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ABSTRACT
High-fidelity colour reproduction requires multispectral
cameras for image acquisition, which, unlike RGB cameras,
divide the visible electromagnetic spectrum into more than
3 channels. This can be achieved by successively placing
narrow-band optical filters with different passbands between
object lens and sensor of a standard b/w camera. The filters
are arranged on a filter wheel, the rotation of which moves
the filters sequentially into the optical path. In practice, these
filters exhibit different thicknesses and refraction indices, and
are also not perfectly coplanar, resulting in geometric distor-
tions between the recorded spectral components. We derive
a mathematical model for these distortions. We additionally
measure the effects of chromatic aberration, and incorporate
these into our model. Based on this model, we then develop
a registration algorithm which robustly estimates the param-
eters of an appropriate affine coordinate transformation. Ex-
perimental results using a seven-channel multispectral cam-
era confirm both the validity of our model as well as the ac-
curacy of the registration algorithm.

1. INTRODUCTION

Multispectral cameras provide a much higher colour fi-
delity [10] than common RGB cameras. The latter ones
are available as consumer and professional cameras, rang-
ing from cameras in mobile phones to industrial inspection
cameras. Despite their popularity, they produce a system-
atic colour error since they violate the Luther condition [11],
which, for faithful colour reproduction, requires the spectral
sensitivities of the 3 colour channels to be a linear combina-
tion of those of the CIE standard observer. Especially single-
chip RGB cameras using a colour filter array perform poorly
in this respect, since they require spatial interpolation within
the colour components — often referred to as demosaicking
[8] — which generates additional colour errors.

In many multispectral scenarios, the scenes to be ac-
quired are static. One way to achieve multispectral acqui-
sition then is to divide the incoming visible electromagnetic
spectrum into a higher number of channels — say, seven —
by successively placing optical narrow-band filters with dif-
ferent passbands between object lens and sensor of a standard
b/w camera, and to acquire a separate colour component for
each filter. Towards this end, the set of filters is mounted on
a filter wheel [9, 5], the rotation of which sequentially moves
each filter into the optical path (see Fig. 1). The filters sam-
ple the spectrum from 400nm to 700nm at discrete intervals
in steps of, for instance, 50nm. This makes it possible to
differentiate between metamere colours, i.e., colours which
appear identical for a specific viewer or RGB camera, but are

caused by different reflected spectra. An additional advan-
tage of the multispectral approach is the possibility to gen-
erate from one given acquisition reproductions for different
illumination sources with differing properties. Though we
focus here on multispectral cameras with filter wheels, let us
mention that other techniques exist, such as line scanning [2]
or the usage of a liquid crystal tunable filter (LCTF) [1].

In practice, filter wheels exhibit certain imperfections:
First, the filters in a wheel are not perfectly coplanar, rather,
the normal of each filter is tilted by an individual angle γ with
respect to the optical axis, as shown in Fig. 2. Moreover, their
thicknesses and refraction indices differ. This generates sys-
tematic misalignments between the acquired spectral compo-
nents, which, when uncompensated, produce colour fringes.
Our objective in this contribution is to mathematically model
these distortions, and to develop an algorithm consistent with
our model to compensate them.

Figure 1: Our multispectral camera, using 7 optical filters.
Its internal configuration is sketched.

A region-based registration algorithm using correlation
analysis for the correction of ”geometric inter-channel dis-
tortions“ of multispectral cameras is described in [9]. But
since there is no underlying model, the correction fails in re-
gions without any or with corrupted registration information.
Also, the correlation-based similarity measure is not ideally
suited because the values of different spectral channels are
generally related non-linearly. In [4], an ”automatic regis-
tration algorithm“ is proposed, performing registration by a
heuristic search of model parameters. Neither the physical
background nor the effect of chromatic aberration were an-
alyzed. No comparison between a model estimate and mea-
sured data is given.

In the following, we first develop the physical model de-
scribing the geometric distortions in multispectral cameras
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with filter wheels. Based on the model, we then derive our
registration algorithm in section 3. Experimental results with
our 7-channel multispectral camera are provided in section 4
before we conclude with section 5.

2. PHYSICAL MODEL

Fig. 2 shows schematically a filter of thickness d and refrac-
tion index n2 placed into the optical path. Its normal is tilted
by a small angle γ away from the optical axis. A principal ray
incident under the angle θ with respect to the optical axis is
refracted twice such that it emerges parallel to its unrefracted
path, but is displaced by δ , resulting in the displacement e in
the image plane. Since γ , d and n2 vary from filter to filter, so
do the displacements δ and e. The resulting misalignments
between the colour channels then generate colour fringes, as
observed in Fig. 4 (left). The angle α between the incident
ray and the filter normal is

α = θ + γ. (1)

The refraction obeys Snellius rule

sinα

sinβ
=

n2

n1
= n2 , (2)

where n1 = 1 is the refraction index of air. The displacement
δ thus is

δ = d
sin(α−β )

cosβ
. (3)

Figure 2: A filter placed between lens (not shown) and sen-
sor, tilted by γ with respect to the optical axis. The filter re-
fracts the ray depicted in solid red as shown by the red dotted
line. The ray with θ =−γ (green) is not refracted.

