Published February 1, 2019 | Version v1
Journal article Open

Spam image email filtering using K-NN and SVM

Description

The developing utilization of web has advanced a simple and quick method for e-correspondence. The outstanding case for this is e-mail. Presently days sending and accepting email as a method for correspondence is prominently utilized. Be that as it may, at that point there stand up an issue in particular, Spam mails. Spam sends are the messages send by some obscure sender just to hamper the improvement of Internet e.g. Advertisement and many more. Spammers introduced the new technique of embedding the spam mails in the attached image in the mail. In this paper, we proposed a method based on combination of SVM and KNN. SVM tend to set aside a long opportunity to prepare with an expansive information set. On the off chance that "excess" examples are recognized and erased in pre-handling, the preparation time could be diminished fundamentally. We propose a k-nearest neighbor (k-NN) based example determination strategy. The strategy tries to select the examples that are close to the choice limit and that are effectively named. The fundamental thought is to discover close neighbors to a question test and prepare a nearby SVM that jelly the separation work on the gathering of neighbors. Our experimental studies based on a public available dataset (Dredze) show that results are improved to approximately 98%.

Files

27 19APR18 2SEP18 12800-22516-2-ED zly[210].pdf

Files (1.0 MB)