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Abstract. Existing ultrasonic stress evaluation methods utilize the acoustoelastic 

effect for bulk waves propagating in volume, which is unsuitable for a surface treated 

material, possessing a significant variation in material properties with depth. With 

knowledge of nonlinear elastic parameters – third-order elastic constants (TOEC) 

close to the surface of the sample, the acoustoelastic effect might be used with surface 

acoustic waves. This work is focused on the development of an independent method 

of TOEC measurement using the effect of nonlinear surface acoustic waves scattering 

– i.e. the effect of elastic waves interaction in a nonlinear medium.  

In this paper, the possible three wave interactions of surface guided waves and bulk 

waves are described and formulae for the efficiency of harmonic generation and mode 

mixing are derived. A comparison of the efficiency of surface waves scattering in an 

isotropic medium for different interaction types is carried out with the help of 

nonlinear perturbation theory. First results for surface and bulk wave mixing with 

known second- and third-order elastic constants are shown.  

 

Introduction 

Ultrasonic methods provide viable tools for non-destructive evaluation of material properties, 

including external or residual stress. These methods for stress evaluation utilize the 

acoustoelastic effect of the dependency of the phase velocity of acoustic waves on (external 

and residual) stress [1]. The change in the wave velocity is linked to the stress by the material 

nonlinearity expressed in terms of acoustoelastic constants (AEC). These constants have to 

either be known from literature or by calibration with a known (e.g. applied) stress level. The 

acoustoelastic effect is widely used for volume inspection using bulk waves, which is as such 

not directly applicable to the evaluation of near surface residual stress.  

A common method to enhance the fatigue life of components is the creation of 

compressive residual stress in the components’ surface which suppresses the surface crack 

initiation and growth under (cyclic) tensile load. One major application is the surface 

treatment of blade discs in jet engines, fabricated of titanium and superalloys. These discs 

are exposed to high temperatures and in parallel to high centrifugal tensile stress. Up to the 

moment, evaluation of induced compressive stress amplitudes can only be done either during 

production by reference samples (Almen stripes) or with destructive (borehole 

drilling)/laboratory (x-ray) methods. Current airworthiness regulations call for an NDE tool 
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for in-service control of residual stress. Otherwise the advantages of the surface treatment 

cannot be considered in the design [2].  

The availability of a method to prove that the amount of compressive stress did not 

decrease during operation would allow a further weight optimization of jet engine elements, 

along with operational costs reduction and increased performance. Published work [3, 4, 5, 

6] indicates, that surface layer stress estimation by the acoustoelastic effect might work but 

also reveals the challenges of that concept. One of the difficulties is that the surface wave 

velocity is not only influenced by the stress via the acoustoelastic effect but also directly by 

the microstructure changes due to plastic deformation. So we have (at least) two 

contributions, which have to be separated. Moreover, the first contribution depends on the 

AEC, representing the nonlinearity of the material, which is known to change significantly 

by plastic deformation [7], which is caused by the surface treatment to introduce the stresses. 

The main task of the present work is therefore to find an independent way to determine the 

nonlinearity of the surface layer that underwent plastic deformation at the sample itself, as a 

prerequisite to capture the stress contribution to the velocity change correctly. To achieve 

this goal, we suggest to make use of nonlinear propagation effects as alternatives to the 

acoustoelastic effect, namely harmonic generation and nonlinear wave mixing, including 

non-collinear wave mixing processes. The concept of the present work is to use these 

interactions to determine the third-order elastic constants (TOEC), which are linked with the 

sought AEC [8]. As a first step we shall solve the forward problem of predicting the harmonic 

and mixed wave generation efficiency for known TOEC. In this paper the current progress 

on the method development is reported. The possible interactions of surface guided waves 

and bulk waves with low inclination angles are described and formulae for the efficiency of 

harmonic and mixing mode generation are derived. First results of surface acoustic waves 

(SAW) and bulk waves mixing modeling for known second order elastic constants (SOEC) 

and TOECs are presented. 

1. Concept 

For isotropic elastic media, the potential energy density may be expanded in powers of 

three strain invariants I1, I2, I3 [9,11]: 
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where 𝜆 and 𝜇 are the second-order Lamé constants, are third-order Lamé constants 

(TOEC) [10], which may be expressed in terms of the Landau-Lifshitz constants A, B, C [9] 

or the Murnaghan constants l, m, n [11]. 

Within the cubic approximation of the strain energy, two input waves with 

frequencies 𝜔1 and 𝜔2 give rise to scattered waves of mixed frequency 𝑛1𝜔1 + 𝑛2𝜔2, where 

n1 and n2 are integers. This effect has been described theoretically [12, 13, 14] and observed 

experimentally [15, 16, 17]. 