For the displacement in the image plane, we obtain

e =
δ

cosθ
. (4)

Combining (2)-(4) yields

e = d
sin(α−β )
cosβ cosθ

(5)

Practically, γ is less than 0.5◦. For our filter set, the re-
fraction index is either n2 = 1.45 (for the filters with centre

wavelengths 400nm and 450nm), or n2 = 2.05 (for the fil-
ters with centre wavelengths 500nm, 550nm, 600nm, 650nm
and 700nm). The image distance b is not less than 50mm,
and the sensor size is 6.4mm× 4.8mm, yielding a maximum
angle θ =±3.7◦.

Invoking the trigonometric approximations sinx ≈ x,
cosx≈ 1 for small angles 1, we simplify (5) to

e = d (α−β ) . (6)

Calculating β by Snellius’ rule (2) to

β = arcsin
(

sinα

n2

)
≈ α

n2
(7)

and inserting (1) we obtain for e

e = d
(

θ + γ− α

n2

)
= d

(
θ + γ− θ + γ

n2

)
= d

(
1− 1

n2

)
(θ + γ) . (8)

From the image distance b and the position B, we find

tanθ =
B
b
≈ θ (9)

yielding for the displacement e

e = d
(

1− 1
n2

)
︸ ︷︷ ︸

C

(
B
b

+ γ

)
(10)

which is a linear relation between the displacement e in the
image plane and the filter parameters d, n2 and γ . To assess
the validity of the small-angle approximations, we performed
a worst-case comparison between e as computed from (10)
and its non-approximated counterpart, which resulted in a
maximum discrepancy of only 0.04 pixels, thus confirming
the validity of (10). Eq. (10) also allows to find the principal
ray which is not refracted, i.e., the angle θ ≈ B/b for which
e = 0: This is the case for θ ≈ B0/b =−γ . This ray impinges
on the filter with α = 0, as illustrated in Fig. 2. For an ide-
ally aligned filter, i.e. γ = 0, the displacement e depends mul-
tiplicatively on the filter thickness d and the factor 1− 1/n2
determined by the refraction index n2. In the following, these
are summarized in the single factor C.

For two filters with angles γi and parameters Ci = di(1−
1/ni), i = 1,2, the difference ∆ẽ = e1− e2 between their re-
spective displacements e1 and e2 in the image plane is

∆ẽ =
(

B
b

+ γ1

)
C1−

(
B
b

+ γ2

)
C2 . (11)

Rewriting (11) yields the linear equation

∆ẽ = B
1
b

(C1−C2)︸ ︷︷ ︸
f

+C1γ1−C2γ2︸ ︷︷ ︸
t

= B f + t (12)

1Note that all angles in the equations are interpreted in radian.
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on which we will later base the registration algorithm. Eq.
(12) shows that the filter orientation angles γi generate a
translation vector field with displacements t = C1γ1−C2γ2,
which do not depend on the position B in the image plane.
The position dependent part is caused by differences of the
variables C1 and C2, i.e. variations in filter thickness and re-
fraction index. Note that the distortion effect of the filters is
separable and can be modeled independently for the x- and
y-coordinates because Snellius rule can be applied separately
for each dimension, which then results in two-dimensional
displacement vectors.

We have also investigated the chromatic aberration (CA)
of our lens: CA causes a wavelength dependent pincushion
or barrel distortion of the image [14], to which the separa-
tion of spatial coordinates (x,y) is not applicable since this
additional distortion is circular. Later on, we take this into
account by using cross coordinate terms, i.e. x′ = f (x,y),
where (x,y) is a reference point and (x′,y′) is the correspond-
ing distorted point (see section 3). As also described later
in section 4, we have measured the displacements caused by
chromatic aberrations alone (see Fig. 7), which are below 0.2
pixels.

3. REGISTRATION

The aim of image registration is to compensate the geometric
distortions between the colour components recorded via the
different optical filters. Simultaneously, an analysis of the
displacement fields enables us to verify our physical model.

The similarity measurement of our registration algorithm
is based on mutual information (MI) [13], [12]. Its advan-
tage over other similarity measures such as cross correlation
is that MI can still be applied when the values in the ref-
erence image and the image to be registered are related by
some nonlinear relationship, as it may be the case in our ap-
plication due to the nonlinear camera transfer function [3]
and an otherwise nonlinear behaviour between the spectral
channels.

The basic idea behind the MI based similarity measure-
ment is the maximization of the mutual information

ṽ = argmax
v

I(v)

= argmax
v

∑
f ,r

pFR,v( f ,r) log2
pFR,v( f ,r)

pF,v( f )pR(r)
(13)

between the reference region R and the region F to be
aligned, which is shifted by v = (dx,dy). The probability
density functions are estimated from the region-internal val-
ues using histograms (region size: 96×96 pixels).

We obtain subpixel accuracy by interpolation of the mu-
tual information “surface” around the pixel-precise maxi-
mum with a 2nd order two-dimensional polynomial

I(dx,dy) = A1 +A2dx+A3dy+A4dxdy+A5dx2 +A6dy2

(14)
and compute the exact maximum analytically. The parame-
ters A1, . . . ,A6 are obtained by fitting the polynomial to the
MI surface values of the positions in the 3× 3 neighbour-
hood of the pixel-precise maximum. We compared the re-
sulting displacement estimates with the results of a subpixel-
accurate search, showing that we achieve virtually the same
accuracy at significantly shorter processing times.

This unconstrained search procedure with subsequent
subpixel refinement is carried out for nonoverlapping re-
gions, and provides a displacement vector field V =
{v(x,y)}with one vector v(x,y) for each region. This field is
used to initialize an iterative computation of an affine trans-
form between the two colour components. The parametric
form of the affine transform is based on the mathematical
model of the misalignments derived in the previous section,
viz., Eq. (12) applied separately to each displacement vec-
tor component. Additionally, the multiplicative cross terms
introduced by chromatic aberrations are taken into account.

Motivated by the physical model, we use the affine model

( x′ y′ ) = ( x y 1 )T (15)

with

T =

( f00 f01
f10 f11
tx ty

)
(16)

to capture the relation between a point x = (x,y) in one
colour component and its correspondence x′ in the other
component, thus describing the displacement vector field in
a manner consistent with our model. In the matrix T, the
entries f00 and f11 depend mainly on the quantity f in (12)
as evaluated for each x- and y-dimension, while the elements
f01 and f10 are, in our model, determined by chromatic aber-
rations. The translation components tx and ty in the last row
are determined by t in (12), again evaluated separately for
the x- and y-dimensions. (As indicated by Fig. 2, our model
assumes the origin of the image coordinates to lie in the (un-
known) image centre, i.e., the intersection of the optical axis
with the image plane. In our implementation, the origin is
in the left upper corner. As seen from (12), the resulting
coordinate shift is only scaled by the parameter f , and can
thus be integrated into the translation t without altering the
parametric form of transform (16)). To robustly estimate the
transform parameters, and to remove outliers in the initial un-
constrained displacement field from the estimation process,
we apply the RANSAC [6], [7] algorithm, which is able to
estimate the model parameters even when the initial uncon-
strained field exhibits considerable errors, as in, e.g., Fig. 6.

An alternative approach would be to estimate the six pa-
rameters of the affine model directly from the two colour
components by an iterative, MI-based registration algorithm
evaluating the entire data — rather than only smaller regions
— in each step. The downside of doing so is that this would
require a search in a six-dimensional parameter space, with
each step necessitating the comparison of all available data.
In our region-based approach, it suffices to perform the com-
putationally expensive comparison of image data over only
two parameters, viz., the translation vector components. The
transform parameters are then estimated from the initial vec-
tor field V, which, as mentioned above, contains only as
many vectors as there are (nonoverlapping) regions.

Our full displacement estimation algorithm is illustrated
in Fig. 3. After computing the initial vector field V, we
randomly select three point pairs x0,x′0, x1,x′1 and x2,x′2
from this vector field, since three points pairs are required to
estimate the transformation matrix T. Using the notations

x = ( x y 1 ) x′ = ( x′ y′ ) (17)
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and

XS = ( x0 x1 x2 )T X′S = ( x′0 x′1 x′2 )T

(18)

we find the transformation matrix

T̃ = XS
−1X′S (19)

for cases where det(XS) 6= 0. When det(XS) = 0, the se-
lected set of points is degenerate, and another set of point
pairs is selected.

In the next step, the quality of the tentative transform esti-
mate T̃ is assessed by applying it to all points xi in the initial
vector field. Each point xi is transformed by T̃ according to
xiT̃, and compared to its counterpart x′i as determined by the
initial vector field V. If the distance

di =
∣∣∣xiT̃−x′i

∣∣∣ (20)

is less than a threshold τ (typical value: τ = 0.5 pixel), the
corresponding displacement between xi and x′i is regarded as
a consensus vector. The number P(T̃) of consensus vectors
thus obtained for this transformation is then taken to assess
the quality of T̃ — it is supposed to be small if the chosen
input points for model estimation are erroneous and large if
there is a large consensus.

