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Abstract. Research data sharing has been proved to be key for accel-
erating scientific progress and fostering interdisciplinary research; hence,
the ability to search, discover and reuse data items is nowadays vital in
doing science. However, research data discovery is yet an open challenge.
In many cases, descriptive metadata exhibit poor quality, and the ability
to automatically enrich metadata with semantic information is limited
by the data files format, which is typically not textual and hard to mine.
More generally, however, researchers would like to find data used across
different research experiments or even disciplines. Such needs are not
met by traditional metadata description schemata, which are designed
to freeze research data features at deposition time.
In this paper, we propose a methodology that enables “context-driven
discovery” for research data thanks to their proven usage across research
activities that might differ from the original one, potentially across di-
verse disciplines. The methodology exploits the collection of publication–
dataset and dataset–dataset links provided by OpenAIRE Scholexplorer
data citation index so to propagate articles metadata into related re-
search datasets by leveraging semantic relatedness. Such “context propa-
gation” process enables the construction of “context-enriched” metadata
of datasets, which enables “context-driven” discoverability of research
data. To this end, we provide a real-case evaluation of this technique ap-
plied to Scholexplorer. Due to the broad coverage of Scholexplorer, the
evaluation documents the effectiveness of this technique at improving
data discovery on a variety of research data repositories and databases.

1 Introduction

Over the last few years, research data have gained unprecedented importance
and are now considered as central as traditional publications. Being able to
search, find, access, and reuse such research products helps to accelerate scien-
tific progress [3, 11], and cross-pollinate research by potentially fostering mul-
tidisciplinarity [10]. However, despite the extensive literature in the field of
metadata-driven discovery technologies for scholarly communication, research
data discovery still remains an open field of research. We can attribute these
nonachievements to two main factors related to the yet immature positioning of
research data in science.
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Firstly, in many circumstances (e.g. “long-tail of data” scenarios), the absence
of community practices, mandates, and incentives makes metadata description
of research data unsatisfactory. Data is often perceived as supplementary mate-
rial of an article and obtaining a persistent identifier (e.g. DOI) is the ultimate
(and primary) aim of its deposition in a repository. To this end, research data
metadata often do not undergo a curation and validation process as it occurs
for libraries or publishers when research articles are submitted. Although the
challenges hindering research data discovery seem in many ways similar to the
ones arising for research articles and, more broadly, literature, the same solu-
tions can hardly be applied. For example, the non-textual nature of data makes
particularly hard the application of automated metadata enrichment techniques
commonly in place when dealing with publications, such as natural language
processing (NLP), full-text mining and topic extraction.

Secondly, research data discoverability is driven by user requirements that
cannot be intrinsically satisfied by traditional metadata schemata/formats. While
the discovery of research papers is motivated by the need of a researcher to find
and read about the results of other scientists, the discovery of research data
is driven by the need of finding data that can be reused to perform different
analyses, in the same or even in different disciplines. Hence, even when research
data are accurately deposited, and metadata is validated by data curators (e.g.
thematic databases, repositories, archives), metadata structures cannot capture
the variety of research applications the data may serve (or have subsequently
served), and therefore fail in addressing such key discovery requirements. The
semantic limits of metadata formats and, more broadly, the limits of the research
data life-cycle, which disregards metadata enrichment based on further reuse, can
be accounted as one of the main issues jeopardising data reuse practices and,
ultimately, the enactment of open science.

In this work, as a solution to the problems above, we introduce the notion of
context-driven discoverability of research data. The underlying intuition is that
research data citation indexes, which populate an up-to-date graph of semantic
relationships between research data and publications objects, can be exploited
to propagate “research context”, represented as a set of metadata properties of
an object, to another related object. For example, the “abstract” and the “key-
words” of an article metadata can be propagated and attached to the metadata
description of research data being linked to the article via a relationship of type
“cites”. As a result of this process, the target research data, generated as an
outcome of a given research activity and reused later to serve a different one, is
also described by metadata that can leverage discovery by at least two distinct
“research contexts”.

