
Identification of Reproducible Subsets for Data Citation,
Sharing and Re-Use

Andreas Rauber
Vienna University of Technology, Austria

rauber@ifs.tuwien.ac.at

Ari Asmi
University of Helsinki, Finland

ari.asmi@helsinki.fi
Dieter van Uytvanck

CLARIN ERIC, Utrecht, Netherlands
dieter@clarin.eu

Stefan Pröll
SBA Research, Vienna, Austria
sproell@sba-research.org

ABSTRACT
Research data is changing over time as new records are
added, errors are corrected and obsolete records are deleted
from a data set. Scholars rarely use an entire data set or
stream data as it is, but rather select specific subsets tailored
to their research questions. In order to keep such experi-
ments reproducible and to share and cite the particular data
used in a study, researchers need means of identifying the
exact version of a subset as it was used during a specific exe-
cution of a workflow, even if the data source is continuously
evolving. In this paper we present 14 recommendations on
how to adapt a data source for providing identifiable subsets
for the long term, elaborated by the RDA Working Group on
Dynamic Data Citation (WGDC). The proposed solution is
based upon versioned data, timestamping and a query based
subsetting mechanism. We provide a detailed discussion of
the recommendations, the rationale behind them, and give
examples of how to implement them.

1. INTRODUCTION
In data driven experiments, the data processed is not always
static, but rather evolves based on collaborative work and
iterative improvements. Researchers contribute collabora-
tively to data sets by providing records created during their
experiments. In addition to newly added data, corrections
of detected errors as well as deletion of outdated information
account for the dynamics of research data sets.

Data sets serve as input for processing steps, thus an update
or change within a data set causes variation in the results
downstream the processing pipeline. Tracing the specific
version of a data set or subset is therefore essential for be-
ing able to verify a specific outcome. This verification is
essential for measuring the success of an experiment and for
the scientific method in general, as it allows peers to repeat
an experiment and assess its validity. This process is de-
noted as reproducibility and it deals with the verification of

experiments and their results. Being able to reproduce an
experiment involves not only precise knowledge of all pro-
cessing steps, but also the availability of exactly the subset
of data used during a specific experiment run. It further is
essential to support comparability of different methods and
approaches being evaluated on identical data.

Researchers often create subsets specifically tailored for an
experiment setup. Such subsets are usually obtained by is-
suing some form of query which returns only the records de-
sired. Obviously, storing all revisions of subsets of evolving
data as separate data exports does not scale with increasing
amounts and volumes of data. For this reason, we introduce
a query based subset identification method, which overcomes
the duplication of data exports and provides lightweight yet
precise subset identification for evolving data.

In this paper, we present 14 recommendations for creat-
ing reproducible subsets elaborated by the Working Group
on Dynamic Data Citation1 (WGDC) of the Research Data
Alliance (RDA) [23]. They have been improved in several
rounds of expert feedback and conceptual validation in the
context of a range of domain-specific data centres. The rec-
ommendations serve as guideline how to allow identifying
dynamic subsets of data from existing data sources. They
enable researchers and data centres to identify and cite data
used in experiments and studies. Instead of providing static
data exports or textual descriptions of data subsets, our so-
lution supports a dynamic, query-centric view of data sets.
It is based upon assigning PIDs to time-stamped queries
which can be re-executed against a versioned database. The
proposed solution enables precise identification of the very
subset in the correct version, supporting the reproducibility
of processes, sharing and reuse of data. It is generally appli-
cable for different types of data, data stores and subsetting
paradigms (such as CSV files, SQL, XML, streaming data,
file repositories and others).

So far, persistent identifiers (PIDs) have mainly been used
for identifying individual objects in a static context. The
solution proposed in this paper allows accessing individual
subsets of data in a dynamic context, supporting the identifi-
cation of fine granular subsets of evolving data. By assigning
PIDs to the query, the process is very lightweight and scales

1https://www.rd-alliance.org/group/
data-citation-wg.html



with increasing amounts of data. It preserves the subset cre-
ation process and thus contributes to the reproducibility of
an experiment. Provenance details and metadata about the
data set are collected.

The remainder of this paper is structured as follows. Section
2 provides related work in the areas of reproducibility, data
citation and databases. The recommendations are explained
in Section 3 detailing our considerations, existing challenges
and an example for each recommendation. The paper is
closed by conclusions in Section 4.

2. RELATED WORK
A scientific process is reproducible if an independent peer
scientist can re-execute the experiment and validate the re-
sults [18]. Currently, there is a lack of reproducibility and
many workflows cannot be re-executed [28, 17, 13], although
recent initiatives aim to demand the reproducibility of sub-
mitted contributions [16, 9]. Being able to precisely refer-
ence data sets is the goal of data citation as it supports
reproducibility [12]. The field of data citation as evolved
quickly [3], an overview of the current practices for citing
data is given in [8]. Several approaches exist for citing sub-
sets from databases [20], structured data files [21] or linked
and open data [26].

Versioning data is a common task in the data management
domain [24] and implemented in software applications deal-
ing with critical data [7, 25]. With decreasing storage costs
preserving previous versions even of high volume data has
become a service offered by many data providers. Still stor-
ing multiple versions is a challenge [1]. Many efforts of stor-
ing previous versions of datasets are based on timestamps [5]
and temporal data models [27]. The ISO SQL:2011 standard
includes temporal features such as system versioned tables
[15]. Recently, many relational database management sys-
tems (RDBMS) such as MS SQL Server, Oracle 10g or DB2
10 support versioned data natively and allow querying data
as it was at any given point in time in the past.

