[gloo: Soundly Linking Compositional Refinement
and Separation Logic for Distributed System
Verification (Artifact)

Christoph Sprenger, Tobias Klenze, Marco Eilers, Felix Wolf,
Peter Miiller, Martin Clochard and David Basin

August 9, 2020

1 Getting Started

The artifact is a VirtualBox VM image that contains our proofs and case
studies as well as the tools needed to check them (Isabelle 2020, VeriFast
19.12 and the most recent version of Nagini (commit 31030c1)). To run it,
simply import it into an up-to-date version of VirtualBox (we tested with
version 6.1.10) that has the VirtualBox extension pack installed. It uses
4GB of RAM and four logical cores by default; you may need to adjust
these values if they are too high for your system.

The image contains an installation of Ubuntu 20.04. Both the user name
and the password are “igloo”.

Isabelle, VeriFast and Nagini are all installed; to run them, open a termi-
nal and execute, respectively, “/home/igloo/Isabelle2020/Isabelle2020” (for
the Isabelle GUI), “isabelle” (for the Isabelle command line tool), “verifast”
(for the VeriFast command line tool), or “nagini” (for the Nagini command
line tool).

For a quick check to ensure that the setup works, you can for example
try the following three steps:

1. Isabelle: Start the Isabelle GUI by running “ /Isabelle2020/Isabelle2020”
from a terminal and open the file igloo-isabelle/Igloo.thy

2. VeriFast: Run

cd igloo-java/leader-election-concurrent
verifast -allow_assume -c src/impl/Leader.jarsrc

in a terminal

3. Nagini: Run the following commands from a terminal:



cd igloo-python/leader-election

cd leader-election-python-verification
MYPYPATH=leader/stubs nagini --ignore-obligations
< leader/election.py

The first step will lead to Isabelle checking proofs for a while. The third
step will take ca. a minute depending on your system.

2 Artifact Overview

The submitted version of our paper can be found on the desktop.
Our formalization and the case studies are located in the following three
subdirectories of the “igloo” user’s home directory:

e igloo-isabelle: Contains the formalization of our framework and the
Isabelle/HOL part of our three case studies (in the subdirectory “case-
studies”).

o igloo-java: Contains the Java implementations (with proof annota-
tions) of our three case studies.

o igloo-python: Contains the Python implementations (with proof an-
notations) of the first and third case study.

In the remainder of this document, all paths are relative to the home
directory unless specified otherwise.

3 Claims
To summarize, our artifact supports the following claims made in the paper:

1. The Igloo framework and all theorems from the paper are formalized
and checked in Isabelle. See Sec. 4.1.

2. We have implemented the Leader Election case study described in the
paper. In particular,

e We have proved correctness of an abstract model of the leader
election and then refined it according to the Igloo methodology,
resulting in an 1/O specification. See Sec. 4.2.1.

e We have a sequential and a concurrent Java implementation of
the leader election, proved correct w.r.t. the I/O specification
with VeriFast. See Sec. 4.2.2.

e We have a sequential Python implementation, proved correct
w.r.t. the I/O specification with Nagini. See Sec. 4.2.3.



e The Java implementations and the Python implementation are
compatible with each other. See Sec. 4.2.4.

o The proofs in the different tools are linked via the common I/O
specification; the specification used to verify the code is manually
translated from the I/O specification defined in Isabelle. See
Sec. 4.2.5.

3. We have implemented the Primary Backup case study described in the
paper. In particular,

¢ We have proved correctness of an abstract model and then refined
it according to the Igloo methodology, resulting in I/O specifica-
tions for server and client. See Sec. 4.3.1.

e« We have a Java implementation of the primary backup with a
sequential client and a concurrent server, proved correct w.r.t.
the I/0 specification with VeriFast. See Sec. 4.3.2.

e As before, the specifications used to verify the code is a man-
ual translation of the I/O specification defined in Isabelle. See
Sec. 4.3.3.