To prove the effectiveness of context-driven discoverability, we i) present
a context propagation technique for automated augmentation of bibliographic
metadata of research data based on the semantic correlation between publica-
tions and data, and ii) perform an experimental study and validation of this
technique using the OpenAIRE Scholexplorer’s research data citation index.1

1 Scholexplorer, https://scholexplorer.openaire.eu
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Table 1: Scholexplorer entities and relationships.
Measure Quantity

# of publications 21,288,342
# of datasets 51,946,754
# of relations publication-dataset 159,796,162
# of relations dataset-dataset (no loops) 141,403,762

Scholexplorer [4] aggregates and redistributes, free of charge, over 270 million
bidirectional Scholix [5] links among research literature and datasets, and thus
constitutes a fertile ground for our experimentation. Our experiment applies con-
text propagation to the Scholexplorer citation graph showing how the resulting
index can complete research data metadata and enable cross-context discovery
of research data, across different research applications and across disciplines.

The remainder of the paper is structured as follows. Section 2 reviews Sc-
holexplorer as primary data source for our experimentation, Section 3 describes
our methodology to solve the problem, while Section 4 points out implementa-
tion details. Then, in Section 5 we evaluate our approach and discuss the results
obtained, while Section 6 briefly reviews related work. Finally, in Section 7, we
conclude and indicate possible extensions of our approach.

2 Data and resources

Having an up-to-date research data (also “dataset” in the following) citation
index at disposal is a key enabling factor for this research. For our experiments
we have relied on Scholexplorer, the OpenAIRE2 service that provides over 270
million bidirectional Scholix [5] links among over 21 million research literature
objects and 51 million datasets from 13,000 publishers, 10 data centres, Cross-
Ref3, Datacite4, EMBL-EBI5, and OpenAIRE. The whole collection is available,
free of charge, via periodic dumps [7] and via API6. Table 1 shows the number of
articles, datasets, and relationships in the dump used to perform our experiment.

The concept of context is flexible and may potentially include any relevant
metadata field pertaining to publication entities, such as abstract, title, topics,
keywords. The optimal setup might vary from dataset to dataset; indeed, a
fine-tuning of the context to propagate can largely affect discoverability. In our
experiment, we opted to propagate publication abstracts as they occur more
frequently than topics and keywords, and therefore are a richer feed for full-text
search. Besides, since relevant terms present in the title are generally present in
the abstract too, we ruled out titles propagation.

2 OpenAIRE, https://www.openaire.eu
3 Crossref, https://www.crossref.org
4 DataCite, https://www.datacite.org
5 EMBL-EBI, https://www.ebi.ac.uk
6 Scholexplorer API, https://scholexplorer.openaire.eu/#/api
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Table 2: Potential impact of propagating abstract as context.
Measure Quantity

# publications with abstracts 9,346,875
# datasets with abstracts 7,847,271
# rels between pubs with abst and dats 151,224,353
# rels between pubs with abst and dats with abst 5,288,025
# rels between pubs with abst and dats without abst 145,936,328

Table 3: Analysis of Scholexplorer subset of providers providing datasets. For
each provider, the number of datasets is shown together with the relative per-
centage of datasets with abstract.

Provider Datasets (% w/ abs)

3TU.DC 164 (96.95%)
ANDS 29 (00.00%)
CCDC 716,009 (100.00%)
DataCite 8,470,681 (82.67%)
ENA 1,349,123 (42.36%)
ICPSR 6,823 (73.18%)
IEDA 488 (90.98%)
Pangaea 309,904 (38.53%)
RCSB 98,200 (00.00%)

To give a flavour of the impact of this choice, Table 2 reports on the total
number of publications and datasets with abstracts and the number of rela-
tions from publications with abstract to datasets with or without an abstract.
As can be noted, there is a significant number of relations (145,936,328) from
publications with an abstract to datasets that could potentially benefit from
context propagation. Table 3 completes this picture by reporting the number of
datasets aggregated by Scholexplorer from each provider. It also highlights the
percentage of datasets with a provided abstract, thus giving an indication on
how “complete” are the potential targets of context propagation. Please notice,
that a dataset (or a publication) in Scholexplorer can be potentially collected
from several providers, hence, in this case, it would be counted multiple times.

The propagation process is driven by the semantics of the relationships be-
tween publication and data, and between dataset and dataset. Scholexplorer
includes relationships whose semantics cannot be used for propagation, such as
“hasMetadata”, which is not relevant to the research context; Table 4 provides
a breakdown of the selected semantic relationships. Finally, given the selected
subset of relationships, Table 5 reports the number of publications, datasets, and
relationships (with and without abstracts) that are consequently involved in the
propagation process.