3. ENABLE REPRODUCIBLE DATA CITA-
TION OF DYNAMIC DATA SOURCES

The Research Data Alliance (RDA) is an international com-
munity of researchers from diverse backgrounds aiming to
overcome barriers to sharing research data across interna-
tional, institutional and disciplinary boundaries. RDA was
launched in 2011 and spans private, public, academic com-
munities from all continents. It is an international non-
profit community of researchers, which is organised in in-
terest groups (IG) and working groups (WG). The RDA
Working Group on Data Citation (WGDC) aims at bringing
together experts to discuss the issues, requirements, advan-
tages and shortcomings of existing approaches for efficiently
citing subsets of data.

3.1 RDA Guidelines for Making Data Citable
During the course of its existence, the WGDC developed the
RDA Guidelines for Making Data Citable, which is a list of
14 recommendations grouped in four areas:

• Preparing the Data and the Query Store

– R1 - Data Versioning

– R2 - Timestamping

– R3 - Query Store Facilities

• Persistently Identifying Specific Data Sets

– R4 - Query Uniqueness

– R5 - Stable Sorting

– R6 - Result Set Verification

– R7 - Query Timestamping

– R8 - Query PID

– R9 - Store the Query

– R10 - Automated Citation Texts

• Resolving PIDs and Retrieving the Data

– R11 - Landing Page

– R12 - Machine Actionability

• Upon modifications to the Data Infrastructure

– R13 - Technology Migration

– R14 - Migration Verification

The guidelines have been finalised at the 6th Plenary Meet-
ing in Paris in September 2015. They have been published
as a short flyer [23] and are available for download at the
RDA Web page2.

The aim of this work is to provide a more extensive dis-
cussion of the guidelines and describe how an existing data
source can be adapted for enabling reproducible subset cre-
ation. The four phases are described in the following sec-
tions: preparing the system (Section 3.2), persistent iden-
tification (Section 3.3), subset retrieval (Section 3.4) and
robustness across technological changes (Section 3.5).

3.2 Preparing the System
Although some data repositories and storage systems al-
ready have some of the requirements in place, most systems
need to be adapted for facilitating reproducible data set cre-
ation in a non-intrusive way.

3.2.1 R1 - Data Versioning

Recommendation: Apply versioning to ensure earlier states
of data sets can be retrieved.

Versioning deals with tracing changes in data. Being able
to refer to previous versions of data is essential for repro-
ducibility. In this work, we use the terms version, revision
and iteration synonymous for describing a change which was
introduced into a record. There exist several approaches
for versioning from the perspective of reproducible research
data. In order for the changes in the data to be traceable,
the system needs to store all relevant previous versions of
each record. In large data scenarios, storing all revisions of
each record might not be a valid approach. Therefore in
our framework, we define a record to be relevant in terms of

2www.rd-alliance.org/groups/data-citation-wg.html



reproducibility, if and only if it has been accessed and used
in a data set. Thus, high-frequency updates that were not
ever read might go - from a data citation perspective - un-
versioned. (They may still require versioning if traceability
of changes and analysis of update frequencies are to be sup-
ported by the data store). Note, that the versioning needs to
be modelled explicitly so that direct access to earlier states
is possible. History files or change logs that may be used to
roll back an entire database to an earlier state are usually
not flexible enough to support retrieving individual states of
specific records.

Example: Deciding which versioning approach to apply de-
pends on the format of the data and the expressiveness of
the query language. There exists a huge variety of data
set types, ranging from simple plain text formats such as
comma separated value (CSV) files, via complex binary pro-
prietary formats, to various database management systems.
Research data can be stored as files within a file system
or in database management systems. File systems provide
a functionality similarly to database systems, as files can
be uniquely addressed by their path in the file system and
queried using file system commands.

In order to provide a uniform way of describing events, we
limit ourselves to the three most primitive data operations
available for all types of data.: create, update and delete
(CUD). These event types are sufficient for describing the
life cycle of a record. The create event denotes the insertion
of a record into the data set and marks the beginning of a life
cycle. Depending on the scenario, records can get updated
and therefore changed, thus single records can be replaced
with a newer version. Such updates or deletes should never
lead to an actual deletion or overwriting of an earlier record,
but simply lead to a marked-as-deleted and re-insertion of
an updated value in the underlying data store.

In the realm of databases, versioning has a long tradition
[14]. Approaches to support versioning include history ta-
bles, direct integration in the live database tables, or hybrid
solutions [19]. Following the ISO SQL:2011 standard, many
RDBMS such as MS SQL, Oracle or DB2 support it now
natively. Managing different versions of text files (such as
data stored in CSV files) also has a long tradition in the area
of software development. Source code management (SCM)
systems such as Git, SVN or CVS are commonly used for
storing source and allow programmers to access previous
versions of their source code. The technique of storing the
deltas of files works very well for text based formats.

3.2.2 R2 - Timestamping

Recommendation: Ensure that operations on data are times-
tamped, i.e. any additions, deletions are marked with a
timestamp.

Timestamping is closely tied to versioning: we need to iden-
tify, when a specific version was available (visible to a query).
We thus need to timestamp each CUD operation as part of
the versioning approach, documenting the addition and dele-
tion of data. For providing reproducibility, an update leads
to a new record in the data set, where the old revision of

a record is stored with the temporal metadata describing
its validity period in the database. Timestamp information
must be stored in a way to support efficient explicit query-
ing, i.e. allowing a query to retrieve only data elements
available at a given point in time.

Example: Database management systems are capable of
storing fractions of seconds such as micro seconds (MySQL
5.7, PostgreSQL 9.4), nano seconds (Oracle 10g) and even
pico seconds (IBM DB2 11.0) as dedicated data types. Dis-
tributed systems can synchronise their timing either via net-
work time synchronisation and logical time protocols [11],
but may also work with local timestamps only (c.f. Sec.
3.3.4), which drastically reduces the complexity of the rec-
ommended solution.

