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Abstract— Learning from demonstration (LfD) is an intuitive
framework allowing non-expert users to easily (re-)program
robots. However, the quality and quantity of demonstrations
have a great influence on the generalization performances of
LfD approaches. In this paper, we introduce a novel active
learning framework in order to improve the generalization
capabilities of control policies. The proposed approach is
based on the epistemic uncertainties of Bayesian Gaussian
mixture models (BGMMs). We determine the new query point
location by optimizing a closed-form information-density cost
based on the quadratic Rényi entropy. Furthermore, to better
represent uncertain regions and to avoid local optima problem,
we propose to approximate the active learning cost with a
Gaussian mixture model (GMM). We demonstrate our active
learning framework in the context of a reaching task in a
cluttered environment with an illustrative toy example and a
real experiment with a Panda robot.

I. INTRODUCTION

Learning from demonstration (LfD) offers an intuitive
framework to overcome the difficulty of programming robots
by teaching them movements using an adaptive representa-
tion. One of the main LfD approaches is called behavior
cloning or policy imitation, and consists in inferring the pa-
rameters of a movement model via supervised learning [1]–
[7] from a demonstration dataset. In LfD, the demonstrations
are often acquired by kinesthetic teaching or by teleoper-
ation. One of the main advantages of these techniques is
that they allow non-expert users to easily (re-)program the
robots. However, it may not be straightforward to determine
the number of demonstrations necessary for the robot to learn
a specific skill, as well as the locations in which they should
be provided. Moreover, acquiring the demonstrations can be
costly especially in industrial environments. Therefore, we
aim at collecting these demonstrations in an informative way.

Active learning is a promising approach to address the
aforementioned issues. An active learning framework de-
velops and tests new hypotheses in an interactive learning
process. In robotics, the robot is first provided with initial
demonstrations from which an initial model of the task can
be built. Then, at each stage of the active learning framework,
the robot is expected to request a new demonstration in order
to improve the model. This contrasts with passive learning
systems that attempt to explain the model only according to
available training data. Ideally, the robot should request the

All the authors are with the Idiap Research Institute, Rue Marconi 19,
1920 Martigny, Switzerland (e-mail: firstname.lastname@idiap.ch).

*This work was supported by the CoLLaboratE project
(https://collaborate-project.eu/), funded by the EU within H2020-DT-
FOF-02-2018 under grant agreement 820767, and by the ROSALIS project
(Swiss National Science Foundation).

Fig. 1: Experimental setup with Franka Emika Panda robot.
The task is to put the cup inside a box covered from top
and bottom, starting from anywhere in the space. The robot
has to maintain a specific end-effector orientation to perform
the task without pouring the cup. The main challenge is
not to collide with the box and the other obstacles in the
environment.

new demonstration around a query point that will maximize
the information gain. Specifically, the information gain is
related to the areas where the model uncertainties are the
highest.

In robotics applications, two different kinds of uncertain-
ties arise, namely (i) aleatoric uncertainties and (ii) epistemic
uncertainties. The aleatoric uncertainties represent the varia-
tions in the demonstrations and are typically used to adapt the
behavior of the robot, e.g. its compliance at different phases
of the task. In contrast, the epistemic uncertainties are related
to the lack of knowledge (i.e. data) in the demonstrations and
is typically used for informative exploration. Active learning
is thus based on the epistemic uncertainties in the model. A
natural way to take these uncertainties into account is through
Bayesian inference [8].

