

Development of an integrative approach for the derivation of signatures and translational analysis of cancer genomic data

Georgia Kontogianni^{1,2}, Bianca Pasat^{2,3}, Eleftherios Pilalis^{2,3}, Olga Papadodima¹, Aristotelis Chatziioannou^{2,3}

 ¹Metabolic Engineering and Bioinformatics Group, Institute of Chemical Biology, NHRF
 ²Center of Systems Biology, BRFAA
 ³e-NIOS Applications Private Company

This work:

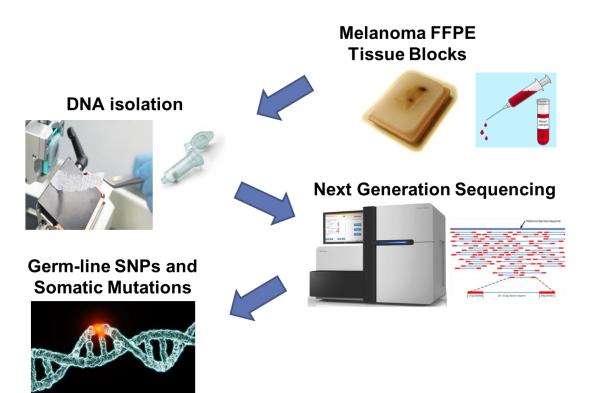
We present a framework for streamlined analysis of NGS genomic data, integrating functional and pathway analyses, for the inference of gene signatures with diagnostic and/or prognostic value.

A system for the integration and processing of multi-layered data, implemented as a tool on the Galaxy platform.

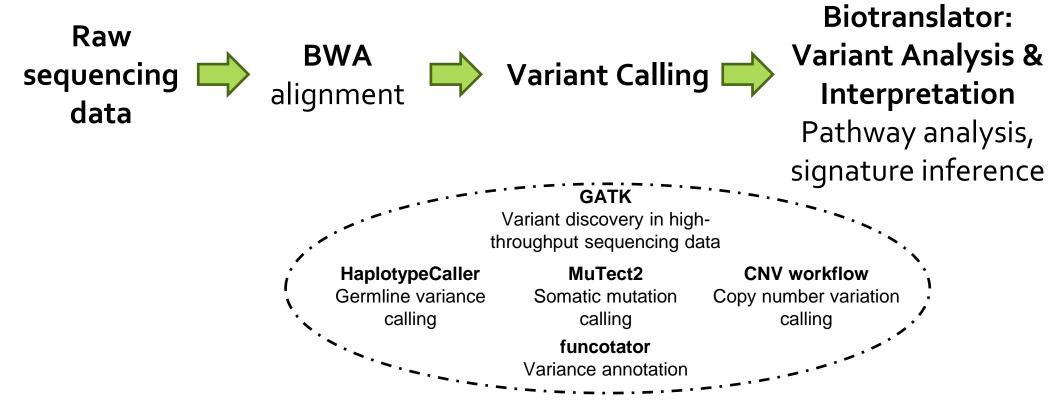
A pilot analysis —including ten patients with cutaneous melanoma— resulting in a short list of candidate variants, mapped to genes with a probable pivotal role in the disease.

Our aim is to develop a tool for streamlined inference of gene signatures from NGS data allowing the accurate patient classification and clustering, towards a precision medicine approach.

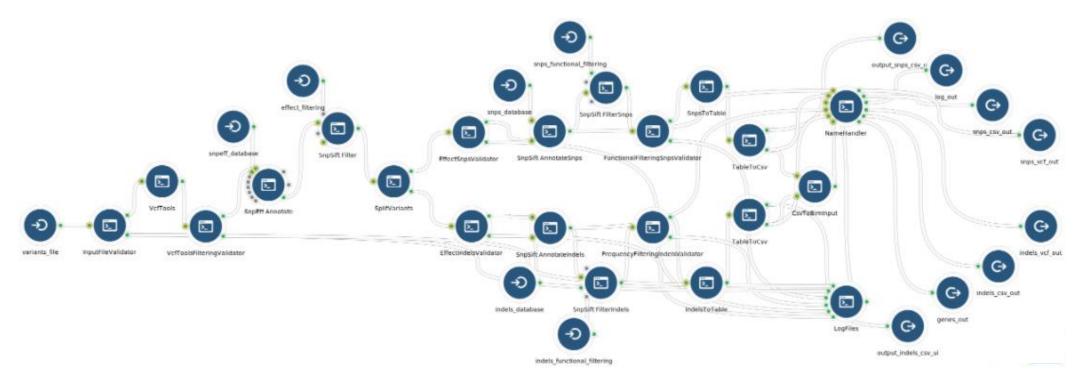
What is melanoma?


