Rome, 17th September 2020

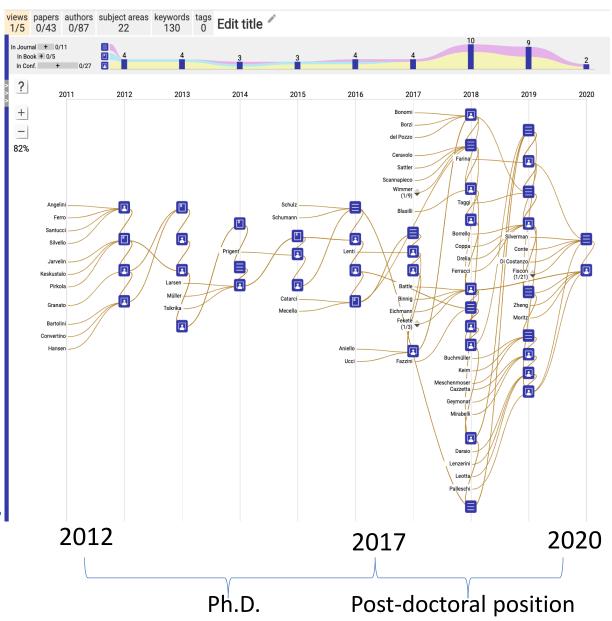
Visual analytics for Data Quality

Marco Angelini angelini@diag.uniroma1.it

A.WA.RE

Advanced Visualization & Visual Analytics REsearch group at Sapienza

whoami


Marco Angelini

Post-doctoral researcher in Predictive Visual Analytics

Mail: <u>angelini@diag.uniroma1.it</u>

Website:

https://sites.google.com/dis.uniroma1.it/angelini

A (very) simple question

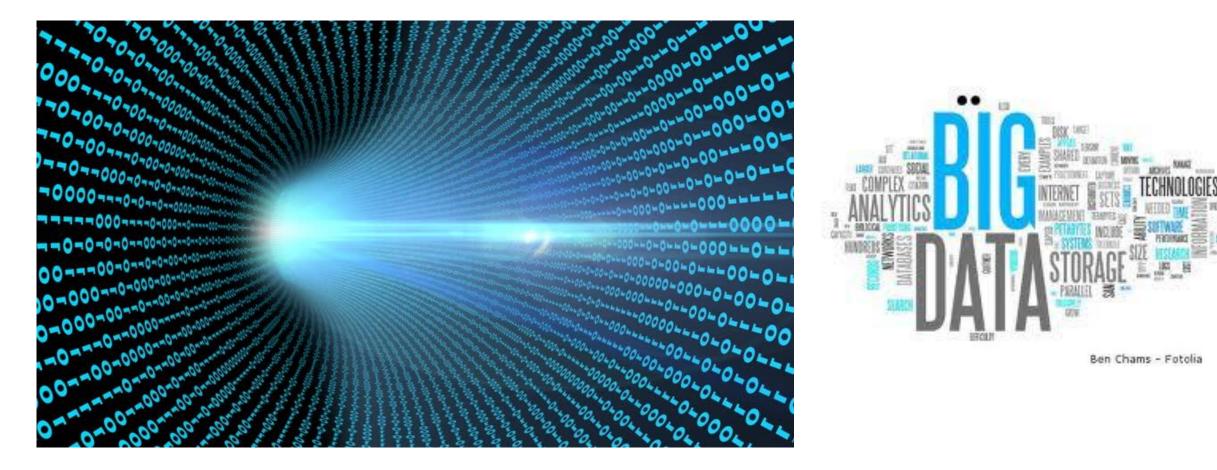
- How many 3s?
- You have 4 seconds to answer......

Game over!

So?

• Time was not sufficient?

- You can answer this question in less than 0.2 seconds!
- Let's try again...



458757626808609928083982698028 747976296262867897187743671947 746588786758967329667287682085

- Color is pre-attentive(it pops up)
- It does not require any cognitive effort

Lots of Data!

Data Quality

- Understanding the gross structure of the datasets (how many columns, how many rows, etc.)
- How big is the dataset, how many attributes, how is the data organized, etc?
- Internalizing the dataset attributes (columns)
 - what type of data is in each column?
 - Is it categorical, quantitative, and ordinal, etc?
 - What are the most frequent values?
- Discovering relationships among the attributes and structure within the table
 - how are the columns related?
 - Are there duplications among the columns, implicit relationships, and implicit structure within the table?

Data Quality

- Finding invalid and missing values,
 - Invalid values occur when items are miss-keyed, when data is carelessly entered, or when data is inconsistently collected.
 - Missing values occur when data attributes are dropped as part of the data extraction process, important fields are ignored and not populated by data entry clerks, or when data tables are expanded as part of system maintenance but never populated.
- Discovering zeros and other suspicious values such as 99 or 99999. These values are often indicative of coding problems in the data collection process and may require manual investigation.
- Identifying duplicated rows and column. Errors in data extraction routines often manifest themselves by

Data Quality

Data profiling

Data Quality Measurement

Data cleansing

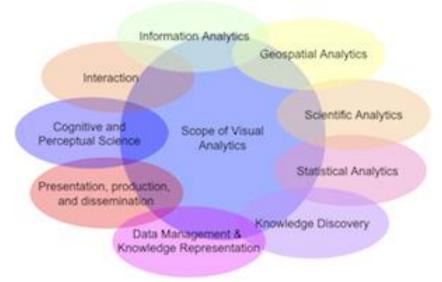
Data Quality Monitoring

- Accuracy
- Completeness
- Coherence
- Relevance
- Timeliness
- Accessibility
- interpretability

Issue	Detection Method(s)
Missing record	Outlier Detection Residuals then Moving Average w/ Hampel X84
	Frequency Outlier Detection Hampel X84
Missing value	Find NULL/empty values
Measurement units	Clustering Euclidean Distance
	Outlier Detection z-score, Hampel X84
Misspelling	Clustering Levenshtein Distance
Ordering	Clustering Atomic Strings
Representation	Clustering Structure Extraction
Special characters	Clustering Structure Extraction
Erroneous entry	Outlier Detection z-score, Hampel X84
Extraneous data	Type Verification Function
Misfielded	Type Verification Function
Wrong physical data type	Type Verification Function
Numeric outliers	Outlier Detection z-score, Hampel X84, Mahalanobis distance
Time-series outliers	Outlier Detection Residuals vs. Moving Average then Hampel X84
Primary key violation	Frequency Outlier Detection Unique Value Ratio
	Missing record Missing value Measurement units Misspelling Ordering Representation Special characters Erroneous entry Extraneous data Misfielded Wrong physical data type Numeric outliers Time-series outliers

You saw a lot of it during these days....

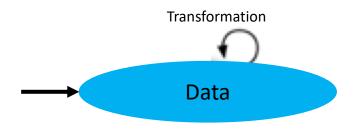
How can an analyst be helped ?


- Managing complexity of this workflow
- Some of the indicator are easy to compute but requires explanation to a user
- Some of the indicators need analyzing data in detail and recognize the behavior
- Exploring data require good skills

Visual Analytics: definition

Visual Analytics is the science of analytical reasoning supported by interactive visual interfaces. the complex nature of many problems makes it indispensable to include human intelligence at an early stage in the data analysis process.

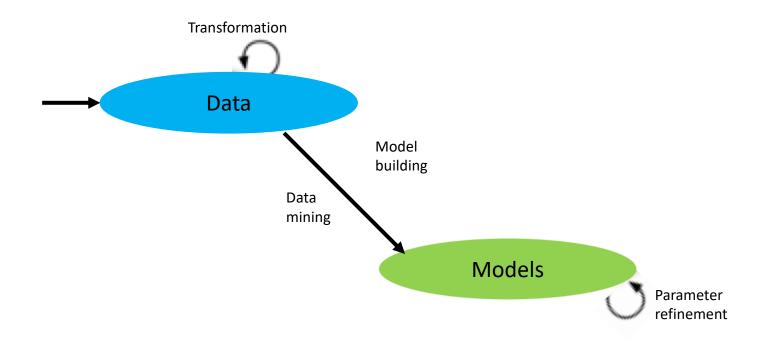
Visual Analytics methods allow decision makers to combine their human flexibility, creativity, and background knowledge with the enormous storage and processing capacities of today's computers to gain insight into complex problems.


Using advanced visual interfaces, humans may directly interact with the data analysis capabilities of today's computer, allowing them to make well-informed decisions in complex situations.

Thomas, J., Cook, K.: Illuminating the Path: Research and Development Agenda for Visual Analytics. IEEE-Press (2005)

Visual Analytics

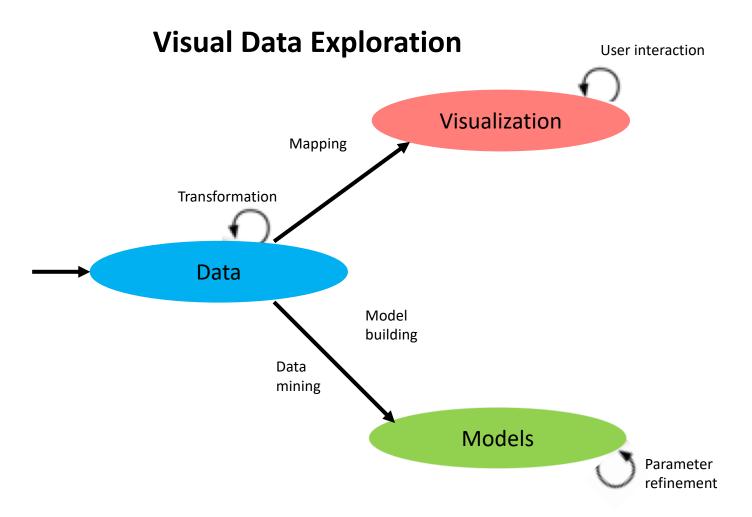
Data are beautiful ugly



[{"ptitle":"Hello world!","pname":"hello-world","pstatus":"publish"},{"ptitle":"Sample Page","pname":"sample-page","pstatus":"trash"},{"ptitle":"Auto Draft","pname":"","pstatus":"a draft"},{"ptitle":"About us","pname":"about-us","pstatus":"publish"},{"ptitle":"About us","pname":"4-revision-v1","pstatus":"inherit"},{"ptitle":"About us","pname":"4-revisionv1", "pstatus": "inherit"}, {"ptitle": "Introduction", "pname": "introduction", "pstatus": "publish"} {"ptitle":"Introduction","pname":"7-revision-v1","pstatus":"inherit"}, {"ptitle":"Achievements","pname":"achievements","pstatus":"publish"}, {"ptitle":"Achievements","pname":"9-revision-v1","pstatus":"inherit"}, {"ptitle":"API's","pname":"apis","pstatus":"publish"},{"ptitle":"API's","pname":"11-revisionv1","pstatus":"inherit"},{"ptitle":"Apis","pname":"apis-2","pstatus":"publish"}, {"ptitle":"Apis","pname":"17-revision-v1","pstatus":"inherit"}, {"ptitle":"FDF","pname":"fdf","pstatus":"publish"},{"ptitle":"FDF","pname":"19-revisionv1", "pstatus": "inherit"}, {"ptitle": "Product Portfolio", "pname": "productportfolio","pstatus":"publish"},{"ptitle":"Product Portfolio","pname":"21-revisionv1","pstatus":"inherit"},{"ptitle":"Intermediate Products List","pname":"intermediate-product list","pstatus":"publish"},{"ptitle":"Intermediate Products List","pname":"23-revisionv1","pstatus":"inherit"},{"ptitle":"Impurity Standard List","pname":"impurity-standardlist","pstatus":"publish"},{"ptitle":"Impurity Standard List","pname":"25-revisionv1","pstatus":"inherit"},{"ptitle":"Regulatory Status","pname":"regulatorystatus","pstatus":"publish"},{"ptitle":"Regulatory Status","pname":"27-revisionv1","pstatus":"inherit"},{"ptitle":"Contact Us","pname":"contact-us","pstatus":"publish"}, {"ptitle":"Contact Us","pname":"29-revision-v1","pstatus":"inherit"},