In this work, we propose an active learning approach
with the aim of improving the generalization capabilities
of control policies in a behavior cloning setup, also called
policy imitation. Our approach is based on the framework
presented in [9] which models a joint distribution p(xt,ut)
in action-state abstraction with Bayesian Gaussian mixture
models (BGMMs). The conditional (predictive) distribution
of the policy p(ut|xt) is then found by conditioning on
the current state xt. In [9], the authors use a product of
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experts (PoE) framework to exploit the uncertainties inherent
to Bayesian models in order to fuse several control policies
(see Section III for a brief background). The proposed active
learning approach is based on the epistemic uncertainties
in BGMM model. A method to decompose the covariance
matrix of the posterior BGMM distribution into aleatoric
and epistemic parts is first presented in Section IV-A. The
quadratic Rényi entropy is then used to compute the related
uncertainties of Gaussian mixture models (GMMs) in closed-
form (see Section IV-B). As explained in Section IV-C,
the next query point of our active learning framework is
obtained by maximizing an information-density cost based
on the quadratic Rényi entropies. In particular, we propose
to approximate this cost with a GMM to represent highly
uncertain region distribution. This notably avoids local op-
tima problem during uncertainty maximization. Finally, we
demonstrate the efficiency of our approach on a reaching task
in a cluttered environment in a 2D simulated example and
with a real experiment on a Panda robot (see Section V).
The experiment setup is presented by Fig. 1.

The contributions of this paper are threefold: (i) we
provide an uncertainty decomposition in BGMM control
policies to be used for exploitation and exploration in be-
havior cloning approaches; (ii) we introduce an information
weighted closed-form cost to describe uncertain regions of
the state space; and (iii) we propose an active learning
framework which can be used with partial demonstrations,
with closed-form monitoring of the uncertainty reduction.

II. RELATED WORK

A collection of recent work focuses on improving and fine-
tuning learned movement representations using reinforce-
ment learning (RL) [10, 11] and iterative learning control
(ILC) [12]. As these methods iteratively minimize a reward
function, LfD can be used to determine the initial point
of the optimization in order to favor a safe exploration.
In contrast, information-theoretic explorations in behavior
cloning methods have been exploited only in few works to
enhance the quality and the generalization abilities of the
learned movement models [13]–[15].

One of the simplest and widely used active learning
methods is uncertainty sampling. Using an uncertainty mea-
sure, the robot is expected to request a query point in the
most uncertain region of the input space. If the model can
only encode aleatoric uncertainties, one can train several
probabilistic representations with different local convergence
properties. The disagreement between each individual model
and their average model is then maximized using KL di-
vergence as explained in [16]. Other techniques consist in
reducing the variance of error in a regression problem. In
general, this is intractable. Simplifications occur by using
Fisher Information and Cramér-Rao inequality as in [17].
All the aforementioned methods are myopic as they only
care about the information content of single data instances.
This can result in models selecting outliers or exploring far
away in the context space where no generalization is re-
quired. Information-density methods overcome this problem

by choosing instances that have high information content and
are still representative of the underlying distribution. This is
achieved by using a weighted product of uncertainty measure
(entropy, ensemble, etc) and similarity measure (Euclidean
distance, correlation coefficients, etc.) [16].

In [13], the authors use Gaussian Process Regression
(GPR) in a reaching task to map object positions to the
weights encoding the trajectories via Dynamic Movement
Primitives (DMP). They demonstrate an active learning
framework based on the GPR epistemic uncertainties for
reaching to a predefined set of object positions to improve
their DMP model. They work with time-dependent trajec-
tory policies without control information. They measure the
epistemic uncertainty of a whole trajectory given a context,
while aleatoric uncertainties (variations) are not considered.
Our work differs from [13] in two ways. First, as we
consider state-dependent policies including both aleatoric
and epistemic uncertainties. Second, their approach in [13]
exploits uncertainty sampling, which would diverge if the
uncertainty is defined over a continuous variable instead of
a discrete set of variables. To overcome this problem, we use
information-density methods.

III. BACKGROUND
In this section, we present the BGMM framework ex-

ploited to learn control policies presented in [9]. As state-
dependent control policies learned with BGMM can create
unstable behaviors, the BGMM policy is fused with another
stable control policy within the PoE framework.

A. Bayesian Gaussian Mixture Model

In this section, the Bayesian analysis of a Gaussian
Mixture Model (GMM) is treated following [8]. Let x =[
xi

>
xo>

]> ∈ RD be the joint observation of the input
and the output with dimension D = Di+Do. The joint
distribution is defined with a mixture of K multivariate
normal distributions (MVNs) with means µ={µk}, precision
matrices Λ={Λk} and mixing coefficients π={πk} as

p(x|π,µ,Λ) =

K∑
k=1

πkN (x|µk,Λ−1
k ).

