Information Quality Techniques: a (Quick) Overview

Monica Scannapieco

Italian National Institute of Statistics - Istat

Outline

- Information Quality: the concept and the (main) dimensions
- How to measure Information Quality

Information Quality vs. Data Quality

- Data quality is often referred to "structured data", like e.g. a relational table
- However, a vast amount of realities is instead represented by types of information that are not structured data:
 - a photo of a landscape,
 - a map and a descriptive text in a travel guide,
 - newspaper articles,
 - satellite imagery etc.
- Information Quality is a more general concept than Data Quality and takes all types of information into account
- In the following we will than refer to Information Quality (IQ)

Dimensions, Principles and Techniques

🙆 Springer

Reference for structured data

2006

Reference for data quality beyond structured data

2016

Information Quality: Beyond Accuracy

- When people think about IQ, they often reduce it just to accuracy, e.g., the city name "Chicago" misspelled as "Chcago"
- However, IQ is more than simply accuracy: other significant dimensions such as completeness, consistency, and currency are necessary in order to fully characterize it.

A relation Movies 6 with IQ problems Accuracy (swapped Id #Remakes Title directors) Director Year LastRemakeYear Consistency Casablanca Weir 1942 3 1940 1 0 1989 Accuracy 2 Dead poets society NULL Curtiz 3 0 Rman Holiday Wylder 1953 NULL Consistency 4 0 Sabrina 1964 1985 null Completeness Currency

7

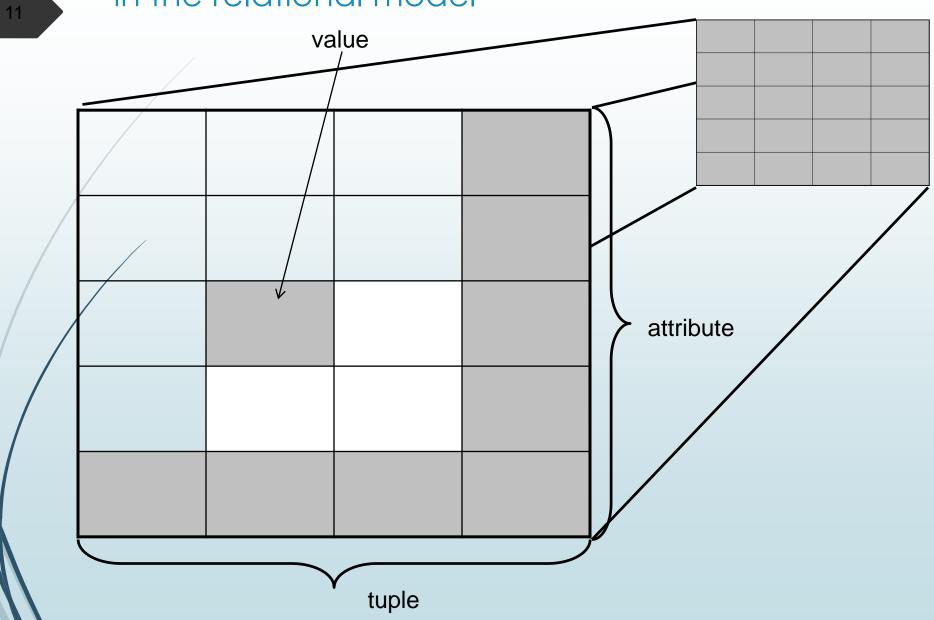
Syntactic Accuracy= Distance functions for structured data

Туре	Example
Identity	'Smith'= 'Smith'
Simple distance	'Smith' similar to 'Smth'
Complex distance (lot of distance functions: Hamming, bigrams, trigrams, etc.)	'Smith' similar to 'Smtih'
Acquisition process driven	Pain, Pane, Payn, Payne,etc. have a SoundexCode P500
Transformation	JFK Airport <mark>Acronym of</mark> John Fitzgerald Kennedy Airport

- Measures the distance of a represented value from the real world value
 - In the example, the swapped movie directors is a problem of semantic accuracy

Completeness

Completeness is defined as the degree to which a given data collection includes the data describing the corresponding set of real-world objects. According to the type of structure considered, we may distinguish:


- <u>Value completeness</u>, to capture the presence of null values for some fields of a tuple;
- <u>Tuple completeness</u>, to characterize the completeness of a tuple with respect to the values of all its fields;
- <u>Attribute completeness</u>, to measure the number of null values of a specific attribute in a relation;
- <u>Relation completeness</u>, to capture the presence of null values in a whole relation.