3 Methodology

In this section, we introduce the terminology used in the paper and describe the
chosen propagation strategy based on semantics. We define as:
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Table 4: Breakdown of Scholexplorer selected semantics for context propagation.

Semantics Quantity
p
u
b
s–

d
a
ta

reviews 1,785
references 1,949,635
documents 258,513
cites 169,397
issourceof 30,052
issupplementedby 1,238,320
isderivedfrom 267

Semantics Quantity

d
a
ta

–
d
a
ta

isreferencedby 67,526,737
isvariantformof 20,115
references 67,526,737
isdocumentedby 5,982
continues 139,374
documents 5,982
haspart 1,178,496
iscitedby 19,529
issupplementedby 308,884
isnewversionof 384,570
cites 19,529
issupplementto 308,884
ispartof 1,178,496
iscontinuedby 139,374

Table 5: Analysis of Scholexplorer subgraph according to the selected semantics.
Measure Quantity

# of publications 1,065,121
# of datasets 4,886,298
# of relations (publication-dataset) 3,647,969
# of relations (dataset-dataset, no loops) 138,762,689
# publications with abstracts 574,209
# datasets with abstracts 3,392,081
# rels between pubs with abst and dats with abst 640,864
# rels between pubs with abst and dats without abst 1,788,183

Definition 1 (Context-driven discoverability) The ability to discover a dataset
based on information present in descriptive metadata of publications related to
it, either directly (i.e. a publication refers this dataset) or indirectly (i.e. a pub-
lication refers a dataset that, in turn, refers this dataset, e.g. an earlier version
of the same).

Defined as such, context-driven discoverability essentially subsumes three
possible scenarios of interest: latent, reuse, and multidisciplinary discoverability.

Definition 2 (Latent discoverability) The ability to discover a dataset with
incomplete metadata thanks to context propagated from another related object.

Definition 3 (Reuse discoverability) The ability to discover a dataset used
for a research activity different from the one it has been created by, within the
scope of the same disciplinary domain.

Definition 4 (Multidisciplinary discoverability) The ability to discover a
dataset used for a research activity different from the one it has been created by,
within the scope of a different disciplinary domain.
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All three scenarios covered by context-driven discoverability can be enabled
by context propagation, which is defined as follows:

Definition 5 (Context propagation) The process enabling context-driven dis-
coverability. All the relevant semantic relations are followed in order to propagate
context from publications so to form richer research data metadata records, which
in turn propagate to other related research datasets. The process is limited by a
threshold, defined by a termination function.

The proposed methodology for context propagation relies on the fact that
scholarly knowledge and research products (i.e. publications, research data, etc.)
and their underlying relations can be represented as a graph. A graph is an
ordered pair G = (V,E) of nodes V and edges E. A node in the graph represents
the abstraction of an entity in the modelled domain – in our case, a kind of
research product (i.e. publications or research data) – while an edge represents
a relationship between two nodes (e.g. a publication reusing a dataset). Nodes
and edges can have labels that characterise them with attributes and specify
their semantics. A source node u is said to be connected to a destination node
v, indicated as u ≺ v, when it exists an edge or an ordered set of edges (i.e. a
path) connecting them.

The context propagation method here described relies on the existence of
a path connecting two nodes, and on the chain of semantics connecting them,
which reveals the reason for two nodes to be connected. For example, a publi-
cation could be connected to a dataset directly because the dataset supplements
the publication (i.e. via an edge), or indirectly (i.e. through a path), e.g. because
a newer version of a dataset supersedes the version originally cited by a publi-
cation (i.e. a path of length 2 exists from the publication to the newer dataset).
The fact that two nodes are connected via a path allows us to propagate the con-
text of a publication to relevant datasets. As already mentioned, the contextual
information we chose to propagate to test our approach is the abstract.

The effect of context propagation depends on the “quality” of the path prop-
agating the information from one node to another, which may depend on the
semantics of the edges in the path or the length of the path. For this reason, our
process associates a measure of trust to the propagated context that reflects the
level of direct or indirect relatedness of the two nodes: the one propagating con-
text and the one receiving it. Trust is key as it allows to filter out propagations
with lower quality (i.e. a cutoff threshold), chose the most suitable propagation
among many, or even set a termination function for the propagation process.
Trust can be computed according to two strategies:

– Path-length driven: trust is inversely proportional to the length n of the
path connecting two nodes, i.e. the shorter the path, the higher the quality.
A trust function could be 1/n. This case is trivial, and it is not an object of
study in this paper.