4. We have implemented the Authentication case study described in the
paper. In particular,

e We have proved correctness of an abstract model and then refined
it according to the Igloo methodology, resulting in I/O specifica-
tions for initiator and responder. See Sec. 4.4.1.

o We have a sequential Java implementation of initiator and respon-
der, proved correct w.r.t. their I/O specification with VeriFast.
See Sec. 4.4.2.

e We have a sequential Python implementation of initiator and re-
sponder, proved correct w.r.t. the I/O specification with Nagini.
See Sec. 4.4.3.

e As before, the specifications used to verify the code is a man-
ual translation of the I/O specification defined in Isabelle. See
Sec. 4.4.4.

We are not aware of any major claims made in the paper that are not
supported by the artifact.

4 Step by Step Instructions

4.1 Isabelle Formalization of the Igloo Framework

The files document.pdf and outline.pdf in the 'generated’ directory contain
our formalization with and without proofs, respectively, as single PDF doc-



uments. A more convenient, and interactive way of browsing theories is to
use the Isabelle GUIL.
Isabelle/HOL has two main executables:

Isabelle2020: This starts the default Isabelle GUI (based on jEdit).
It is the most convenient way of browsing the theories, as it allows
inspecting the proof state and using Control+4Click to jump to defini-
tions and lemmas.

isabelle: This is a command line tool. You may also build the logic
images corresponding to the main session by typing “isabelle build -v
-b -D 7 in the igloo-isabelle directory. Running this tool also shows
the successful verification of our proofs. See also ROOT file.

Loading the theory Igloo.thy into Isabelle2020 will load the entire formal-
ization (excluding the case studies). This theory file also lists all lemmas of
the paper, and their corresponding formalizations in Isabelle. Do Ctrl-Click
on one of the "thm" statements to jump to the file containing the proof.

Page 7 of generated/outline.pdf shows the dependency graph of the
different Isabelle theories that we have developed (Pure, HOL and HOL-
Library belong to the Isabelle package and are not developed by us; the
three most abstract models of the authentication case study and some of
their dependencies are adapted from an earlier paper). We now give a brief
description of the theories, grouped into four categories:

Event Systems and infrastructure:

Event_ Systems: defines event systems as labeled transition systems,
defines simulation relation and shows its soundness by proving that
simulation implies trace inclusion.

ENat: defines extended natural numbers (nats with infinity)
EMultiset: defines multisets based on extended natural numbers

Preliminaries: defines I/O actions, typing restriction, and I/O-guarded
event systems

From Monolithic Event Systems to Components:

Composition: defines composition of two event systems, and composi-
tion of two traces sets via product, restriction and relabel operators.
Soundness of event system composition is shown w.r.t. trace compo-
sition.

Decomposition: contains lemmas to relate a monolithic system with
its decomposition, given as components and an environment.



e Interleaving: defines the interleaving composition of both pairs of event
systems and event system families (i.e., parametrized event system)
and shows trace equivalence with a single event system that simulates
all components.

e Event_ Composition: defines a new datatype events that distinguishes
between internal events, and "real" IO events. Only the latter syn-
chronize with the environment. The use of this theory is optional, and
only the Primary-backup case study uses it.

From Components to I/O Processes:

o IO_ Processes: defines I/O process codatatype, derives various choice
operators over countable sets, defines operational semantics of pro-
cesses and shows its properties.

o Event_ Systems_into_IO_ Processes: defines the actual embedding of
I/O-guarded event systems into processes and shows that the event
system is trace equivalent to the traces produced by the embedded
process’ operational semantics.

From I/O Processes to I/O Separation Logic:

e IO _Separation_Logic: defines syntax and semantics of separation
logic I/O assertions, heap transitions, and traces of assertions.

o I0_Processes_into_IO_Separation_Logic: defines embedding of I/O
processes into 1/O separation logic, and canonical models

o I0_ Behavior: shows the triple trace inclusion of I/O processes, their
canonical heap models, and their embedding into I/O separation logic.