We define a latent variable z, each component of which is
a binary variable zk ∈ {0, 1} such that

∑K
k=1 zk = 1. We

can associate the mixing coefficients to the latent variables
with p(zk=1) = πk so that p(z|π) =

∏K
k=1 π

zk
k . We then

obtain p(x|z,µ,Λ) =
∏K
k=1N (x|µk,Λ−1

k )zk . The con-
ditional distributions p(Z|π), p(X|Z,µ,Λ), the conjugate
prior distributions p(µ,Λ) and p(π) of the joint observation
dataset X={xn} and the latent variable dataset Z={zn}
are summarized in Table I.

As explained in [8], closed-form update equations for
Expectation-Maximization (EM) algorithm is derived by
using a factorized variational distribution. Note that EM up-
date equations are usually implemented in machine learning
libraries such as scikit-learn for Python.

For robotic applications, we determine the predictive den-
sity of a new observation point x̂ =

[
x̂i> x̂o>

]>
equivalent



TABLE I: conditionals and priors where W(·) and Dir(·)
correspond to Wishart and Dirichlet distributions

Conditional of X ∏N
n=1

∏K
k=1 N (xn|µk,Λ

−1
k )znk

p(X|Z,µ,Λ)
Conditional of Z ∏N

n=1

∏K
k=1 π

znk
kp(Z|π)

Prior on µ,Λ ∏K
k=1 N (µk|m0, (β0Λk)

−1)W(Λk|W0, ν0)p(µ,Λ)
Prior on π

Dir(π|α0)p(π)

to a mixture of multivariate t-distributions with mean m̂k,
covariance matrix L̂k, mixing coefficients π̂k and degree of
freedoms ν̂k as [8]

p(x̂|X) =

K∑
k=1

πkt(x̂|mk,Lk, νk), (1)

where

πk =
αk∑K
k=1 αk

, (2)

νk = νk+1−D, (3)

Lk =
(νk+1−D)βk

1+βk
Wk, (4)

mk = m̄k. (5)

with the update equations on αk,βk νk, Wk and m̄k are
given in [8]. We can then define the distribution of the output
conditioned on the input as

p(x̂o|x̂i,X) =

K∑
k=1

π
o|i
k t(x̂i|mo|i

k ,L
o|i
k , ν

o|i
k ), (6)

where

π
o|i
k =

πkt(x̂i|mi
k,L

i
k, ν

i
k)∑K

j=1 πj t(x̂i|mi
j ,L

i
j , ν

i
j)
, (7)

ν
o|i
k = νk+Di, (8)

m̂
o|i
k = mo

k+Loik L
ii
k

−1
(x̂i−mi

k), (9)

Ls = Look −Loik Liik
−1
Loi

>

k , (10)

L
o|i
k =

νk+(x̂i−mi
k)>Liik

−1
(x̂i−mi

k)

ν
o|i
k

Ls. (11)

In this work, we consider the input x̂i and the output
x̂o equivalent to the state x and the control command u,
respectively. Note that the stability of this controller is de-
termined by the positive-definiteness of the term Loik L

ii
k
−1.

To guarantee the controller stability, the PoE framework is
introduced in the next section.

B. Product of Experts

Robot movements learned with state-action abstractions
result in probabilistic controllers with no guarantee of sta-
bility, unless explicitly constrained to be stable as in [6]. To
overcome this problem, we fuse the probabilistic unstable
controller with another probabilistic stable controller which
acts as an attractor towards the demonstration area when the

uncertainty in the unstable controller is high. We refer to this
fusion of controllers as a product of experts (PoE), where
each expert represents a stochastic controller with different
uncertainty properties. Note that many types of controllers
with different uncertainties can be fused to work in parallel.
For more details, we refer the reader to [9].

In this work, the stabilizing controller is defined as a
probabilistic linear quadratic tracker policy, which can be
expressed as a MVN. It can be viewed as a controller
which attracts the system to the demonstrated regions when
the BGMM controller is very uncertain. When the BGMM
control policy is a GMM, the fusion or PoE is defined
as the product of a GMM and a MVN, which results in
another GMM policy. As an illustrative example, consider
a 2D reaching task in a cluttered environment. Fig. 2a
displays the initial demonstrations starting from different
initial positions (cross) to reach goal position (G). We choose
5 different random test initial positions and reproduce the
trajectories by sampling from a BGMM model and a PoE
model. The resulting trajectories are shown in Fig. 2b and 2c,
respectively. Even though the trajectories are more stable in
2c (notice that some of the trajectories in 2b diverge), the task
cannot be accomplished without colliding with the obstacles.
In this case, supplementary demonstrations are necessary,
and active learning permits to collect them in an informed
way.

IV. ACTIVE LEARNING WITH BAYESIAN
GAUSSIAN MIXTURE MODEL

Control policies are defined as the probability distribution
of control commands or actions u given the state x, denoted
as p(u|x). They encode the demonstration trajectories along
with the dynamics information of the controlled system. As
described in Section III-A, we impose a BGMM model struc-
ture for the control policy and estimate the parameters of the
predictive conditional distribution from the demonstrations.

In this section, we present the proposed active learning of
control policies approach. First, a cost function is defined
using the epistemic uncertainties in the BGMM control
policy and optimized while considering a soft constraint to be
on the desired region of the state-space. The robot then asks
for a new demonstration around the query point found by
the optimization process. The data of the new demonstration
is added to the previous dataset and the BGMM parameters
are updated. The robot iterates this process until it reaches a
predefined percentage of uncertainty reduction.

In order to build the active learning cost function, the co-
variance matrices of the control policy must be decomposed
into its aleatoric and epistemic parts (Section IV-A). Then,
we deploy Rényi entropy to calculate epistemic uncertainties
in closed-form (Section IV-B). The complete formulation of
the resulting cost is presented in Section IV-C.

A. Uncertainty decomposition

The uncertainty in the posterior distribution of the BGMM
model encodes the variations in the demonstrations, called
aleatoric uncertainty, along with the epistemic uncertainty,



(a) Initial demonstrations

(b) Policy samples from BGMM (c) Policy samples from PoE

Fig. 2: (a) Demonstrations and (b)-(c) reproductions of a
reaching task in a cluttered environment. The goal position
is denoted by G and the obstacles are represented as dashed
rectangles. The demonstrated trajectories are depicted with
red lines. The policy samples acquired from the BGMM and
PoE are depicted by colored lines.

measuring the lack of knowledge of the model. These
different uncertainty modalities are depicted in Fig. 3 for
our illustrative example. In active learning, we are interested
in increasing the knowledge of the model, by providing
demonstrations around interesting regions of the input space.

In BGMM model, the covariance matrix of the conditional
posterior predictive distribution of (11) can be decomposed
into aleatoric and epistemic parts as

L
o|i
k = Lal

k +Lep
k , (12)

where

Lal
k =

νk

ν
o|i
k

Ls, (13)

Lep
k =

(x̂i−mi
k)>Liik

−1
(x̂i−mi

k)

ν
o|i
k

Ls. (14)

Notice that the aleatoric uncertainty does not depend on the
input point x̂i, while the epistemic uncertainty is a quadratic
function of x̂i. The former represents the variability and
the noise in the demonstrations and the latter encodes the
uncertainty caused by finite data. In robotics, both types
of uncertainty are important to capture, i.e. the variations
of the demonstrations and the uncertainty in the model,

for applications such as compliance adaptation and active
learning.

B. Rényi entropy of the posterior distribution

When the posterior distribution p(u|x) is a multivariate
GMM (or can be approximated by one), the information-
theoretical Shannon entropy does not admit an analytical
form. In order to avoid a significant amount of computational
burden for the minimization of active learning cost, we
use instead the quadratic Rényi entropy, which admits a
differentiable closed form for GMMs [18]. Another reason
is that it is very close to Shannon entropy value as will be
detailed below.

A random variable U from a multivariate t-distribution
U ∼ tν(u|µ(x),Σ(x)) can be approximated by a multi-
variate normal distribution with mean µ̃(x) and covariance
Σ̃(x) using moment-matching method, so that

µ̃(x) = µ(x), Σ̃(x) =
ν

ν−2
Σ(x).

This approximation can be extended to mixtures using the
same mixing coefficients. The Rényi entropy of order α
is defined as Hα(p) = 1

1−α log
∫
pα(x)dx with α > 0

and α 6= 1. In the limit case where α → 1, the Rényi
entropy is equivalent to the Shannon entropy defined as
Hα(p) = −

∫
p(x)logp(x)dx. In this paper, we propose to

use quadratic Rényi entropy defined as

H2(p(u|x)) = −log
∫
p2(u|x)du,

since it admits a closed-form expression for GMMs. Note
that the Rényi entropy is a non-increasing function of α, so
that H1(·) > H2(·). In an active learning framework, the en-
tropy can be used as an uncertainty measure to minimize by
searching for the queries that have high entropy values. Even
though the Shannon entropy is usually used in information
theory, maximizing the quadratic Rényi entropy is equivalent
to maximizing a lower bound of the Shannon entropy, which
would also maximize it suboptimally. The quadratic Rényi
entropy for a posterior distribution represented as a GMM
p(u|x) =

∑K
k=1 πk(x)N (µk(x),Σk(x)) can be expressed

as [18]

H2(p(u|x)) = − log

K∑
i=1

K∑
j=1

πi(x)πj(x)e∆ij(x), (15)

where

∆ij =
1

2

(
µijΣ

−1
ij µij−(µ>

i Σ−1
i µi+µ

>
j Σ−1

j µj)

−log
|Σ−1

i +Σ−1
j |

|Σ−1
i ||Σ

−1
j |
−d log 2π

)
(16)

for the ith and jth components of a GMM, with Σij =
(Σ−1

i +Σ−1
j )−1 and µij = Σij(Σ

−1
i µi+Σ−1

j µj).
Fig. 3 depicts (a) the total, (b) aleatoric and (c) epistemic

uncertainties computed via the quadratic Rényi entropy of
the BGMM model of our illustrative example (Fig. 2a).
Yellow and purple colors depict high and low uncertainties,



respectively. Note that the uncertainty of the aleatoric model
stays constant as we move away from known data, while
it increases in epistemic model. As the epistemic model
describes unseen regions, it must be used for an efficient
search in the state-space.

C. Information-density cost for active learning

Following a similar approach to information weighted
technique described in Section II, we constrain the optimiza-
tion space by adding a similarity function that measures the
closeness to a region of space where we want to improve
our model. In this work, we represent this region as a
probabilistic density function (pdf). Note that, even though
the region of interest may often be represented as a uniform
distribution, one may want to favor some parts of this region
compared to others using other distributions. Therefore, we
can solve the following optimization problem

argmin
x
−H2(p(u|x))−β log psim(x), (17)

with the epistemic cost in closed-form, to find the next
query point x, where β is a variable weighing the relative
importance of the costs. In practice, uniform distributions
will result in negative infinity log probabilities in the out-
side regions and will not have a defined gradient at the
border. Therefore, we approximate the uniform distribution
by an MVN using the same mean and diagonal covariance
matrix to alleviate this issue. Another problem with the
optimization of Eq. (17) is the existence of flat regions
from which the optimization cannot escape. To overcome
this problem, we propose to approximate the epistemic cost
in Eq. (17) as a GMM with a variational distribution q(x) =∑K
k=1 πkN (x|µk,Λ−1

k ) to represent all the regions where
epistemic uncertainty is high, using reverse KL divergence
as in

argmin
x

KL
(
q(x)||H2(p(u|x))+β log psim(x)

)
. (18)

Note that one can also augment the epistemic cost defined in
Eq. (17) with other costs (see robotic experiment in Section
V.B.), so that q(x) can represent a more constrained space
(e.g. being away from an undesirable region). We can obtain
the next query point either by sampling from q(x) or by
taking the mean of one of the components. As we add
more demonstrations and improve our model using this query
point, the optimization in Eq. (18) can be initialized with
the parameters of the previous q(x), which would increase
convergence speed. We expect a decrease of entropy in q(x)
at each iteration of active learning. This gives us a natural
way of monitoring the uncertainty reduction.

Fig. 3d shows the information density colormap favoring
to be inside of the figure frame where we want to generalize
our model. It also shows the GMM contour ellipses (with 1
standard deviation) which approximate the high information-
density regions (yellow). The transparency reflects the mix-
ing coefficient of the GMM. We can observe that the highly
uncertain regions are well approximated.

V. EXPERIMENTS

A. Illustrative reaching task

We use the proposed active learning framework to gather
iteratively 10 more demonstrations for our illustrative 2D
reaching task. At each step, the model informs the teacher
on the next query point, given by the mean of the GMM com-
ponent with the highest mixing coefficient (corresponding to
the highest uncertainty). As any sample from that component
can be used as a next query point, the closest feasible position
to the mean can be chosen if the mean does not correspond
to a feasible location, e.g. if it collides with the obstacles.

Note that we are interested in reducing the epistemic
uncertainties in the conditional model, which is a function
of the input point as in (14). In order to define an entropy
reduction, we need a measure that does not depend on the
input point. We can thus measure how much the entropy
changes via the GMM model which approximates highly
uncertain regions. Fig. 4a-(top) shows the evolution of the
quadratic Rényi entropy of the GMM model across the active
learning iterations. Red crosses show the current entropy
values, whereas the black curve is 2D polynomial fit to these
values. We can observe that the entropy of the GMM is
reduced until there is no component left which can specialize
in certain regions with small covariance (small covariance
means low entropy). After 6 iterations, the entropy starts to
increase as the components are more diffused with bigger
covariance matrices. We generally observed that the entropy
of the GMM behaves similarly to the black curve in Fig. 4a-
(top). The evolution of the entropy of the marginal model
p(x) is represented in Fig. 4b-(top). As expected, the entropy
of the marginal model decreases with the quantity of data.
Therefore, it results in no explicit method to infer the
convergence of the learning process. In contrast, with our
GMM model, one can argue that the system has learned a
significant percentage of the unseen regions after 6 iterations.

We conducted 5 more experiments performing active
learning where new random demonstrations are provided
for 5 iterations. The mean and standard deviation of 5
experiments at each iteration are shown in Fig. 4a-(bottom)
for the GMM model and in Fig. 4b-(bottom) for the marginal
model. This demonstrates that the random exploration is not
guaranteed to reduce the epistemic uncertainties, even in the
marginal model.

The resulting reproductions from the chosen random initial
test positions using samples from the updated BGMM and
PoE policies are shown in Fig. 5a and Fig. 5b, respectively.
We observe that both policies successfully avoid all the
obstacles in the average, while using PoE framework results
in a more stable system. The query points of each iteration of
active learning are also labelled in Fig. 5a. We observe that
these query points are rather intuitive, as they correspond to
locations that could be chosen by a human to better teach the
task to the robot. In contrast, informative query points may
be very difficult to choose in other cases where the query
space is not easily interpretable.



Fig. 3: Uncertainty colormaps of the learned control policy for a reaching task in a cluttered environment. (a), (b) and (c)
show the total, aleatoric and epistemic uncertainties of the BGMM, respectively. High to low uncertainties are depicted by
colors ranging from yellow to purple. (d) depicts the information-density cost and the Gaussian components of the GMM
model approximating this cost.

Fig. 4: Evolution of the quadratic Rényi entropy of (a) the
GMM model that approximates highly uncertain regions and
(b) the marginal BGMM model. Top figures represent the
evolution for the proposed active learning, while the error
bars in bottom figures show the mean and the standard
deviation of 5 different random exploration for 5 iterations.

(a) Policy samples from BGMM (b) Policy samples from PoE

Fig. 5: Reproductions of the learned policy after 10 iterations
of active learning. The numbers on (a) denotes the location
of the query point at each iteration of active learning.