– Semantic-driven: trust is mapped into a numerical weight characterising the
edges of a path. The combination of such weights defines the trust of the
relation between source and destination nodes. In this case, the trust can be
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a number in the range [0, 1] where 0 means no relatedness, and 1 means the
maximum relatedness.

When the semantics of the relation is used to weight the edge connecting
two nodes, the graph becomes a multi-graph, i.e. there could be multiple edges
connecting two adjacent nodes. As edge semantics is a measure of the relatedness
between two nodes, the higher the weight, the stronger the relation. Hence, the
propagation strategy has to prefer paths that maximise the total weight. Given
these premises, we define the propagation function as follows:

Definition 6 (Propagation function) Given G = (V,E) a multi-graph whose
nodes belongs to two sets P (publications) and D (datasets), given p ∈ P and
d ∈ D so that p ≺ d, let wpd be the maximum cumulative weight among all
possible paths connecting the generic p at the generic d, and let fP (d) = PSd =
{(pi, wpid)|pi ∈ P ∧ pi ≺ d} be the propagation function, which associates to d
its propagation set (PS), where the generic weight wpid is such that:

wpid =



wd′d ∗ wpid
′ , (pi, wpid

) /∈ PSd,

(pi, wpid
′ ) ∈ PSd′ ,

(d′, d) ∈ E

max
(
wpid

, (wd′d ∗ wpid
′ )
)
, (pi, wpid

) ∈ PSd,

(pi, wpid
′ ) ∈ PSd′ ,

(d′, d) ∈ E

wpid
, (pi, d) ∈ E

The propagation function depends on the product of the semantic related-
ness weights in the path, and always prefers the edges with the highest weight
among those at its disposal in the chosen path. Among all the computed paths
connecting a couple of nodes, it chooses the path maximising the overall weight
independently from its length. In this way, a low semantics relatedness along a
path plays an important role as a discount factor and helps to filter unsatisfac-
tory propagations out. At the same time, it does not penalise long paths with
strong semantic relatedness.

Figure 1 shows an example of the propagation process over a sample graph.
On the left-hand side, Figure 1a shows the graph in its starting condition before
propagation takes place: blue nodes refer to publications, red ones to datasets,
and the edge associated to the semantics with maximum weight between each
couple of nodes is shown. For simplicity, we assume a semantic relation and its
inverse have the same weight. We also fix the trust cutoff threshold to 0.3. In
each iteration, all the nodes with available context for propagation are consid-
ered and try to affect all their neighbours. In the first step, only publications
have a context at disposal for propagation, so all the edges connecting them to
datasets are considered (represented as dashed in the figure). This is shown in
Figure 1b: both D1 and D3 receive context respectively by P1 and P2. Each
propagated context has the same weight as the edge involved since it is a di-
rect connection. In any step other than the first one, the context is propagated
among datasets. Each dataset having received a previously propagated context
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Fig. 1: Context Propagation example.

tries to pass it along to all its neighbouring datasets. However, this time the
weight of the association is not equal to the weight of the edge connecting the
dataset with its neighbours. In fact, the context has been “inherited” from a
publication, and thus the indirect connection has to be taken into account. Each
time a context is further propagated between two datasets d′ and d, its weight
is computed by multiplying the weight for the context seen at d′ and the weight
of the edge connecting d′ and d. A context is propagated to a dataset only if
it does not already belong to the dataset’s PS. In case the PS already contains
information about the publication whose context is being passed, its weight is
computed as the maximum among the weights computed on the paths that have
reached the node so far. Figure 1c shows the graph after the propagation pro-
cess has terminated. D1 receives context only from P1, D3 receives context from
P2 directly, and from P1 through D1. The weight for the context of P1 is the
same for both the dataset, since the edge that binds them weights 1. D2 receives
context of P1 through D1 and the strength of the correlation is multiplied by
0.5 (i.e. the edge weight). It does not receive context from P2 because it could
propagate only through D4 or D5, but the strength of the relation would be be-
low the cutoff threshold in both cases, and thus they are discarded. D4 receives
propagation information from both P1 and P2, and both of them through D3:
the propagation weight of P1 through D1 would have been 0.32, which is less
than the 0.4 got from D3. D6 also receives propagation information for both P1

and P2 through D3, and the correlation strength is multiplies by 0.5 for both
the publications. D6 receives propagation information from P1 and P2 through
D5 with the same weight of D5.