4.2 Leader Election Case Study

The leader election development is our first case study. As described in
the paper, it consists of a model of the entire system defined in Isabelle,
which we refine down to an I/O specification for a single node according to
our methodology. We then have two Java implementations (one sequential,
one concurrent) and one sequential Python implementation that have been
verified to fulfill this specification using VeriFast and Nagini, respectively.

4.2.1 Inspecting and Checking the Isabelle Formalization

Loading the theory Leader_ Election_ 4.thy from directory igloo-isabelle/case-
studies/leader-election into Isabelle/HOL 2020 will load the entire case study,
since it contains the most concrete formalism present in Isabelle — the I/O
specification of Step 5.



As described in the paper, the abstract models are refined down to com-
ponent I/O specifications in Isabelle/HOL. We shortly describe the files in
igloo-isabelle/case-studies/leader-election:

o Leader_Election_0: Abstract model tr0. Specifies the problem, but
not the protocol to solve it.

e Ring network: defines the ring network topology that we assume.

e Leader Election 1: Protocol model trl. Most abstract model that
implements the protocol. Refines tr0.

e Leader Election 2: Protocol model tr2. Introduces internal buffers
ibuf and obuf. Refines trl.

e Leader_ FElection_ 3: Interface model tr3. Decomposition into system
tr3s and environment tr3e and decomposition of system to individual
components that are expressed as I/O-guarded event systems. tr3 is
bisimilar to tr2. We show that the (re-composed and global) model
tr3 satisfies the requirements (lemma tr3_satisfies_ property).

o Leader_Election_4: We embed a system component tr3s (parametrized
by the index parameter) into a process, and the process into I/O sepa-
ration logic. In lemma trace_equivalence tr3ds_IOspec we show them
to be trace equivalent. Finally, we unfold this I/O specification; this
is shown in lemma P_ unfolding.

The formalization is described in detail in the third chapter of the out-
line.pdf in igloo-isabelle/generated.

4.2.2 Inspecting, Verifying and Executing the Java Implementa-
tions

The Java implementations can be found in igloo-java/leader-election-sequential
and igloo-java/leader-election-concurrent.

The structure of both Java implementations of the leader election is as
follows:

e Leader.java: Implementation of the leader election, along with specifi-
cation: Declaration of state type, internal 1/O operations, I/O contract
and initial state

e UDPSocketHelper.java: Trusted implementation of wrapper around
socket library

o UDPSocketHelper.javaspec: Specification for UDPSocketHelper.java,
declaration of socket I/O operations, message type definition



e java.net.javaspec: Stub file for used libraries
e java.nio.javaspec: Stub file for used libraries

o verifast.javaspec: Definition of (I/O) specification primitives (places,
tokens, bigstar), datatypes (sets)

To re-verify the implementations, execute the following commands from
igloo-java:

verifast -allow_assume -c
— leader-election-sequential/src/impl/Leader.jarsrc

and

verifast -allow_assume -c
<~ leader-election-concurrent/src/impl/Leader.jarsrc

To compile and execute the sequential Java implementation, execute the
following commands from igloo-java/leader-election

cd leader-election-sequential/src
javac impl/*.java
java impl.Main OUT_HOST ID IN_PORT OUT_PORT

where OUT__HOST is the IP address of the next host in the ring, ID is the
identifier of the local node, IN_PORT is the port on which the current node
should listen for packets, and OUT_PORT is the port on which the next
node in the ring is listening.

Since this will start a single node, and the leader election will only work
with a ring of nodes, you need to start at least two nodes whose in- and
out-ports form a ring. As an example, try running

java impl.Main 127.0.0.1 34 50000 50001
and
java impl.Main 127.0.0.1 23 50001 50000

in separate terminals to create a ring consisting of two nodes with IDs 34
and 23.
Compiling and executing the concurrent implementation works the same
way, just go to the directory leader-election-concurrent/src in the first step.
For both versions, we have also defined an example run that will auto-
matically start several nodes in a ring; to execute it, run

java impl.Main



4.2.3 Inspecting, Verifying and Executing the Python Implemen-
tation

Two versions of the Python implementation can be found in igloo-python/leader-
election: The directory leader-election-python-verification contains the ver-
sion of the files with specifications. The file contents are as follows:

e election.py: Implementation of the leader election

e int_ socket.py: Trusted specification and implementation of wrapper
around socket library, along with declaration of socket I/O operations,
message type definition

o spec.py: Definitions of internal I/O operations, state type, and I/O
specification of the implementation

e types.py: Definition of message type
o stubs/socket.pyi: Stub file for used library

The executable Python implementation, in which the specifications have
been removed, can be found in leader-election /leader-election-python-executable.
This version does not contain the files spec.py, types.py and the stub file.

All other files are present and identical except that specifications have been
commented out (Nagini currently does not do this automatically, so this
step has been performend manually). In particular, this means that

1. All import statements for specification-only files have been commented
out

2. All lines containing preconditions, postconditions, invariants or Assert
statements have been commented out

3. All definitions of IO operations or specification-only data types have
been commented out

4. All function parameters, local variables, and return types (as well as
the corresponding variable assignments, arguments in calls, and return
statements) that have specification-only-types have been commented
out; in particular, this means that ghost variables containing the ab-
stract system state (usually called “s”) and ghost parameters of type
Place that are used for I/O specifications (usually called “t” or “tp”)
have been removed.

We have commented out the specification parts instead of deleting them
so that line numbers in both versions are identical and it is easy to see
from a diff that the executed implementation itself has not been changed.
The executable version additionally contains the file run_ election, which



parses command line arguments and then calls the verified main method in
election.py.
To re-verify the Python implementation using Nagini, run:

cd igloo-python/leader-election

cd leader-election-python-verification
MYPYPATH=1leader/stubs nagini --ignore-obligations
< leader/election.py

Verification should take between 20 seconds and 2 minutes depending on the
System.
To execute the Python implementation, execute the following commands:

cd igloo-python/leader-election

cd leader-election-python-executable

PYTHONPATH=. python3 leader/run_election.py OUT_HOST ID
— IN_PORT OUT_PORT

where OUT _HOST is the IP address of the next host in the ring, ID is the
identifier of the local node, IN__PORT is the port on which the current node
should listen for packets, and OUT__PORT is the port on which the next
node in the ring is listening.

Since this will start a single node, and the leader election will only work
with a ring of nodes, you need to start at least two nodes whose in- and
out-ports form a ring. As an example, try running

PYTHONPATH=. python3 leader/run_election.py 127.0.0.1 23 50000
— 50001

and

PYTHONPATH=. python3 leader/run_election.py 127.0.0.1 34 50001
— 50000

in separate terminals to create a ring consisting of two nodes with IDs 34
and 23.

4.2.4 Interoperability of Java and Python Implementations

As claimed in the paper, all three implementations of the leader election are
compatible with each other. To test this, set up a ring that consists nodes
running different implementations. For example, you can run the following
commands in different terminals (from the directories specified above for
each version):

PYTHONPATH=. python3 leader/run_election.py 127.0.0.1 34 50000
— 50001



for the Python version and

java impl.Main 127.0.0.1 35 50001 50002
for the sequential Java version and

java impl.Main 127.0.0.1 36 50002 50000

for the concurrent Java version.

4.2.5 Comparing the I/O specification between Isabelle/HOL /
VeriFast / Nagini

The connection point between the Isabelle/HOL model of the leader election
and the implementations is the I/O specification that results from embed-
ding the decomposed model into an I/O assertion, as described in the pa-
per. This specification was manually translated from Isabelle/HOL syntax
to VeriFast and Nagini syntax, respectively. To compare the three versions,
consider

o the Isabelle/HOL version, defined in igloo-isabelle/case-studies/leader-
election/Leader_FElection_4.thy (lemma leader election_node_iospec)

o the VeriFast version, defined in file Leader.java in igloo-java/leader-
election-sequential /src/impl (predicate P, along with previous predi-
cate_ ctor definitions; the same definition exists in the concurrent ver-
sion)

o the Nagini version, defined in igloo-python /leader-election /leader-election-
python-verification/leader/spec.py (IOOperation P, along with previ-
ous IOOPerations; we have split the definition into its parts for con-
venience in the Nagini version)

While the translation is purely syntactical, the syntactical differences
are quite large in places. We provide a comparison of the syntax of differ-
ent important constructs in the file SYNTAX stored on the desktop of the
virtual machine; this file also shows the different syntax of some important
specification constructs in VeriFast and Nagini.

