
A Novel Posit-based Fast Approximation of ELU
Activation Function for Deep Neural Networks

Marco Cococcioni1, Federico Rossi1, Emanuele Ruffaldi2, and
Sergio Saponara1

Abstract— Nowadays, real-time applications are exploiting
DNNs more and more for computer vision and image recog-
nition tasks. Such kind of applications are posing strict con-
straints in terms of both fast and efficient information rep-
resentation and processing. New formats for representing real
numbers have been proposed and among them the Posit format
appears to be very promising, providing means to implement
fast approximated version of widely used activation functions
in DNNs. Moreover, information processing performance are
continuously improved thanks to advanced vectorized SIMD
(single-instruction multiple-data) processor architectures and
instructions like ARM SVE (Scalable Vector Extension). This
paper explores both approaches (Posit-based implementation of
activation functions and vectorized SIMD processor architec-
tures) to obtain faster DNNs. The two proposed techniques are
able to speed up both DNN training and inference steps.

I. INTRODUCTION

Nowadays, Deep neural networks (DNNs) are being em-
ployed as a pervasive tool to process data and effort is being
put by both industry and academia. The most active thread
is bringing real-time DNNs performance at the lowest cost
possible in terms of power and resource consumption.

An important emerging industry trend in this sense is the
progressively reduction of DNNs complexity, reducing the
information representation bits trying to avoid complex high-
precision arithmetic (e.g. double precision, 64-bit arithmetic).
Some formats have already been proposed like Google’s
BFLOAT16 (i.e. a revised Float16 representation embedded
in Tensor Processing Units) and Intel’s Flexpoint [1, 2].
NVIDIA has put effort in the transprecision neural net-
work training field in its latest GPU architectures, enabling
the use of INT32 down to INT4 integral types alongside
with Float32 single-precision type [3, 4]. Furthermore, one
of the most promising alternative representation for low-
precision real arithmetic is the Posit number system [5]–
[8] (see details in Section II). When trying to address the
bottlenecks in training and evaluation of DNNs we need
to take into account two important components. One is the
massive use of convolution, pooling and small matrix-vector
product operations that can be more or less brought back
to accelerating vector operations. The other less impactful,
yet meaningful to address, is the enormous use of non-linear
activation functions nearly after each layer of a DNN.

1University of Pisa, DII sergio.saponara@unipi.it,
federico.rossi@ing.unipi.it, m.cococcioni@gmail.com

2MMI spa, Via del Paduletto 10A, 56011, Calci (PI), Italy
emanuele.ruffaldi@mmimicro.com

On the activation function side the use of non-linear
operator is mandatory to offer enough complexity to let
the neural network learn. The most commonly used non-
linear operators are Sigmoid, Tanh (Hyperbolic tangent),
ReLU (Rectified Linear Unit) and ELU (Extended Linear
Unit) [9, 10]. When choosing activation functions, both
data distribution and information representation must be
taken into account. In particular, the possibility offered by
Posits of efficient and hardware-friendly non-linear activation
functions has to be investigated in order to provide fast
approximation of commonly used non-linear operators.

On the acceleration of matrix and vector operation side
a lot of work has been done using Graphics Processing
Units (GPUs) and Tensor Processing Units (TPUs) ability
to massively parallelize operations on vectors and matrices,
but with a great power cost. On the general purpose CPU
side exploiting vectorization levels offered by processors
is critical. Both Intel [11] and ARM [12] provide specific
compilers that offer a starting level of vectorization called
auto-vectorization, i.e. automatic loop unrolling followed by
the generation of SIMD (single instruction-multiple data)
instructions at compilation time. Thanks to this approach,
the SIMD instructions operate on multiple data elements at
the same time, thus increasing the efficiency of the loop
execution. Moreover, both Intel and ARM offer a set of
high-level instruction (e.g. C/C++ directives) called intrinsics
(i.e. AVX/2 or SSE for Intel [13] and SVE/2 or NEON
for ARMv8 [14]). These instructions allow the developer to
explicitly instrument low-level vectorization engines with a
high-level interface.