The way how timestamps are implemented depends on the
technology stack used for storing the data. File systems such
as FAT provide two second accuracy3, NTFS provides 100
nano seconds resolution4, EXT3 provides 1 second accuracy
and EXT4 allows nano second resolution of timestamps5.
The file system accuracy of timestamps also determines the
accuracy of the version control system timestamps, such as
for Git or SVN.

3.2.3 R3 - Query Store Facilities

Recommendation: Provide means for storing queries and
the associated metadata in order to re-execute them in the
future.

The query store is an essential building block for the dy-
namic identification of data subsets. It was introduced in
[19], refined in [20] and generalised in [22]. Instead of stor-
ing duplicates of data subsets, we utilise query mechanisms
in order to define and identify subsets of data. To identify a
particular subset of data, users issue some form of query to
a data store (e.g. file system commands, SQL or SPARQL
queries, faceted browsing or filtering, marking regions on an
image, etc). These queries can be timestamped and stored
for later re-execution against the timestamped and versioned
data store. The timestamped query thus stands for the ac-
tual subset of data.

The query store is itself a repository responsible for storing
the queries which were used for creating a subset. This
includes technical and descriptive metadata, which allows
to describe a query in the detail necessary to re-execute it
against versioned and timestamped data and retrieve the
very same subset again. The query store needs to preserve
this information for the long term. It needs to store the
query and at least the set of metadata information emerging
from recommendations R4 -R10 as detailed further below.
This set includes:

3https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724290%28v=vs.85%29.aspx
4http://www.meridiandiscovery.com/articles/date-forgery-
analysis-timestamp-resolution/
5http://www.ibm.com/developerworks/linux/library/l-
anatomy-ext4/



• The original query as posed to the database

• A potentially re-written query created by the system
(R4, R5)

• Hash of the query to detect duplicate queries (R4)

• Hash of the result set (R6)

• Query execution timestamp (R7)

• Persistent identifier of the data source

• Persistent identifier for the query (R8)

• Other metadata (e.g. author or creator information)
required by the landing page (R11)

The query store preserves details about the creation process
of each subset, including the relevant parameters, their se-
quence of occurrence and settings, user details, timestamps
and verification information. This constitutes a valuable
provenance trail and increases trust in the scientific process,
as the metadata about subsets can outlive the original data
sets and still provide details about the subset generation
process.

It also provides a valuable central source for analysing and
understanding data usage, i.e. which parts of a data store
are used, while allowing also to identify those subsets used
previously that are affected by e.g. a specific update to
the data. This is also the reason why the query store is
a sensitive infrastructure and needs to be protected from
unauthorised access. It is clear that the data stored in the
query store must not be changed or manipulated, but also
the provenance data about the queries needs to be protected
from unauthorised read access. Knowing how a researcher
created a subset may disclose private information about the
current research practices and interests of a researcher.

Example: The way how query execution details are stored
in the query store depends on the used technology. Subsets
are created by executing SQL statements, extracting data
from a file based data set by using a scripting language or
selecting files from a file system are examples for queries.
At the end, all data stores can be seen as a database, where
a query method allows to programmatically retrieve data.
Thus the query store either needs to preserve the database
query, the script used for retrieving the data or the path in-
structions used for retrieving a subset in a versioned fashion
and link this information in the query store with the data
source (i.e. the file, database, etc). For retrieving such a
subset again, the data needs to be collected from the ver-
sioned data source and the appropriated version of the script
needs to be re-executed. For the result set to be identical
to the original subset, the query store also needs to preserve
which version of the scripting interpreter was used, includ-
ing the data of the execution environment, such as operating
system and used libraries. This topic is borderlining the area
of process preservation.

3.3 Persistently Identify Specific Data Sets
Storing each and every query to a data source may not be
required or desirable. The system or users may want to
decide which queries should be preserved. The process can
be limited to specific data sources, be triggered by a manual
switch in a user interface or any query can be stored in a
staging area for a certain period of time, within which a final
decision on the usefulness and subsequent usage of a dataset
has to be made, upon which the persistent storage can be
initiated. In any case, when a specific subset should be
made persistently available, the following recommendations
should be observed.

3.3.1 R4 - Query Uniqueness

Recommendation: Re-write the query to a normalised form
so that identical queries can be detected. Compute a check-
sum of the normalised query to efficiently detect identical
queries.

Semantically identical subsets should be identified by only
one PID. Thus, we need to identify, if the same query has
already been issued before (and if so, whether it still iden-
tifies the same subset of data, depending on any updates to
the data source since an earlier execution).

Determining the identity or uniqueness of queries may be
challenging as the same query semantics may be expressed
in many different ways. In order to detect duplicate queries,
we need to normalise the queries. Many command line ap-
plications, for instance, allow specifying the input parame-
ters in arbitrary sequence. The same applies for database
query languages, which provide additional flexibility. We
thus need to normalise queries as far as possible, to allow
detecting semantically equivalent queries.

While it may be impossible to guarantee detection of iden-
tical queries as the same semantics may be expressed in a
variety of forms, the situation is pragmatically eased by the
fact that users will frequently not actively write queries but
use standardised interfaces (e.g. for faceted browsing) to
create queries. This also applies to queries posed via APIs
that will frequently have been produced programmatically,
thus ensuring a certain amount of standardisation and facil-
itating the detection of semantically equivalent queries.

A rather simple solution is to sort the parameters in a static
way for detecting duplicates. We sort the list of parameter
name and value pairs alphabetically and utilise the concate-
nated string as input for a hash function. Thus we can detect
duplicate queries quickly and reliably for many applications.
However, if two semantically equivalent queries are formu-
lated so differently that they evade detection, we may end
up in the worst case with having two identical data sub-
sets identified by two different PIDs. While this may not
be ideal, it does not constitute major harm either. Note,
also, that the fact that two result sets are identical, can be
detected automatically (cf. R6) thus alerting the user to
potentially identical queries. Mind, however, that identi-
cal result sets do not necessarily mean that the underlying
queries are semantically equivalent, as discussed in Section
3.3.3.



