Supplemental Materials Online

Shechter et al.,

Supplemental Materials and Methods

Quantification of TMPs

TMP quantification was performed using flow cytometry by calculating the ratio between 7.35 μ m counting beads (Calbiochem) and the number of events collected in the TMP gate (approximately 0.6–0.9 μ m) as previously described [1, 2]. Briefly, TMPs were acquired by Cyan flow cytometry using 3 lasers- 405nm, 488nm and 635nm wavelengths. The 488nm laser was set for the scattering measurements. The voltage for forward scatter was set to 500-600V and the side scatter to 400-500V. The forward and side scatter axes were on logarithmic scale. The minimal threshold was set. We used 0.78 μ m beads for gating on TMPs size. The pellet of TMPs was resuspended in 300 μ l PBS, and 10 μ l sample was added to 200 μ l PBS along with 30 μ l of 7.34 μ m beads. The number of ECVs was calculated using the following equation: Number of tEVs/ $\frac{Number of beads counted}{Number of total beads}$ /10= TMPs concentration. All in vitro and in vivo experiments involving TMPs count was based on the flow cytometry analysis.

Quantification and measurement of TMPs by Nanosight NS300 (Malvern,UK) was performed as previously described [3]. All TMPs pellets were diluted in PBS to a final volume of 1 ml in order to reach ideal particle presentation in a frame (20–100 particles/frame). The following settings were used according to the manufacturer's software manual (NanoSight NS300 UserManual, MAN0541-01-EN-00, 2017). Camera level was set until all TMPs were visible avoiding oversaturation of more than 20% (all TMPs were set to camera level 12). Autofocus was adjusted to avoid indistinct TMPs. The detection threshold was set to include as many particles as possible. For each TMP measurement, three videos were captured. Capture settings were used as follows: Camera: sCMOS; Laser: 45mW at 488nm; Cell temperature: 26.3°C; Viscosity: (Water) 0.9 cP; Syringe speed: 20 µl/s; Camera Level: 12; Slider Shutter: 1200; Slider Gain: 146; FPS 18.7; Number of Frames: 1124. Following image capture, the videos were analyzed by the NanoSight Software NTA 3.2 Dev Build 3.2.16 with a detection threshold of 5. The number of completed tracks in NTA measurements was always greater than the proposed minimum of 1000 in order to minimize data skewing based on single large particles. All experiments were carried out in at least triplicates.

Modified Boyden chamber assay

1

The invasion properties of MDA-MB-231 cells pre-exposed to different TMP conditions were evaluated in Matrigel coated Boyden chambers as previously described [4]. Briefly, serum-starved MDA-MB-231 cells (2x10⁵ cells in 200 µl medium) were exposed for 24 hours to 100,000 TMPs obtained from untreated or PTX-treated MDA-MB-231 cells, or from untreated or PTX-treated LM2-4 cells. In some experiments, TMPs were cultured with MDA-MB-231 cells for 24 hours in serum-free medium in the presence of Annexin V (0.5µg/ml) or anti-CD44 antibodies (1µg/ml) The cells were rigorously washed in PBS (100 fold volume), and then seeded on Matrigel coated 8 µm filters (BD Biosciences, USA). The lower compartment was filled with DMEM supplemented with 5% FCS. After 6 hours, cells that migrated to the bottom filter were stained with 0.1% Crystal violet and counted under an inverted microscope (Leica DMIL LED) per x100 objective-field. Of note, controls consisting samples without TMPs and with antibody-treated cells following rigorous washing as well as samples without TMPs with antibody-treated cells without washing were used to ensure the removal of excess antibody from the samples (data not shown). All experiments were performed in triplicate.

Cell viability AlamarBlue[™] assay

The metabolic indicator dye AlamarBlue[™] (Serotec Ltd., Oxford, UK) was used to determine cell viability, as previously described [5]. Briefly, MDA-MB-231 cells that had been pre-incubated with 100,000 TMPs were seeded into a 96-well plate (500-1000 cells/well) in their designated medium supplemented with 10% AlamarBlue (AB) solution. Absorbance was acquired daily with an ELISA reader (TECAN infinite M200Pro, Switzerland). The percentage of AlamarBlue reduction was calculated using an appropriate equation, as instructed by the manufacturer. Results were corrected to background values of negative controls. All experiments were performed in triplicate.