- Melanoma is a cancer that arises from epidermal melanocytes
- Accounts for less than 5% of skin cancer incidence, but it is responsible for the majority of skin cancer related deaths
- High mutation load
- UVR-characteristic signatures

The data:


Whole Exome Sequencing (WES)

10 patients with cutaneous melanoma
paired tumour tissue & blood



The workflow:

Biotranslator Variant Analysis:

tool for **annotating** and **filtering** variants from WES experiments comprised of three main steps:

- pre-filtering (quality control metrics and thresholds),
- genomic annotation & filtering of genetic variants based on the effect prediction and
- custom filtering include functional and frequency filtering (available for SNPs).

Biotranslator Inputs

& Outputs

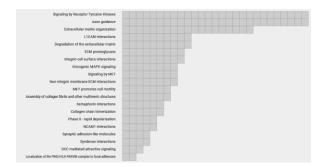
Variant Analysis

Vcf file

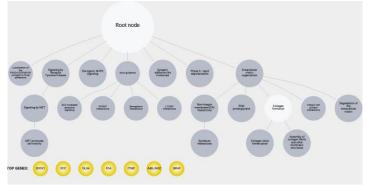
Variant annotation

• Interpretation

List of genes



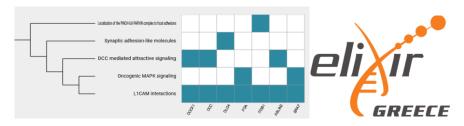
Functional analysis and prioritization


Variant annotation

⊿ A	В	C	D	E		G	H	. 1		K	L
CHROM	POS	REF	ALT	rsID	EFFECT	IMPACT	CLINVAR	COSMIC	GENE	FreqMuta	ted
2 chr1	958972	C	T		missense_variant	MODERATE			NOCZL		
3 chr1	21576626	T	C		missense_variant	MODERATE			ALPL		
4 chr1	22953534	C	T		missense_variant	MODERATE			LACTBL1		
5 chr1	31684528	C	T		missense_variant	MODERATE			COL16A1		
6 chr1	32810739	C	T	rs778307213	missense_variant	MODERATE		genital tra	YARS		
7 chr1	33571631	G	A		missense_variant	MODERATE			CSMD2		
8 chr1	39428093	C	T		stop_gained	HIGH		skin(5,Con	MACF1	FLAG	
9 chr1	44645238	C	T	rs143641307	missense_variant	MODERATE		large intes	RNF220		
10 chr1	47438787	C	T		missense variant	MODERATE			FOXD2		
11 chr1	62038035	C	T		missense_variant	MODERATE			PATI		
12 chr1	67050490	G	A	rs136001344	missense_variant	MODERATE			SLC35D1		
13 chr1	89582829	T	C		missense_variant	MODERATE			LRRC88		
14 chr1	1.17E+08	G	A	rs755457850	missense_variant	MODERATE		prostate(1	TTF2		
15 chr1	1.48E+08	G	A	rs782621260	missense_variant	MODERATE			GPR89B		
16 chr1	1.5E+08	C	T	rs139748950	missense variant	MODERATE			RPRD2		
17 chr1	1.51E+08	C	T	rs137853099	missense_variant	MODERATE	Pathogen	it.	RFX5		
18 chr1	1.52E+08	A	G	rs755290093	missense_variant	MODERATE			HRNR	FLAG	
19 chr1	1.52E+08	G	T	rs61814943	missense_variant	MODERATE		thyroid(2,0	HRNR	FLAG	
20 chr1	1.53E+08	A	C	rs749064175	missense_variant	MODERATE			SPRR4		
21 chr1	1.54E+08	C	T		missense_variant	MODERATE			UBAP2L		
22 chr1	1.58E+08	T	G		missense variant	MODERATE			OR10R2		
23 chr1	1.6E+08	C	T	rs750185938	missense_variant	MODERATE			CFAP45		
24 chr1	1.6E+08	T	C		missense_variant	MODERATE			ATP1A2		
25 chr1	1.61E+08	G	A	rs144844671	missense_variant	MODERATE		central ne	F11R		
26 chr1	1.61E+08	C	T		missense_variant	MODERATE			KLHDC9		
27 chr1	1.65E+08	G	A	rs906708754	missense_variant	MODERATE			PBX1		
28 chr1	1.65E+08	T	A		missense_variant	MODERATE			LMX1A		
29 chr1	1.65E+08	G	A	rs1257993884	stop gained	HIGH			RXRG		
Mr. shed	4 35.00	-			minore and an	MODERATE		Inner later	er.		

