
Learning Based Controlled-Concurrency TestingLearning Based Controlled-Concurrency Testing

Getting Started GuideGetting Started Guide

RequirementsRequirements

VirtualBox: While any recent version should suffice, we built and tested our artifact using version 6.1.10.

Setting upSetting up

In VirtualBox, select File -> Import Appliance , then select the QL.ova file from the extracted contents. After the import is completed, you should see
QL as one of the listed VMs in your VirtualBox app.

Run the QL virtual machine. The username is ql and the password is qltest .
In the home folder (/home/ql), there is a oopsla/psharp-ql directory which contains all the sources (P# tester with the implementation for QL , and the
non-proprietary benchmarks), along with scripts for running the experiments.
Open a terminal (from Favorites or Ctrl + Alt + T), and run powershell . Note that we assume that all subsequent commands are run from
powershell .

We have implemented QL as an additional testing strategy on top of the P#-testing framework. To build the P#-tester (including the sources for QL), run
./build.ps1 in oopsla/psharp-ql .

Go to the Benchmarks directory: cd Benchmarks
Build the benchmarks, along with the program to drive the experiments (EvaluationDriver) using ./build-benchmarks.ps1

Everything is now setup!

Quick TestQuick Test

To quickly test the setup, run the command

./run-benchmarks.ps1 -mode "Test" -numEpochs 1

from the Benchmarks folder. Each mode runs the tests which are configured in the corresponding folder. For example, the previous command will run the Raft-v1
benchmark, and the configuration for the test (number of iterations, max-steps, etc) are present in the JSON configuration file under Benchmarks/Test . By default,
the P#-tester will be invoked 100 times to obtain the B-100 metric, which is the number of times the tester finds the bug out of 100 invocations (the NumEpochs value
is set to 100 in the JSON).

The -numEpochs 1 overrides this value, to report B-1 instead, for quick evaluation. Finally, a csv file summarizing the results is created under Benchmarks . This
table reports how many times each scheduler exposed a bug in Raft-v1 out of the numEpochs number of invocations (in this case, 1) of the P#-tester. The prefix of
the csv file matches the mode (in this case, the file name will be test...csv).

Artifact StructureArtifact Structure

If you open Visual Studio Code in the artifact (added to Favorites), then the oopsla/psharp-ql should be loaded automatically (if not, load the folder by File ->
Open Folder -> /home/ql/oopsla/psharp-ql).

The locations of the various scheduling strategies are available in the folder Source/TestingServices/Runtime/Scheduling/ . The variants of QL are available
under Learning , Greedy, Random and PCT are available under Probabilistic , while IDB is available under DelayBounded .

For any scheduling strategy, the important methods are as follows:

GetNext : returns the next action to be executed depending on the exploration strategy

GetNextBooleanChoice : control the non-deterministic boolean choice in a statement.

GetNextIntegerChoice : control the random integer generation in a statement.

PrepareForNextIteration : perform cleanup operations before the next iteration begins. In Ql, for example, this method actually propagates the rewards
and updates q-values for each observed state-action pair.

The benchmarks are located under psharp-ql/Benchmarks . We provide the Protocols and Threading benchmarks under the respective folders. We omit the
production benchmarks as they are Microsoft proprietary.

The Benchmarks folder also contains EvaluationDriver , which is a project to automatically drive the experiments, running the different schedulers in parallel.

Step-by-Step InstructionsStep-by-Step Instructions

P# TestingP# Testing

Our implementation builds upon P#, which is an open-source controlled concurrency testing framework. Given a concurrent program, the P#-tester takes over the
scheduling decisions, and serializes the program execution. The scheduling decisions are driven by a particular exploration strategy. Each invocation of the P#-tester
requires the following inputs: - Path to the dll under test - Name of method to be tested (-method:x) - Scheduling strategy to be used (-sch:x) - Number of
iterations explored (-i:x) - Maximum length of each serialization (-max-steps:x:x) - Output directory where buggy traces are dumped (-o:x)

For QL, we have the additional argument -abstraction-level which determines the state abstraction used during exploration (default , inbox-only or
custom).