The procedure is repeated several times and the best
model estimate T̃ is retained. In the final step, this estimate
is refined by re-estimating it from all its consensus vectors
according to

T = XP
+X′P (21)

where ()+ denotes the pseudoinverse, and XP and X′P are
formed similarly as in (18), but by now collecting all point
pairs linked by consensus vectors.
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Figure 3: Block diagram of the registration algorithm.

4. EXPERIMENTAL RESULTS

We use a multispectral camera (see Fig. 1) with a 7-channel
filter wheel. Internally the camera uses a Sony XCD-SX900
CCD camera with a resolution of 1280×960 pixels. The lens
is a Nikkor AF-S DX 18-70mm. Without distortion compen-
sation, the recorded images exhibit rainbow-like edges, as
shown in Fig. 4 (left). The colour components are displaced
by up to±10 pixels with respect to each other. After registra-
tion by our model-based algorithm, the colour fringes vanish
completely, as shown in Fig. 4 (right).

To verify our model, we acquired a multispectral image
of graph paper shown in Fig. 5. We selected the 550nm chan-
nel as a reference since it has the best signal to noise ratio,
and is the centre channel of our system. The maximum dis-
placement vector length in Fig. 5 is 2.02 pixels. The mean

Figure 4: Image before (left) and after (right) registration.
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Figure 5: Scaled displacement vector field between chan-
nel 3 (500nm) and channel 4 (550nm), red: measurement
data, white: model data, maximum vector length: 2.02 pixel,
background: spectral channel at 500nm.

error between the measurement vector data and model vector
data is only 0.11 pixel, which is below what is noticeable in
the final registered image.

Another example image is shown in Fig. 6. In some re-
gions such as homogeneous areas, the initial unconstrained
registration algorithm fails and provides vastly erroneous
vector estimates. Invoking our mathematical model as de-
scribed eliminates these stochastic errors. Experiments have
shown that the model parameters can still be estimated
when more than 80 percent of the data are disturbed by
stochastic errors. The estimated transform parameters were
f00 = 1.0024, f11 = 1.0029, f10 = f01 = −0.0006, and tx =
−0.4182, ty =−0.8347, thus showing that chromatic aberra-
tion plays a less prominent — though not negligible — role
in comparison to the optical bandpass filters. 15 iterations
were carried out, and 70 consensus vectors were selected out
of 100 vectors.

To measure the effects of chromatic aberration of the
Nikon lens, we acquired two images, both with the same
optical bandpass filter (centre wavelength: λ0 = 550nm) se-
lected within the camera. For the first image, an additional
narrow-band optical filter with centre wavelength λ = 500nm
was positioned in front of the light source, while for the
second image, another optical filter with centre wavelength
λ = 600nm was used. Since these filters have a bandwidth
of ∆λ = 40nm, their passbands overlap with the passband
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Figure 6: Scaled displacement vector field between channel
3 (500nm) and channel 4 (550nm), red: measurement data,
white: model data, background: test image.

of the camera-internal filter. As both images were thus taken
with the same camera-internal filter and without changing the
imaging geometry, but with different illumination spectra,
distortions between these images are mainly caused by chro-
matic aberrations, resulting in a pincushion-like displace-
ment vector field [14]. Figure 7 shows the displacement vec-
tor field between the two images as estimated by our algo-
rithm. Even though the vectors’ maximum length is 0.14
pixel, we still observe a systematic displacement vector field
consistent with what one expects from chromatic aberrations.
Moreover, this confirms the ability of our registration algo-
rithm to estimate displacements of down to one tenth of a
pixel.
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Figure 7: Measured displacement vector field (scaled) caused
by chromatic aberration, maximum vector length: 0.14 pixel.

5. CONCLUSIONS

We have derived a mathematical model for the geometric dis-
tortion in filter wheel based multispectral cameras. Based
on this model, we have developed a parametric registration
algorithm to compensate these distortions. Apart from the
filter-induced distortions, this algorithm also takes chromatic
aberrations into account. Our experimental results on the one
hand show that the geometric distortions are indeed compen-
sated reliably, while on the other hand, they confirm the va-

lidity of the underlying model. An interesting question in
this respect is inhowfar the optical filter parameters such as
the angle γ , refraction index n2 and the filter thickness d can
be determined from the parameters of the estimated displace-
ment vector field. This would enable the calibration of such
cameras with respect to the filter parameters, and, vice versa,
the prediction of the distortion fields obtained under different
acquisition circumstances.
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