Ex vivo pulmonary metastasis assay

Ex-vivo pulmonary metastasis assay (PuMA) was performed as previously described [6, 7]. Briefly, MDA-MB-231-GFP+ cells (2.5×10^4) were cultured with 100,000 TMPs for 24h. Subsequently, the cells were washed extensively in PBS and then injected into the tail vein of 8-week old SCID mice (2.5×10^5 cells per mouse). Twenty minutes later, mice were anesthetized, and lungs were perfused with PBS. Next, the trachea was cannulated with a 21G intravenous catheter and attached to a gravity perfusion apparatus. The lungs were filled with heated agarose medium solution containing M-199 media (x2), 7.5% sodium bicarbonate, 0.2 µg/ml hydrocortisone, 2.0 µg/ml

bovine insulin, 200 U/ml penicillin/streptomycin and 1% agarose at a ratio of 1:1, agarose to medium (w/v). The lungs were removed and placed in cold PBS. Transverse 1-2mm thick serial sections were sliced with a scalpel. Each section was incubated on Matrigel covered plates for 7 days at 37°C in 5% RPMI. The lung slices were analyzed for GFP+ cells using Olympus MVX109 fluorescence stereo microscope. In addition, a portion of the lungs was prepared as a single cell suspension and the number of GFP+ cells was quantified by flow cytometry, as previously described [8].

References

1. Fremder, E.; Munster, M.; Aharon, A.; Miller, V.; Gingis-Velitski, S.; Voloshin, T.; Alishekevitz, D.; Bril, R.; Scherer, S. J.; Loven, D.; Brenner, B.; Shaked, Y., Tumor-derived microparticles induce bone marrow-derived cell mobilization and tumor homing: a process regulated by osteopontin. *International journal of cancer. Journal international du cancer* **2014**, *135* (2), 270-81.

2. Timaner, M.; Kotsofruk, R.; Raviv, Z.; Magidey, K.; Shechter, D.; Kan, T.; Nevelsky, A.; Daniel, S.; de Vries, E. G. E.; Zhang, T.; Kaidar-Person, O.; Kerbel, R. S.; Shaked, Y., Microparticles from tumors exposed to radiation promote immune evasion in part by PD-L1. *Oncogene* **2019**.

3. Bachurski, D.; Schuldner, M.; Nguyen, P. H.; Malz, A.; Reiners, K. S.; Grenzi, P. C.; Babatz, F.; Schauss, A. C.; Hansen, H. P.; Hallek, M.; Pogge von Strandmann, E., Extracellular vesicle measurements with nanoparticle tracking analysis - An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. *J Extracell Vesicles* **2019**, *8* (1), 1596016.

4. Gingis-Velitski, S.; Loven, D.; Benayoun, L.; Munster, M.; Bril, R.; Voloshin, T.; Alishekevitz, D.; Bertolini, F.; Shaked, Y., Host response to short-term, single-agent chemotherapy induces matrix metalloproteinase-9 expression and accelerates metastasis in mice. *Cancer Res* **2011**, *71* (22), 6986-96.

5. Voloshin, T.; Gingis-Velitski, S.; Bril, R.; Benayoun, L.; Munster, M.; Milsom, C.; Man, S.; Kerbel, R. S.; Shaked, Y., G-CSF supplementation with chemotherapy can promote revascularization and subsequent tumor regrowth: prevention by a CXCR4 antagonist. *Blood* **2011**, *118* (12), 3426-3435.

6. Mendoza, A.; Hong, S. H.; Osborne, T.; Khan, M. A.; Campbell, K.; Briggs, J.; Eleswarapu, A.; Buquo, L.; Ren, L.; Hewitt, S. M.; Dakir el, H.; Garfield, S.; Walker, R.; Merlino, G.; Green, J. E.; Hunter, K. W.; Wakefield, L. M.; Khanna, C., Modeling metastasis biology and therapy in real time in the mouse lung. *J Clin Invest* **2010**, *120* (8), 2979-88.