The EvaluationDriver project takes as input a JSON configuration file which provides values for the arguments above. In fact, the configuration takes a set of

https://www.virtualbox.org/
https://github.com/p-org/PSharp
https://github.com/p-org/psharp

schedulers, and runs them in parallel.

Bug FindingBug Finding

CommandCommand

./run-benchmarks.ps1 -mode "Bugfinding" -numEpochs 100

DescriptionDescription

This command runs all the benchmarks to compute the B-100 metric, and generates a csv file (under the Benchmarks folder, named bugfinding...csv).

Note that 100 epochs will take a very long time (several hours) to run. Reviewers can opt for a smaller value for numEpochs instead (such as 10).

Timed Bug FindingTimed Bug Finding

CommandCommand

./run-benchmarks.ps1 -mode "Bugfinding" -numEpochs 100 -timeout 300

DescriptionDescription

This command runs all the benchmarks to compute the B-100 metric, with a fixed-time budget, instead of a fixed iteration budget. This generates a csv file under the
Benchmarks folder, named bugfinding...csv .

Note that 100 epochs will take a very long time (several hours) to run. Reviewers can opt for a smaller value for numEpochs instead (such as 10).. The timeout value
is in seconds. The reviewers can experiment with a smaller timeout value as well. Note that the results of the timed run will depend on external factors such as
machine configuration, current CPU load, etc.

Handling Data-NondeterminismHandling Data-Nondeterminism

CommandCommand

./run-benchmarks.ps1 -mode "DataNondet" -numEpochs 100

DescriptionDescription

QL is the first scheduling strategy which accounts data-nondeterminism. The experiment runs QL and QL-NDN (QL with handling of data non-determinism turned off)
on the Raft-v1, Raft-v2, Paxos and Chord benchmarks. It outputs a csv file under Benchmarks, named datanondet...csv .

Note that 100 epochs will take a very long time (several hours) to run. Reviewers can opt for a smaller value for numEpochs instead (such as 10).

State HashesState Hashes

CommandCommand

./run-benchmarks.ps1 -mode "StateHash" -numEpochs 100

DescriptionDescription

This command runs the Protocols, and the SafeStack application, with various state abstractions (or hashes). Note that this experiment does not perform any
aggregation, but the results can still be read-off easily. For each benchmark, a folder is created corresponding to the state abstraction (default , inbox-only or
custom) under StateHash/out , and a results.json file is created in each of them. These files contain all the necessary details.

Note that 100 epochs will take a very long time (several hours) to run. Reviewers can opt for a smaller value for numEpochs instead (such as 10).

PerformancePerformance

CommandCommand

./run-benchmarks.ps1 -mode "Perf" -numEpochs 1

DescriptionDescription

This experiment compares the time taken for exploration by the different scheduling strategies. For this, we create versions of the Protocol benchmarks with the bugs
disabled (these are placed in the Protocols_BugsDisabled project). The experiment then measures the time to perform a single invocation of P# tester with 10,000
iterations, for the different schedulers. This experiment generates a csv file under the Benchmarks folder, named perf...csv .

Note that the numbers obtained may differ significantly over runs, due to external factors such as machine configuration, current CPU load, etc. The running times are
all in seconds.

State CoverageState Coverage

CommandCommand

./run-benchmarks.ps1 -mode "StateCoverage"

DescriptionDescription

This experiment compares the coverage achieved by the different schedulers. Like the Perf experiment, the experiment runs on Raft-v1, FailureDetector and SafeStack
benchmarks with the bugs turned off, since we are purely interested in measuring the coverage. For each benchmark, we aggregate the number of unique states
explored for each of the schedulers in a csv file under the StateCoverage folder.

	Learning Based Controlled-Concurrency Testing
	Getting Started Guide
	Requirements
	Setting up
	Quick Test
	Artifact Structure

	Step-by-Step Instructions
	P# Testing
	Bug Finding
	Command
	Description

	Timed Bug Finding
	Command
	Description

	Handling Data-Nondeterminism
	Command
	Description

	State Hashes
	Command
	Description

	Performance
	Command
	Description

	State Coverage
	Command
	Description