II. POSIT FORMAT AND ARITHMETIC

The novel Posit format has been proposed by John L.
Gustafson in [5]. The format is a fixed length encoding
configurable in the total number of bits nbits and the number
of exponent bits esbits. We identify a Posit with nbits and
esbits as Posit(nbits,esbits) (e.g. Posit16,0). It is composed
by four fields:

• Sign field (1-bit, )
• Regime field (variable length, )
• Exponent field (maximum length of ebsits, ). This

field can be shorter or even missing at all, for some
representations, even when ebsits > 0

• Fraction field (variable length, ): can be missing too.
Among the other fields, the regime one is particularly

interesting. The bits composing that field are discovered at



run-time as a bit-string composed only by 0s or 1s and
terminated, respectively, by a single 1 or 0. Then the value of
the regime field is dictated by the number of leading 0s or 1s.
Given a Posits on nbits, esbits, represented by the integer
l and let e and f be respectively the exponent and fraction
values, the real number r represented by that encoding is:

r =


0, if l = 0

NaN, if l = −2(nbits−1)

sign(l)× useedk · 2e · (1 + f), otherwise

where useed = 22
esbits

and k is the value dictated by the
regime bits. Decoding a Posit presents interesting aspects:

• When the sign bit is 1 then the remaining bits are
complemented before decoding, removing the need for
a redundant representation of a negative 0.

• The value k identified by the regime bits acts as a super-
exponent that scales the value of useed. If the bit-string
is composed by 0s the value of k will be negative. Note
that when we are dealing with consecutive 1s, the value
of k is one less than the number of equal 1s, in order
to be able to represent the value 0.

A. Projective reals
Unlike real numbers, Posits map to a circle called Posit

ring. If we split the ring into its four quadrants we can detect
two important regions in Posit arithmetic:

• The [−1, 1] interval: this interval occupies the bottom
half of the ring, meaning that half of a Posit range
concentrates in this interval.

• The (1, inf) and (− inf,−1) intervals: these intervals
occupy a quarter of ring each, meaning that there is
less decimal accuracy for numbers outside the [−1, 1]
interval.

B. The cppPosit library
cppPosit is a Posit arithmetic software library devel-

oped at University of Pisa. It exploits some of modern C++
features, like templatization, to provide a flexible and inter-
operable way to handle Posit numbers. It is designed in order
to decouple the front-end Posit packed representation and the
back-end approach to mathematical operations.

An important aspect of the cppPosit library is the presence
of four different operational levels, from L1 to L4, that
correspond to different efficiency of operations on Posits.
Level 1 (L1) operations are simply bit manipulations of Posit
representation that can be performed at the cost of an integer
ALU operation. Managing to design L1 activation functions
in DNNs is crucial to speedup activation layers when us-
ing Posits. Table I shows some important L1 operations
implemented in cppPosit. Level 2 (L2) operations require
the extraction of Posit fields without further computations.
The cost is determined by the format encoding/decoding
operations. Level 3 (L3) operations require the unpacked
Posit version to be built thus including full computation
of regime and exponent as added cost with respect to L2.
Level 4 (L4) operations require conversion to Float format,
exploiting either software or hardware back-ends.

TABLE I
MOST INTERESTING L1 FUNCTIONS IMPLEMENTED IN CPPPOSIT AND

THEIR REQUIREMENTS TO BE APPLIED ON THE ARGUMENT x

Operation Approximated Requirements
2 · x no esbits=0
x/2 no esbits=0
1/x yes none
1− x no esbits=0, x ∈ [0, 1]

FastSigmoid(x) [5] yes esbits=0
FastTanh(x) [6] yes esbits=0

III. THE EXTENDED LINEAR UNIT (ELU)

As reported in Table I, both Sigmoid and Tanh activation
functions have an approximated fast version. The applicabil-
ity of those activation functions in large DNNs may result
in the well-known phenomenon of vanishing gradients. The
ReLU activation function:

ReLU(x) =

{
0, if x ≤ 0

x otherwhise

has been introduced to cope with this kind of phenomenon,
having an unbounded co-domain in the positive x-axis.