3.3.2 R5 - Stable Sorting

Recommendation: Ensure that the sorting of the records
in the data set is unambiguous and reproducible.

The sequence of records within a set can have an effect on
the result of an experiment, if the subsequent processing is
sensitive to the order the input data is provided in. Yet,
while databases and repositories will return the same result
set when repeating a query, these are not necessarily always
returned in the same order. We may thus need to ensure
that the sequence or sorting of the records within a subset
is unambiguous and reproducible itself.

Whether or not the sequence of records in a data set is de-
terministic depends on the storage system and the query
language. A set in its mathematical definition does not
maintain a sorting, therefore there is no defined sequence
of records. As many database management systems are set
based, there is no guarantee, that the records of a data set
will be returned in the very same sorting for each request.
For this reason, we may want to enforce an explicit sorting
of the data prior to applying user-defined sorts.

Example: The popular RDBMS MySQL provides several
different storage engines, such as InnoDB and MyISAM.
Both differ in their features and how the records are stored
on the disk. InnoDB has features such as transactions, for-
eign keys and clustered indices. The last feature has an effect
on the sorting of the result set as InnoDB stores the records
sorted by their index on disk, whereas MyISAM stores the
records based on their insertion order. If the user does not
explicitly define an indexed column by which the result set
should be sorted, the sequence of the records cannot be pre-
dicted. As the storage engine can be altered at any time,
without the knowledge of the users, the sequence of records
may change for identical queries.

For this reason, the sorting of the result set should be speci-
fied. It needs to be based on a unique criterion, which allows
creating a total ordering of the records in the data set and
the subsets thereof. We can obtain a stable sorting by auto-
matically specifying the primary key column in descending
order as default sorting, followed by user defined sortings.

3.3.3 R6 - Result Set Verification

Recommendation: Compute fixity information (also referred
to as checksum or hash key) of the query result set to enable
verification of the correctness of a result upon re-execution.

By correctness we mean that no record has (intentionally
or unintentionally) been changed. By completeness we un-
derstand that all records, which have been contained in the
original subset, are also contained in the re-generated sub-
set. When a user creates a new, reproducible subset, we
compute a hash key k of this set and store it in the query
store. This hash key allows to verify the completeness and
correctness of the subset, by computing and comparing the
hash key k’ of the re-generated subset to the original key
k. Only if the keys are identical, the re-executed subset is

correct. This hash key may also serve to identify identical
result sets stemming from different queries.

Computing hash keys is a computationally intensive task.
Thus, the computation of a large subset’s hash key may re-
quire too much time to be practical in many situations. For
this reason, the verification procedure can be sped up, by
computing the hash key based only on the significant prop-
erties of a subset, instead of the complete data contained
in it. Thus, the hash key can, for example, be computed
only over the primary key and row headers to define the
matrix of the result set. Another option is the computa-
tion of semantic hash keys [2] that were originally proposed
for verifying the correct interpretation of data when moved
between different systems.

Additional metadata information such as the timestamps,
but also the data can be included. Note that, to guaran-
tee long-term stability, some transformation to generate the
hash input values from the result set may be required, e.g.
removing certain object-specific formatting such as the sepa-
rator in CSV file, unless the separator is considered essential
for identity determination.

Example: For calculating the hash of a subset, the system
retrieves the dataset by re-executing the query stored in the
query store and the list of selected columns from the query
store. The sequence of columns selected is concatenated into
a input string for the hash function. In a next step, the sys-
tem iterates over the result set. For each record contained
in the result set, the system appends the unique key column
and the timestamp of the record in a string. The hash key
is thus computed over the row and column headers for tab-
ular data. For file system based data, the hash key may be
computed over the file IDs (PIDs, URIs, local path names)
plus timestamp information when the respective version was
added/modified.

3.3.4 R7 - Query Timestamping

Recommendation: Assign a timestamp to the query based
on the last update to the entire database (or the last update
to the selection of data affected by the query or the query
execution time).

Assigning the timestamp to a query can be as simple as as-
signing the time of the actual execution of the original query.
This would constitute the simplest and most intuitive times-
tamp to be assigned. However, during discussions, privacy
concerns have been raised as the timestamp reveals the mo-
ment when a query has been issued by a user, which may
disclose unwanted information. On the other hand, semanti-
cally we would be more interested in referring conceptually
to the actual state that the data store was in. We thus
recommend assigning the timestamp of the last update to
the data store, as this intuitively corresponds to the version
number and timing information of the state of data. A third
alternative is to provide the timestamp of the last update to
the subset of data affected by the query, which may be most
intuitive for data stores where changes are local to specific
subsets (i.e. only new data being added, thus not affecting
any queries for earlier time periods). While this constitutes



a perfectly viable solution, determining this timestamp is a
bit more complex, making it not necessarily the primary op-
tion. This method requires to retrieve the subset first and
then determine the latest updates to this subset. Note that,
whichever timestamp is chosen, the re-execution of the query
with that timestamp will always return the same result.

Dealing with distributed data sources does not require global
synchronisation, as each distributed source has its own lo-
cal timestamp and can return this with the result to the
central query portal. There, the query is stored with the
central timestamp as well as the execution timestamps of
each decentral site as returned with the result set.

Example: The query execution time can be mapped to the
latest update of the database. This approach follows a global
view on the data. More frequent updates suggest the imple-
mentation of a local timestamp, which is the most recent
update of the records included in the selected subset, util-
ising a more local view on the data. Figure 1 depicts both
approaches.