9

On completeness: The Person relation, with different null value meanings for the e-mail attribute

I) Name	Surname	BirthDate	Email	not existing
1	John	Smith	03/17/1974	smith@abc.it	existing
2	Edward	Monroe	02/03/1967	NULL	but unknown
3	Anthony	White	01/01/1936	NULL	not known
4	Marianne	Collins	11/20/1955	NULL	if existing

Completeness of different elements in the relational model

- Captures the violation of semantic rules defined over a set of data items.
- Based on schema properties or integrity constraints or business rules
 - intrarelation constraints
 - regard single/multiple attributes of a relation.
 - interrelation constraints
 - involve attributes of more than one relation.
- Example: Last remake Year

Time-related dimensions: Timeliness, Currency, Volatility

Metrics Definition
Percentage of process executions able to be performed within the required time frame
Currency = Time in which data are stored in the system - time in which data are updated in the real world
Time of last update
Currency = Request time- last update
Currency = Age + (Delivery time- Input time)
Length of time that data remain valid

25012 ISO/IEC standard on data quality

DQ characteristic	Definition (all definitions except for completeness and accessibility begin with:					
	the degree to which data has attributes that")					
Correctness	correctly represent the true value of the intended attribute of a concept or event in a specific context of use					
Completeness	subject data associated with an entity has values for all expected attributes and related entity instances in a specific context of use					
Consistency	are free from contradiction and are coherent with other data in a specific context of use					
Credibility	are regarded as true and believable by users in specific context of use.					
Currentness	are of the right age in a specific context of use					
Accessibility	data can be accessed in a specific context of use, particularly by people who need supporting technology or special configuration because of some disability					
Compliance	adhere to standards, conventions or regulations in force and similar rules relating to data quality in a specific context of use					
Confidentiality	ensure that it is only accessible and interpretable by authorized users in a specific context of use					
Efficiency	can be processed and provide the expected levels of performance by using the appropriate amounts and types of resources in a specific context of use					
Precision	are exact or that provide discrimination in a specific context of use					
Traceability	provide an audit trail of access to the data and of any changes made to the data in a specific context of use					
Understandability	enable it to be read and interpreted by users, and are expressed in appropriate languages, symbols and units in a specific context of use					
Availability	enable it to be read and interpreted by users, and are expressed in appropriate languages, symbols and units in a specific context of use					
Portability	enable it to be installed, replaced or moved from one system to another preserving the existing quality in a specific context of use					
Recoverability	enable it to maintain and preserve a specified level of operations and quality, even in the event of failure, in a specific context of use					

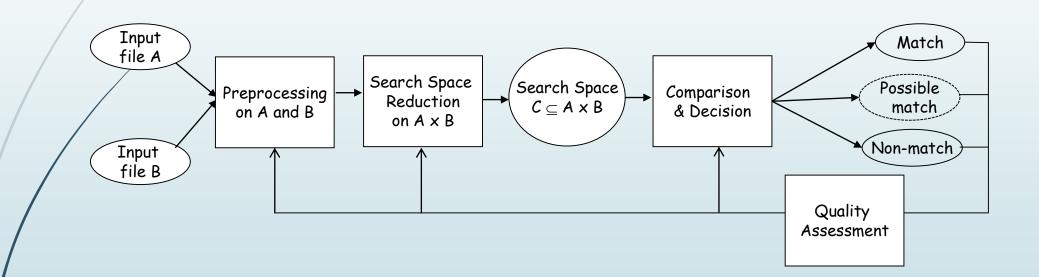
14

IQ Activities

- Standardizazion (Normalization)
- Object Identification (Record Linkage, Record Matching, Entity Resolution)
- Data integration with Schema Reconciliation & Instance-level Conflict Resolution
- Source Trustworthiness
- Quality Composition
- Error Localization
- Error Correction
- Cost optimization (quality-cost trade off)
- Applying methodologies for DQ assessment and improvement