4 Implementation

As Scholexplorer dump occupies over 40 GB compressed on disk, it was unfeasible
to treat the problem with an in-memory approach. We opted for the utilisation of
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our Hadoop7 cluster and implemented the propagation algorithm as a sequence
of Spark jobs in PySpark. The code is publicly accessible here8.

Running context propagation takes about 6 hours on our cluster with 20 vir-
tual machines (VMs) for Apache HDFS DataNodes and Spark workers, each VM
with 16 cores, 32 GB of RAM, and 250 GB of space on disk; plus 3 dedicated
virtual machines for HDFS Name Nodes, each one with 8 cores, 16 GB of RAM,
and 40 GB of space on disk. Please notice that our termination function on the
Scholexplorer graph makes the process terminate after three steps of propaga-
tion, that is one direct propagation from publications to datasets, and just two
steps of propagation between datasets. We do believe this is acceptable for the
sake of computational feasibility as the number of nodes reachable by context
propagation after three steps covers about 97% of the nodes reachable via paths
originating from publications with context (evaluated through an iterative graph
exploration converging at 2,266,269 nodes).

In order to make the evaluation of the proposed approach easier, we provide
two full-text indexes on Elasticsearch9. A first index (propagation-before) con-
tains metadata records from Scholexplorer before context propagation has run,
while a second one (propagation-after) provides the same records after context
propagation is performed. The former contains metadata of publications and
datasets consisting mainly of identifier, pid, type (i.e. publication or dataset),
title, abstract. The latter contains the same metadata descriptions plus one more
field (propagated abstracts) for datasets in order to amass the abstracts coming
from publications via context propagation. In order to evaluate the results, the
user can play with a simple search interface10 and explore the saved queries as
examples (refer to Section 5.2), or query the indexes from scratch.

5 Evaluation

In this section, we present the results obtained by applying the methodology
proposed in Section 3 and characterise them both from a quantitative and qual-
itative standpoint.

5.1 Quantitative analysis

As a mean of comparison, Table 6 reports on the number of datasets and relative
percentage of datasets with abstract for each provider involved in the analysis.
Table 7 instead reports the results obtained by the application of the context
propagation. For each provider, the table shows the number of datasets affected
by context propagation both directly from a paper (“Publication–Data” column)
and indirectly from another dataset (“Data–Data” column). For each provider

7 Hadoop, https://hadoop.apache.org
8 Code repository,
https://code-repo.d4science.org/miriam.baglioni/context-propagation

9 Elasticsearch, https://www.elastic.co/elasticsearch
10 Evaluation interface: https://propagation-demo.infrascience.isti.cnr.it
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Table 6: Analysis of Scholexplorer subset of providers providing datasets in the
subgraph selected according to the valid semantics. For each provider, the num-
ber of datasets is shown together with the relative percentage of datasets with
abstract.

Provider Datasets (% w/ abs)

3TU.DC 62 (93.55%)
ANDS 2 (00.00%)
CCDC 713,350 (100.00%)
DataCite 3,796,690 (88.52%)
ENA 339,868 (00.00%)
ICPSR 6,823 (73.18%)
IEDA 443 (99.32%)
Pangaea 150,759 (45.88%)
RCSB 70,557 (00.00%)

Table 7: Quantitative evaluation of context propagation. For each provider, the
number of datasets touched by propagation is reported together with an estima-
tion of latent and reuse discoverability.

Provider
Publication–Data Data–Data

Propagated
contexts (% tot)

Latent Reuse
Propagated
context (% tot)