Figure 1: Assigning a Timestamp

3.3.5 R8 - Assigning Query PID

Recommendation: Assign a new PID to the query if either
the query is new or if the result set returned from an earlier
identical query is different due to changes in the data. Oth-
erwise, return the existing PID of the earlier query to the
user.

Assigning PIDs to queries is an essential task within the
data citation framework, as they allow to retrieve a query
and ultimately the data set again. There are several differ-
ent scenarios, which trigger the assignment of a new PID
to a data set. The simplest case is when the query is new.
As described in Section 3.3.1, the queries need to be anal-
ysed in order to detect duplicates. If no duplicate has been
detected, the system needs to mint a new PID and asso-
ciate the query with the new and unique string. When the
query store detects an identical query, which has already
been issued before, there are two possibilities. Either the
underlying data has not been changed, in which case the
existing PID will be returned to the user as both query and
result are identical. If the data has been updated between
the last execution of the same query and the current ex-
ecution time leading to a different result set, a new PID
has to be assigned. If a new PID has been assigned, the
query and associated metadata needs to be persisted (R9).
The PID could consist of the hash key of the query plus
timestamp information. Yet, we highly recommend adopt-
ing any of the established PID systems (DOIs, ARKs, or
other URI-based systems) that are widely adopted within
a specific community [10] to support interoperability, ease

resolution via established protocols, and may even support
machine-actionability via content negotiation, depending on
the provider of the PID system.

Example: In order to decide, whether or not a new PID
needs to be assigned, we check whether the query hash (R4 )
(e.g. SHA-1 checksum) does not yet exist in the query store.
If the query hash does not exist, we immediately assign a
new PID and proceed with the further steps. In case the
query hash exists, we compute the SHA-1 checksum of the
result set and compare it to the checksum stored for the
original execution of the identical query. If the checksums
match, both the query as well as the result set are identical,
and we thus should not assign anew PID to this subset of
data, but rather return the original PID to the user. Other-
wise, a new PID is assigned. If computation of the SHA-1
checksum is expensive, we may chose to determine the last
update timestamp of any data item addressed by the query
(including deleted items). If none of these timestamps is
later than the last query execution timestamp of the set of
identical queries, then no new PID needs to be assigned as
result sets will be identical.

3.3.6 R9 - Store the Query

Recommendation: Store query and metadata (e.g. PID,
original and normalised query, query and result set check-
sum, timestamp, superset PID, data set description, and
other) in the query store.

The query store facilities presented in R3 provide the techni-
cal infrastructure for storing the query details and associated
metadata. Each query is uniquely identified by its PID.

In order to avoid updates of the data during the process of
storing the query in the query store, the system needs to
implement a transaction concept, which locks the table dur-
ing the subset creation process and ensures atomicity (A).
In multi-user environments, we need to ensure that a second
query executed simultaneously does not alter the data that
the first user is currently processing, as this would result in
a different subset. For this reason, we apply the isolation
(I) principle, which prevents concurrent modifying access.
A transaction in our scenario consists of the following steps:

1. Ensure stable sorting and normalise query (R5 ).

2. Compute query hash (R4 ).

3. Open transaction and lock tables (I)

4. Execute (original) query and retrieve subset.

5. Assign the last global update timestamp to the query
(R7 ).

6. Close transaction and unlock tables (A)

7. Compute result set verification hash (R6 ).

8. Decision process:

(a) Decide if the query requires a new PID (R8 ). If
so:

(b) Persist metadata and query (R9 ).



(a) Entire Data Set

(b) Subset of the Data Set
Figure 2: Automatically Generated Citation Texts

3.3.7 R10 - Automated Citation Text Generation

Recommendation: Generate citation texts in the format
prevalent in the designated community for lowering the bar-
rier for citing and sharing the data. Include the PID into
the citation text snippet.

Researchers publish their findings usually in journals and
conference proceedings. Depending on the designated com-
munity, several citation styles and principles exist. Many
disciplines either utilise a specified citation format or they
write their papers with LATEX and include the references to
the related work with the BibTeX citation system. To lower
the barrier for researchers, the query store should produce
such citation snippets, which can be easily integrated into
publications with a copy and paste approach.

The query store contains metadata about a data set. In
addition, the query store may also contain further metadata
fields, such as a title for the data set and a specific subtitle
for the subset. Users can be prompted for specifying this
information during the ingest phase of a data set and during
the subset creation process. Both - the entire data set and
a subset - are identifiable by a unique PID, which is also
stored in the query store. The citation texts must at least
contain the author, the creation date and the PID of a data
set. Researchers can then use this automatically generated
citation text in an appropriate format, for instance BibTeX,
and include this snippet directly into their publications and
reports. This lowers the burden of citing data sets and allows
to identify and retrieve a subset at a later point of time.

Example: In order to allow researcher to create citable sub-
sets of CSV data, an interface may allow users to upload
individual CSV files into the system. During the upload
process, they are asked to provide a title for the data set, an
author name and a description text. Upon the creation of
a subset, the user also provides a specific subset title and a
short description. Figure 2a shows the citation text snippet
of a CSV file, including its PID and the year.

Figure 2b shows the citation text snippet of a subset, created
from the parent data set described in 2a. It references the
PID of the parent data set and the subset and includes a fine
granular timestamp for the subset. Note that this example
adopts a citation style for subsets from datasets analogous
to papers in proceedings, listing the creator of the query
(the persons intellectually responsible for putting together
the specific subset, analogous to the author of a paper), as
well as the persons responsible for maintaining the entire
dataset (analogous to the editor of a proceedings volume).
Both snippets are provided at the landing page (see R11 )

and can be copied from the browser into a publication.