7. Rachman-Tzemah, C.; Zaffryar-Eilot, S.; Grossman, M.; Ribero, D.; Timaner, M.; Maki, J. M.; Myllyharju, J.; Bertolini, F.; Hershkovitz, D.; Sagi, I.; Hasson, P.; Shaked, Y., Blocking Surgically Induced Lysyl Oxidase Activity Reduces the Risk of Lung Metastases. *Cell reports* **2017**, *19* (4), 774-784.

8. Timaner, M.; Beyar-Katz, O.; Shaked, Y., Analysis of the Stromal Cellular Components of the Solid Tumor Microenvironment Using Flow Cytometry. *Curr Protoc Cell Biol* **2016**, *70*, 19 18 1-19 18 12.

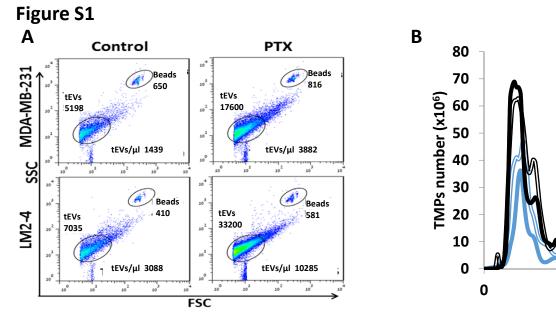

Supplemental Figures

Figure S1: The extraction of TMP from high and low metastatic cells. MDA-MB-231 or LM2-4 cells were cultured for 48 hours in the presence of 200 nM paclitaxel (PTX) or vehicle control (n=3 biological repeats/group). (A-E) TMPs were collected from the cultures and quantified by flow cytometry (A, C) and NanoSight analysis to determine their size (B, D). *Differences from control group - *p<0.05; #differences between control and PTX of the same group - #p<0.01, as assessed by One Way ANOVA followed by Tukey post-hoc test.

Figure S2: TMP does not affect cell proliferation. TMPs were collected from MDA-MB-231 or LM2-4 cells which had been cultured for 48 hours in the presence of 200 nM paclitaxel (PTX) or vehicle control. The TMPs from the different groups were then cultured with MDA-MB-231 cells for 24 hours. As a control, MDA-MB-231 cells were cultured alone in serum-free medium (SF). Cell viability was assessed over 72 hours using Alamar Blue assay. n=5 repeats/group.

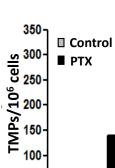

Figure S3: TMPs expressing CD44 affect tumor cell invasion. (A-B) TMPs were collected from MDA-MB-231 or LM2-4 cells which had been cultured for 48 hours in the presence of 200 nM paclitaxel (PTX) or vehicle control. The TMPs from the different groups were incubated with anti-CD44 (5µg/ml) or control IgG for 24 hours, and subsequently rigorously washed. TMPs were then added to MDA-MB-231 cultures for 24 hours. As a control, MDA-MB-231 cells were cultured alone in serum-free medium (SF). The cells were seeded into Boyden chambers to assess invasion properties. Representative images of invading cells are shown in (A). Scale bar 200 µm. Quantification of invading cells is shown in (B). n= 5 repeats/group and 7 fields/repeat. (C-D) TMPs collected from 4T1 cells were incubated with anti-CD44 (5µg/ml) or control IgG for 24 hours, and subsequently rigorously washed. TMPs were then added to 67NR cultures for 24 hours. As a control, 67NR cells were cultured alone in serum-free medium (SF). The cells were seeded into Boyden chambers to assess invasion properties. Representative images of invading cells are shown (C). Scale bar 200 μm. The quantification of cell coverage is presented (D). *differences between TMPs treated cells and SF. n=5 repeats/group and 5 frame/repeat. ***, p<0.001, #differences between IgG and anti-CD44, #p<0.05, as assessed by One Way ANOVA followed by Tukey post-hoc test.