Visual Analytics

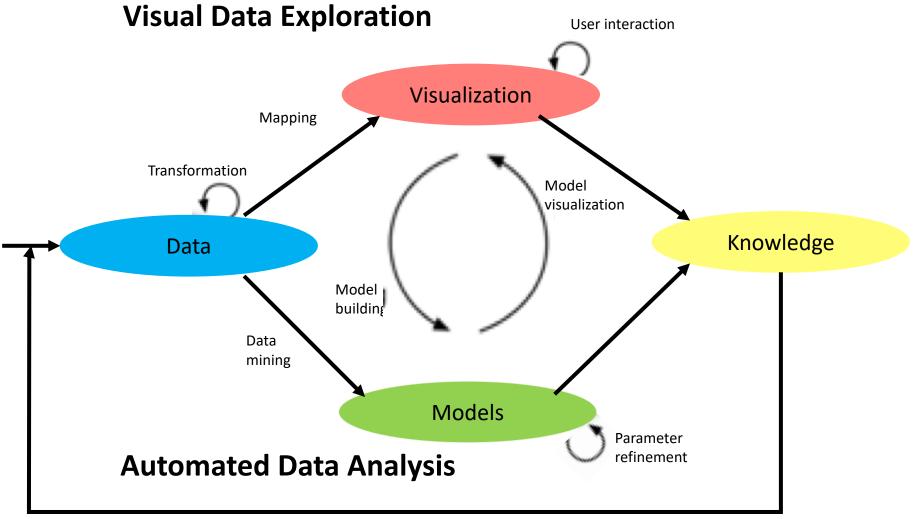
Variables and indicators


The Analytics

	Innovatior	า		Education			Research	
INPUT	OUTPUT	ENV. VAR.	INPUT	OUTPUT	ENV. VAR.	INPUT	OUTPUT	ENV. VAR.
% pop with higher education	GDP per capita	Foundation year	Total number of enrolled students ISCED5-8	Graduates at ISCED 5-7 (national, foreign and total graduates)	University hospital	Total academic staff (Full Time Equivalent)	Total number of documents published in scholarly journals indexed in Scopus	Ph.D. intensity (students ISCED8/student s ISCED5-8)
business R&D exp	patent number	Region of establishment (NUTS3; NUTS 2 and country)	Total academic staff (Full Time Equivalent)	Graduates at ISCED 5-7 area F09 (medicine)	s ISCED5-8) in	Total academic staff (HC)	Normalized Impact	Ph.D. intensity (students ISCED8/student s ISCED5-8) in FoE 09 Medicine
% pop lifelong learning activities	revenues		Students enrolled at ISCED 5-7 (national, foreign and total students)	Graduates at ISCED 8—area F 09 (medicine)	Ratio foreign/national students ISCED5-7	Academic staff—ISCED-F 09 (HC)	High Quality Publications Ratio of publications that an institution publishes in the most influential scholarly journals of the world	Total students enrolled/Total academic staff (HC)
high-tech empl in manuf	added value of high-tech industries		Students enrolled at ISCED 8— (distinguished in national, foreign and total students enrolled)		Ph.D. intensity (students ISCED8/student s ISCED5-8)	Number of administrative staff (FTE)	Excellence rate indicates the amount (in %) of an institution's scientific output that is included into the set of the 10% of the most cited papers	

Models

Visual Analytics



Visualization

Visual Analytics

Data Quality: a survey

667 software tools dedicated to "data quality" (still emerging market)

- half (50.82 %) of the DQ tools were domain specific, which means they were either dedicated to specific types of data or built to measure the DQ of a proprietary tool.
- 16.67 % of the DQ tools focused on data cleansing without a proper DQ measurement strategy
- Most surveyed tools supported data profiling to some extent
- did not find a tool that implements a wider range of DQ metrics for the most important DQ dimensions as proposed in research.
- Identified metric implementations have several drawbacks: some are only applicable on attribute-level (e.g., no aggregation), some require a gold standard that might not exist, and some have implementation errors.

Lisa Ehrlinger1, 2, Elisa Rusz1, and Wolfram Wöß1, A SURVEY OF DATA QUALITY MEASUREMENT AND MONITORING TOOLS, Preprint, 2019

Data Quality & visualization: survey

- Very low presence of visual environments (in contrast with other "fields")
- the authors list 9 usability criteria for the GUI, but in the evaluation they only distinguish between (g) representing "not user friendly GUI" and a (G) for "user-friendly GUI" with drag and drop functionality.

Lisa Ehrlinger1, 2, Elisa Rusz1, and Wolfram Wöß1, A SURVEY OF DATA QUALITY MEASUREMENT AND MONITORING TOOLS, Preprint, 2019

Visualization 4 Data Quality: Tables are kings...

	Total defects	Α	в	С	D	E
A4636	131	37	21	28		45
A2524	86	20	24	21	1	20
A3713	75	17	13	18		27
A4452	73	5	33	17		18
A4088	72	14	16	12	2	28
A2103	68	14	13	14	1	26
A2156	68	16	13	19	2	18
A3681	66	12	16	9	1	28
A1366	50	11	15	12		12
A2610	39	5	7	12		15
Total	728	F				

	Total defects	A	В,	C	D	E		Total de
A4636	131	37	21	28		45	A4636	13
A2524	86	20	24	21	1	20	A2524	- 80
A3713	75	17	13	18		27	A3713	75
A4452	73	5	-33	17		18	A4462	73
A4088	72	14	16	12	2	28	A4068	72
A2103	68	14	13	14	1	28	A2103	68
A2156	68	16	13	19	2	18	A2166	68
A3681	68	12	16	9	1	28	A3681	66
A1366	50	11	15	12		12	A1366	- 50
A2610	39	5	7	12		15	A2610	39
Total	728	151	171	162	7	237	Total	72

	Total defects	A	8	C	D	E
A4636	131	37	21	28		45
A2524	86	20	24	21	1	20
A3713	75	17	13	18		27
A4452	73	5	33	17		18
A4088	72	14	16	12	2	28
A2103	68	14	13	14	1	28
A2166	68	16	13	19	2	18
A3681	66	12	16	9	1	28
A1396	-50	11	15	12		12
A2610	39	5	7	12		15
Total	728	151	171	162	7	237

Category	This Year Sales Status	Average Unit Price	Last Year Sales	This Year Sales	This Year Sales Goal
010-Womens	•	\$7.30	\$2,680,662	\$1,787,958	\$2,680,662
020-Mens		\$7.12	\$4,453,133	\$4,452,421	\$4,453,133
030-Kids	•	\$5.30	\$2,726,892	\$2,705,490	\$2,726,892
040-Juniors	•	\$7.00	\$3,105,550	\$2,930,385	\$3,105,550
050-Shoes	•	\$13.84	\$3,640,471	\$3,574,900	\$3,640,471
060-Intimate	•	\$4.28	\$955,370	\$852,329	\$955,370
070-Hoslery	•	\$3.69	\$573,604	\$406,105	\$573,604
000-Accessories	٠	\$4.84	\$1,273,006	\$1,379,259	\$1,273,096
090-Home	•	\$3.93	\$2,913,647	\$3,053,326	\$2,913,647
100-Groceries	•	\$1.47	\$810,176	\$829,776	\$810,176
Total	•	\$5.49	\$23,132,601	\$22,051,952	\$23,132,601
<u>L</u>					

...but with problems

• No overview provided (only planar indicators)

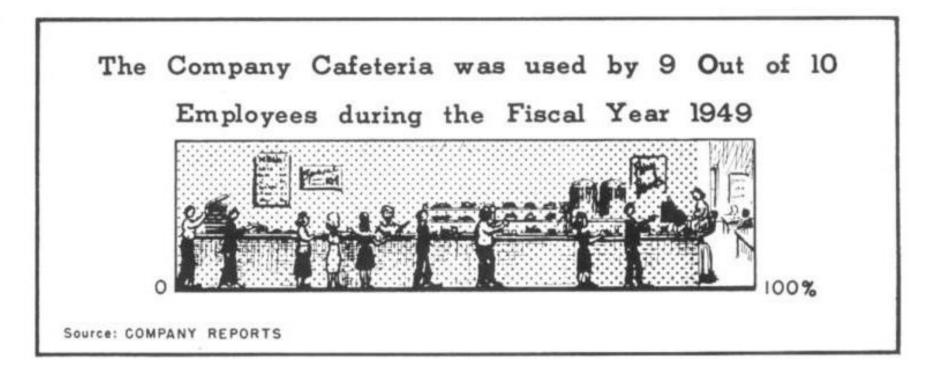
• Structured, but difficult to intercept the changes

• Scale very bad with data cardinality/dimensionality

A step back: Visualization literacy

Informal approach

- Rules for different kind of information
- Data quality has mostly prdominant numerical information (e.g. indicators, retios, etc..)
- ...with some exceptions



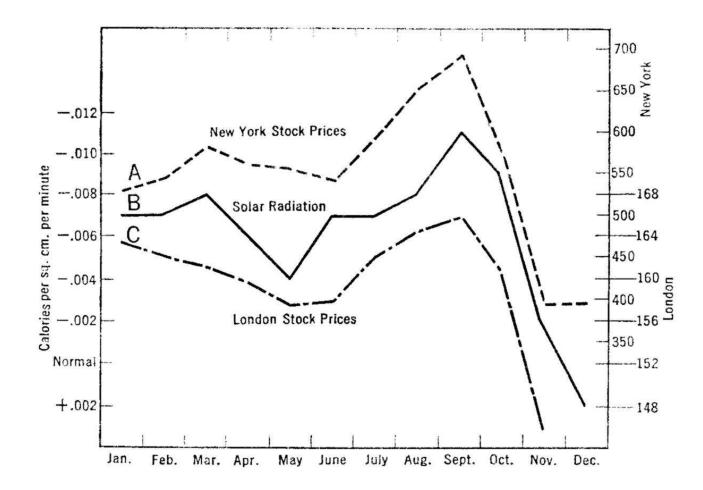
Numerical information: Rule 0

- Do not use diagrams when handling few numbers
- It does not make sense to use graphs to display very small amounts of data
- The human brain is quite capable of grasping one two, or even three values

Rule **0** violation (and also rule 2)

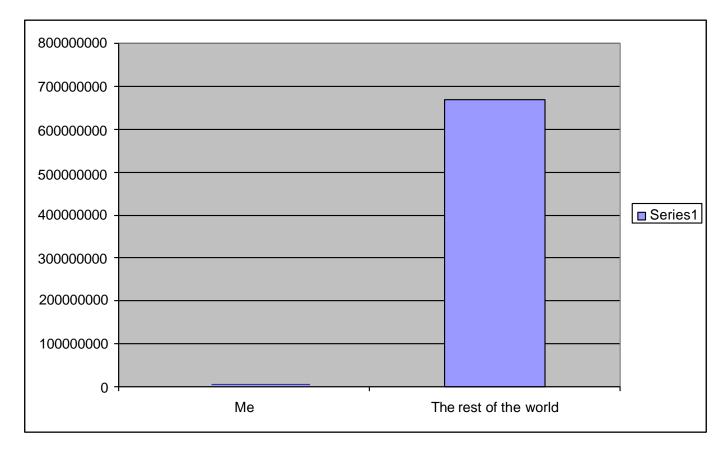
Rule 0 violation

Male 60% Female 40%



Numerical Information: Rule 1

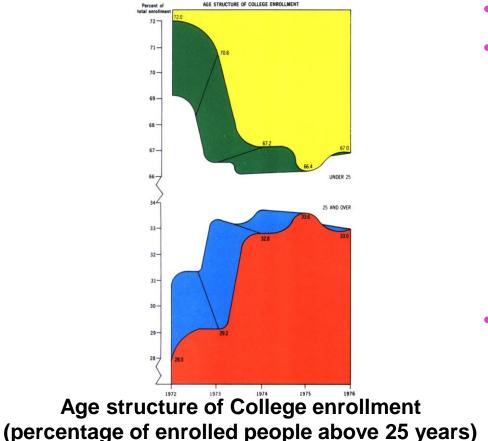
- Insure data quality / significance
- Graphs are only as good as the data they display
- No amount of creativity can produce a good graph from dubious or non relevant data



Rule 1 violation

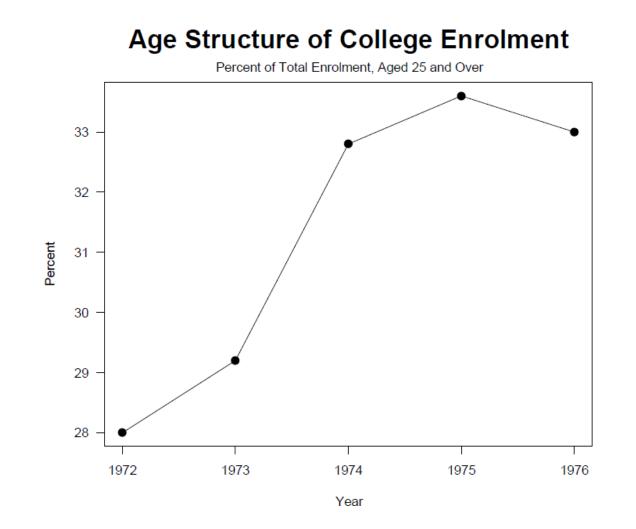
Rule 1 violation (and also rule 0)

Not very significant data but a good example of distortion



Numerical Information: Rule 2: Insure chart simplicity

- Graphs should be no more complex than the data which they portray
- Unnecessary complexity can be introduced by
 - irrelevant decorations
 - colors
 - 3d effects
 - ...
- These are collectively known as "chart junk"
- For a very comprehensive set of chart junk effects
 look at Microsoft Excel
 - the more recent the version the larger the set !