B. Robot Experiment

We investigate the reaching in a cluttered environment task
shown in Figure 1 within our active learning framework.
The main challenge of this task is to place the cup inside
the white box without colliding with the environment and
without pouring the cup. The robot can place the cup from
any open side of the box, as long as the cup is inside.
Planning methods can be applied to find a joint configuration
trajectory starting from a given initial configuration of the
robot without colliding with the environment, given the size
and positions of the obstacles. However, learning control
policies using BGMM offers the advantage of sampling the
next state much faster than standard planning methods. It also
provides a formal way of improving the planned trajectory
using active learning framework proposed in this paper. For
the improvement of the learned policy, it is difficult for the
teacher to choose informative joint configurations intuitively
as the demonstrations can take place starting from many
different end-effector positions, which correspond to many
more joint configurations. Our goal in this experiment is to
show that our method provides “intuitive” and informative
query points in the joint space of the robot.

We first demonstrate the reaching task from 11 different
initial configurations and learn our control policy. Note that
the demonstrations are taken from each side of the box,
where it was easy to perform kinesthetic teaching. The initial
configurations of the demonstrations are depicted in Figure
6 (left).

To improve the model, one need to start from a rather
different and informative initial configuration of the arm,
which is not easy. Note that the robot has to maintain upright
position of the cup to place it inside the box without pouring
it and without colliding with the environment. That is why
the search space we are interested in is constrained such that
we add 2 more cost functions to Eq. (17) in the form of
probability distributions: i) a cost to keep orientation with
respect to x-y axis of the robot base fixed and ii) a cost to
be within the joint limit range of the robot as



Fig. 6: (Left) Initial configurations of the demonstrations,
(Right) Requested initial configurations for demonstration

p(x) = H2(p(u|x))+βflimits(x)+α log pupright(x)

where flimits(·) is typically the sum of lognormal cumula-
tive distribution functions representing inequality functions
which represent the joint limits and pupright(·) is a normal
distribution on the quaternion describing upright orientation
in the manifold.

We approximate this cost by a GMM of 10 components
minimizing KL divergence between q(x) and q(x) as in
Eq. 18. The resulting query configurations (samples from
GMM) are given in Figure 6 (right). We can see that our
GMM could in fact approximate highly uncertain and unseen
configurations of the robot as it requests demonstrations
around these regions. These configurations are also within
the joints range of the robot, and maintain approximately a
fixed x-y axis orientation so that the robot will keep the
cup upright, without pouring. Although showing that the
usefulness of encoding aleatoric uncertainties here is out of
scope of this paper, it has been exploited in the previous work
in [9]. Since the aperture size of the sides are big enough, one
can imagine exploiting high variations in the demonstrations
while the end-effector enters one side of the box. The learned
model would create compliant control commands in these
areas which would help the teacher to correct the robot
movement during a failing execution. Note that GPR could
not encode aleatoric uncertainties.

VI. CONCLUSION

This paper presented a novel active learning framework
allowing a robot to ask for informative new demonstrations.
The presented framework is based on an information-density
cost built from a representation of the epistemic uncertainties
of a BGMM model. A closed-form cost solution for GMMs
can be obtained thanks to the properties of the quadratic
Rényi entropy. New query points can then be efficiently
obtained by maximizing a GMM approximation of the pro-
posed active learning cost. Our experiments showcase that
our approach allows a robot to improve its representation of a
task, as well as its corresponding generalization capabilities.

The model in our work can assess the uncertainty of the
control command given the current state. However, in many
application in robotics, it is necessary to propagate these
uncertainties to determine the uncertainty on the whole tra-
jectory. Future work should focus on either how to propagate
uncertainties in the state-action policies, or on extending it to
trajectory policies. Another future work consists in extending
our results to theoretically determine a threshold to stop
the learning process, which in turn would be useful for
determining a sufficient number of demonstrations so that
the model can generalize the fastest in the desired space.
We believe that the framework can then be used to answer
two of the main questions of LfD, which are i) Where to
give demonstrations? and i) How many demonstrations are
required?.
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