ELU(x) =

{
ex − 1, if x ≤ 0

x otherwhise

As pointed out in [15], if the ELU is scaled by a pre-
determined parameter, it applies a normalization across the
layers of the networks, without the need of additional nor-
malization layers (e.g. batch normalization layer).

A. Fast approximation: FastELU

In order to build a L1 approximation of the ELU function
we must focus on the negative x-axis, since the first quadrant
is simply an identity function. If we look at the Sigmoid
function expression Sigmoid(x) = 1

e−x+1 we can manipulate
it with some algebraic steps:

Sigmoid(−x)(1)
1/Sigmoid(−x)(2)

1/(2 · Sigmoid(−x))(3)
1/(2 · Sigmoid(−x))− 1(4)

2 · [1/(2 · Sigmoid(−x))− 1](5)

If we substitute back the sigmoid expression in it we get
the ELU expression for negative values of the argument :

2 · e
x + 1

2
− 2 = ex − 1.

Referring to Table I we can prove that this expression is an
L1 one. Step (1) is L1 for esbits = 0 while Step (2) is
always L1. Division by 2 at step (3) is L1 for esbits = 0.
Step (4) is L1 since the previous step produce a result in
[0, 1]. Step (5) is again L1 for esbits = 0.



TABLE II
VECTORIZATION COMPARISON RESULTS. THE BENCHMARK IS

EXECUTED USING THE GTRSB DATASET DESCRIBED BEFORE.

SVE Vector length SVE instructions (%) Processing time (s)
None - 41.9
256-bit 15 21.89
512-bit 11 12.56
1024-bit 9 8.17

TABLE III
COMPARISON USING POSITS FOR THE MNIST DATASET FOR THREE

DIFFERENT ACTIVATION FUNCTIONS: FAST APPROXIMATED VERSION OF

ELU (FASTELU), EXACT ELU AND RELU. ACCURACY OF THE NEURAL

NETWORK AND MEAN SAMPLE INFERENCE TIME ARE REPORTED.

Activation FastELU (this paper) ELU ReLU
Acc.(%) Time (ms) % ms % ms

SoftFloat32 - - 98.6 8.8 96.0 6.3
Posit16,0 98.54 3.2 98.6 3.9 96.0 2.0
Posit14,0 98.53 2.4 98.6 3.1 96.0 2.0
Posit12,0 98.5 2.3 98.6 3.1 96.0 2.0
Posit10,0 98.39 2.3 98.5 3.0 96.0 1.9
Posit8,0 91.14 2.2 90.1 3.0 88.4 1.9

IV. EXPERIMENTAL RESULTS

The benchmark used for experimental analysis is an im-
age classification task on two different data sets: MNIST
and GTRSB (German Traffic Road Sign Benchmark). The
LeNet-5 deep neural network model [16] has been used
during the experimental phase. For vectorization compari-
son we chose ARM SVE since it allows changing SIMD
vector sizes at runtime without the need of compiling the
code again (unlike Intel SIMD engine). The benchmark
is compiled both with and without ARM SVE support to
assess the performance increase, using the armclang++
19.2 compiler. Table II shows performance comparison
for the GTRSB dataset benchmark executed in the ARMv8
(AARCH64) instruction emulator with different levels of
vectorization. As reported, when increasing the lenght of
SVE registers the number of SVE instructions decreases,
thus the processing time for the benchmark decreases as well,
showing the effectiveness of the vectorization.

V. RESULTS ON FASTELU USING POSITS

Table III and IV show performance comparison in the
two datasets between both different activation functions and
underlying information representation. As reported therein,
Float32 accuracy are easily matched by Posits with 16 down
to 10 bits, and, in particular, for GTRSB similar performance
are obtained even with a Posit8,0. According to these results
the adoption of Posit and ELU can lead to nearly the
same processing accuracy of Float32 but with a remarkable
reduction, up to a factor of 4, of the data storage.