Rule 2 violation (and also rule 3) Rule 3 violation

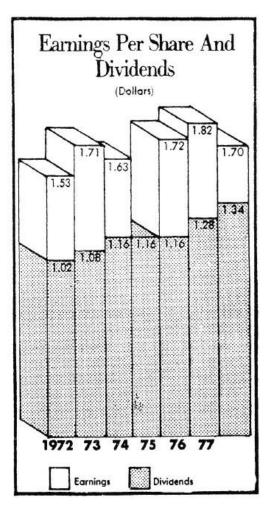
- A very good bad example!
- only 5 (!) numbers on it but
 - 4 meaningless colors
 - useless 3D
 - useless axes split
 - confusing and wrong visual attributes (size)
 - split y axis
 - odd interpolation
- Designers of this graph are now working in the Microsoft Excel's team, inspiring the new Excel's versions ...

Same data...

The same data...

Year	Percentage above 25
1972	28.0
1973	29.2
1974	32.8
1975	33.6
1976	33.0

Same data...


Age Structure of College Enrolment

Percent of Total Enrolment, Aged 25 and Over Percent

Year

Rule 2 violation

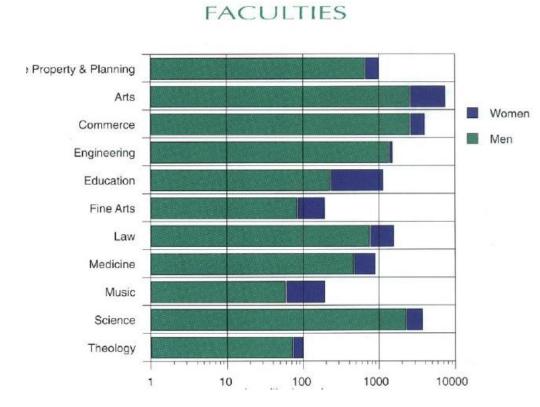
• Why 3D?

 The extra dimension used in this graph has confused even the person who created it..

The Washington Post, 1979

The same data...

Earnings Per Share and Dividends



Numerical Information: Rule 3

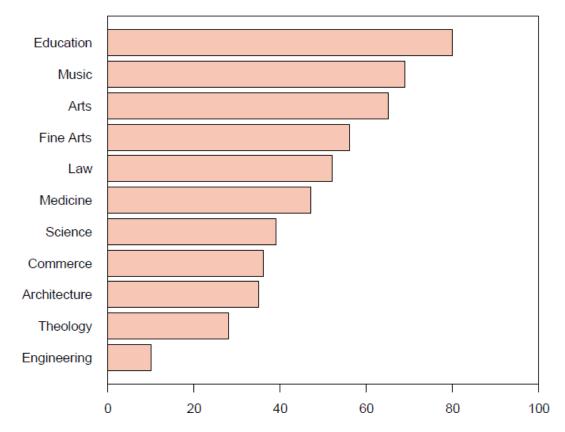
- Do not distort data in a confusing way
- Graphs should not provide a distorted picture of the values they portray
- Distortion can be either deliberate or accidental
- Of course, it could be useful to know how to produce a graph which bends the truth...

Rule 3 violation

• At a very quick glance:

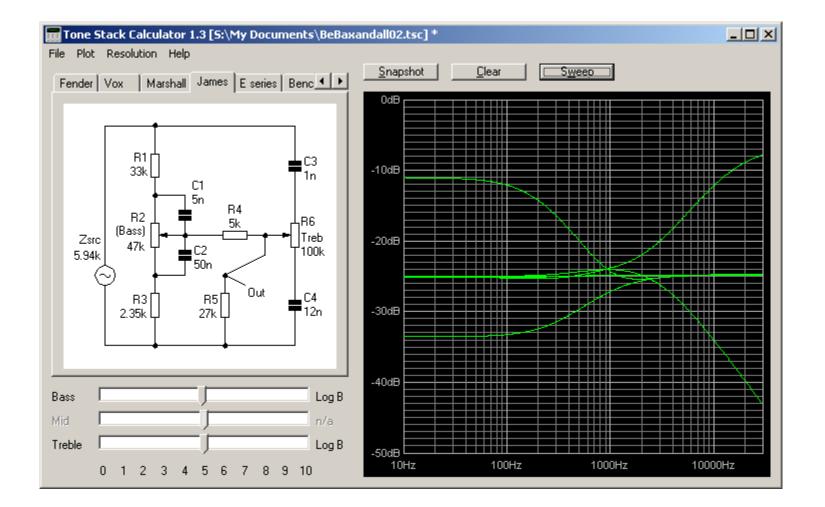
- balanced faculty population
- most male students
- What is wrong with this graph?
- The X scale is logarithmic!

The truth : population size


Faculty Size

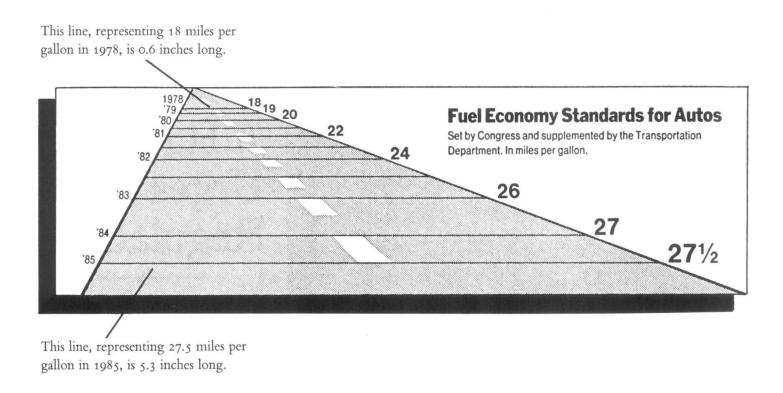
Arts Commerce Science Law Engineering Education Architecture Medicine Music Fine Arts Theology 2000 4000 6000 8000 0

> SAPIENZA UNIVERSITÀ DI ROMA


The truth : female /male ratio

Percentage of Female Students

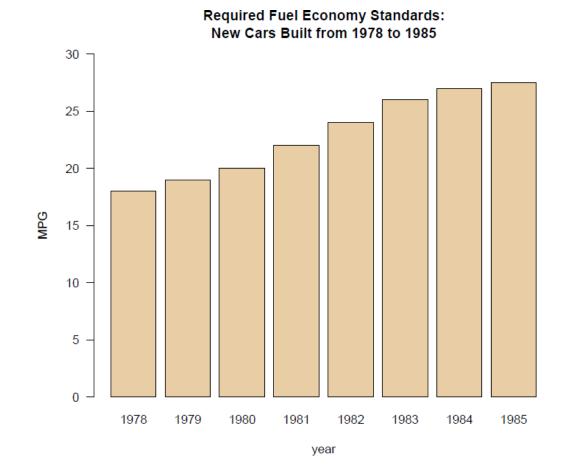
In other cases distortion is ok...



The lie factor

- The visual pioneer Ed Tufte of Yale University has defined a "lie factor" as a measure of the amount of distortion in a graph
- The lie factor is defined to be: Lie Factor = size of effect in graphic / size of effect in data
- If the lie factor of a graph is greater than 1, the graph is exaggerating the size of the effect

Measuring distortion through the lie factor



Graph effect = 5.3/0.6=8.8 Data effect = 27.5/18=1.52

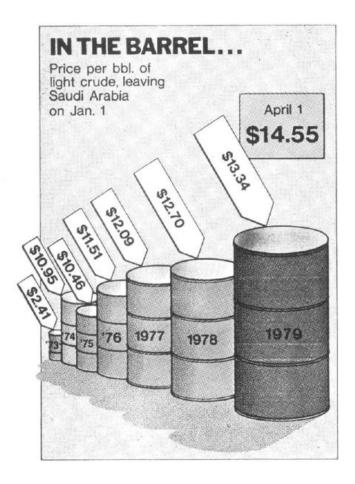
Lie Factor = 8.8/1.52 = **5.8**

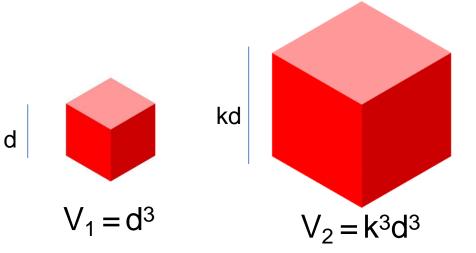
The same data with **lie** factor=1

Common Sources of Distortion

The use of image perspective is a common source of distortions in graphs
 Fuel Economy Standards for Autos Standards for

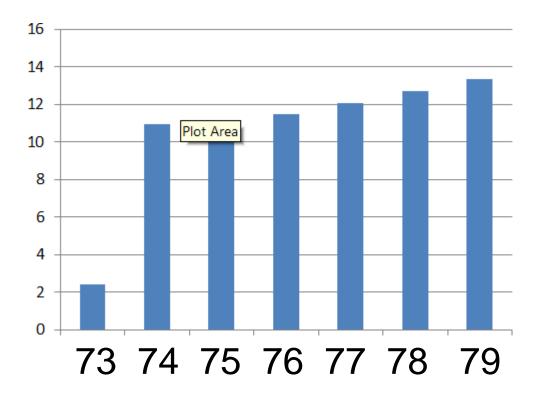
Department. In miles per gallon.


27

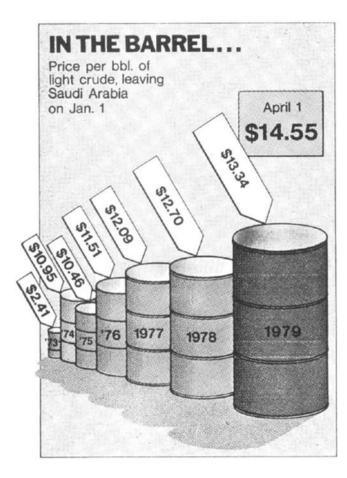

271/2

 Another common source is the inappropriate (or deliberate?) use of linear scaling when using area or volume to represent values

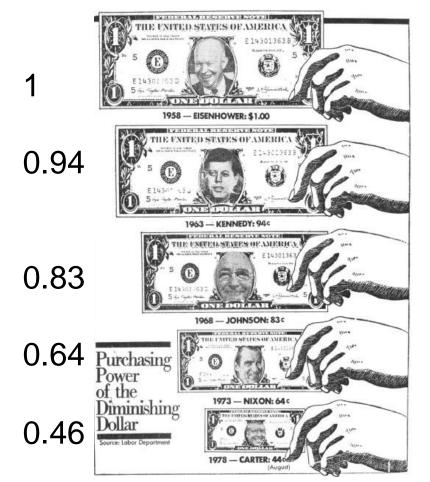
Distortion through non linear volumes

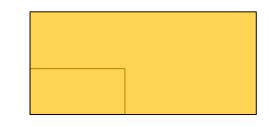

Graph effect =
$$V_2/V_1 = k^3 d^3/d^3 = k^3$$

Data effect = kd/d = k
Lie Factor = $k^3/k = k^2$

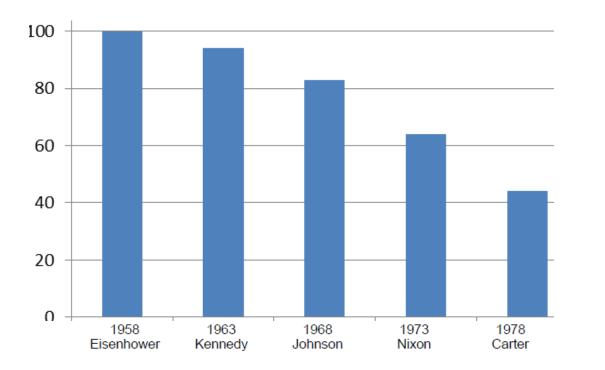

Lie Factor = **Data effect**²

Lie factor =
$$(14.55/2.41)^2 = 6^2 = 36$$


The same data

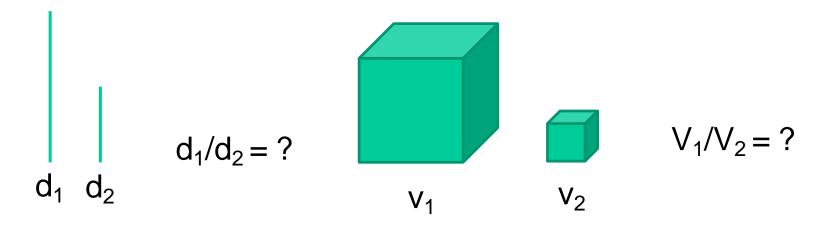

Distortion through areas

Graph effect = $A_2/A_1 = k^2d^2/d^2 = k^2$ Data effect = kd/d = k Lie Factor = $k^2/k = k$