Latent Reuse

3TU.DC 27 (43.55%) 0 15 12 (19.35%) 0 8
ANDS 1 (50.00%) 1 0 – – –
CCDC 130,317 (18.27%) 0 333 546 (0.08%) 0 225
DataCite 405,088 (10.67%) 4,921 28,619 849,260 (22.37%) 24,859 656,862
ENA 337,814 (99.40%) 337,814 60,888 – – –
ICPSR 3,691 (54.10%) 743 3,303 130 (1.91%) 4 78
IEDA 41 (9.26%) 1 7 16 (3.61%) 0 6
Pangea 2,951 (1.96%) 200 600 35,770 (23.73%) 12,571 10,200
RCSB 70,398 (99.77%) 70,398 46,133 – – –

it shows i) the total number of datasets receiving an abstract (“Propagated
contexts”) and the percentage relative to the total reported in Table 6, ii) an
estimation of latent discoverability (“Latent” column), and iii) an estimation of
reuse discoverability (“Reuse” column). Latent discoverability is evaluated by
counting the number of datasets without own abstract that have been targeted by
context propagation, while reuse is evaluated by counting the number of datasets
receiving at least two propagated contexts. Please note that the reuse estimation
computed as such incurs in an underestimation of the potential reuse. In fact,
as an example, it does not account for datasets whose only semantic relation
available is the one connecting the dataset to the publication reusing it (i.e. it
should be accounted for reuse, but in this case only one context is propagated,
and thus it is not counted). From the reported results, we can notice that the
margin of improvement varies largely across providers: from a cumulative (i.e.
for all propagation steps) 12.87% for IEDA to almost the totality for ENA and
RCSB (99.40% and 99.77% respectively). We believe that focusing on absolute
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numbers does not deliver the right key to interpret the results as a seemingly
marginal improvement can still be significant in terms of discoverability for users.

Moreover, providing a quantitative estimation of multidisciplinary discover-
ability is extremely hard as there are no objective tests to identify such cases.
For most of them, only a domain expert has the in-depth knowledge to judge
whether it is truly multidisciplinary or not; for this reason, we study this aspect
from a qualitative standpoint only.

Finally, it is worth mentioning, that a few providers do not participate in
data–data propagation as their datasets are not related with the selected se-
mantics for our experimentation. For example, nucleotides provided by ENA do
not have relations among them, but only towards publications mentioning them,
thus they do not participate in data–data propagation.

5.2 Qualitative analysis

In this section, we present a collection of a few chosen examples that, to the
best of our knowledge, better describe from a qualitative standpoint the results
achieved through our approach and advocate for its application. The reader can
find them via the evaluation interface provided.

Example 1 (Latent discoverability) The query term “SHC014” is the name
of a coronavirus spike protein that has recently resonated in the media worldwide;
resulted from a 2015 lab experiment, it has been wrongly associated to the cur-
rent SARS-CoV-2 outbreak. The query term in the original index matches only
the publication relative to the original experiment, while after the propagation
the dataset “Structure of SARS coronavirus spike receptor-binding domain com-
plexed with its receptor” emerges, despite being originally deprived of any further
metadata, but the title. Moreover, as can be seen, several other relevant publica-
tion abstracts are included as dataset context, hence improving its discoverability
dramatically.

Example 2 (Reuse discoverability) The YfdE gene from the bacteria E.Coli
receives the abstracts of two publications thanks to context propagation: the first is
a 2013 publication describing gene’s function and x-ray crystal structure, while
the second one is a 2018 paper referring the protein acetyl-CoA:oxalate CoA-
transferase, which the gene synthesise.

Example 3 (Multidisciplinary discoverability) We managed to isolate the
“PRIMAP-hist Socio-Eco dataset” which is used relevant to both assess anthro-
pogenic land-use estimates and for the creation of a consistent historical time se-
ries of GDPs for 195 countries in the last 150 years. As anticipated, pinpointing
true multidisciplinary examples is rather difficult without prior domain knowl-
edge. However, we believe this example can still be a good candidate that shows
how two disciplines within Earth System Science can benefit from context-driven
discoverability.
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6 Related Work

The approach described in this paper and the problems it addresses share a few
peculiarities with other research problems from other research applications.

A first similar application is Automated Query Expansion (AQE), whose
major contributions across over 50 years of research are reviewed and summarised
in [1,6]. In AQE, the terms composing the user query are expanded by adding a
new set of features at query time by means of different techniques (e.g. stemming,
dictionary and ontology-based augmentation, language modelling, query rewrite)
in order to capture a broader set of potentially relevant documents (i.e. improve
recall, generally, at the expense of decreasing precision). However, this is seldom
effective in our case, as there is often little to be matched in research data
descriptions. Indeed, research data metadata are often largely incomplete, and so,
even if the user query is automatically-expanded consistently, the search seldom
can retrieve further results potentially relevant for the user. To some extent, our
approach can be still categorised as an augmentation task as in AQE. In fact,
rather than augmenting the terms contained in the user query thanks to language
models, we augment the metadata descriptions in research data by propagating
information following their semantic relations towards relevant literature and
other research data. Unlike AQE techniques, where the user might be puzzled
when trying to understand why certain documents have been returned with
high saliency despite being very different from the expressed query terms, our
method can always provide the user with the information needed to explain why
a given result has been returned as potentially relevant. In a similar way to AQE,
an early work from Mannocci et al. addressed research data discoverability by
providing a user interface enabling the composition of on-the-fly queries against
research data archives starting from a literature record of interest [9].