VI. CONCLUSIONS

In this work we have introduced a fast way to approximate
the well-known ELU activation function in DNNs, when
using the novel Posit format for representing the reals,
instead of classic IEEE-754 Floats. Then we have reported
the preliminary results on an activity carried out within the

TABLE IV
COMPARISON USING POSITS FOR THE GTRSB DATASET (SEE TABLE III)

Activation FastELU (this paper) ELU ReLU
Acc.(%) Time (ms) % ms % ms

SoftFloat32 - - 94.2 15.86 92.7 8.2
Posit16,0 94.0 5.8 94.2 6.37 92.7 5.0
Posit14,0 94.0 4.6 94.2 5.21 92.7 4.3
Posit12,0 94.0 4.6 94.2 5.08 92.7 4.3
Posit10,0 94.0 4.6 94.2 5.0 92.7 4.2
Posit8,0 92.0 4.6 91.8 5.0 86.8 4.0

H2020 European Processor Initative (EPI) project, namely
the exploitation of autovectorization and other vectorization
techniques in ARMv8 processors, again with the aim to
speed up DNN on this architecture. The achieved results
show that vectorization has a positive effect on network
processing time. Moreover, combining the use of Posits
and of the ELU activation functions, DNN computation can
achieve the same accuracy levels of IEEE-754 Floats but with
a reduction up to a factor of 4 of data storage and transfer
complexity. Future work will include the development of
hardware accelerators for Posit operations.

ACKNOWLEDGEMENTS

Work funded by the H2020 European Processor Initiative project.

REFERENCES

[1] U. Köster et al., “Flexpoint: An adaptive numerical format for effi-
cient training of deep neural networks,” in Advances in Neural Inf.
Processing Systems, 2017, pp. 1742–1752.

[2] V. Popescu et al., “Flexpoint: Predictive numerics for deep learning,”
in 2018 IEEE 25th Symp. on Comp. Arith. (ARITH), June 2018.

[3] A. Malossi et al., “The transprecision computing paradigm: Concept,
design, and applications,” in 2018 Design, Automation Test in Europe
Conference Exhibition (DATE), 2018, pp. 1105–1110.

[4] “NVIDIA Turing GPU Architecture, graphics rein-
vented,” https://www.nvidia.com/content/dam/en-zz/
Solutions/design-visualization/technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, pp. 1–80, 2018.

[5] J. L. Gustafson and I. T. Yonemoto, “Beating floating point at its own
game: Posit arithmetic,” Supercomputing Frontiers and Innovations,
vol. 4, no. 2, pp. 71–86, 2017.

[6] M. Cococcioni et al., “A fast approximation of the hyperbolic tangent
when using posit numbers and its application to deep neural networks,”
Springer LNEE vol.627, 2020.

[7] ——, “Novel arithmetics to accelerate machine learning classifiers in
autonomous driving applications,” 26th IEEE Int. Conf. on Electronics
Circuits and Systems, 2019.

[8] ——, “Exploiting posit arithmetic for deep neural networks in au-
tonomous driving applications,” IEEE Automotive 2018, 2018.

[9] D. Pedamonti, “Comparison of non-linear activation functions for
deep neural networks on MNIST classification task,” CoRR, vol.
abs/1804.02763, 2018.

[10] V. Nair et al., “Rectified linear units improve restricted boltzmann
machines,” in 27th Int. Conf. on Machine Learning, 2010.

[11] “Improve performance with vectorization,” https://software.intel.com/
en-us/articles/improve-performance-with-vectorization, 2016.

[12] “ARM Automatic Vectorization,” http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.dht0002a/ch01s04s03.html, 2009.

[13] “Intel intrinsics guide,” https://software.intel.com/sites/landingpage/
IntrinsicsGuide/.

[14] “ARM HPC tools for SVE,” https://developer.arm.com/
tools-and-software/server-and-hpc/arm-architecture-tools/
documentation/introducing-scalable-vector-extension-sve.

[15] G. Klambauer et al., “Self-normalizing neural networks,” in Advances
in Neural Information Processing Systems 30, I. Guyon et al., Eds.
Curran Associates, Inc., 2017, pp. 971–980.

[16] Y. Lecun et al., “Gradient-based learning applied to document recog-
nition,” Proc. of the IEEE, vol. 86, no. 11, pp. 2278–2324, Nov 1998.