Lie factor = Data effect

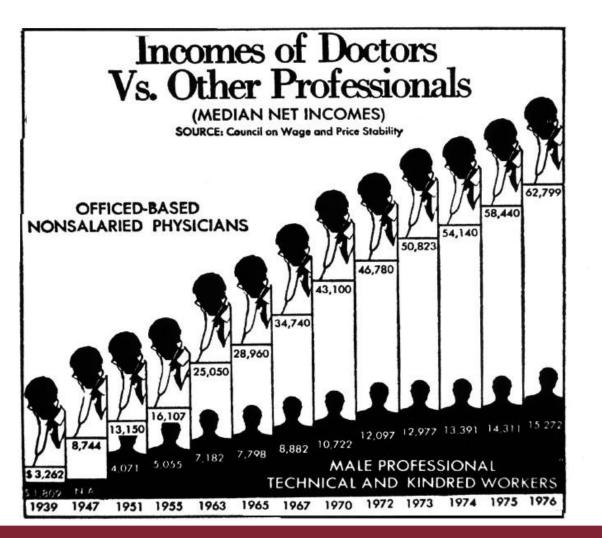
Is the bottom dollar roughly half the size of the top one?

The same data with lie factor=1 Note that in a histogram you are comparing **lengths**, not **areas**



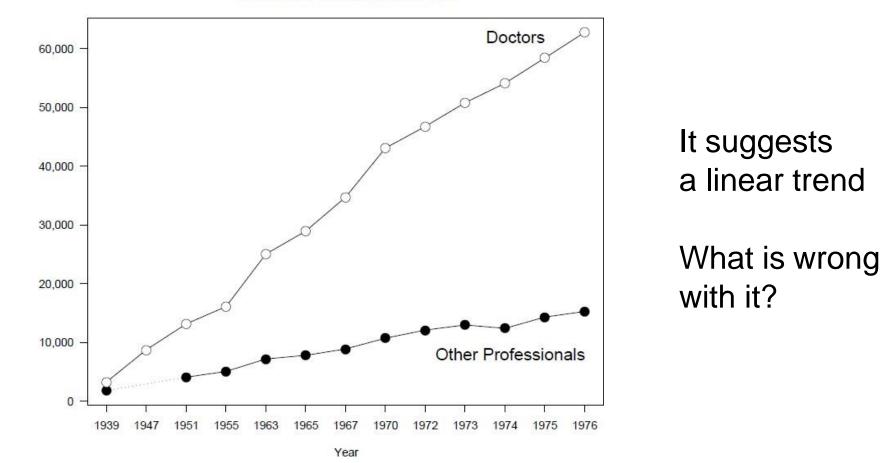
This is why it is better to use thin bars...

Encoding numerical values


 Human beings are better in comparing lengths than areas or volumes

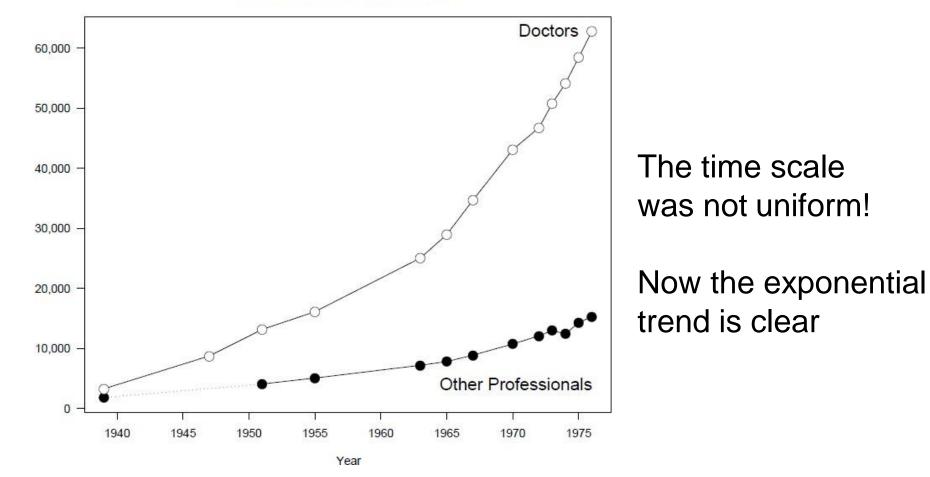
- So, using volume or area instead of length is wrong!
- Or it is an intentional lie!

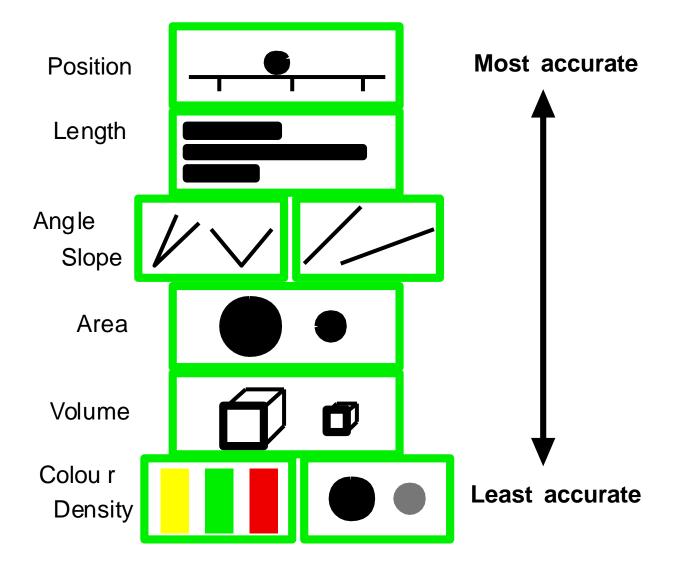
Distortion (deliberate?)


What's wrong with this graph?

A part of the chart junk

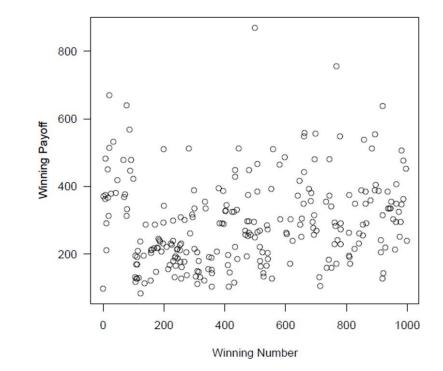
Presented data


Median Net Incomes



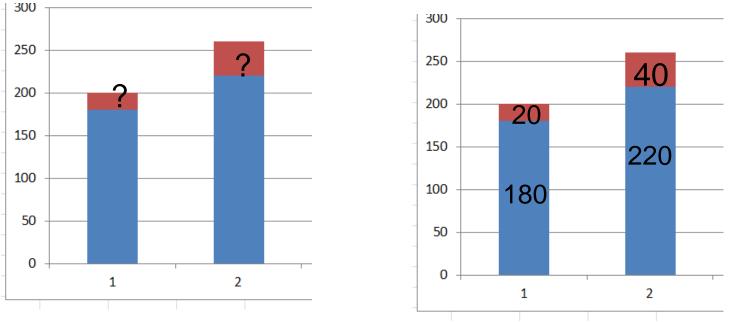
Real data...

Median Net Incomes



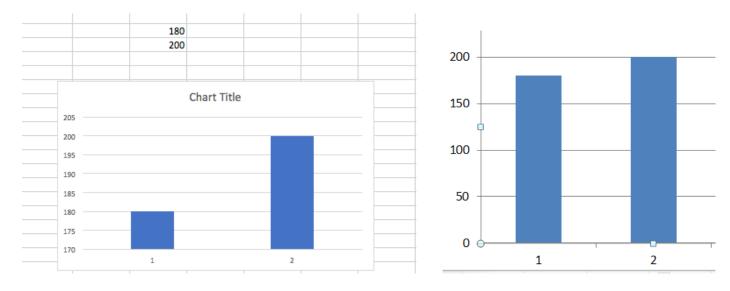
The relative difficulty of assessing **quantitative** value as a function of encoding mechanism, as established by Cleveland and McGill

Position


• It works fine

Length?

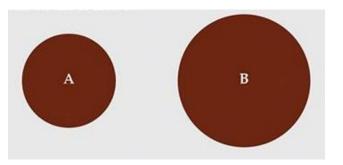
• The lookup of precise number might be difficult if the position is not evident (e.g., stacked bar chart)



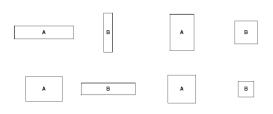
It makes sense to explicitly add figures

Length?

• Length is fine as well, but use the right scale!


Automatically produced by Excel

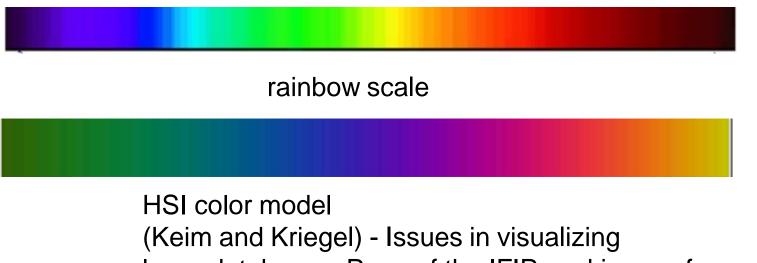
The reality



Areas: some new surprising issues

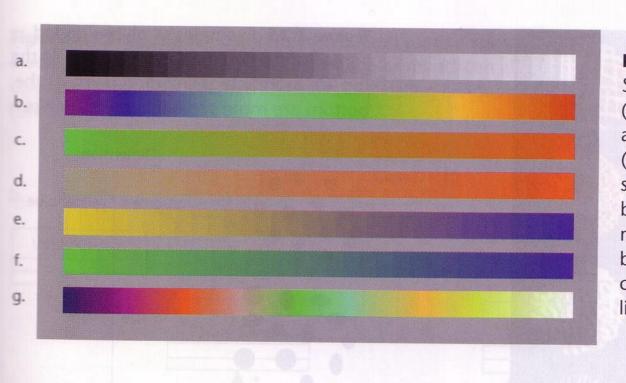
• Human being are very bad in estimating area ratios

- What is the ratio between this two circles A/B ?
 25% 35% 40% 45% 50% 55% 60% 70% ?
- What is the shape that produces the biggest error?



- The square!
- Perceptual Guidelines for Creating Rectangular Treemaps (Nicholas Kong et al., Infovis 2010)

Colors / Numerical data


- Someone already thought how to associate quantitative values to colors and different choices are available
- Do not reinvent the wheel
- The rainbow scale does not work!!!)
- It is a very common error (I did it as well, 20 years ago...)

large databases. Proc. of the IFIP working conference on Visual database Systems, 1995

Other choices (Colin Ware)

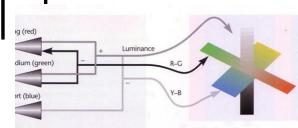
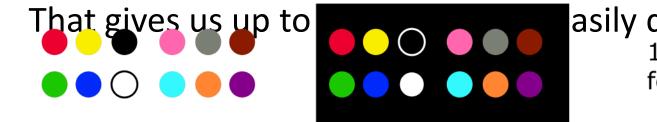
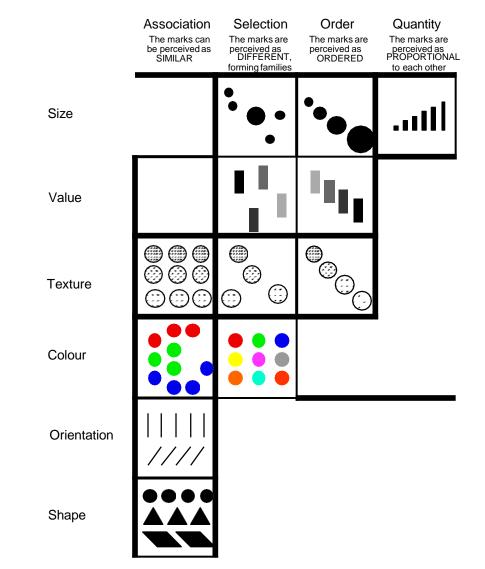


Figure 4.24

Seven different color sequences: (a) Gray scale. (b) Spectrum approximation. (c) Red-green. (d) Saturation. (e) and (f) Two sequences that will be perceived by people suffering from the most common forms of color blindness. (g) A sequence of colors in which each color is lighter than the previous one.



Colors /Categorical

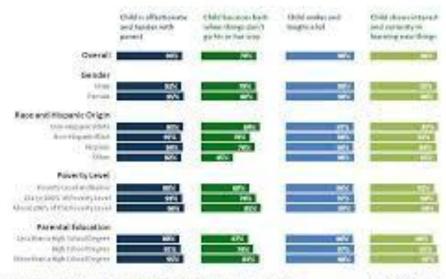

- Colors are fine with categorical data
- Do not reinvent the wheel (again)
- The Ewald Hering idea is that there are only 6 elementary colors arranged in three pairs
 - black-white
 - red-green

• yellow-blue

asily distinguishable (11!) 12 Colors for labeling

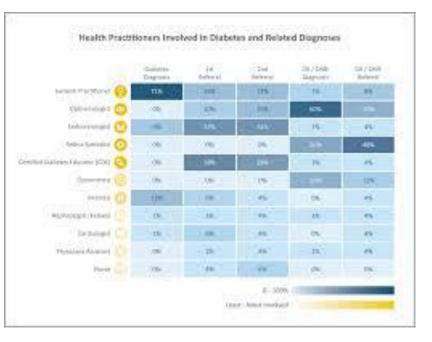
Interpretation of Bertin's guidance regarding the suitability of various encoding methods to support common tasks

Some new considerations

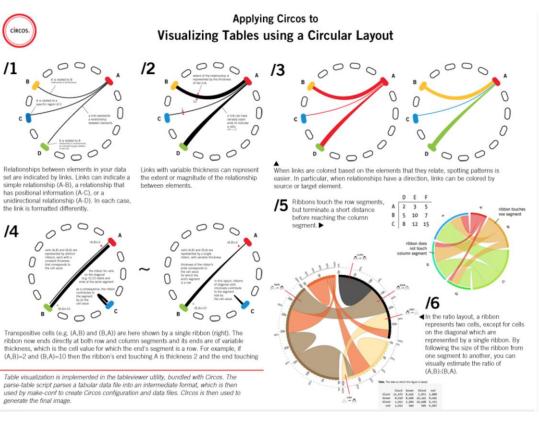

- Chartjunk is not the unique enemy...
- Before PCs building graphs was a matter of paper and pencil
 - requiring time and effort
 - pushing you to better understand :
 - the meaning of numbers
 - the graph purpose
 - the graph organization
 - ...
- now, with Excel (or MatplotLib, or general chart software you can produce graphs so fast that you might loose control...
 - you select predefined solutions
 - you might not understand how the graph is built (row, columns, headings, ...)
 - you can make mistakes (e.g., missing a row...)

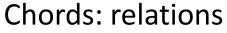
Visualization literacy: better tables

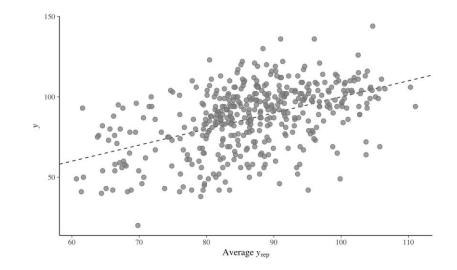
Measures of Flourishing

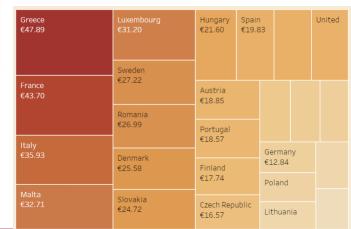

Percentage of children, ages sin months through the years, whose porents indicated they "usually" or "alwess" showed selected "flourishing" behaviors.

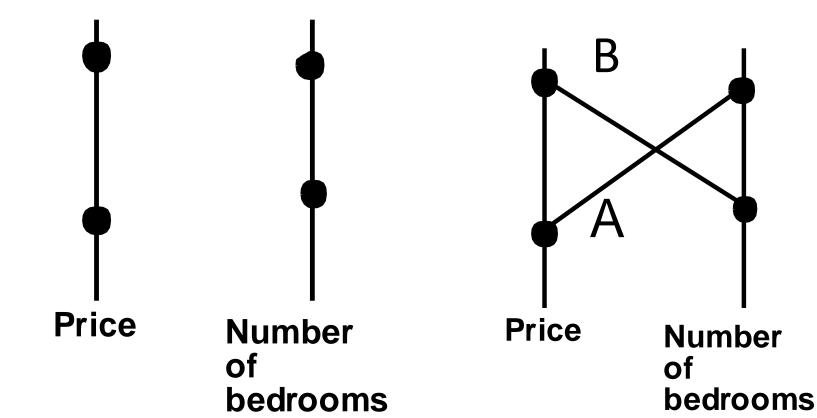
Site countries //www.itiktoresk.ing/wpersoned/igh-sk//rest/rest/fill/itikeshing.itikes/weadf


-wantervalue 🔲 🔄 🖾 🖉 🖓 👘 🖓 👘					toir 🔞			
	10	Latert D	Lifetime Debt	Average Sala	Pice		Formating	
	29657	3030-01-01	100	101.71	 Turcate Text 			
	THEFAS	3030-07-20	1	1 ST4.54	Charles in	1000		
0.	85424	3030-07-20	22	995.46	C Show	Show that field harter		
1.11	61525	3030-87-28	12	\$64,40	the second se			
	54158	2030-07-28	1	\$65.30	Sin C	olumns to Rt.		
1100	\$2882	3035-37-28	- P	\$29.15				
	43228	2039-87-20	1	542.63	OUSTONOW	GNS -		
11.04	46355	3035-17-28	1 C	\$47.62				
	32252	0000-07-20	T IIII	\$57.55	► USE/5-61			
	\$5062	3030-47-28	1 4	\$44,78	 Users Latest Order Date 			
1.11	41982	3030-87-20	1 D	\$52.87				
	58362	3000-07-20	2	\$34.75	 Users Lifetime Orders 			
	32927	3030-37-20	12	\$29.28	Order kanta Average Sele Price			
100H	5007	2000-07-20	1	125.99		12.6		

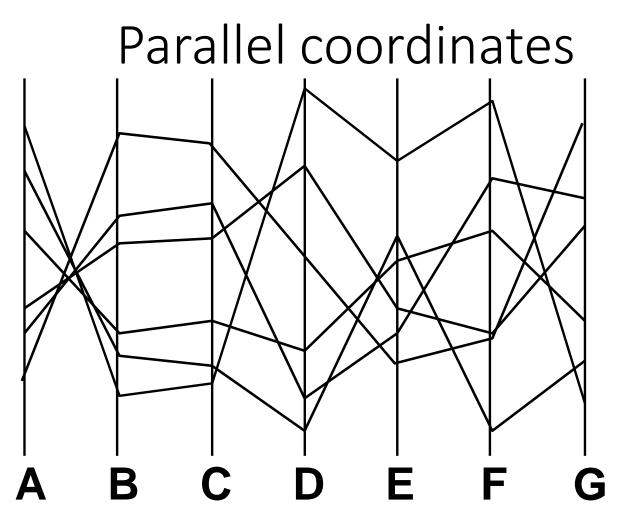

Open menu




Visualization literacy: better THAN tables

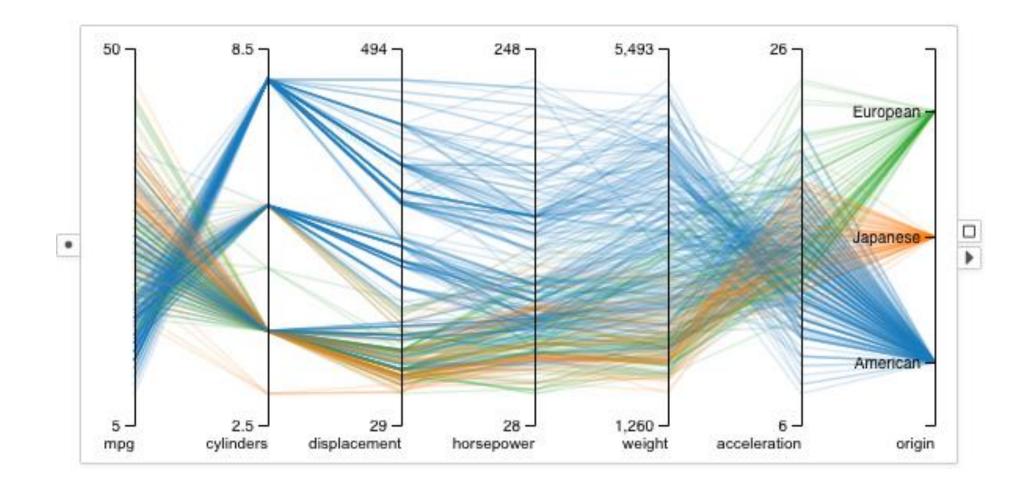

Scatterplots: correlations

Treemaps: hierarchy / part to whole

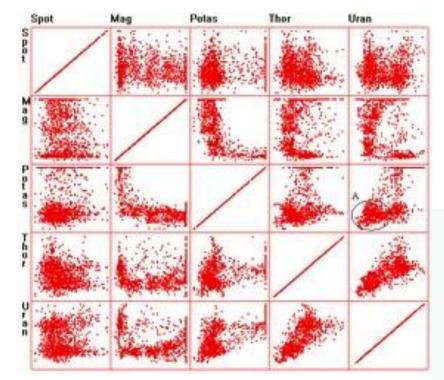


Parallel coordinates

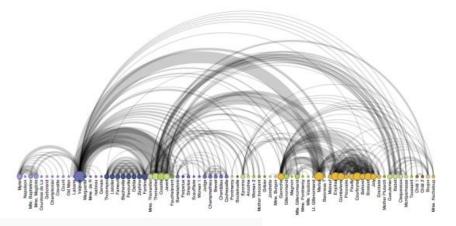
An alternative representation to the scatterplot in which the two attribute scales are presented in parallel, thereby requiring two points to represent each house To avoid ambiguity the pair of points representing a house are joined and labelled

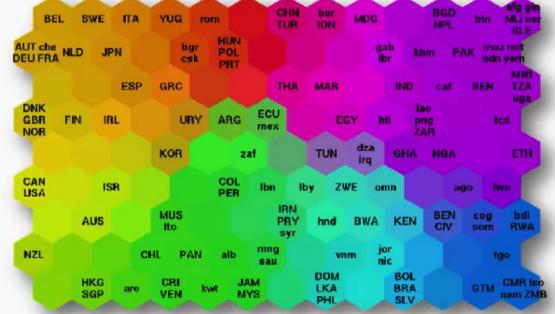


A parallel coordinate plot for six objects, each characterised by seven attributes. The trade-off between A and B, and the correlation between B and C, are immediately apparent. The trade-off between B and E, and the correlation between C and G, are not



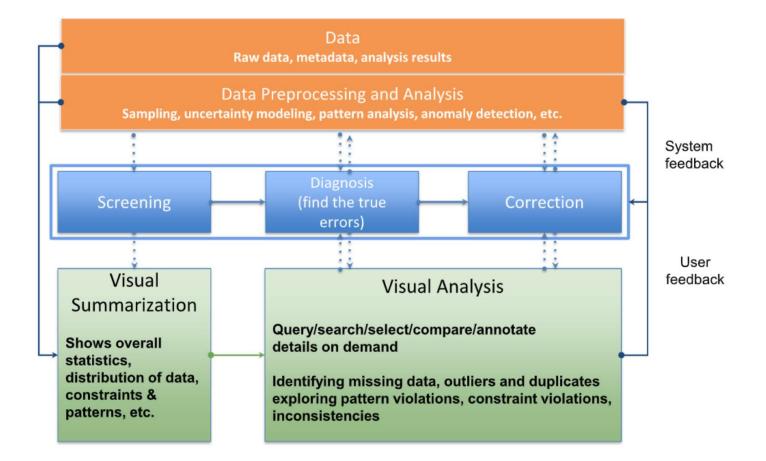
Parallel coordinates





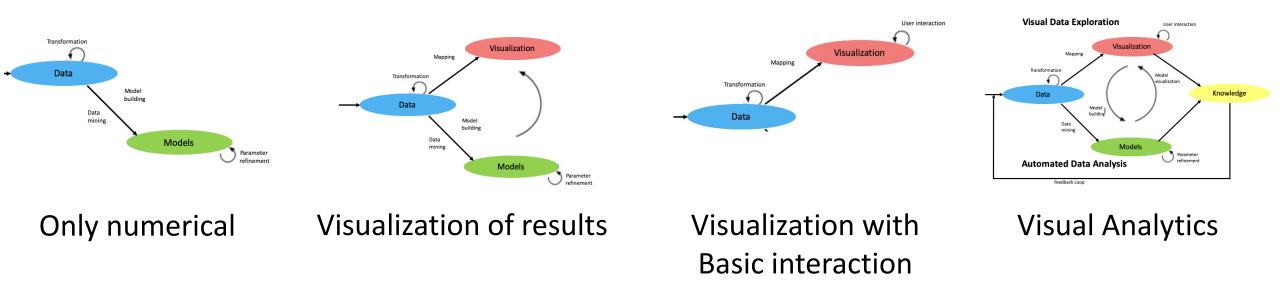
More advanced visualizations

Scatterplot-matrix



Self Organizing Maps

Visual Analytics 4 Data Quality (VA4DQ): an overview


Liu, S., Andrienko, G., Wu, Y., Cao, N., Jiang, L., Shi, C., ... & Hong, S. (2018). Steering data quality with visual analytics: The complexity challenge. *Visual Informatics*, *2*(4), 191-197.

VA4DQ: an overview

The flavor of integration can be quite different

What state-of-the-art research proposes for "Data Quality" ?

DaVis: a tool for visualizing Data Quality

le Find Modelna	WheelBa	Length	Width	Height	Horse p.,	Price
reserves	mileeise	Leagua	THORE	neight	murse p.	rine
_	_					_
						_
						_
						_
					_ :	=
						_
_						
_						
_						_
						_
_						_
_		_				_
						_
_						_
_						=
_						_
_						
						_
					_ :	_
					= :	Ξ
						- 1
						- 1
						-
						_
						_

Sulo, Rajmonda, Stephen Eick, and Robert Grossman. "DaVis: a tool for visualizing data quality." *Posters Compendium of InfoVis* 2005 (2005): 45-46.

sepal width	petal length	petal width
	—	_
	_	_
	—	
		<u>.</u>
		-
	<u> </u>	
	—	_
	—	_
		_
		_
		_
	<u> </u>	
	<u> </u>	-
		-
	<u> </u>	-

Yellow represents zero values

Visual Data Quality Dashboard

- It uses R for computaing indicators
- Strongly oriented at reporting
- Stiil oriented at tables (less scalability)

ABOUT

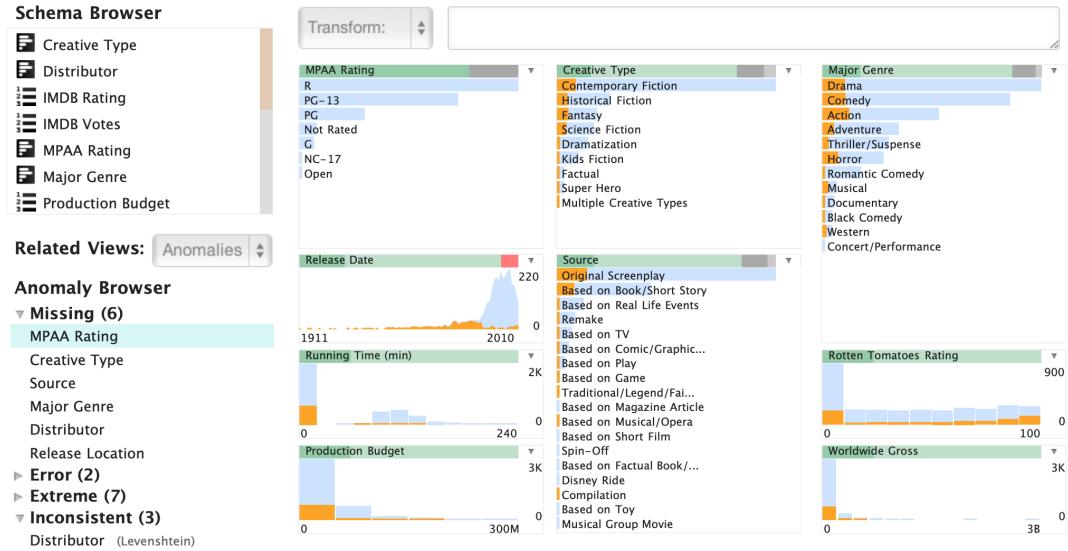
DATA QUALITY ASSESSMENT

SYNTHEA SYNTHETIC HEALTH DATABASE

Results generated at 2019-08-22 14:15:06 in 29 mins

	Verification			Validation			Total						
		Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass	Pass	Fail	Total	% Pass
w	Plausibility	159	21	180	88%	283	0	283	100%	442	21	463	95%
TA	Conformance	637	34	671	95%	104	0	104	100%	741	34	775	96%
S	Completeness	369	17	386	96%	5	10	15	33%	374	27	401	93%
	Total	1165	72	1237	94%	392	10	402	98%	1557	82	1639	95%

https://github.com/OHDSI/DataQualityDashboard


Profiler

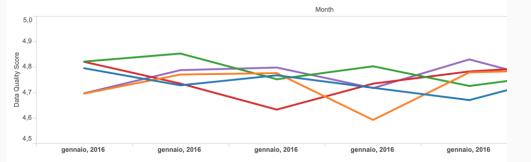
Туре	Issue	Detection Method(s)	Visualization
Missing	Missing record	Outlier Detection Residuals then Moving Average w/ Hampel X84	Histogram, Area Chart
		Frequency Outlier Detection Hampel X84	Histogram, Area Chart
	Missing value	Find NULL/empty values	Quality Bar
Inconsistent	Measurement units	Clustering Euclidean Distance	Histogram, Scatter Plot
		Outlier Detection z-score, Hampel X84	Histogram, Scatter Plot
	Misspelling	Clustering Levenshtein Distance	Grouped Bar Chart
	Ordering	Clustering Atomic Strings	Grouped Bar Chart
	Representation	Clustering Structure Extraction	Grouped Bar Chart
	Special characters	Clustering Structure Extraction	Grouped Bar Chart
Incorrect	Erroneous entry	Outlier Detection z-score, Hampel X84	Histogram
	Extraneous data	Type Verification Function	Quality Bar
	Misfielded	Type Verification Function	Quality Bar
	Wrong physical data type	Type Verification Function	Quality Bar
Extreme	Numeric outliers	Outlier Detection z-score, Hampel X84, Mahalanobis distance	Histogram, Scatter Plot
	Time-series outliers	Outlier Detection Residuals vs. Moving Average then Hampel X84	Area Chart
Schema	Primary key violation	Frequency Outlier Detection Unique Value Ratio	Bar Chart

Sean Kandel, Ravi Parikh, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012. Profiler: integrated statistical analysis and visualization for data quality assessment. In Proceedings of the International Working Conference on Advanced Visual Interfaces (AVI '12). Association for Computing Machinery, New York, NY, USA, 547–554. DOI:https://doi.org/10.1145/2254556.2254659

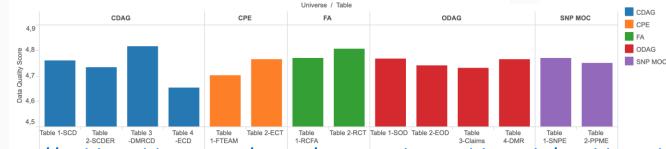
Profiler

Source (Levenshtein)

General Environments: Tableau

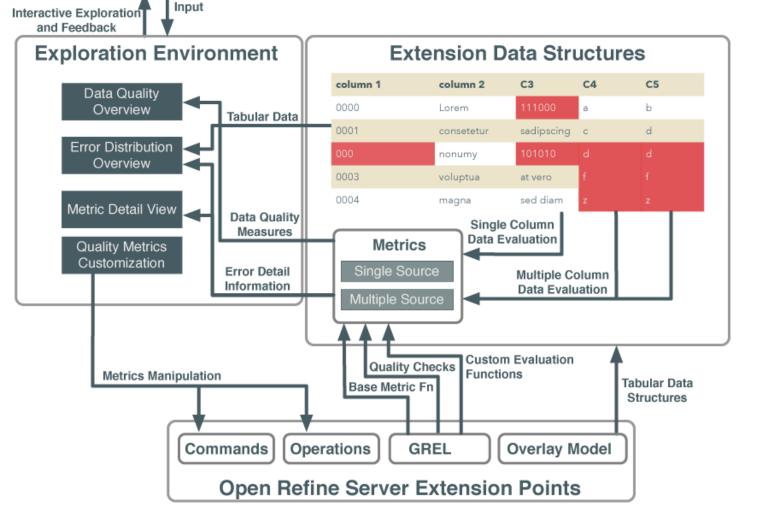

93,43%

Data Accuracy: indicated by % of records with all fields having valid values Data Completeness: indicated by % of records with all fields being not null Data Conformity: indicated by % of records with all fields


Data Quality Indicators

Data Quality Score Monthly Trend

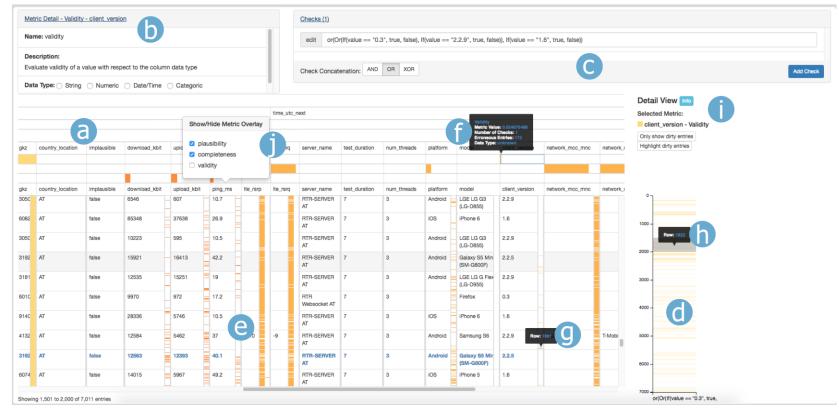
Data Quality Score per Universe Table



https://public.tableau.com/views/DataQualityDashboards/Dashboard1?:embed=y&:showVizHome=no&:display_count=y&:display_

<u>_static_image=y&:bootstrapWhenNotified=true</u>

Metrics-Doc


Data Analyst

Christian Bors, Theresia Gschwandtner, Simone Kriglstein, Silvia Miksch, and Margit Pohl. 2018. Visual Interactive Creation, Customization, and Analysis of Data Quality Metrics. <i>J. Data and Information Quality</i> 10, 1, Article 3 (May 2018), 26 pages.

DOI:https://doi.org/10.1145/3190578

Metrics-Doc

(a) quality metrics overview

distribution heatmaps

- (b) the metric information view and
- (c) customization tabs
- (d) the metric detail view

(e) the tabular raw data view enhanced with error

- (f) mouseover tooltips provide detail information on
- (g) metrics
- (h) data errors

Integrated VA environment

High level analysis of data:

- Looking for correlation among data column
- Spotting outliers
- Exploiting coordination for understanding trends
- On research production data

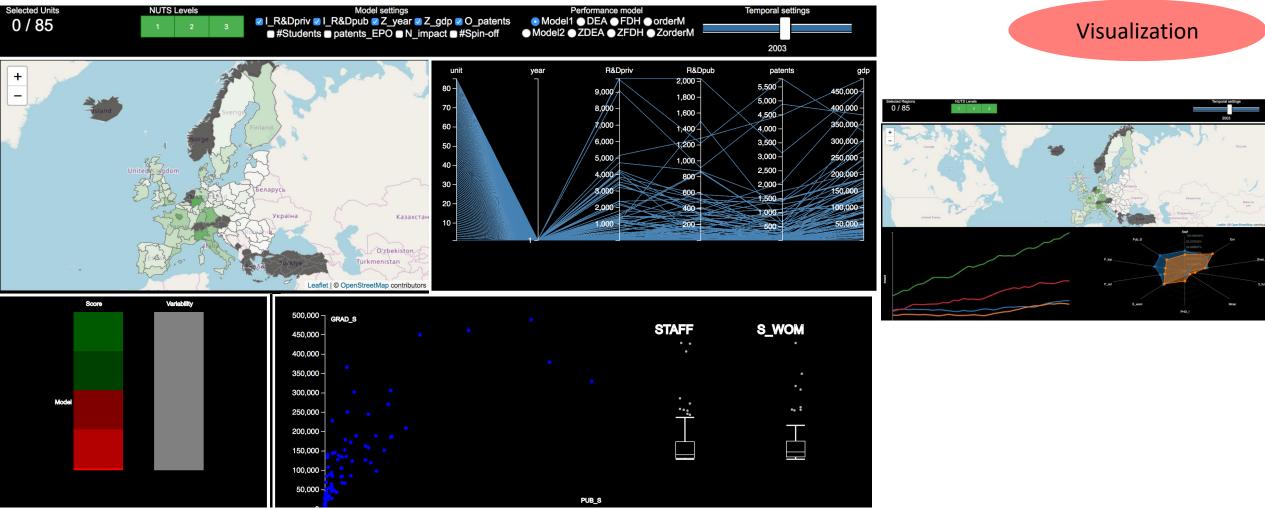
Introduction

Research evaluation

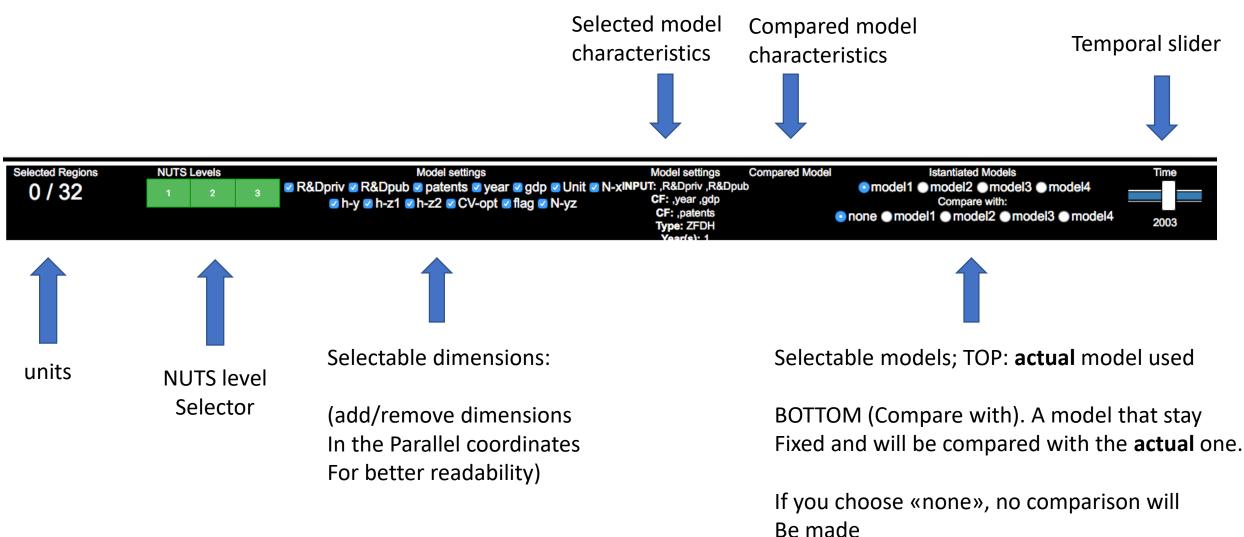
- transition from a traditional evaluation model, based on bibliometric indicators of publications and citations
- modern evaluation, characterized by a multiplicity of distinct, complementary dimensions

Demand side (those that ask for research assessment) including an increase of institutional and internal assessments

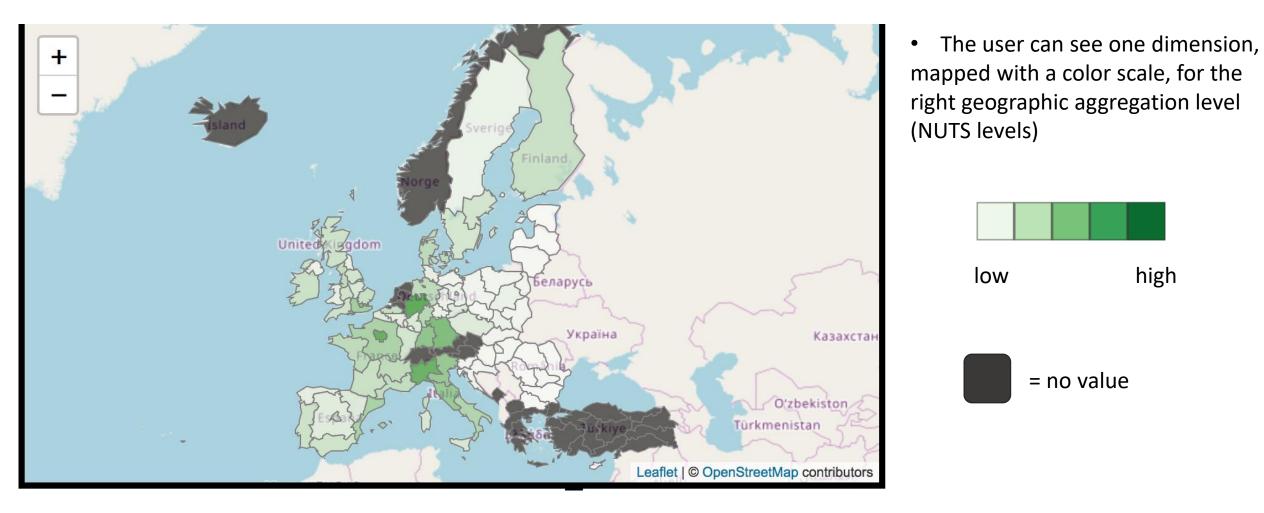
Supply side (those that offer research assessment) including proliferation of rankings, development of Altmetrics, open access repositories, new assessment tools and desktop bibliometrics


Scholars the increase of "publish or perish" pressure, impact on:

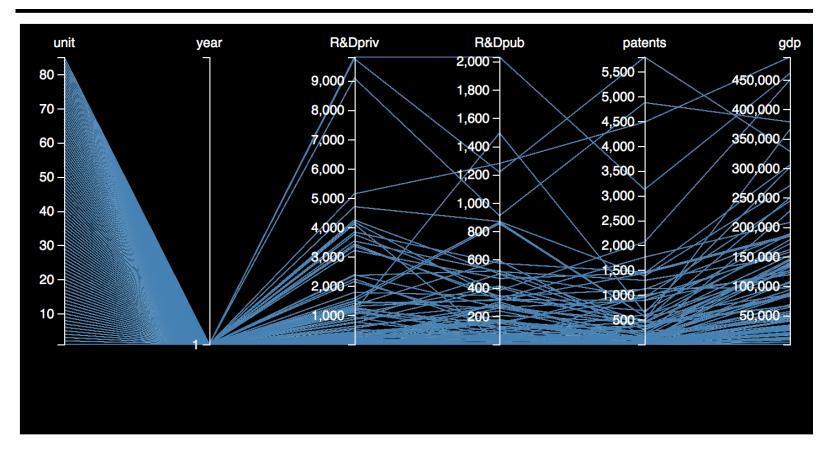
- incentives, behaviour and misconduct, and increasing critics against traditional bibliometric indicators
- the assessment process (increasing the complexity of the research assessment)
- the indicators' development.


Visualization

Angelini, M., Daraio, C., Lenzerini, M. *et al.* Performance model's development: a novel approach encompassing ontology-based data access and visual analytics. *Scientometrics* (2020). https://doi.org/10.1007/s11192-020-03689-x



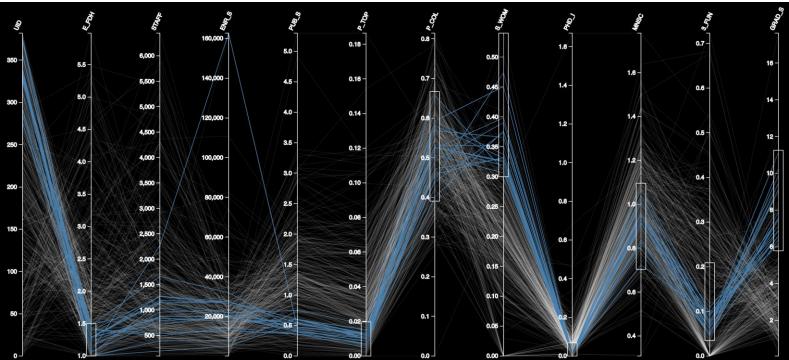
Command bar



Visualization: geographic view

Visualization: parallel coordinates

- Each dimension is represented as a vertical axis
- Each tuple is a line (in blue) that pass for the value of each dimension

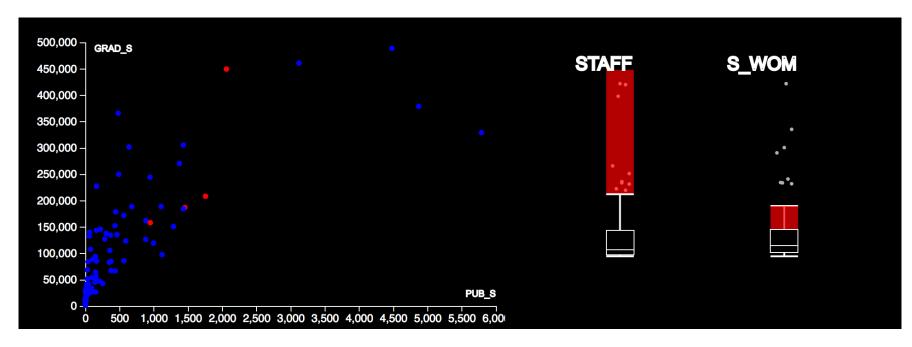

- We can see ALL the data (a lot) in a Compact view
- We can inspect for correlation between dimensions

Example: relations among dimensions

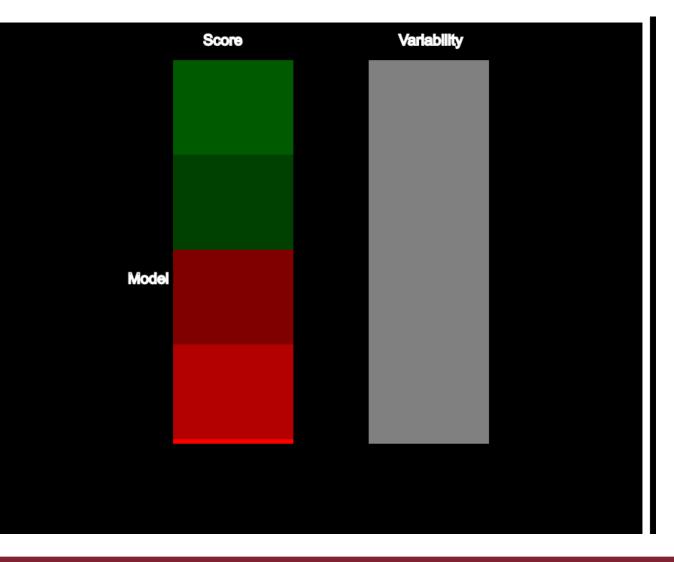
Axes (12 dimensions)

- UID institution id
- E_FDH is the FDH (in)efficiency score
- STAFF number of academic staff
- ENR_S enrolled students per academic staff
- PUB_S number of publications in WoS (fractional count) per academic staff
- P_TOP number of publications in top 10% of highly cited journals per academic staff
- P_COL percentage of papers done with international collaborations
- S_WOM share of women professors on total academic staff
- PHD_I PhD intensity
- MNCS Mean Normalized Citation
- 3_FUN share of third party funds
- GRAD_S is total number of graduates per academic staff

Among the most efficient units in teaching and research (i.e. E_FDH = [1 1.5]) there are those teaching oriented institutions (with the highest values of GRAD_S) in which the S_WOM is the highest ([0.30-0.50]): these are universities with almost zero PhD intensity that are able nevertheless to produce a small fraction of P_TOP publications with MNCS around the world average


Visualization: scatterplot + boxplot

- The user see a 2D scatterplot looking again for correlation among couples of dimensions
- She can filter from the boxplot (on the right) istantiated on different dimensions from the ones in the scatterplot


Example: relations among entities

Example of data filtering: with respect to all the units, the selection is composed by high outliers for academic staff (STAFF) and the 4th quartile for percentage of women staff (S_WOM); the resulting points are highlighted in red in the scatter plot, and the unit can be identified by mouse-hover.

Visualization: model performance

- Units are ordered (from top to bottom with respect to their performance score according to the selected model
- The color (green: GOOD scores, red=BAD scores) tell us How the units behave according to the model

• The second bargram (GREY) is used to calculate the variability of the model (how much the scores change if we perturb the model removing or changing one of its Parameters)

GREEN= good changes RED= bad changes

For the same units!