4.3 Primary Backup Case Study

For our second case study (primary backup), we have an Isabelle formal-
ization of the system as well as verified Java implementations of the client
(sequential) and server (concurrent). The main steps for inspecting the
proofs and verifying and running the implementation are similar; here, we
therefore only give a short description of the steps that are different.

10



4.3.1 Inspecting and Checking the Isabelle Formalization

The Isabelle formalizaton of the primary backup case study can be inspected
by opening case-studies/replication/Primary_Backup_ 3.thy and the files it
includes as dependencies in the Isabelle GUI.

Its contents are described in detail in Chapter 4 of the outline.pdf in
igloo-isabelle/generated.

4.3.2 Inspecting, Verifying and Executing the Java Implementa-
tion

To re-verify the Java implementation of the primary backup case study, run
the following comand from igloo-java:

verifast -allow_assume -c primary-backup/src/impl/Main.jarsrc

This verifies both server and client of the primary backup case study.
To compile it, run

cd primary-backup/src
javac impl/*.java

Since a proper run of the implementation requires running multiple nodes
and simulating failures, we have prepared a pre-configured example run that
does this. To execute it, run

java impl.Main

4.3.3 Comparing the I/O specification between Isabelle/HOL /
VeriFast / Nagini

As before, the I/0O specification we manually translated from Isabelle/HOL
syntax to VeriFast syntax serves as the connection point between both tools,
as described in the paper.

To compare the two versions, consider

o the Isabelle/HOL version, defined in file Primary_Backup_ 3.thy in
igloo-isabelle/case-studies/replication (lemma m3s_iospec_ ord for the
server and m3c__iospec__ord for the client)

o the VeriFast version, defined in file data.javaspec in igloo-java/primary-
backup/src/impl/theory (predicate ms_iospec_ord for the server and
mc__iospec_ord for the client, along with previous predicate_ ctor def-
initions)

11



4.4 Authentication Case Study

Finally, for our third case study (authentication), we have an Isabelle formal-
ization of the system as well as verified Java and Python implementations
of the initiator and the responder. Note that in this case, the Python imple-
mentation is not compatible with the Java implementation (and the paper
does not claim that they are) because the implementations use different
crypto libraries.

The main steps for inspecting the proofs and verifying and running the
implementation are again similar to the previous case studies; here, we there-
fore only give a short description of the steps that are different.

4.4.1 Inspecting and Checking the Isabelle Formalization

The Isabelle formalizaton of the primary backup case study can be inspected
by opening case-studies/security-protocols/m6_ sig.thy and the files it in-
cludes as dependencies in the Isabelle GUI.

Its contents are described in detail in Chapter 6 of the outline.pdf in
igloo-isabelle/generated.

4.4.2 Inspecting, Verifying and Executing the Java Implementa-
tion

To re-verify the Java implementation of the authentication case study, run
the following command from igloo-java:

verifast -allow_assume -c authentication/src/impl/Main.jarsrc

This verifies both initiator and responder.
To compile it, run

cd authentication/src
javac impl/*.java

To run the responder, execute
java impl.Main Resp privK
where privK is the private key of the responder. For the initiator, execute
java impl.Main Init addrB pubkB

where pubkB is the public key of the responder and addrB is the IP address
of the responder. Note that the responder has to be started first, and the
initiator needs to start within nine seconds of the responder to avoid a
timeout.

To generate valid key pairs, you can call

java impl.Main Gen

12



which will generate and then print a private and public key, in that order,
separated by a newline.
As an example, try running

java impl.Main Resp MIIEvQIBADANBgkqhkiGOwOBAQEFAASCBKcwggSjA
— gEAAoIBAQDR+pkmGXk0f6YZI76d4hnOVMGOxEJttz9s4bF75fBE3xSRUR |
1£tDgjwMOVR16AWiQbGx6bGS+RIzV16XYgur11Yvx0gA6H4CTX1Bh1ilp |
aH87R6E15ukn3wNMCQXKEBGkKyUvYOLJAZPkeWUheulmheaFROOcSSoVX |
A6TFbTRI2U1mY2+JHCWyfK9A820ZFivWCCnckXZjoI0BXbyCxHG/4RDgb
XjVmd14JGITH7bhLsqyEYrLqj2MNx60XPQUgRhMmtA7nvEpoB+hQU7pQM
ILmRulc5Cyoy41t1LfMICZIc2NrYAfduGBe+GmPoMoyGFcL8yZwHqSUMT |
HUQZgDW/dAgMBAAECggEAZBuymjx4v5XSDZhCD6m1MAyclamU9hPwdCuh |
32z/wQY0Gz3t4CvevATyBoXjIxRWtGmY jNOUESY1WiIVBIOjQezgV1isF
NGjHvhnLTkMpOOXQHIdRASv4SO0YNjIXwIJsxgyOUXkmEpdRQcvV0fzePa
Lsavr0516K9bIyAOIOTZTIMLIdD4GeM6LJtVokSyrk0dCkm6+J1FIycf7 |
tmej1RXBC5iBMz6ahFBm3vANH7xMXUk6H57rtqB7Usi+BPQYywyTdbIqy |
Z25EcNcqjZ3bvLC5ILGwaXbALvBlicd7iPnDGa3+xpDhPsWABFpusffK6 |
cccsPkE3eUFxYHIKooMbQKBgQDt+FKyoGWONJUFiWtobcL1ABgOUy1QEK |
+G/EMnvEeMcx JKEQPuATcNMQMLbUTDHYOB15mkoKzC3kAKtRALUCTpbxO |
P+7NIuU80VsUPODQBGW+mVj8QGs2+fzw3k60Kvb8Rc62 jmCYIFa8jnFYJ
hMObzeFC7Ky1KJtpjHdXzL70twKBgQDh41u7uV/VkBYCe2sN5CCz2g0Jp |
PwuN5bR5ZGd65+1RG3s+AZe+KNFx8RSN64BDxvKAd67Sko7Ib/AAGhdO3 |
s6sZUcAeFBM2AepSn3TTixB7CuyU9Z1mWCrLEfISX9/VNMSmD/Y86Jbn7T |
cT1W/uy9xhUcNr56Z1FS4EF81PIviCwKBgDBA3zv7 TEQrOWCDCEWFIDAL |
yPyP1RGcdOXRNy jSg8uV9c+2p45WTrxtCMoDYSMTVelPT1tUfVOST3gcW
ObIBoQTEutqRWNkuAQXUiQvuqvSZZJcALOaS8fp8uLuHfOEoD7Arx/yFR |
wkkXvuEoAhnKx2Jcwl1Q5wEXOcdJYH3MWWnAoGBAI j61KAMEOOwFsi+ivb |
LhkFKTabkk8B7GUyDiEBZgF5AX0C8rzBcWrZwI88vOKb3wIRJigXNUSJI2 |
ns8R8Dgl jK7VDXUEdtKRExLCWaaL/3rrD0zHxwTVjIOnq/MbDuPqTm0SQ
nWPmL8zI/wMzNcN7gFLLwFPpD/BwXY1B12PT8xtAoGADQtSbZmaseGSCN |
T7jduDBJb/DVJ/Ddu4MuKH35+0uU311K8IMITFs9uGVVXYROmWIgR3Z2y
zvNwCOsVscjPndtisoi/ygbKdJCiQzRrWHWOiKqrpzN5TsmuT8ccsPzY6 |
snkEQEKrEDiEQMGoO5nAEy1YJNF/FqroD4mKRgJeuXg=