How three agencies represent the same business

Agency	Identifier	Name	Type of activity	Address	City
Agency 1	CNCBTB765SDV	Meat production of John Ngombo	Retail of bovine and ovine meats	35 Niagara Street	New York
Agency 2	0111232223	John Ngombo canned meat production beverage		9 Rome Street	Albany
Agency 3	CND8TB7655DV	Meat production in New York state of John Ngombo	Butcher	4, Garibaldi Square	Long Island


Object Matching

- The three records present several differences:
- 1. Different values for identifiers, due to different coding policies. Even if coding policies are the same, there can be errors (see 1 e 3)
- 2. Names are different, even if there are several common parts
- 3. Activity types are different due to several possible causes: errors, false declarations, updates on different dates...
- 4. Further differences on Address e City
- Object Identification is an IQ activity aiming to identify if different representations of an entity in an information system, are (or not) the same real world entity

Assessing and Improving IQ in data integration contexts: Object Matching

- OM is a crucial step to integrate data at istance level
- RISIS setting does requires data integration
- Possible methodological solution for addressing quality issues of RISIS

Relevant steps of object identification techniques

Object identification techniques (some examples)

Name	Technical Area	Type of data
Fellegi and Sunter and extensions	probabilistic	Two files
Cost-based	probabilistic	Two files
Sorted Neighborhood and variants	empirical	Two files
Delphi	empirical	Two relational hierarchies
DogmatiX	empirical	Two XML documents
Intelliclean	knowledge-based	Two files
Atlas	knowledge-based	Two files

An Example: Object Matching at work

Principal Functionalities

Input/Output Management

- Back-up support
- Residuals management
- Data Profiling
 - Metadata for blocking variable selection
 - Metadata for matching variable selection
- Search Space Creation and Reduction methods
 - Cross Product
 - Blocking
 - Sorted Neighborhood
 - Nested blocking
 - Simhash (new!)

Principal Functionalities

- Comparison Functions
- Deterministic Decision Models
 - Exact
 - Rule-based
- Probabilistic Decision Model
 - Fellegi-Sunter
- 1:1 Reduction methods
 - Optimal
 - Greedy

Data Profiling

Blocking and matching variables:

- Completeness
- Accuracy
- Consistency
- Categories
- Frequency distribution
- Entropy
- Blocking
 - Blocking adequacy
- Matching
 - Correlation

Search Space Creation and Reduction Methods

- Search Space Creation
 - Cross product
- Reduction Methods: Blocking
 - Selection of a blocking key (two or more variables)
 - Block modality table reports information on created blocks (sizes, number of blocks,...)
- Reduction Method: Sorted Neighborhood Method (SNM)
 - Selection of a sorting key (two or more variables)
 - Choice of the window size

Comparison Functions

- Equality
- Jaro
- Dice
- Jaro-Winkler
- Levenshtein
- 3-grams
- Soundex
- Numeric Comparison

Deterministic Decision Models: Equality Match

- Exact matching: relational JOIN over specified variables
- Useful at the initial stage of a RL process, when it makes sense to "prune" the pairs to compare by removing exact matches

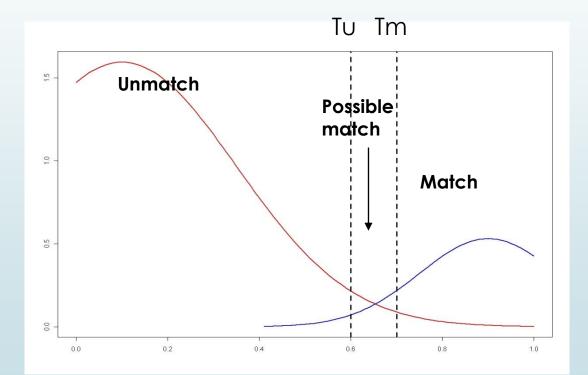
Deterministic Decision Models: Rule Based