All together: Demo

The Knowledge from both worlds

Data exploration: allowing comprehension of analyzed data

Knowledge

Additional analysis possible, e.g. Comparative analysis: Identify inputs causing most uncertainty – direct research or information gathering

- Check the effect of model assumptions on model output
- Model simplification identify inputs that do not affect the output, therefore redundant
- Better understanding of the model what causes what.
- Corroboration or falsification
- Identifying errors are there unexpected relationships between inputs and outputs?
- assist with the decision making process

What-if analysis (testing different models/performance indicators/combinations of them)

Integrated VA environment: limitations

• Still working on completing data quality checks

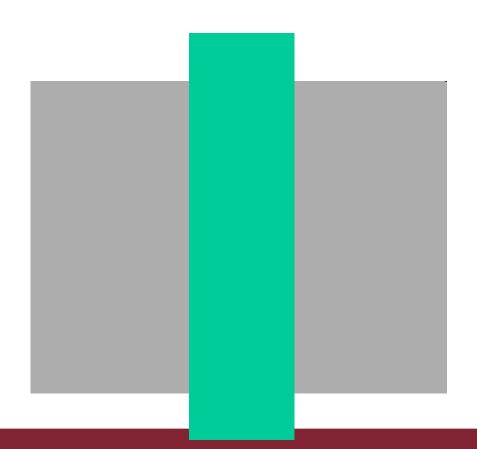
• Modifications to dataset must be done outside of the tool

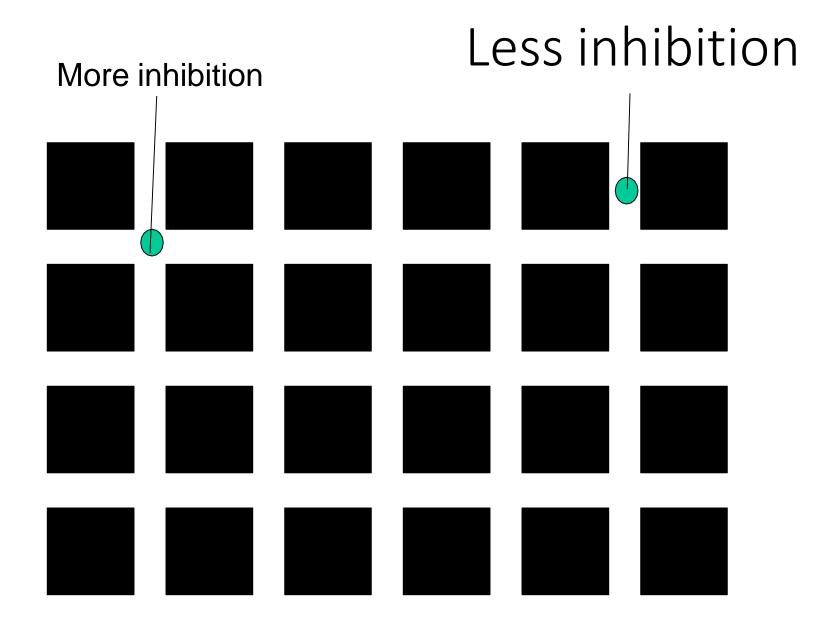
• Management of the data schema to improve

• Still in development

Visualization is a vast discipline

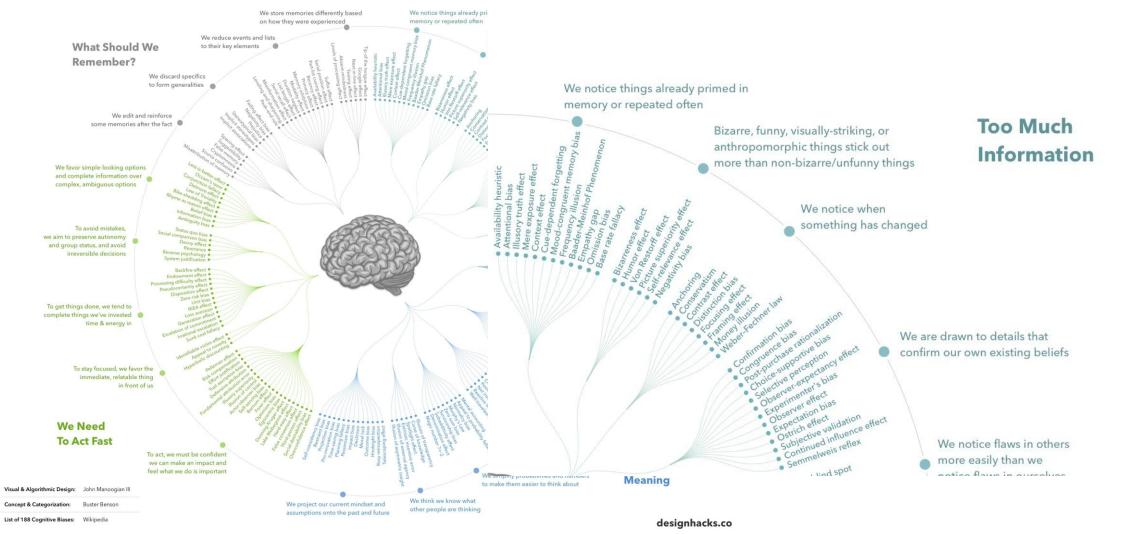
Cornsweet effect


- Suitable shading creates edges and difference in lightness
- What is the darker side?


Cornsweet effect

• No one...

Human perceptual errors



Human cognitive biases

COGNITIVE BIAS CODEX

Monitoring the Data quality evolution during time

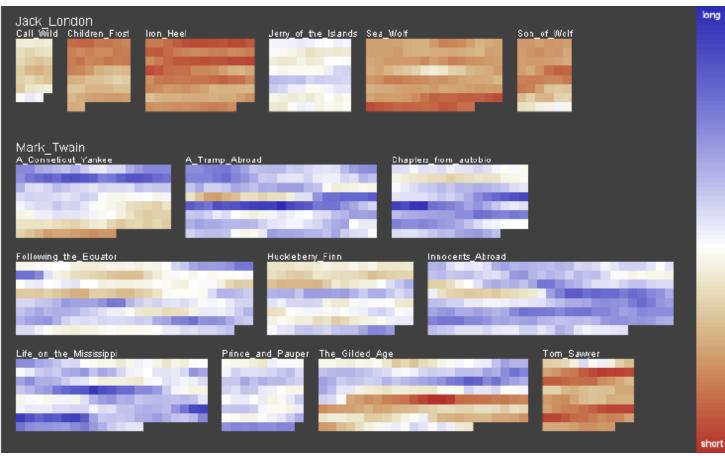
Move from numeric representation (tables) to more exploratory analysis

• requirement of different visual paradigms to support different tasks

Better support Human intervention into the analysis (not just reporting)

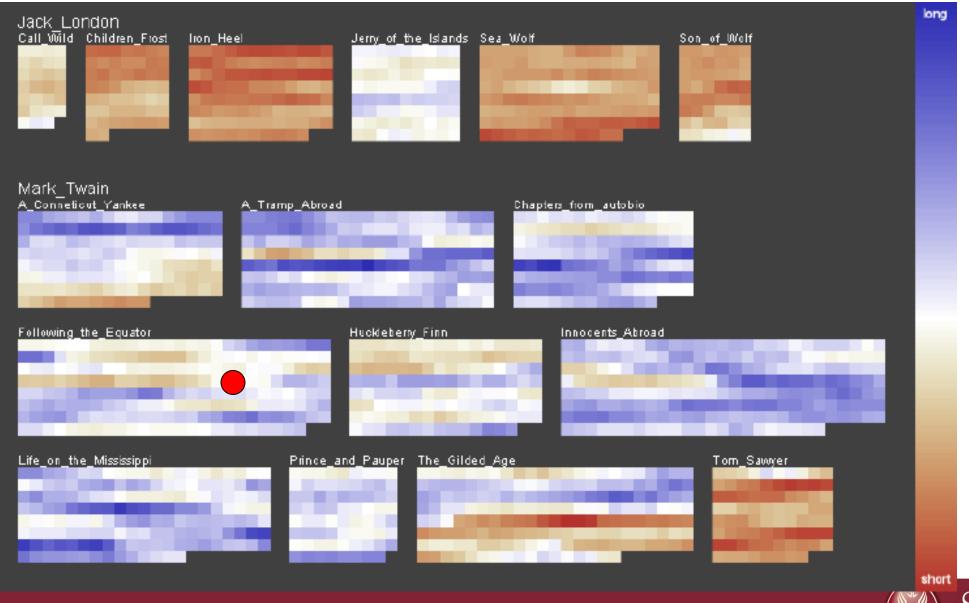
Better support explanation of results

- Scalability: existing visual data cleansing methods cannot be scaled to large scale datasets.
 - sample only a small subset of the whole training set. The challenge here is how to develop effective sampling methods that can both keep the data density and preserve important data such as influential points, outliers, and exceptions.
- there is a lack of effective quality metrics to measure the quality of different types of data such as textual data, images, videos, graph data, and trajectory data
- the analyst often needs to examine multiple types of data and correct the errors among them.
 - designing an integrated interface to visually illustrate the distributions of different types of data

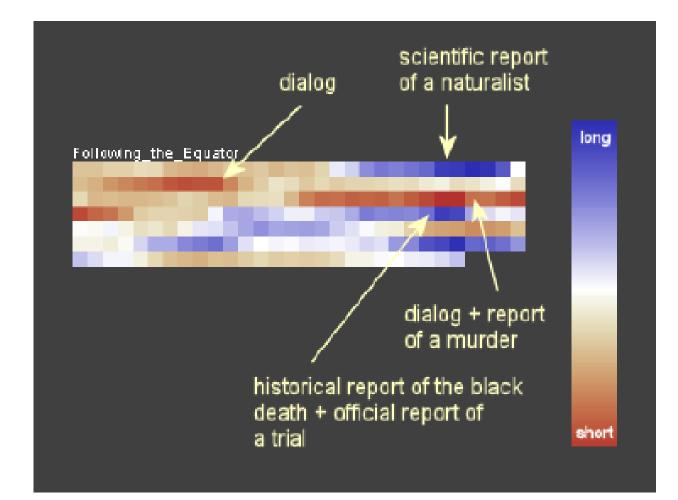


Textual data

- Although textual data is widely used in many lines of work, data quality problems for such type of unstructured data remain largely unexplored.
 - This is because, due to the unstructured nature of textual documents, quality management for textual data is challenging.
- textual data often contains several data fields and mixes the useful information with irrelevant information.
- Therefore, it is important to remove the irrelevant information, which is still a hot research topic in the area of information retrieval.
- text corpora may contain text strings of different distributions, such as different lengths and language usages.
- Another challenge is how to effectively improve the quality of a text corpora with inconsistent data distributions


J.London vs M.Twain average sentence lengths

Keim, Daniel A., and Daniela Oelke. "Literature fingerprinting: A new method for visual literary analysis." 2007 IEEE Symposium on Visual Analytics Science and Technology. IEEE, 2007.



User interaction (a non uniform book?)

Details of a book

What about the Bible? auste marte suite statistic se suite s an Miller and and a state of the second of the es ihre bylathetetetete Steadstikes aber i Mestelste is setter i Setter is a statistie. Aber setter is a statistic in the setter is a set of the setter is a s alle fin fill finde and bei alle finde in the state of th Maletereter Materiale Bulling and Material and Material and Material and Material and Material and Material and Andrikalise fürstelle ihrtere geändelendeten nichteren bebildten bistebeten beitere aus in i ander and and and an and a state of the stat 如果想到2月日前这些法律的问题,我们有可能的问题。我们必须是当今日的问题的日本,但可以在自己的自己的问题,我们有些不能能能能。 STERE RECTATERENTERS CITY (CORRECTED FILTINGS CORP.) BEERE SEN SEN SEN SEN SEN SEN SEN fair in heilichische Stiff gebie an heilicherterstiffeleren

Limitations of perception/cognition.

- limitations on visual perception and cognition (restricted field of view) limited working memory in cognition
- explore a mixed initiative mechanism which seamlessly integrates system initiative guidance and user initiative guidance for better human machine intelligence,

Difficulty in understanding uncertainty and its implications.

- Uncertainty might arise in any stage of a data cleaning process, and propagate in subsequent stages
- understanding the uncertainty and its implications would be generally difficult without a proper visual guidance.

Thank you for your attention !

Marco Angelini angelini@diag.uniroma1.it

A.WA.RE

Advanced Visualization & Visual Analytics REsearch group at Sapienza

ANY QUESTIONS?