A second similarity is shared with Label Propagation (LP) [14–16]. Within
the research field of complex networks, LP is a specific task that aims at labelling
a large quantity of unlabelled nodes across the network starting from the little
knowledge present in a much smaller group of labelled nodes. Such labelling is
in practice performed by propagating a finite set of labels across the network by
means of nodes properties and their semantic relations (i.e. network topology).
Such algorithms are originally devised to detect communities in networks, but
nonetheless, they share to some extent common properties with the class of prob-
lems introduced in this work. A typical case study for such class of algorithms
is the propagation of political affiliation in Fiend-of-a-friend (FOAF) networks
(i.e. identify communities or clusters of right-wing and left-wing nodes). Like LP,
our context of applications deals with nodes rich in information (i.e. labelled)
and nodes poorer in information (i.e. unlabelled); however, in our case, the split
among the two classes is far more balanced than the one noticeable in typical
LP applications. Similarly, LP indeed tries to spread information (i.e. the labels)
from one node to another; however, unlike in our task, the set of candidate labels
is finite and known a priori (e.g. in the case of political orientation: “right-wing”
or “left-wing”). In our application instead, the amount of information the algo-
rithm can potentially propagate across the network is not known a priori and,
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in general, grows with the size of the network (i.e. one unique abstract for each
publication joining the network). Indeed, any publication node could offer its
own “label value” as a propagation candidate; however, we cannot talk about
community detection in our case study as there is no real community to be
discovered.

7 Conclusions and Future Work

In this paper, we described a sound methodology enabling context-driven discov-
erability for research data thanks to their proven usage across research activities
that might differ from the original one, potentially across diverse disciplines. We
showed how publication–dataset semantic relations can be leveraged in order
to propagate research context (e.g. abstracts) from publication to dataset, and
thus form richer metadata description. By providing a real-case evaluation on
Scholexplorer, we showed how a large number of datasets across all Scholexplorer
providers can benefit from the context propagated from related literature, and
showcased a few selected representative examples.

The context propagation methodology here proposed can be improved and
refined in several different directions. During our experiments, we observed that
some semantics can be more conducive for a type of discoverability (i.e. latent,
reuse, multidisciplinary) than for the others. For example, semantics as isSup-
plementedBy, documents or reviews between publication and dataset strongly
suggest a potential case of latent discoverability within the scope of the same re-
search application, while cites or references can indicate most probably a reuse.
To this end, semantics could be tightly associated with the three different types
of discoverability by providing a different weight for each one of them.

Moreover, in order to assess further the capabilities in multidisciplinary re-
search, and isolate better candidates that are difficult to retrieve otherwise (es-
pecially without in-domain knowledge), we could leverage topics and keywords
along with abstracts. This would enable us to match topics with known ontolo-
gies such as MeSH [8] for Life Sciences, PhySH [13] in Physics, CSO [12] for
Computer Science, and therefore gain a better view on whether a dataset effec-
tively lies on the border of two (or more) disciplines. More sophisticated NLP
techniques, such as Latent Dirichlet Allocation [2], could be applied in order to
let latent structure emerge from abstract plain-texts and characterise further the
nodes alongside topics and keywords.

Furthermore, it is in our plans to study the feasibility of an extensive search-
based user evaluation by providing access to the propagated index so to log user
queries and interactions with the results (e.g. relevant, not relevant). Such knowl-
edge can be used as ground truth in order to accurately assess the improvement
achieved by context propagation by rerunning the same queries under the hood
against the other index and measure the differences.

Finally, in order not to disperse the added value, propagated information
could be fed back to content providers, so that it can be integrated into the
original data catalogues so to deliver context-driven discoverability out-of-the-
box right where it belongs and can be more effective.
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