
Neutrosophic Sets and Systems, Vol. 36, 2020

University of New Mexico

On Some Properties of Neutrosophic Quadruple Hv-rings

Madeleine Al-Tahan1 and Bijan Davvaz2,?

1Department of Mathematics, Lebanese International University, Bekaa, Lebanon; madeline.tahan@liu.edu.lb
2Department of Mathematics, Yazd University, Yazd, Iran; davvaz@yazd.ac.ir

∗Correspondence: davvaz@yazd.ac.ir

Abstract. Hyperstructure theory, an 86 years old theory, has been of great interest for many algebraists where

their researches were divided in to two categories: theory and applications. On the other hand, neutrosophic

theory which is the study of neutralities, was introduced and developed by F. Smarandache in 1995 as an

extension of dialectics. The purpose of this paper is to study some connections between the two theories:

Neutrosophy and hyperstructures. In this regard, we define neutrosophic quadruple Hv-rings, neutrosophic

quadruple Hv-subrings, and neutrosophic quadruple homomorphism and study their various properties.
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—————————————————————————————————————————-

1. Introduction

The concept of neutrosophic quadruple numbers was introduced by Smarandache [11] in

2015. Where he defined and presented some arithmetic operations of these numbers such as

addition, subtraction, multiplication, and scalar multiplication. Later in 2017, Akinleye et

al. [2] considered the set of neutrosophic quadruple numbers and defined some operations on it

and discussed neutrosophic quadruple algebraic structures. A generalization of the latter work

was done in 2016 where Agboola et al. [1] considered the set of neutrosophic quadruple numbers

and defined some hyperoperations on it and discussed neutrosophic quadruple hyperstructures.

For more details about neutrosophy and its applications, we refer to [3–8,10,12,13].

A generalization of hyperstructures, known as Hv-structures was introduced by T. Vou-

giouklis [14, 15]. We refer to [14, 15] for basic definitions and results on Hv-rings. Al Tahan

and Davvaz in [3] discussed neutrosophic Hv-groups and studied their properties. In this work,
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we extend the results to Hv-rings and it is constructed as follows: after an Introduction, in Sec-

tion 2, we define neutrosophic quadruple Hv-rings and provide some examples on it. In Section

3, we define neutrosophic quadruple Hv-subrings and neutrosophic quadruple homomorphism

and study their properties.

2. Construction of neutrosophic quadruple Hv-rings

Symbolic (or Literal) neutrosophic theory is referring to the use of abstract symbols (i.e.

the letters T , I, F , representing the neutrosophic components: truth, indeterminacy, and

falsehood) in neutrosophics.

In [1, 2], Agboola et al. and Akinleye et al. respectively based their study of neutrosophic

quadruple algebraic structures (hyperstructures) on quadruple numbers based on the set of real

numbers. In this section, we consider neutrosophic quadruple numbers based on a set instead

of real or complex numbers and we use them to define neutrosophic quadruple Hv-rings.

Definition 2.1. [9] Let X be a nonempty set. A neutrosophic quadruple X-number is an

ordered quadruple (a, bT, cI, dF ) where a, b, c, d ∈ X and T, I, F have their usual neutrosophic

logical meanings.

The set of all neutrosophic quadruple X-numbers is denoted by NQ(X), that is,

NQ(X) = {(a, bT, cI, dF ) : a, b, c, d ∈ X}.

With respect to the preference law T < I < F , we define the Absorbance Law for the

multiplications of T , I, and F , in the sense that the bigger one absorbs the smaller one (or

the big fish eats the small fish); for example:

FT = TF = F (because F is bigger), TT = T (T absorbs itself), TI = IT = I (because I is

bigger), (because F is bigger), and FI = IF = I (because F is bigger).

Let (R,+, ·) be an Hv-ring with zero “0” and unit “1”and define “⊕” and “�” on NQ(R)

as follows:

(x1, x2T, x3I, x4F )⊕ (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 + y1, b ∈ x2 + y2, c ∈ x3 + y3, d ∈ x4 + y4}.

and

(x1, x2T, x3I, x4F )� (y1, y2T, y3I, y4F )

= {(a, bT, cI, dF ) : a ∈ x1 · y1, b ∈ x1 · y2 ∪ x2 · y1 ∪ x2 · y2,
c ∈ x1 · y3 ∪ x2 · y3 ∪ x3 · y1 ∪ x3 · y2 ∪ x3 · y3,
d ∈ x1 · y4 ∪ x2 · y4 ∪ x3 · y4 ∪ x4 · y1 ∪ x4 · y2 ∪ x4 · y3 ∪ x4 · y4}.