This example demonstrates the generation of citation snip-
pets for standard flat data sets. In hierarchically structured
data with different contributors and differing citation re-
quirements for various levels or branches of the hierarchy,
where the information composing the citation is scattered
across different elements of the dataset, more complex ap-
proaches for generating citation snippets are required, as e.g.
presented in [4, 6].

3.4 Resolving PIDs and Retrieving the Data
The following recommendations deal with the retrieval of
the data and metadata.

3.4.1 R11 - Landing Pages

Recommendation: Make the PIDs resolve to a human read-
able landing page that provides the data (via query re-
execution) and metadata, including a link to the superset
(PID of the data source) and citation text snippet.

Data sets and subsets are uniquely identifiable by their PID,
which resolves to a human readable landing page. Typically,
a landing page is reachable by a unique URL and presented
in a Web browser. The landing page presents the metadata
of a data set in a human readable way and provides links to
other versions of the same data set, related data sets and to
the data as download.

Landing pages are essential for describing data sets for the
long term. As their format is usually simple and their con-
tent can easily be archived with standard Web crawling tech-
niques, they can be preserved for the long term, even if the
actual data may not exist anymore. Providing such tomb-
stone landing pages is necessary for keeping the evidence of
existence of a data set, even beyond the life time of the data.

Upon activating a download link (or other means of an ac-
cess request, e.g. passing the data to an analysis API), the
query is re-executed. Per default, the query is re-executed
with the timestamp of the original query execution. How-
ever, in principle, the timestamp can be chosen freely. For
retrieving the data from a provided PID, the system can al-
low to specify a date as parameter, thus allowing to retrieve
semantically equivalent subsets from different points in time.
This allows to measure the evolution of specific subsets and
retrieving the respective subset with e.g. all additions and
corrections applied up until the most recent state of the data
store.

There might be situations when data might not be avail-
able anymore. Although long-term persistence is a key re-
quirement for data repositories, technological and especially
organisational change may prevent the data provider from
keeping the data. Legal requirements are also a reason, why
a data set might not be available any more. Deleting single
records due to legal obligations may prevent subsets from be-
ing reproducible, hence they cannot be retrieved any more.
These effects need to be reflected on the landing page, i.e.
the user needs to be made aware that the data set may not
be available for download anymore. Yet the metadata at the
landing page still can provide useful information, such as a



reference of the closest fit of available subsets or references
to earlier or later views on the data sets.

Example: Typical landing pages provide the information
stored in the query store. This includes creators, creation
date, a description and additional information such as parent-
and sibling data sets, number of records, hash codes etc.
The landing page also provides a download button, which
triggers the automatic re-execution of the query and the
download of the data set, if access permissions are granted.
Note that, for the user, the fact that the PID resolves to a
query that gets re-executed rather than an actual subset, is
entirely transparent. Whether the actual query string (and
normalised/timestamped query) is presented to the user will
depend on the community. In its basic setting, for the user
the PID directly identifies the subset. Whether this exists
directly as a file or is dynamically created is not relevant.

3.4.2 R12 - Machine Actionability

Recommendation: Provide an API / machine actionable
landing page to access metadata and data via query re-
execution.

Landing pages presented in Web browsers enable human
users to read and interpret the metadata of a subset. As
experiments are increasingly executed by workflow engines,
which produce and consume data in an automated fash-
ion, there is a need to provide machine actionable landing
pages as well. For this reason a programmatic approach
is needed, which allows programs and machines to resolve
PIDs, read and interpret the metadata and retrieve the ap-
propriate data sets without human interaction. This allows
the PID to be used directly as input parameter in a data
driven process, allowing the automatic retrieval and provi-
sioning of the data to the process.

In order to provide a stable API for data identification and
data citation, the interfaces, methods and parameters need
to be specified and documented.

Example: Metadata can be provided in structured docu-
ments, such as CSV, XML or JSON. All three formats pro-
vide schemata for defining the fields and their data types.
This is essential of the data is processed automatically. The
API may also provide access to the data in different formats
based on their availability.

3.5 Upon Modifications to the Data
Infrastructure

Technological advancement is a major reason for change in
information systems. The following recommendations de-
scribe how the resulting changes should be accommodated
within the data infrastructure to ensure sustainable resolu-
tion of the dynamically generated subsets.

3.5.1 R13 - Technology Migration

Recommendation: When data is migrated to a new rep-
resentation (e.g. new database system, a new schema or

a completely different technology), migrate also the queries
and associated fixity information.

As technology evolves, data may be shifted to new environ-
ments (new database technologies, adapting the data repre-
sentation, etc.). As subsets are dynamically created we need
to ensure, that the queries identifying the subsets will also
work in the new settings. Thus, together with the migra-
tion of the data to a new environment, the queries need to
be migrated accordingly. As with all kinds of transforma-
tions, the existing queries should remain stored as part of
the provenance trail, adding the re-written query adapted
to the new data store technology. If the data representation
should change in such a way that no identical hash input
transformation can be created, new fixity information (hash
key/checksum) should be calculated and added to the meta-
data. The PID resolution may need to be redirected if the
location of the landing page changes.

Simple technology updates (such as a new database version)
usually do not have effects on the results. Nevertheless,
the subsets need to be verified after each upgrade. Com-
plex migrations can be cumbersome and require compre-
hensive checks for their effects on the overall infrastructure
(schemata, API, services etc). If the query language is af-
fected by the migration of the system or a completely dif-
ferent database system is used, all the queries need to be
migrated (i.e. translated) into the new system as well. It
needs to be ensured, that any new query language is equally
powerful and produces the same results.