Pathway prioritization

Functional analysis


Variant filtering

SNPs					Variants: 438	Unique Genes: 421	Download variants
Chromosome ↑	Position	Reference/ Alternative	reID	Effect	Impact	Clinical significance	Gene
All 🔻	_		All 🔻	All ▼	All 🔻	All 🔻	Q
chr1	3823453	G/ A		missense	Moderate		CEP104
chr1	8324325	C/T	rs765992491	missense	Moderate		SLC45A1
chr1	10304091	G/ A		missense	Moderate		KIF1B
chr1	15928113	G/ A	rs1350671357	missense	Moderate		SPEN
chr1	19114031	G/ A	rs1315117715	nonsense	High		UBR4
chr1	19683260	G/ A	rs144713907	missense	Moderate		TMC04
chr1	22576346	G/ A	rs562198376	missense	Moderate		EPHA8
chr1	24068271	G/ A		nonsense	High		муомз
chr1	26863909	G/ A		missense	Moderate		SFN
chr1	27955748	G/ A	rs144208397	missense	Moderate		SMPDL3B
chr1	32376405	G/ A	rs376175900	missense	Moderate		BSDC1
chr1	33557913	C/T		missense	Moderate		CSMD2
chr1	33580846	G/ A		missense	Moderate		CSMD2
chr1	33586567	C/T		missense	Moderate		CSMD2
chr1	35192992	C/T		missense	Moderate		SFPQ
<							

Gene/variant prioritization

d A	В	С	D	Ε	F
Rank	Gene Symbol	Definition	Systemic F	Interaction	Drugs
	1 NOTCH1	notch 1	8	7	0
	2 ROCK1	Rho associated coiled-coil containing protein kinase 1	6	2	6
	3 SFRP1	secreted frizzled related protein 1	5	0	0
	4 SHOX2	short stature homeobox 2	5	0	0
	5 WDR1	WD repeat domain 1	4	1	0
	6 TGFBR2	transforming growth factor beta receptor 2	4	0	2
	7 NLGN1	neuroligin 1	4	0	1
	8 ACAN	aggrecan	4	0	1
	9 VCAN	versican	4	1	1
1	0 GLI1	GLI family zinc finger 1	4	1	(
	1 SLC1A3	solute carrier family 1 member 3	4	0	1
1	2 RAPGEF1	Rap guanine nucleotide exchange factor 1	3	0	(
1	3 AQP1	aquaporin 1 (Colton blood group)	3	0	1
1	4 CSPG4	chondroitin sulfate proteoglycan 4	3	0	(
1	5 KIF23	kinesin family member 23	3	2	(
1	6 LGR4	leucine rich repeat containing G protein-coupled receptor 4	3	8	(
	7 MACF1	microtubule-actin crosslinking factor 1	3	0	(
1	8 KCNA1	potassium voltage-gated channel subfamily A member 1	3	0	8
1	9 ACVRL1	activin A receptor like type 1	3	0	- 2
2	0 FASN	fatty acid synthase	3	1	3
2	1 GOLGA5	golgin AS	2	1	(
2	2 SMYD3	SET and MYND domain containing 3	2	1	1

Gene signature

Ranking/ Signature inference in Melanoma

Biotranslator analysis results, based on their centrality (genes taking part in numerous distinct mechanisms are ranked higher), exploiting semantic information and network analysis

Top 30 prioritised genes, according to their network centrality, as described in Gene Ontology & Reactome vocabularies, and the mutations they carry in different patients

Top 30 Prioritised Genes									
PTK2B								D	
CTNNB1								D	
NOTCH1				D					
LRRK2			Р						
DMD	Р				D				
BRAF	D	D						D	
RELN					D				
ATM				D					
PDPK1							Р		
EPHA2		D							
ZC3H12A	Р								
ANGPT1			D						
TP53						Р			
HSF1		D							
NR1H4		Р			D				
KDR								D	
CLU			D		Start				
CDKN1B						D			
TLR4		Р							
HNF1A	Р								
CASP8								Р	
GSN				D					
ROCK1			D						
ANK3				D	D				
HNF1B				D					
DCN	Р				Р				
PPP1R9A			Р		D				
AKAP6						Р			
ROBO2								D	
KALRN						D		Р	
Missense Nonsense Start Codon SNP						py Loss by Gain			

Discussion:

Analysis framework of NGS genomic data, integrating functional and pathway analyses

The tools will be interconnected using the galaxy platform, creation of workflow for reproducible analysis

Started adding the tools on Galaxy

Our analysis highlights a short list of candidate mutated genes with a probable pivotal role in melanoma that could be promising targets for future investigation

Acknowledgements

Georgia Kontogianni^{1,2}, Bianca Pasat^{2,3}, Eleftherios Pilalis^{2,3}, Olga Papadodima¹, Aristotelis Chatziioannou^{2,3}

¹Metabolic Engineering and Bioinformatics Group, Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece

²Center of Systems Biology, Biomedical Research Foundation of the Academy of Athens, Athens, Greece

³e-NIOS Applications Private Company, Kallithea, Greece

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

We acknowledge support of this work by the project "TRANSITION: TRANSlating the complexity of melanoma diagnosis into raTional therapeutic stratificatiON" (MIS 5031295) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).

Co-financed by Greece and the European Union

We acknowledge support of this work by the project "ELIXIR-GR: Hellenic Research Infrastructure for the Management and Analysis of Data from the Biological Sciences" (MIS 5002780) which is implemented under the Action "Reinforcement of the Research and Innovation Infrastructure", funded by the Operational Programme "Competitiveness, Entrepreneurship and Innovation" (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund).