heijden et al. 2008). Moreover,
slow-growing organisms such as soil fungi have begrorted to promote the resistance of nutrient
cycling to climate change compared with fast-graydnganisms such as bacteria (van der Heijden et al
2008). Thus, by promoting changes in the contrdyutf bacteria over fungi phylotypes to the network
of associations, increases in aridity might indiseampact the provision and resistance of esséntia
ecosystem functions and services such as litteordposition and nutrient cycling (Kobayashi and
Crouch 2009).
Direct and indirect effects of aridity on the relative abundance of microbial modules.
We found that aridity regulated the relative abumodaof main microbial modules both directly, i.&a v
reductions in water availability, and indirectlyaxchanges in soil type, soil properties such d¥?sand
pH, and total plant cover, which are known to bgawcted by aridity (Delgado-Baquerizo et al. 2013;
Maestre et al. 2015). Part of these effects mightaksociated with the fact that soils in Australian
drylands are old, acidic and nutrient-depleted, mared with other drylands (Eldridge et al. 201 &y
example, increases in soil pH associated with amirgy aridity may explain the observed changelken t
assembly of these networks. Soil pH has been widgdgrted to be an important driver of microbial
communities in terrestrial ecosystems. Howeves thinot always the case for drylands where pH is

typically high, and microbial communities are lessitive to changes in pH (Maestre et al. 2015;
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Neilson et al. 2017). Similarly, increases in $divith aridity may play a major role in driving tkeil
microbial networks studied, as Australian environte@re known to be strongly P-limited, with repdrt
consequences for the biodiversity and functionirigbmtic communities (Lambers et al. 2013).
Reductions in plant cover associated with increasesidity might also alter the complete microbial
network of associations via reductions in resourpats (e.g. litter and rhizodeposition) and exbaéng
specific harsh environmental conditions (e.g. amaafnradiation). Our findings indicate that soil
variables such as pH and total P —linked to chamgssil type with increases in aridity—, and plaaver,
which are important predictors of microbial comntyriomposition and diversity (Tedersoo et al. 2014;
Maestre et al. 2015), are also key drivers of themex network of bacterial and fungal phylotypes
associations in soils. Some of these findings rsik@ng implications for forecasting climate change
impacts on microbial networks. For example, tre@sl hndirect negative and positive effects,
respectively, on Mesic Module #1 and Xeric Modulavia soil pH and soil P. Interestingly, plant cove
and richness had multiple direct effects on thatined abundance of Mesic Module #1 and Xeric Module
#2. These results highlight the importance of nsiteodifferentiation in controlling the assembly of
complex microbial networks via changes in local pobperties. Moreover, this result further suggest
that changes in vegetation functional compositiomesponse to increasing aridity will have indirect
consequences for the relative abundance of keyobialr modules in terrestrial environments. For
example, increases in aridity are linked to redum®cer of trees (Table S3). Further, the coveredd
was positively/negatively linked to the relativeuabdance of Mesic Module #1 and Xeric Module #2,
respectively (Table S3). Thus, changes in theivel@bundance of this within-plot vegetation typeld
impact the assembly of microbial networks in teriasecosystems, with potential collateral effefcis
ecosystem functioning. These results are in acoselavith a recent study evaluating changes in
microbial diversity along a regional aridity graaien Chile (Neilson et al. 2017).

Our SEM model supports the hypothesis that incnggasiidity will lead to the turnover of entire
microbial communities in terrestrial ecosystems dhyfting the relative abundance of well-defined
microbial modules (from Mesic Module #1 to Xeric tMde #2). Given the observed links between
network structure and ecosystem functioning, weeekphese shifts to have strong implications for
ecosystem functioning under a changing climate.example, we found that the relative abundance of
Mesic Module #1 was positively related to varialdesh as the activity of phosphatase, the amount of

available soil C and inorganic N and ANPP, whiah at linked to ecosystem functions and services su
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as nutrient cycling, organic matter decompositiod anineralization and food production (Table S1).
Thus, our results propose the idea that chang&®e ioomplex network of microbial associations dealiv
from increased aridity might negatively impact g@iem processes linked to the provision of key
ecosystem services. Moreover, these findings fursh@port the results of a previous metagenomics
study reporting large differences in potential daiictioning between arid and humid environments
(Fierer et al. 2012). Future endeavors exploringlutes of microbial communities co-occurring in
terrestrial ecosystems should further evaluatduhetional attributes of microbial modules so thet
can gain further functional insights on the rolem¢robial networks in regulating ecosystem funaitig.
Winners and losers microbial taxa in response to increasing aridity.

We identified microbial taxa that are potentiallyliverable (losers) or might benefit (winners) from
predicted increases in aridity throughout this agnf{Huang et al. 203 eilson et al. 2017). Microbial
losers are expected to be phylotypes unable toatel¢he increasingly harsh conditions associatéd w
aridity, including water scarcity or extreme radiatderived from reductions in plant coverage. Here
found that increases in aridity may reduce thetikedaabundance of some microbial phylotypes within
Mesic Module #1, which are linked to the performamé plants via symbiosis such Berkholderia
tuberum (capable of symbiotic nitrogen fixation with some legumes; Esqueda et al. 2012) and
Oidiodendron sp. (ericoid mycorrhiza; Smith and Read 2008). In addition, we found that important taxa
such aHelotiales sp. (saprobes) arfgphingomonas wittichii (involved in toxin degradation) might be
negatively influenced by increases in aridity, wadbnsequences for overall ecosystem functioning.
Interestingly, the parasitic nematoBechonia bulbillosa was also found to decline with increases in
aridity, suggesting that, as found with soil anisnahd vascular plants (Vicente-Serrano et al. 2012)
associated microbial phylotypes will also be negdyiimpacted by increases in aridity.

We also found multiple phylotypes whose relativaradance increased with aridity. Winners, i.e.
phylotypes which can potentially benefit from irgses in aridity along this century, are expectdoketo
thermophilic and highly resistant to desiccatiod adiation. Interestingly, taxa from Xeric Modui2
included a wide variety of taxa typical from desmbsystems, which are noted radiation and desgiccat
tolerant desert bacteria including phylotypes frahe genusRubrobacter, Geodermatophilus,
Streptomyces or from the clas$hermomicrobia (Mohammadipanah and Wink 2016). All these taxaawer
strongly positively correlated with aridity. We al®und fungal phylotypes typical from drylandsgisu

asTulostoma melanocyclum, Preussia minima andGeastrum pectinatum, to be strongly positively related
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to aridity (Esqueda et al. 2004). We also found ihereasing aridity had a strong positive corielat
with the relative abundance of multiple fungal agns of plants, includingiternaria triticimaculans,
Pleosporales sp, Pleosporaceae sp, Fusarium tricinctum andPhoma macrostoma. We also found that the
relative abundance dflortierella wolfii, a well-known pathogen of humans and other aninhalscan
cause bovine abortion and pneumonia (Davies ance¥él2010), increased with aridity. Other fungal
taxa such a€apronia peltigerae —a parasite of living lichens— also increasechim most arid places,
where biocrust-forming lichens are often abundant ét al. 2017). Building on from previous efforts
aiming to identify the role of aridity in galating microbial communities in drylands (Maestre et al. 2015;
Neilson et al. 2017), our study improves our un@eding and provides evidence for potential winner
and loser taxa in response to increases in afiaidystralia.

Conclusions

All things considered, our findings present strawvglence that increases in aridity will lead tdicall
shifts in the assembly of complex microbial netvgook fungi and bacteria, potentially leading to sias
phylotype exchange and local extinctions in terigsécosystems, as demonstrated by the reduabions
up to 97% in the relative abundance of microbiehtaithin Mesic Module #1. Our results thus fill jo
gaps in our understanding of how complex netwofksiiorobial associations respond to increases in
aridity, which will promote land degradation in thgds worldwide, and provide solid evidence of the
vulnerability of microbial networks to climate chlgen Considering the primacy of microbial
communities in ecosystem functioning, the repodeahges in the assembly of microbial co-occurrence
networks are likely to have far-reaching conseqasifior the provision of important ecosystem funcdio
and services like litter break-down, nutrient cygliand plant productivity, and hence need to be
considered when assessing the consequences otelimange and associated land degradation on the

functioning of terrestrial ecosystems.
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Xeric Module #2. Panel (A) shows the overall baateaind fungal community composition for Mesic

Module #1 and Xeric Module #2. Panel (B) shows rislationships between aridity arlde relative

abundance of microbial modules at the site levesuRs of regressions are as follows: Mod#1. Orglina
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level are shown in Fig. S3.
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616  Figure4. Relationships between aridity and the relativenalance of selected phylotypes within Mesic
617 Module #1 and Xeric Module #2. Amore completetidisexamples for phylotypes within Mesic Module
618  #1 and Xeric Module #2 and their correlation (Spear) to aridity is available in Table S2.
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