- Rules specified through a GUI
- The GUI allows specification of
 - Variables of the formula
 - Comparison functions
 - Thresholds for each variable
 - Operators to combine atomic formulas (AND/OR)

Deterministic Decision Models: Rule Based

🛓 Input rule		
MATCH RULI	E:	
	DME_NORM]>=0.7 And Jaro[NOME_NOR GNOME_NORM] And Equality[AANAS] Ar	-
Variable: Metric:	MMNAS Threshold: 1.0	Add Condition
Or	Canc	Clear rule

Probabilistic Decision Model: Fellegi-Sunter


- Steps:
 - 1. Choice of matching variables
 - 2. Choice of comparison functions and thresholds (for each variable)
 - 3. Contingency table computation
 - 4. EM Estimation \rightarrow MU table result

r			estimates of frequency distributions			Posterior probability f_m/(f_m+f_u)				
	MU_TABLE									
	business_name	city	classificatio	on year_begin	f_m	f_u	m	u	r	p_post
	0	0	0	0	3482.55459	128177.44	0.39638	0.84771	0.46759	0.02645
	0	1	0	0	588.45339	8781.54661	0.06698	0.05808	1.15323	0.0628
	0	0	0	1		2301.73496	0.03566	0.01522	2.34224	0.1198
	0	0	1	n	2405 43876	11017 56124	0.27378	0.07287	3.75737	0.1792
	0	1	0	Precision :	= TP/TP+	FP and	0.00475	8.2E-4	5.77679	0.25131
	0	1	1	Recall=TP	•		0.04099	0.00442	9.26699	0.35
	0	0	1	Keculi-Ir			0.01552	8.2E-4	18.8215	0.52237
	0	1	1	1	24.07464	8.92536	0.00274	6.0E-5	46.42042	0.72953
	1	0	0	0	675.99984	1.6E-4	0.07694	0.0	7.5008830	1.0
	1	1	0	0	58.99999	1.0E-5	0.00672	0.0	1.8499804	1.0
	1	0	0	1	36.0	0.0	0.0041	0.0	3.7573590	1.0
	1	0	1	0	446.99999	1.0E-5	0.05088	0.0	6.0274678	1.0
	1	1	0	1	30.0	0.0	0.00341	0.0	9.2669631	1.0
	1	1	1	0	67.0	0.0	0.00763	0.0	1.4865846	1.0
	1	0	1	1	30.0	0.0	0.00341	0.0	3.0192926	1.0
	1	1	1	1	89.0	0.0	0.01013	0.0	7.4466329	1.0

Probabilistic Decision Model: Fellegi-Sunter

- Steps:
 - 1. Choice of matching variables
 - 2. Choice of comparison functions and thresholds (for each variable)
 - 3. Contingency table computation
 - 4. EM Estimation \rightarrow MU table result
 - 5. Threshold Selection

1:1 Matching

PROBABILISTIC DETERMINISTIC LP Problem LP Problem (Global Optimization) (Global Optimization) Greedy Reduction Greedy Reduction Subrules weight <u>R weight</u>

1:1 Matching Deterministic Model

- LP problem with input matrix:
 - Weight associated to each atomic subrule
 - Sum of weights
- Greedy: sorting of pairs by the sum of weights
 - Choices are local

(Current) RELAIS Download

- RELAIS released at:
 - ISTAT: <u>https://www.istat.it/en/methods-and-tools/methods-and-it-tools/process/processing-tools/relais</u>
 - Joinup: <u>https://joinup.ec.europa.eu/collection/statistics/solution/relais-record-linkage-istat</u>

Conclusions

- Information characterized by several dimensions
- A methological approach to assess and improve IQ in RISIS: object matching
- Object matching at work: Relais