One of the most well-known practical examples of wave scattering is the generation 

of the second harmonic along the propagation path in nonlinear media [18, 19, 20], which 

can be interpreted as interaction of two equal collinear waves. The process can be 

characterized by the acoustic nonlinearity parameter β (ANP), usually proportional to the 

ratio of the second harmonic amplitude to the square of the fundamental harmonic amplitude. 

ANP measurements in a nonlinear medium can also be utilized for surface layer NDE [20], 

as the ANP is related with the treatment intensity of the surface. 

Available research results, related to practical applications of non-collinear wave 

scattering in NDE (i.e. works of Korneev and Demchenko [17, 22]), consider the interaction 
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of bulk waves. For evaluation of material properties in a thin sub-surface layer one may also 

utilize surface acoustic waves (SAW or Rayleigh waves). This kind of waves propagates in 

a surface layer with effective penetration depth comparable to the wavelength [21]. To our 

knowledge, the use of Rayleigh wave mixing for elastic constants characterization of 

isotropic materials is not widely known. 

The type (longitudinal, shear, SAW) and intensity of scattered wave is dependent on 

the types and intensities of the input waves, their frequencies, relative orientation of wave-

vectors and polarization vectors, and on the material constants. Therefore, measurements of 

the scattering process in a surface layer can provide the information on the TOEC, necessary 

for stress characterization within the acoustoelastic effect. 

2. Theoretical description  

To get significant mixing intensity in the nonlinear interactions of longitudinal, shear and 

Rayleigh waves they must fulfill the phase matching (or resonance) conditions, which 

correspond to the energy and momentum conservation conditions in anharmonic phonon-

phonon interaction [23]: 

 

 𝜔3 = 𝜔1 ± 𝜔2 (2,a) 

 𝑘3
⃗⃗⃗⃗ = 𝑘1

⃗⃗⃗⃗ ± 𝑘2
⃗⃗⃗⃗  (2,b) 

 

Analysis of allowed interactions and scattered amplitude intensities for bulk waves was 

introduced first by Jones and Kobett [14]. Later Korneev et al. took the polarization 

restrictions into account [22]. 

For the bulk wave - surface wave interactions in isotropic solids the only available 

reference is [24]. Allowed interactions are schematically shown in Fig. 1, where straight and 

curly lines represent bulk and Rayleigh waves, black and orange color stands for initial and 

scattered waves. Interaction processes of other combinations, involving surface acoustic 

waves, are forbidden because of the relative size of the phase velocities that enter Eq. 2, b.  

 

 
 

Figure 1: Available scattering modes for acoustic waves involving  SAW [24]. Wavy lines: Rayleigh waves, 

straight lines: acoustic bulk waves, black: input waves, orange: scattered waves due to 2nd-order nonlinearity. 

 

For determination of three TOECs in isotropic solids at least three independent 

measurements have to be performed. To identify the geometries with maximal scattering 

efficiency, the intensities of waves generated in nonlinear scattering processes for all allowed 

incoming and scattered wave combinations should be calculated. 

As the numerical simulations of 3D wavefields in the time-domain for nonlinear 

isotropic media is computationally expensive, an approximate analytical solution for the 
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scattered wave intensity [25] was implemented in Wolfram Mathematica 11.2 and solved for 

relevant interaction cases. This analytical solution uses perturbation theory and relies on the 

following assumptions: 

 

1. The nonlinear perturbation is small compared to the linear part of the displacement. 

2. The involved wavelengths are small compared to the sample thickness. 

3. The medium is homogeneous and isotropic containing a uniform stress distribution. 

 

While assumption 1 is clearly justified in practical cases and so is assumption 2 as 

long as the frequencies of the ultrasonic waves are sufficiently high, this does not need to be 

the case for assumption 3. This aspect will be further discussed below. 

The equation of motion for the displacement field u can be presented in the following 

way: 

 𝜌 𝑢𝑗̈(𝑋 , 𝑡) = 𝑇𝐿𝑗,𝐿(𝑋 , 𝑡), (3) 

 

Where 

 𝑇𝐿𝑗 =
𝜕𝛷

𝜕𝑢𝑗,𝐿
= 𝑆𝑗𝐿 + 𝑆𝑗𝐿𝑚𝑀𝑢𝑚,𝑀 +

1

2
𝑆𝑗𝐿𝑚𝑀𝑛𝑁𝑢𝑚,𝑀𝑢𝑛,𝑁+. .. (4) 

 

is the first Piola-Kirchhoff stress tensor, is the mass density and the tensors S are defined 

in [26]. It is straightforward to express the quantities SjLmMnN as linear combinations of 

second- and third-order elastic moduli .  
Let the displacement field of the two input waves be of the form: 

 

 𝑢⃗ (𝑋 , 𝑡) =  𝑒𝑖(𝑞⃗ ·𝑋⃗ −𝜔𝑡)𝑤⃗⃗ (𝑍|𝑞 ) +  𝑐. 𝑐 , (5) 

 

where 𝑋  - coordinate vector, 𝑞  – 2D wave vector, and axis OZ is oriented normal to surface 

(the medium fills the halfspace Z < 0). Functions 𝑤⃗⃗ (𝑍|𝑞 )  are displacement profiles. For bulk 

waves as input waves, 𝑞  is the projection of the 3D wave vector onto the surface plane (the 

OXY plane).  

All of the analytical expressions and simulation results use the notation shown in Fig. 

2. Wave vectors of incident waves (𝑞1⃗⃗  ⃗ and 𝑞2⃗⃗⃗⃗ ) are colored with black and oriented with angles 

α1 and α2 towards 𝑂𝑋⃗⃗ ⃗⃗  ⃗ and the wave vector 𝑞3⃗⃗⃗⃗  of the scattered wave is colored with orange 

and points into the 𝑂𝑋⃗⃗ ⃗⃗  ⃗ direction. For Rayleigh waves in isotropic media, the depth profile 

can be written as a sum of two exponentials: 

 

 𝑤⃗⃗ (𝑍|𝑞 ) = ∑ 𝑐(𝑟) (
1
0

𝑝(𝑟)
) 𝑒𝛼(𝑟)𝑍2

𝑟=1  , (6) 

 

where coefficients c(r), p(r) and 𝛼(𝑟) are defined in [25]. For longitudinal and shear waves 

expressions for 𝑤⃗⃗ (𝑍|𝑞 ) can be found in [21]. 

If the resonance conditions of Eq. 2 are fulfilled and the scattered wave type is a 

SAW, the solution for the displacement field of the scattered wave can be found in the form 

 

 𝑢3⃗⃗⃗⃗ (𝑋 , 𝑡) =  𝑒𝑖(𝑞3⃗⃗ ⃗⃗  ·𝑅⃗ −𝜔3𝑡)𝑤⃗⃗ (𝑍|𝑞3⃗⃗⃗⃗ )(−𝑖)ℎ𝑋 + 𝜁(𝑍) + 𝑐. 𝑐 ,    (7) 
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Figure 2: Coordinate system and definition of angles 

(α defined in range between -π and π in OXY plane) 

 

where 𝑅⃗  is the projection of 𝑋  on the OXY plane. By inserting Eq. 7 into the equation of 

motion, projecting on 𝑤⃗⃗ (𝑍|𝑞 ), integrating by parts and making use of the nonlinear boundary 

conditions at the surface one obtains the following expression for the efficiency h of the 

Rayleigh wave generation through nonlinear interaction of two input waves: 

 

 ℎ =
𝜔3

𝑆𝑅
𝑆𝑗𝐿𝑚𝑀𝑛𝑁 ∫ [𝑄̂𝐿 (𝑞3⃗⃗⃗⃗ )𝑤𝑙(𝑍|𝑞3⃗⃗⃗⃗ )]

∗[𝑄̂𝑀(𝑞2⃗⃗⃗⃗ )𝑤𝑚(𝑍|𝑞2⃗⃗⃗⃗ )]
0

−∞
[𝑄̂𝑁 (𝑞1⃗⃗⃗⃗ )𝑤𝑛(𝑍|𝑞1⃗⃗⃗⃗ )]𝑑𝑍. (8) 

 

If the output wave is a bulk wave with 3D wave vector K = (𝑞3⃗⃗⃗⃗ ,-k), it can be described 

as: 

 𝑢3⃗⃗⃗⃗ (𝑋 , 𝑡) =  𝑒𝑖(𝑞3⃗⃗ ⃗⃗  ·𝑅⃗ −𝜔3𝑡)(𝐵𝑊⃗⃗⃗ 𝑒−𝑖𝑘𝑍 + 𝜁 (𝑍)) + 𝑐. 𝑐,  (9) 

 

where zeta represents additional partial waves to satisfy the boundary conditions at the 

surface, and the solution for H (component of complex amplitude B of scattered bulk wave: 

B =  𝐻𝐴1𝐴2), can be calculated as an overlap integral similar to h in eq. (8), involving the 

displacement fields of the three nonlinearly interacting waves [25].  𝑆𝑅  depends on the 

normalization of w and on the Rayleigh wave velocity [25], 𝑊⃗⃗⃗  is a polarization unit vector 

and 𝑄̂𝐿 = 𝛿𝐿1𝑖𝑞1 + 𝛿𝐿2𝑖𝑞2 + 𝛿𝐿3
𝜕

𝜕𝑍
. Therefore, the scattered wave efficiency can be 

expressed through depth profiles, polarization and wave vector components of initial waves. 

Based on this model, the following procedure has been implemented: 

 Interaction case selection 

 For each point on an (𝜔1, 𝜔2) frequency grid: 

o Search for permitted initial waves orientation on a surface for a given scattered 

wave direction (Eq. 2) 

o Calculation of scattering efficiency for a given parameter combination 

 Data storage, visual layout 

Details of simulation are described in the following section. 

3. Surface wave mixing modeling results 

The forward problem (modeling of scattered wave efficiency with known material 

parameters) has been investigated for the nickel-base superalloy In718 (𝜌 = 8.91
𝑔

𝑐𝑚3, 

B = 199,94 GPa (bulk modulus), ν = 0.294, TOEC values [6]: l = -520 GPa, m = -600 GPa, 

n = -480 GPa). In order to comply with the boundary conditions, the bulk waves were 

inclined 1.5° towards –OZ. Wave scattering modeling was preceded by several consistency 

checks. Comparison with [27] has been made for the case of collinear Rayleigh wave mixing. 
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Unfortunately, no published results for non-collinear wave scattering are known to the 

authors, which could have served as basis for a further check of our model. 

As all of the possible 𝛼1 and 𝛼2 combinations are symmetrical with respect to the 

origin, we are expecting symmetry for scattered wave amplitudes for such coordinate pairs. 

In Fig. 3 a typical layout for scattering is presented as 3D plots with projections. Axes 1 and 

2 (α1and α2) form the plan view. The vertical axis is the relative scattering efficiency 

normalized by the scattered wave frequency 𝜔3. The frequency ratio is displayed by color-

coding.  

Simulation results for the case of two Rayleigh waves generating a longitudinal wave 

with sum-frequency are shown in Fig. 3 (in the following, the interactions would be labeled 

as /First input wave/ [sign distinguishing sum and difference frequency generation] /Second 

input wave/ → /Scattered wave/, i.e. RW+RW→P for the given example). 

Simulation results are shown on Tab. 1 with the three most intensive interactions 

highlighted.  

 

Figure 3: RW+RW→ P, efficiency H of the longitudinal wave generation by two Rayleigh waves, 

propagating at angles 𝛼1 and 𝛼2, with a frequency ratio 𝜔1/𝜔2 

 



7 

Table 1: Scattering efficiency simulation results 

Interaction case 𝜶𝟏, rad 𝜶𝟐, rad 
𝐒𝐜𝐚𝐭𝐭𝐞𝐫𝐢𝐧𝐠 𝐞𝐟𝐟𝐢𝐜𝐢𝐞𝐧𝐜𝐲 

𝑯/𝝎𝟑 | 𝒉/𝝎𝟑 
𝝎𝟏/𝝎𝟐 

RW+RW→P -2.42 0.25 162.23 0.38 

RW+RW→SV -1.34 0.1 60.86 0.1 

RW+P→P 0.19 -2.4 70.38 1.8 

RW+ P→SV -0.02 0.3 6.17 6. 

RW+SV→P -2.96 0.05 180.41 0.29 

RW+SV→SV -0.09 1.33 75.71 10. 

P-P→RW 0.96 1.14 24.19 1.11 

P-SV→RW 2.96 3.02 72.82 1.29 

SV-P→RW -0.05 -0.88 22.99 9. 

SV-SV→RW -0.1 -1.34 227.83 10. 

4. Discussion and further work 

First results on anharmonic wave scattering simulations involving surface acoustic waves 

and bulk acoustic waves are presented. Geometrical layouts and a comparison of the relative 

efficiencies of the various scattering processes served as a basis for the design of experiments. 

Laser Doppler vibrometry and contact measurements are currently underway to verify the 

scattering model described above. The following step will be the investigation of the 

inversion problem: evaluation of third-order elastic constants by recording the intensity of 

the scattered wave  as function of the parameters of the input waves. Subsequently, the model 

will be extended to allow for variations of the material constants along the coordinate axis 

normal to the surface, i.e. assumption 3 in section 2 will be relaxed.  
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