KU LEUVEN

C-PlaNeT

CIRCULAR PLASTICS NETWORK FOR TRAINING

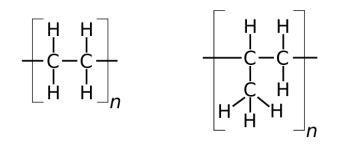
ESR4: An innovative catalytic system for the exchange reaction of phosphate esters with N-nucleophiles towards the production of sustainable and recyclable phosphorus flameretardant additives

Alejandro Fonseca

Supervisor: Prof. dr. Dirk de Vos

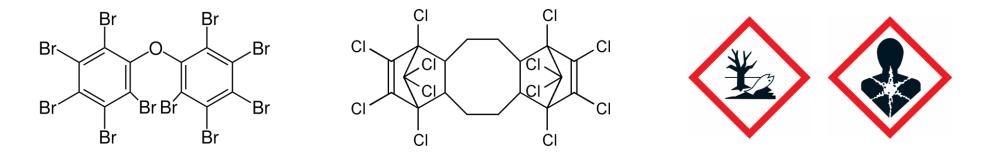
Co-Supervisor: Prof. dr. Thomas Lucyshyn (MUL)

Associated company: Vanheede


This Project has received funding from the European Union's Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant Agreement No.859885

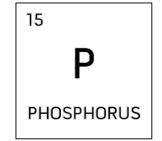
Introduction: Context and Relevance

• Polymeric materials are present in nearly all aspects of modern life


• Hydrocarbon-based polymers display high flammability and large fire load!

Introduction: Context and Relevance

- Flame retardants play a vital role in reducing the risk and safeguarding against accidental fires
- Halogenated fire retardants were widely used in the past; however, their hazardous nature prompted increased research towards the development of halogen-free flame retardants


Phosphorus-based flame retardants have now become a prominent alternative!

S. Shaw, Rev. Environ. Health 2010, 25, 261-306

KU LEUVEN

Introduction: Context and Relevance

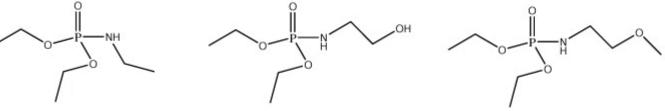
- Phosphorus plays the key role!
 - Chemical versatility
 - Multiple flame-retardancy mechanisms
 - Highly effective at low loadings
- But for the additive to be a good flame retardant, it needs to...
 - Conserve the polymer properties (with price as the most determining factor)
 - Match the polymer processing and pyrolysis characteristics
 - Be environment friendly, recyclable, and sustainable.

KU LEUVEN

 $P(OR)_3 + n H_2N-R' \xrightarrow{\text{Lewis Acid}}_{\text{Conditions}} P(OR)_{3-n}(HN-R')_n + n ROH$

- To develop a sustainable method for preparing new and recyclable phosphorus based flame-retardant additives
 - A catalytic system using solid Lewis acid catalysts is envisioned to prepare such compounds
 - Phosphoesters exchange reactions using N-nucleophiles will be studied
 - Non-hazardous and environmental friendly process

KU LEUVE



- The nucleophilic addition of nitrogen to phosphoesters is not obvious
- There is not that much information.
- The final product must meet the "Good FR" criteria

Expected outcome

- We expect to develop a reliable method for producing FR additives that is not only efficient, but also safe and envioramental friendly.
- This method will use a solid catalyst that will be easy to recover (best case scenario the poisoning of the catalyst will be minimum)
- Various kinds of phosphoramides with good FR properties will result from this method

KU LEUVE

Thank you!

This Project has received funding from the European Union's Horizon 2020 research and innovation Programme under the Marie Sklodowska-Curie grant Agreement No.859885

KU LEUVEN