Throughout this section, T < I < F and (R,+, ·) is an Hv-ring with identity “0”, unit “1”,

0 + 0 = 0, 1 · 1 = 1 and x · 0 = 0 · x = 0 for all x ∈ R (i.e, 0 is an absorbing element).
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Theorem 2.2. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is an Hv-group (called

neutrosophic Hv-group) with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is an Hv-group

with identity “0” and 0 + 0 = 0.

Theorem 2.3. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is a hypergroup (called

neutrosophic hypergroup) with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is a hypergroup

with identity “0” and 0 + 0 = 0.

In [1], Agboola et al. gave an example on a hypergroup of order 3 (Example 2.4) and

said that it is a neutrosophic hypergroup which is an impossible case. We illustrate it by the

following remark.

Remark 2.4. A neutrosophic Hv-group (hypergroup) NQ(R) = {(a, bT, cI, dF ) : a, b, c, d ∈
R} is either infinite or of order |R|4 where |R| is the number of elements in R in case R is

finite. This is clear by using Theorem 2.2 and Theorem 2.3 respectively.

Theorem 2.5. [3] Let R be a set with 0 ∈ R. Then (NQ(R),⊕) is a commutative Hv-group

with identity 0 = (0, 0T, 0I, 0F ) if and only if (R,+) is a commutative Hv-group with identity

“0” and 0 + 0 = 0.

Proposition 2.6. Let R be a set containing “0” and “1” with a hyperoperation “·”. Then

(NQ(R),�) is a quadruple Hv-semigroup with unit 1 if and only if (R, ·) is an Hv-semigroup

with unit 1 = (1, 0T, 0I, 0F ).

Proof. Let (NQ(R),�) be a quadruple Hv-semigroup and let a, b, c ∈ R. Having x =

(a, 0T, 0I, 0F ) ∈ NQ(R), y = (b, 0T, 0I, 0F ) ∈ NQ(R), z = (c, 0T, 0I, 0F ) ∈ NQ(R) and

(x� (y � z)) ∩ ((x� y)� z) 6= ∅ implies that (a · (b · c)) ∩ ((a · b) · c) 6= ∅.
Let (R, ·) be an Hv-semigroup and let x, y, z ∈ NQ(R). Then there exist xi, yi, zi ∈ R

with i = 1, 2, 3, 4 such that x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) and z =

(z1, z2T, z3I, z4F ). We have (xi · (yi ·zi))∩ (xi ·yi) ·zi) 6= ∅ for i = 1, 2, 3, 4. Applying the latter

with some computations on x�(y�z) and on (x�y)�z, we get (x�(y�z))∩((x�y)�z) 6= ∅.

Proposition 2.7. R be a set containing “0” and “1” with a hyperoperation “·”. Then

(NQ(R),�) is a quadruple semihypergroup with 1 = (1, 0T, 0I, 0F ) as unit if and only if

(R, ·) is a semihypergroup with 1 as unit.

Proof. The proof is the same as that of Proposition 2.6 but instead of nonempty intersection,

we have equality.
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Proposition 2.8. Let (NQ(R),⊕,�) be an Hv-ring with zero “0” and unit “1”. Then for all

a, b, c ∈ R, we have:

(a · (b+ c)) ∩ ((a · b) + (a · c)) 6= ∅.

Proof. Let a, b, c ∈ R. Then x = (a, 0T, 0I, 0F ), y = (b, 0T, 0I, 0F ), z = (c, 0T, 0I, 0F ) ∈
NQ(R). Since (x�(y⊕z))∩((x�y)⊕(x�z)) 6= ∅, it follows that (a·(b+c))∩((a·b)+(a·c)) 6= ∅.

Proposition 2.9. Let (R,+, ·) be an Hv-ring with identity “0” and unit “1”. Then for all

x, y, z ∈ NQ(R), we have:

(x� (y ⊕ z)) ∩ ((x� y)⊕ (y � z)) 6= ∅.

Proof. Let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ), z = (z1, z2T, z3I, z4F ) ∈ NQ(R).

We have:

x� (y⊕ z) = {(t1, t2, t3, t4) : t1 ∈ x1 · (y1 + z1), t2 ∈ x1 · (y2 + z2)∪ x2 · (y1 + z1)∪ x2 · (y2 + z2),

t3 ∈ x1 · (y3 + z3) ∪ x2 · (y3 + z3) ∪ x3 · (y1 + z1) ∪ x3 · (y2 + z2) ∪ x3 · (y3 + z3),

t4 ∈ x1·(y4+z4)∪x2·(y4+z4)∪x3·(y4+z4)∪x4·(y1+z1)∪x4·(y2+z2)∪x4·(y3+z3)∪x4·(y4+z4)}.
On the other hand, we have:

(x � y) ⊕ (x � z) = {s = (s1, s2T, s3I, s4F ) : q = (q1, q2T, q3I, q4F ) ∈ x � y, r =

(r1, r2T, r3I, r4F ) ∈ x� z, si ∈ qi + ri for i = 1, 2, 3, 4}.
Having q = (q1, q2T, q3I, q4F ) ∈ x · y and r = (r1, r2T, r3I, r4F ) ∈ x · z implies that

q1 ∈ x1 · y1, q2 ∈ x1 · y2 ∪ x2 · y1 ∪ x2 · y2, q3 ∈ x1 · y3 ∪ x2 · y3 ∪ x3 · y1 ∪ x3 · y2 ∪ x3 · y3,
q4 ∈ x1 ·y4∪x2 ·y4∪x3 ·y4∪x4 ·y1∪x4 ·y2∪x4 ·y3∪x4 ·y4, r1 ∈ x1 ·z1, r2 ∈ x1 ·z2∪x2 ·z1∪x2 ·z2, r3 ∈
x1·z3∪x2·z3∪x3·z1∪x3·z2∪x3·z3 and r4 ∈ x1·z4∪x2·z4∪x3·z4∪x4·z1∪x4·z2∪x4·z3∪x4·z4. Since

xi·(yi+zi)∩(xi·yi+xi·zi) 6= ∅ for i = 1, 2, 3, 4, it follows that (x�(y⊕z))∩((x�y)⊕(y�z)) 6= ∅.

Proposition 2.10. Let (NQ(R),⊕,�) be an hyperring with zero “0” and unit “1”. Then for

all a, b, c ∈ R, we have:

(a · (b+ c)) = ((a · b) + (a · c)).

Proof. The proof is the same as that of Proposition 2.8 but instead of nonempty intersection,

we have equality.

Proposition 2.11. Let (R,+, ·) be a hyperring with identity “0” and unit “1”. Then for all

x, y, z ∈ NQ(R), we have:

x� (y ⊕ z) ⊆ (x� y)⊕ (y � z).

Proof. The proof is straightforward.
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Remark 2.12. The equality in Proposition 2.11 may not hold. We illustrate it by the following

example.

Example 2.13. Let R = Z2 be the ring of integers under standard addition and multiplication

modulo 2 and let x = (1, 1T, 0I, 0F ), y = (0, 1T, 0I, 0F ) and z = (1, 0T, 0I, 0F ). Having

x � (y ⊕ z) = (1, 1T, 0I, 0F ) and (x � y) ⊕ (x � z) = {(1, 0T, 0I, 0F ), (1, 1T, 0I, 0F )} implies

that x� (y ⊕ z) 6= (x� y)⊕ (y � z).

In the proof of Theorem 2.11, [1], the proof of distributivity contains a gap. Our example,

Example 2.13 can be used as an illustration.

Notation 1. Let (R,+, ·) be an Hv-ring with “0” and “1” as zero and unit respectively satis-

fying 0 + 0 = 0, 1 · 1 = 1 and 0 · x = x · 0 = 0 for all x ∈ R. Then (NQ(R),⊕,�) is called

neutrosophic quadruple Hv-ring.

Notation 2. Let (NQ(R),⊕,�) be a hyperring. Then we call it a neutrosophic quadruple

hyperring.

Remark 2.14. Let (R,+, ·) be a hyperring. Then (NQ(R),⊕,�) may fail to be a hyperring.

One can easily see that (NQ(R),⊕,�) in Example 2.13 is not a hyperring (as the distributivity

law does not hold.).

Theorem 2.15. Let R be any set with two hyperoperations “+” and “·”. Then (NQ(R),⊕,�)

is a neutrosophic Hv-ring with zero and unit 0 = (0, 0T, 0I, 0F ) and 1 = (1, 0T, 0I, 0F ) respec-

tively if and only if (R,+, ·) is an Hv-ring with zero and unit “0” and “1” respectively.

Proof. The proof follows from Theorem 2.2, Proposition 2.6, Proposition 2.8 and Proposition

2.9.

Corollary 2.16. Let (R,+, ·) be an Hv-ring containing an identity and absorbing element 0

and a unit 1 with the property that 0 + 0 = 0, 1 · 1 = 1. Then we can construct infinite number

of neutrosophic quadruple Hv-rings.

Proof. Theorem 2.15 asserts that (NQ(R),⊕,�) is an Hv-ring with zero and unit 0 =

(0, 0T, 0I, 0F ) and 1 = (1, 0T, 0I, 0F ) respectively. Applying Theorem 2.15 on (NQ(R),⊕,�),

we get NQ(NQ(R)) is a quadruple Hv-ring. Continuing on this pattern, we can construct

infinite number of quadruple Hv-rings. Particularly, we have NQ(NQ(. . . NQ(. . . (R)) . . .) is

a quadruple Hv-ring.

Proposition 2.17. Let (R,+, ·) be any ring with unit. Then (NQ(R),⊕,�) is a neutrosophic

Hv-ring. Moreover, (NQ(R),⊕,�) is not a ring.
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Proof. We can consider the ring (R,+, ·) as an Hv-ring with zero and unit. Theorem 2.15

asserts that (NQ(R),⊕,�) is a neutrosophic Hv-ring.

Having x = (1, 0T, 0I, 0F ), y = (1, T, 0I, 0F ) ∈ NQ(R) implies that x � y ⊆ NQ(R). It is

clear that (1, 0T, 0I, 0F ), (1, T, 0I, 0F ) ∈ x� y. Thus, |x� y| > 1.

Example 2.18. Let R1 = {0, 1} and define (R1,+1, ·1) as follows:

+1 0 1

0 0 1

1 1 R1

·1 0 1

0 0 0

1 0 1

Then (NQ(R1),⊕,�) is a quadruple Hv-ring with 16 elements.

By setting

1 = (1, 0T, 0I, 0F ), a6 = (0, 0T, I, F ), a11 = (1, 0T, 0I, F ),

a2 = (0, T, 0I, 0F ), a7 = (0, T, I, 0F ), a12 = (1, T, 0I, F ),

a3 = (0, 0T, I, 0F ), a8 = (0, T, 0I, F ), a13 = (1, 0T, I, F ),

a4 = (0, 0T, 0I, F ), a9 = (1, T, 0I, 0F ), a14 = (1, T, I, 0F ),

a5 = (0, T, I, F ), a10 = (1, 0T, I, 0F ), a15 = (1, T, I, F ),

we present some of the results for ai ⊕ aj = aj ⊕ ai, i, j = 1, 2, . . . , 15 in the following table.

0⊕ x = {x} for all x ∈ NQ(R1) 1⊕ 1 = {1}
1⊕ a2 = {a9} a2 ⊕ a5 = {a5, a6}
a3 ⊕ a4 = {a6} 1⊕ a3 = {a10}

a5 ⊕ a5 = {0, 1, a2, a4, a5, a6, a7, a8, a10} a5 ⊕ a6 = {a5, a7, a8}
1⊕ a4 = {a11} a5 ⊕ a7 = {a4, a5, a6, a8}

a5 ⊕ a8 = {a5, a6, a7, a10} 1⊕ a5 = {a15}
a5 ⊕ a9 = {a13, a14, a15} a5 ⊕ a10 = {a5, a8}

1⊕ a6 = {a13} a5 ⊕ a11 = {a14, a15}
a5 ⊕ a12 = {a13, a14, a15} 1⊕ a7 = {a14}

a5 ⊕ a13 = {a9, a12, a14, a15} a5 ⊕ a14 = {a11, a13, a15}
1⊕ a8 = {a12} a4 ⊕ a14 = {a15}

a4 ⊕ a15 = {a14, a15} 1⊕ a9 = {a2, a9}
a14 ⊕ a14 = {1, a2, a3, a7, a9, a10, a14} a14 ⊕ a15 = {a4, a5, a6, a8, a11, a13, a15}

1⊕ a10 = {a3, a10} a15 + a15 = NQ(R1)

a15 ⊕ a3 = {a12, a15} 1⊕ a11 = {a4, a10}

M. Al-Tahan and B. Davvaz, On Some Properties of Neutrosophic Quadruple Hv-rings



Neutrosophic Sets and Systems, Vol. 36, 2020 262 of 268

and we present some of the results for ai � aj = aj � ai, i, j = 1, 2, . . . , 15 in the following

table.

0� x = {0} for all x ∈ NQ(R1) 1� 1 = {1}
1� a2 = {0, a2} 1� a3 = {0, a3}
1� a4 = {0, a4} 1� a5 = {0, a2, a3, a4, a5, a6, a7, a8}

1� a6 = {0, a3, a4, a6} 1� a7 = {0, a2, a3, a7}
1� a8 = {0, a2, a4, a8} 1� a9 = {1, a9}

1� a10 = {1, a10} 1� a11 = {1, a11}
1� a12 = {1, a9, a11, a12} 1� a13 = {1, a10, a11, a13}
1� a14 = {1, a9, a10, a14} 1� a15 = {1, a9, a10, a1, a12, a13, a14, a15}

a2 � a2 = {0, a2} a3 � a3 = {0, a3}

It is clear that (NQ(R1),⊕,�) is a commutative quadruple Hv-ring.

Proposition 2.19. Let (R,+, ·) be an Hv-ring. Then “1” is the scalar unit of (R,+, ·) if and

only if 1 = (1, 0T, 0I, 0F ) is the scalar unit of (NQ(R),⊕,�).

Proof. The proof is straightforward by applying the uniqueness of the scalar unit.

Proposition 2.20. Let (R,+, ·) be an Hv-ring. Then (R,+, ·) is a commutative Hv-ring if

and only if (NQ(R),⊕,�) is a commutative Hv-ring.

Proof. Theorem 2.5 asserts that (NQ(R),⊕) is a commutative Hv-group if and only if (R,+) is

a commutative Hv-group. We need to show that (NQ(R),�) is a commutative Hv-semigroup

if and only if (R, ·) is a commutative Hv-semigroup. Suppose that (R, ·) is a commutative

Hv-semigroup and let x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) ∈ NQ(R). Easy compu-

tations show that x� y = y � x. Thus, (NQ(R),�) is a commutative Hv-semigroup.

Conversely, let (NQ(R),�) be a commutative Hv-group and a, b ∈ R. Having x =

(a, 0T, 0I, 0F ), y = (b, T, 0I, 0F ) ∈ NQ(R) implies that x � y = (a · b, 0T, 0I, 0F ) = y � x =

(b · a, 0T, 0I, 0F ). Thus, a · b = b · a. Therefore, (R, ·) is a commutative Hv-semigroup.

Proposition 2.21. If (R,+, ·) is a V T -Hv-ring then (NQ(R),⊕,�) is not a V T -Hv-ring.

Proof. Suppose that (R,+) is a V T -Hv-ring. Then there exist a, b ∈ R with either |a+ b| > 1

or |a · b| > 1.

• Case |a+ b| > 1. Having 0 + 0 = 0 implies that either a 6= 0 or b 6= 0 (or both are not

equal to zero). Without loss of generality, we take b 6= 0. Let x = (a, aI, 0T, 0F ), y =

(b, 0I, 0T, 0F ), z = (0, bT, bI, bF ) ∈ NQ(R). It is clear that y 6= z, |x⊕ y| > 1 and that

|x⊕ z| > 1.

M. Al-Tahan and B. Davvaz, On Some Properties of Neutrosophic Quadruple Hv-rings



Neutrosophic Sets and Systems, Vol. 36, 2020 263 of 268

• Case |a · b| > 1. Having 1 · 1 = 1 implies that either a 6= 1 or b 6= 1 (or both are not

equal to 1). Without loss of generality, we take b 6= 1. Let x = (a, 0I, 0T, 0F ), y =

(b, 0I, 0T, 0F ), z = (0, bT, 0I, 0F ) ∈ NQ(R). It is clear that y 6= z, |x�y| > 1 and that

|x� z| > 1.

Therefore, (NQ(R),⊕,�) is not a V T -Hv-ring.

3. Neutrosophic quadruple Hv-subrings and neutrosophic homomorphisms

In this section, we define neutrosophic quadruple Hv-subrings and neutrosophic homo-

morphisms and investigate some of their properties.

Definition 3.1. Let (NQ(R),⊕,�) be a neutrosophic quadruple Hv-ring and T be a non-

empty subset of NQ(R). Then (T,⊕,�) is called a neutrosophic quadruple Hv-subring of

NQ(R) if (T,⊕,�) is a neutrosophic quadruple Hv-ring.

Remark 3.2. Neutrosophic Hv-rings have no proper neutrosophic Hv-ideals. This is clear as if

NQ(J) is a neutrosophiv Hv-ideal of NQ(R) then (1, 0T, 0I, 0F ) ∈ NQ(J). The latter implies

that (a, bT, cI, dF ) = (a, bT, cI, dF )� (1, 0T, 0I, 0F ) ∈ NQ(J) for all (a, bT, cI, dF ) ∈ NQ(R).

Theorem 3.3. [3] Let (R,+) be an Hv-group with identity “0”, S ⊆ R and 0 ∈ S. Then

(NQ(S),⊕) is an Hv-subgroup of (NQ(R),⊕) if and only if (S,+) is an Hv-subgroup of (R,+).

Theorem 3.4. Let (R,+, ·) be an Hv-ring with identity “0” and unit 1, S ⊆ R and 0, 1 ∈ S.

Then (NQ(S),⊕,�) is an Hv-subring of (NQ(R),⊕,�) if and only if (S,+, ·) is an Hv-subring

of (R,+, ·).

Proof. Theorem 3.3 asserts that (NQ(S),⊕) is an Hv-subgroup of (NQ(R),⊕) if and only if

(S,+) is an Hv-subgroup of (R,+). We need to show that (NQ(S),�) is an Hv-subsemigroup

of (NQ(R),�) if and only if (S, ·) is an Hv-subsemigroup of (R, ·). Suppose that (S, ·) is an

Hv-subsemigroup of (R, ·). We need to show that x �NQ(S) ∪NQ(S) � x ⊆ NQ(S) for all

x = (x1, x2T, x3I, x4F ) ∈ NQ(S) which is clear.

Let (NQ(S),�) be an Hv-subsemigroup of (NQ(R),�) and let x1 ∈ S. We need to show

that x1 · S ∪ S · x1 ⊆ S. For all y1 ∈ S, we have x = (x1, 0T, 0I, 0F ), y = (y1, 0T, 0I, 0F ) ∈
NQ(S). Since x� y ⊆ NQ(S), it follows that x1 · y1 ⊆ S.

Example 3.5. Since (R1,+1, ·1) in Example 2.18 has only one Hv-subring (R1) containing

0 and 1, it follows by applying Theorem 3.4 that (NQ(R1),⊕,�) has only one neutrosophic

Hv-subring: (NQ(R1),⊕,�) .
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Example 3.6. Let R2 = {0, 1, 2} and define (R2,+2, ·2) as follows:

+2 0 1 2

0 0 {0, 1} {0, 2}

1 {0, 1} 1 {1, 2}

2 {0, 2} {1, 2} 2

·2 0 1 2

0 0 0 0

1 0 1 {1, 2}

2 0 {1, 2} 2

It is clear that (R2,+2, ·2) is a commutative Hv-ring that has exactly two non-isomorphic

Hv-subrings containing 0 and 1: {0, 1} and R2. We can deduce that (NQ(R2),⊕,�) is a com-

mutative neutrosophic quadruple Hv-ring and has two non-isomorphic neutrosophic quadruple

Hv-subrings: NQ({0, 1}) = {0, 1} and NQ(R2).

Proposition 3.7. Let n ≥ 2 be a natural number and (Zn,+, ·) be the ring of integers under

standard addition and multiplication modulo n. Then (NQ(Zn),⊕,�) has no proper neutro-

sophic Hv-subrings.

Proof. Proposition 2.17 asserts that (NQ(Zn),⊕,�) is a neutrosophic Hv-ring. Let S be a

subring of Zn. Then there exist d | n with 1 ≤ d ≤ n such that S = dZn. Since 1 ∈ S if and

only if d = 1 and (1, 0T, 0I, 0F ) ∈ NQ(S), it follows that NQ(S) = NQ(Zn).

Proposition 3.8. Let (S,+, ·) be an Hv-subring of (R,+, ·). Then NQ(S)⊕NQ(S) = NQ(S)

and NQ(S)�NQ(S) ⊆ NQ(S).

Proof. The proof is straightforward.

Definition 3.9. Let (NQ(R),⊕1,�1) and (NQ(J),⊕2,�2) be neutrosophic quadruple Hv-

rings. A function φ : NQ(R)→ NQ(J) is called neutosophic homomorphism if

(1) φ(0R, 0RT, 0RI, 0RF ) = (0J , 0JT, 0JI, 0JF );

(2) φ(1R, 0RT, 0RI, 0RF ) = (1J , 0JT, 0JI, 0JF );

(3) φ(0R, 1RT, 0RI, 0RF ) = (0J , 1JT, 0JI, 0JF );

(4) φ(0R, 0RT, 1RI, 0RF ) = (0J , 0JT, 1JI, 0JF );

(5) φ(0R, 0RT, 0RI, 1RF ) = (0J , 0JT, 0JI, 1JF );

(6) φ(x⊕1 y) = φ(x)⊕2 φ(y) for all x, y ∈ NQ(R);

(7) φ(x�1 y) = φ(x)�2 φ(y) for all x, y ∈ NQ(R).
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If φ is a neutrosophic homomorphism and bijective then it is called neutrosophic isomorphism

and we write NQ(R) ∼= NQ(J).

Example 3.10. Let (R,+, ·) be an Hv-ring. Then f : NQ(R)→ NQ(R) is an isomorphism,

where f(x) = x for all x ∈ NQ(R).

Proposition 3.11. Let (R,+1, ·1) and (J,+2, ·2) be Hv-rings. If there exist a homomor-

phism f : R → J with f(0R) = 0J and f(1R) = 1J then there exist a homomorphism from

(NQ(R),⊕1,�1) to (NQ(J),⊕2,�2).

Proof. Suppose that f : R → J is a homomorphism. We define φ : NQ(R) → NQ(J) as

follows: For x = (x1, x2T, x3I, x4F ) ∈ NQ(R)

φ((x1, x2T, x3I, x4F )) = (f(x1), f(x2)T, f(x3)I, f(x4)F ).

It is clear that φ is well defined and that conditions 1. to 5. of Definition 3.9 are satisfied. Let

x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ) ∈ NQ(R). Since f(xi+1yi) = f(xi)+2f(yi) for

i = 1, 2, 3, 4, it follows that φ(x⊕1y) = φ(x)⊕2φ(y). Moreover, having f(xi ·1yi) = f(xi)·2f(yi)

for i = 1, 2, 3, 4 implies that φ(x�1 y) = φ(x)�2 φ(y).

Proposition 3.12. Let (R,+1, ·1) and (J,+2, ·2) be isomorphic Hv-rings, 0R, 1R ∈ R with

0R + 0R = 0R, 1R · 1R = 1R, 0R · x = 0R for all x ∈ R and f : (R,+1, ·1) → (J,+2, ·2) be an

isomorphism. Then f(0R) = 0J and f(1R) = 1J .

Proof. let f(0R) = a, f(1R) = b. Since a = f(0R) = f(0R +1 0R) = a +2 a and a +2 y =

f(0R +1 x) 3 f(x) = y for all y ∈ J , it follows that a is a zero of J satisfying a +2 a = a.

Moreover, having b = f(1R ·1 1R) = b ·2 b and b ·2 y = f(1R ·1 x) 3 f(x) = y for all y ∈ J implies

that b is a unit of J satisfying 1J ·2 1J = 1J .

Corollary 3.13. Let (R,+1, ·1) and (J,+2, ·2) be isomorphic Hv-rings. Then

(NQ(R),⊕1,�1) ∼= (NQ(J),⊕2,�2).

Proof. The proof is straightforward by using Proposition 3.11 and Proposition 3.12.

Corollary 3.14. Let (R,+1, ·1) and (J,+2, ·2) be Hv-rings and let Hom(R, J) = {f : R →
J : f is homomorphism, f(0R) = 0J and f(1R) = 1J}. If |Hom(R, J)| <∞ then

|Hom(R, J)| ≤ |Hom(NQ(R), NQ(J)|.

Proof. The proof is straightforward using Proposition 3.11.
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Let (R,+) be a commutative Hv-ring with identity “0” and unit “1” and S ⊆ R be an

Hv-subring of R. Then (R/S,+′, ·′) is an Hv-ring with: S as a zero, “1 + S” as a unit and

S +′ S = S. Here “+′” and “·′” are defined as follows: For all x, y ∈ R,

(x+ S) +′ (y + S) = (x+ y) + S and (x+ S) ·′ (y + S) = x · y + S.

Proposition 3.15. Let (S,+, ·) be an Hv-subring of a commutative Hv-ring (R,+, ·). Then

(NQ(R/S),⊕,�) is an Hv-ring.

Proof. Since (R,+, ·) is commutative, it follows that “+′” and “·′” are well defined. The proof

follows from having (R/S,+′, ·′) an Hv-ring with S as zero, 1 + S as unit, S ·′ (x + S) =

(x+ S) ·′ S = S and from Theorem 2.15.

Proposition 3.16. Let (S,+, ·) be an Hv-subring of a commutative Hv-ring (R,+, ·). Then

(NQ(R/S),⊕,�) ∼= (NQ(R)/NQ(S),⊕′,�′).

Proof. Let g : NQ(R)/NQ(S)→ NQ(R/S) be defined as follows:

g((x1, x2T, x3I, x4F )⊕NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 + S)F ).

We claim that g is a neutrosophic isomorphism, that is, g is well defined, one-to-one, onto and

neutrosophic homomorphism.

(1) g is well defined. Let x ⊕ NQ(S) = y ⊕ NQ(S) ∈ NQ(R)/NQ(S). Then there exist

xi, yi ∈ R, i = 1, 2, 3, 4 such that x = (x1, x2T, x3I, x4F ), y = (y1, y2T, y3I, y4F ). We

need to show that xi + S = yi + S for i = 1, 2, 3, 4, that is xi + S ⊆ yi + S and

yi + S ⊆ xi + S for i = 1, 2, 3, 4. We show that xi + S ⊆ yi + S and yi + S ⊆ xi + S is

done in a similar manner. Since x⊕NQ(S) = y ⊕NQ(S), it follows that x ∈ x⊕ z ⊆
y⊕NQ(S) for all z = (z1, z2T, z3I, z4F ) ∈ NQ(S). The latter implies that there exist

s = (s1, s2T, s3I, s4F ) ∈ NQ(S) such that x⊕z ∈ y⊕s. We get xi+zi ∈ yi+si ⊆ yi+S
for i = 1, 2, 3, 4. The latter implies that xi + S ⊆ yi + S for i = 1, 2, 3, 4.

(2) g is onto. The proof is straightforward.

(3) g is one-to-one. Let x ⊕ NQ(S) = (x1, x2T, x3I, x4F ) ⊕ NQ(S), y ⊕ NQ(S) =

(y1, y2T, y3I, y4F ) ⊕ NQ(S) ∈ NQ(R)/NQ(S) with h(x ⊕ NQ(S)) = h(y ⊕ NQ(S)).

We need to show that x ⊕ NQ(S) = y ⊕ NQ(S), that is, x ⊕ NQ(S) ⊆ y ⊕ NQ(S)

and y ⊕NQ(S) ⊆ x⊕NQ(S). We prove x⊕NQ(S) ⊆ y ⊕NQ(S) and y ⊕NQ(S) ⊆
x⊕NQ(S) is done in a similar manner.

Having h(x⊕NQ(S)) = h(y⊕NQ(S)) implies that (x1 +S, (x2 +S)T, (x3 +S)I, (x4 +

S)F ) = (y1+S, (y2+S)T, (y3+S)I, (y4+S)F ). The latter implies that xi+S = yi+S

for i = 1, 2, 3, 4. Let z = (z1, z2T, z3I, z4F ) ∈ NQ(S). Having xi + S = yi + S for
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i = 1, 2, 3, 4 implies that there exist si, i = 1, 2, 3, 4, such that xi + zi ⊆ yi + si for

i = 1, 2, 3, 4. The latter implies that x⊕NQ(S) ⊆ y ⊕ s ⊆ y ⊕NQ(S).

(4) g is neutrosophic homomorphism.

• g(0, 0T, 0I, 0F ) = (S, ST, SI, SF ),

• g(1, 0T, 0I, 0F ) = (1 + S, ST, SI, SF ),

• g(0, 1T, 0I, 0F ) = (S, (1 + S)T, SI, SF ),

• g(0, 0T, 1I, 0F ) = (S, ST, (1 + S)I, SF ),

• g(0, 0T, 0I, 1F ) = (S, ST, SI, (1 + S)F ),

• We have g((x1, x2T, x3I, x4F )⊕NQ(S)⊕′ (y1, y2T, y3I, y4F )⊕NQ(S)) = g((x1 +

y1, (x2+y2)T, (x3+y3)I, (x4+y4)F )⊕NQ(S)) = (x1+y1+S, (x2+y2+S)T, (x3+

y3 + S)I, (x4 + y4 + S)F ). On the other hand, we have g((x1, x2T, x3I, x4F ) ⊕
NQ(S)) ⊕ g((y1, y2T, y3I, y4F ) ⊕ NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 +

S)F )⊕ (y1 + S, (y2 + S)T, (y3 + S)I, (y4 + S)F ).

• We have:(x1, x2T, x3I, x4F ) ⊕ NQ(S) �′ (y1, y2T, y3I, y4F ) ⊕ NQ(S) =

(x1, x2T, x3I, x4F ) � (y1, y2T, y3I, y4F ) ⊕ NQ(S) and g((x1, x2T, x3I, x4F ) ⊕
NQ(S)) � g((y1, y2T, y3I, y4F ) ⊕ NQ(S)) = (x1 + S, (x2 + S)T, (x3 + S)I, (x4 +

S)F ) � (y1 + S, (y2 + S)T, (y3 + S)I, (y4 + S)F ). Simple computations im-

ply that g((x1, x2T, x3I, x4F ) ⊕ NQ(S) �′ (y1, y2T, y3I, y4F ) ⊕ NQ(S)) =

g((x1, x2T, x3I, x4F )⊕NQ(S))� g((y1, y2T, y3I, y4F )⊕NQ(S)).

Therefore, (NQ(R/S),⊕,�) ∼= (NQ(R)/NQ(S),⊕′,�′).

Example 3.17. Let R2 = {0, 1, 2} and S = {0, 1} in Example 3.6. Then NQ(R2/S) ∼=
NQ(R2)/NQ(S).

4. Conclusion

This paper contributed to the study of neutrosophic hyperstructures by introducing neu-

trosophic quadruple Hv-rings and studying their properties. For future work, it will be inter-

esting to introduce and study other neutrosophic quadruple Hv-structures such as neutrosophic

Hv-modules and neutrosophic Hv-vectorspaces.
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