e

and

java impl.Main Init ::1
MIIBIjANBgkqhkiGOwOBAQEFAAOCAQS8AMIIBCgKCAQEAOfQZJh15Dn+mG |
S0+neIZ9FTBvcRCbbc/b0Gxe+XwRNSUKVEAX7Q418DDrOdegFokGxsemx |
kvkfc1Zel2ILq9dWL8ToAOh+Ak15QYZYiKWh/00ehNebpJ98DTAKFynwR |
pCs1L2NCyQGT5H11IXrtZoXmhUTtHEkqFVwOkxWOOfd1NZmNviRwlsnyv
QPNqGRYr1ggp3JF2Y6CDgV28gsRxv+EQ4G141ZndeCRiEx+24S7KshGKy |
609]jDceqFzOFIEYTJrQ05736aAfoUF06UDCCokbtX0QsqMuNbdS3zCAmS |
HNja2AH3bhgXvhpj6DKMhhXC/MmcB6k1DEx1EGYA1v3QIDAQAB

!

L A A

13



In case copying this from a PDF is problematic, we have also written
down these parameters in the file authentication_example_ calls.txt, which
can be found on the desktop in the VM.

Alternatively, we have again prepared a pre-configured example run; to
run it, execute

java impl.Main

4.4.3 Inspecting, Verifying and Executing the Python Implemen-
tation

Two versions of the Python implementation with specifications can be found
in igloo-python /authentication. As in the first case study, directory authentication-
python-verification contains the version with proof annotations.

Again, there is a separate version in which we have removed proof anno-
tations and added a run script for parsing command line arguments in the
directory igloo-python/authentication/authentication-python-executable.

To re-verify the Python implementation using Nagini, run:

cd igloo-python/authentication

cd authentication-python-verification
MYPYPATH=authentication/stubs nagini --ignore-obligations
— authentication/initiator.py
MYPYPATH=authentication/stubs nagini --ignore-obligations
— authentication/responder.py

Verification should take between 20 seconds and 2 minutes depending on the
system for each of the files (initiator and responder).

To execute the Python implementation, execute the following commands
from igloo-python/authentication/authentication-python-executable:

PYTHONPATH=. python3 authentication/run_responder.py B privkB
and subsequently in a separate terminal

PYTHONPATH=. python3 authentication/run_initiator.py A B pubkB
— addrB

where A and B are integer identifiers of the initiator and responder, addrB

is the IP address of the responder, and privkB and pubkB are the signature

and verification key of B, respectively, as generated by PyNaCL, in Hex

format. Note that it is important that the responder is started first.
Example calls with valid keys are

PYTHONPATH=. python3 authentication/run_responder.py 2
— el1f169afd23d9e9fcla9ffe929a8590ecccd27eabfe9fclbcc60eaa87159ec98

and

14



PYTHONPATH=. python3 authentication/run_initiator.py 1 2

— 01£0f7ae5fbf0£40061539b45313b8a2b0d4014dcd4cbebf4a4e9d3dafOb0c7E

- 127.0.0.1

In case copying this from a PDF is problematic, we have also written
down these parameters in the file authentication_example_ calls.txt, which
can be found on the desktop in the VM.

4.4.4 Comparing the I/O specification between Isabelle/HOL /
VeriFast / Nagini

As before, the I/0O specification we manually translated from Isabelle/HOL
syntax to VeriFast and Nagini syntax serves as the connection point between
the tools, as described in the paper.

To compare the three versions, consider

o the Isabelle/HOL version, defined in igloo-isabelle /case-studies/security-
protocols/m6__sig.thy (lemma m6i_iospec_ord for the initiator and
mo6r__iospec_ord for the responder)

e the VeriFast version, defined in file data.javaspec in directory igloo-
java/authentication/src/impl/theory (predicate m6i_iospec_ord for
the initiator and m6r_iospec_ ord for the responder, along with pre-
vious predicate_ctor definitions)

o the Nagini version, defined in igloo-python/authentication/authentication-

python-verification/authentication/spec.py (IOOperation m6i__iospec__ord

for the initiator and m6r_iospec_ord for the responder)

15