Example: One of our first prototypes for CSV files used Git
in order to store versioned copies of the data. For obtain-
ing subsets, we used a CSV2JDBC driver and simple SQL
statements to specify which records to include. The query
store stored the parameters (selected columns, applied fil-
ters, used sorting) and linked to the revision of the CSV file
in the Git repository. In order to improve the performance
of the prototype solution, we migrated the CSV files into a
relational database scheme, by parsing them and creating
the appropriate tables on the fly. Each CSV file was then
imported into a separate table, where the file name served as
the table name. Versioning now was done by the database
system, by inserting a new updated record, a timestamp of
the event and the event type for each update. We could re-
use the queries stored in the query store, by re-writing the
queries to support the versioning scheme of the database
system. As we had the parameters available and knew the
file name, the queries could be mapped to the new system.
As the RDBMS supports indices, data access times could be
greatly improved.

3.5.2 R14 - Migration Verification

Recommendation: Verify successful data and query migra-
tion, ensuring that queries can be re-executed correctly.

After any changes to the system, it needs to be ensured that
all subsets can be retrieved and that their content is iden-
tical. This can be achieved via the fixity information (hash
keys/checksums) stored in the query store (R3) as computed
originally when the data subset was generated. It needs to



be ensured, that the hash input representation, i.e. the rep-
resentation of the data over which the fixity information is
computed, is identical.

Some migration paths might not allow or, at least, make it
unnecessarily complex to directly compare the records and
their hash keys respectively, due to different formats or the
unavailability of suitable hash functions or encodings of the
information (e.g. a switch from ASCII representation of data
to Unicode). In this case, all the records need to be com-
pared pairwise in the old and the new system, to make sure
that all records are still contained in both systems. Another
possibility is to provide a verification tool, which wraps the
functionality of the old system and allows comparing the
records in the new environment. Subsequently, new fixity
information may be computed over the new data represen-
tation and added to the metadata stored in the query store.
For our simple CSV prototype, we computed an SHA-1 hash
of each CSV file and of each exported CSV subset, by us-
ing the Linux command line tool md5sum. This hash key
was stored in the query store. The database system that
we used in the improved version does not allow to compute
such SHA-1 hashes directly, as the structure of the table was
changed. For this reason, we implemented a wrapper tool,
which allows exporting each subset as a CSV file. In a next
step, we compute the hash key by using again md5sum and
compared the result with the hash key stored in the query
store. This process has to be done once for all subsets stored
in the query store, in order to verify the correctness of the
migration process.

4. CONCLUSIONS
In this work we presented 14 recommendations on how to
make dynamic data identifiable. The query store (R3) is
based upon persistent query identification (R8) and stor-
age (R9), which allows identifying unique queries (R4) on
versioned data (R1). Based on tracking and timestamp-
ing all changing events (R1, R2) and query timestamping
(R7), a specific subset can be retrieved by re-executing the
query. Stable sorting (R5) and verification metadata (R6)
ensure that the significant properties of a subset remain in-
tact. The query store provides additional features such as
automatically generated citation texts of the subsets (R10)
as well as human (R11) and machine readable (R12) landing
pages. Technology migration (R13) and the verification of
migration paths (R14) ensure long term compatibility and
availability. Figure 3 summarises the recommendations as
components of a system.

The proposed solution has several benefits compared to cur-
rent approaches relying on individual data exports for each
data set or ambiguous natural language descriptions of data
set characteristics.

First of all, it allows identifying, retrieving, citing and shar-
ing the precise data set with minimal storage overhead by
only storing the versioned data and the queries used for cre-
ating the data set. In many environments data versioning is
considered a best practice and often already in place, thus
the implementation overhead is low.

Secondly, the approach allows retrieving the data both as it
existed at a given point in time as well as the current view on

Figure 3: The Recommendations for Data Citation as Com-
ponents

it, by re-executing the same query with the stored or current
timestamp, thus benefiting from all corrections made since
the query was originally issued. This allows tracing changes
over time and comparing the effects on the result set. In
addition the approach also allows to show verifiably and cite
the fact, that a query has returned the empty set.

Thirdly, the query store as a basis for identifying the data
set provides valuable provenance information on the way the
specific data set was constructed, thus being semantically
more explicit than a mere data export.

Last, but not least, the query store offers a valuable basis
for understanding and analysing data usage, i.e. identify-
ing, which parts of the data are being used. It also allows to
identify reversely which subsets may be affected by correc-
tions to the data and thus allows the creation of notification
services to identify study results that may be impacted by
such changes.

The recommendations are applicable across different types
of data representation and data characteristics. This in-
cludes big or small data, static or highly dynamic and it is
independent of the size of a data set. The same approach can
be applied to identifying any form of subset, from the entire
database down to an individual record or number, including
even an empty result set. The solution is robust over time,
as it supports the migration to new technologies. In order
to improve trust, the (sub)sets can be verified for their com-
pleteness and correctness across technological boundaries us-
ing fixity information. In terms of required investments in
infrastructure and resources, our solution requires the imple-
mentation and development of data versioning and hashing,
the development of suitable subsetting tools and the query
store as well as the adaption of policies for the assignment of
PIDs or the migration of data to different technology stacks.

These recommendations are currently being evaluated and
implemented or deployed by a number of data centres and
projects, including the Virtual Atomic and Molecular Data



Centre (VAMDC), the ENVRIplus project, i2b2, WUSTL,
BCO-DMO, the Argo Buoy Network and others.

5. REFERENCES
[1] D. Agrawal, A. El Abbadi, S. Antony, and S. Das.

Data management challenges in cloud computing
infrastructures. In S. Kikuchi, S. Sachdeva, and
S. Bhalla, editors, Databases in Networked Information
Systems, volume 5999 of Lecture Notes in Computer
Science, pages 1–10. Springer Berlin Heidelberg, 2010.

[2] M. Altman. A fingerprint method for scientific data
verification. In Advances in Computer and
Information Sciences and Engineering, pages 311–316.
Springer, 2008.

[3] M. Altman and M. Crosas. The evolution of data
citation: From principles to implementation. IASSIST
Quarterly, 37, 2013.

[4] P. Buneman, S. Davidson, and J. Frew. Why data
citation is a computational problem. Preprint
http://frew.eri.ucsb.edu/private/preprints/

bdf-cacm-data-citation.pdf to appear in CACM,
Retrieved at 29.03.2016, 2016.

[5] P. Buneman, S. Khanna, K. Tajima, and W.-C. Tan.
Archiving scientific data. ACM Trans. Database Syst.,
29(1):2–42, March 2004.

[6] P. Buneman and G. Silvello. A rule-based citation
system for structured and evolving datasets. IEEE
Data Eng. Bull., 33(3):33–41, 2010.

[7] R. Chatterjee, G. Arun, S. Agarwal, B. Speckhard,
and R. Vasudevan. Using data versioning in database
application development. In Proceedings of the
International Conference on Software Engineering
(ICSE). 2004., pages 315–325, May 2004.

[8] CODATA-ICSTI. Out of cite, out of mind: The
current state of practice, policy, and technology for
the citation of data, 2013. CODATA-ICSTI Task
Group on Data Citation Standards and Practices.

[9] J. T. Dudley and A. J. Butte. Reproducible in silico
research in the era of cloud computing. Nature
biotechnology, 28(11):1181, 2010.

[10] R. E. Duerr, R. R. Downs, C. Tilmes, B. Barkstrom,
W. C. Lenhardt, J. Glassy, L. E. Bermudez, and
P. Slaughter. On the utility of identification schemes
for digital earth science data: an assessment and
recommendations. Earth Science Informatics,
4(3):139–160, 2011.

[11] C. Fidge. Logical time in distributed computing
systems. Computer, 24(8):28–33, Aug 1991.

[12] J. Freire, P. Bonnet, and D. Shasha. Computational
reproducibility: state-of-the-art, challenges, and
database research opportunities. In Proceedings of the
ACM SIGMOD International Conference on
Management of Data. 2012, pages 593–596. ACM,
2012.

[13] K. Hinsen. A data and code model for reproducible
research and executable papers. Procedia Computer
Science, 4:579 – 588, 2011. Proceedings of the
International Conference on Computational Science
(ICCS), 2011.

[14] C. S. Jensen and R. Snodgrass. Temporal data
management. IEEE Transactions on Knowledge and
Data Engineering, 11(1):36–44, 1999.

[15] K. Kulkarni and J.-E. Michels. Temporal features in
sql:2011. SIGMOD Rec., 41(3):34–43, oct 2012.

[16] J. Lin, M. Crane, A. Trotman, J. Callan,
I. Chattopadhyaya, J. Foley, G. Ingersoll,
C. Macdonald, and S. Vigna. Toward reproducible
baselines: The open-source ir reproducibility
challenge. In Advances in Information Retrieval: 38th
European Conference on IR Research. ECIR 2016.,
pages 408–420. Springer, 2016.

[17] R. Mayer and A. Rauber. A quantitative study on the
re-executability of publicly shared scientific workflows.
In 11th International Conference on e-Science (IEEE
eScience 2015), 8 2015.

[18] J. P. Mesirov. Computer science. accessible
reproducible research. Science (New York, NY),
327(5964), 2010.

[19] S. Pröll and A. Rauber. Citable by Design - A Model
for Making Data in Dynamic Environments Citable.
In 2nd International Conference on Data Management
Technologies and Applications (DATA2013),
Reykjavik, Iceland, July 29-31 2013.

[20] S. Pröll and A. Rauber. Data Citation in Dynamic,
Large Databases: Model and Reference
Implementation. In IEEE International Conference on
Big Data 2013 (IEEE BigData 2013), Santa Clara,
CA, USA, October 2013.

[21] S. Pröll and A. Rauber. A Scalable Framework for
Dynamic Data Citation of Arbitrary Structured Data.
In 3rd International Conference on Data Management
Technologies and Applications (DATA2014), Vienna,
Austria, August 29-31 2014.

[22] S. Pröll and A. Rauber. A Scalable Framework for
Dynamic Data Citation of Arbitrary Structured Data.
In 3rd International Conference on Data Management
Technologies and Applications (DATA2014), Vienna,
Austria, August 29-31 2014.

[23] A. Rauber, A. Asmi, D. van Uytvanck, and S. Proell.
Data Citation of Evolving Data - Recommendations of
the Working Group on Data Citation.
https://rd-alliance.org/rda-wgdc-recommendations-
vers-sep-24-2015.html, September 2015. Draft -
Request for Comments.

[24] J. F. Roddick. A survey of schema versioning issues
for database systems. Information and Software
Technology, 37(7):383–393, 1995.

[25] B. Salzberg and V. J. Tsotras. Comparison of access
methods for time-evolving data. ACM Computing
Surveys (CSUR), 31(2):158–221, 1999.

[26] G. Silvello. A methodology for citing linked open data
subsets. D-Lib Magazine, 21(1):6, 2015.

[27] K. Torp, C. S. Jensen, and R. T. Snodgrass. Effective
timestamping in databases. The VLDB Journal,
8(3-4):267–288, February 2000.

[28] J. Zhao, J. Gomez-Perez, K. Belhajjame, G. Klyne,
E. Garcia-Cuesta, A. Garrido, K. Hettne, M. Roos,
D. De Roure, and C. Goble. Why workflows break:
Understanding and combating decay in taverna
workflows. In 8th International Conference on
eScience (IEEE eScience 2012), pages 1–9, Oct 2012.