Figure S4: CD44-depleted TMPs do not induce metastatic properties in recipient cells. (A) The expression levels of CD44 in LM2-4 clones stably expressing CD44 shRNA (clone 1 and 2) or a scrambled control sequence were assessed by flow cytometry. (B-D) TMPs were harvested from LM2-4 clones stably expressing CD44 shRNA (clone 1 and 2) or a scrambled control sequence. TMPs from the 3 groups were cultured with MDA-MB-231 cells for 24 hours on fibronectin-coated plates. Cells were fixed, immunostained with anti-vinculin antibodies (green) and analyzed by confocal microscopy to assess focal adhesion plaques. Representative images are shown (left panel) and x16 zoom micrographs (right panel). White arrows point at focal adhesion plaques. Scale bar 20 μ m (B). The number of focal adhesions per cell was quantified (C). Cell area was calculated (D). n=10-11 fields/group. (E) Fixed cells from a parallel experiment were stained with phalloidin (green) to assess actin filament structure. Representative images are shown (left panel) and x16 zoom micrographs (right panel). Scale bar 20 μ m. n=5 fields/group. *differences compared to scrambled, *, p<0.05; **, p<0.01; ***, p<0.001 as assessed by One Way ANOVA followed by Tukey post-hoc test.

#

LM2-4

50-0#

MDA-MB-231

С

D

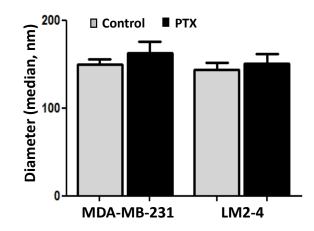
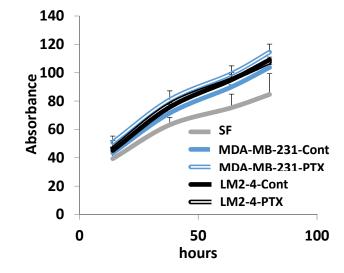
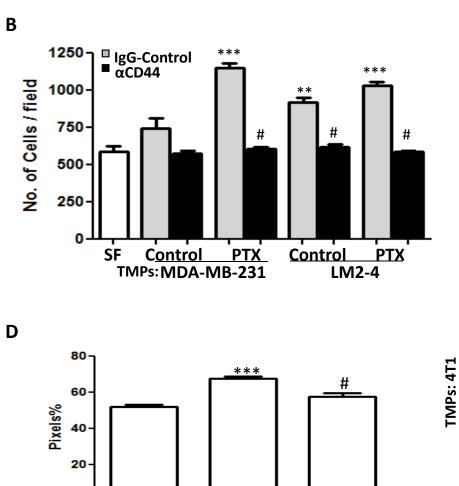
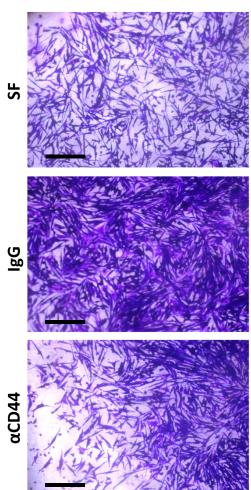
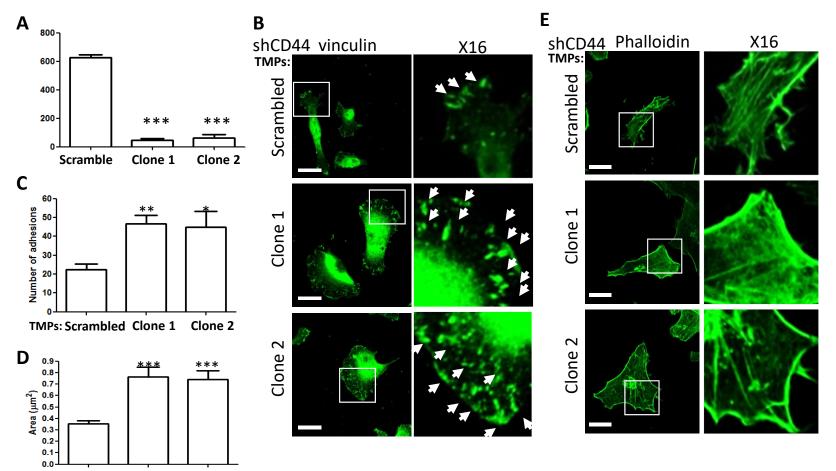




Figure S2

<u>lgG</u> TMPs: <u>αCD44</u>


4T1

0


ŚF

С

67NR cells

TMPs: Scrambled Clone 1 Clone 2