
8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 1/10

Introduction

Requirements

Getting Started Guide

Step-by-step Instructions

Quick Tutorial

Inferring Types from R Code

Building Image Locally

Troubleshooting

OOPSLA20 Artifact - Designing Types for R,
Empirically
Introduction
This is the artifact for the OOPSLA 2020 paper Designing Types for R, Empirically. The aim is to show the tools that
were developed to infer and assert types for R functions and R packages.

The artifact is composed of two parts:

1. a getting started guide that contains the setup instructions and a small experiment to verify that the artifact is
usable, and

2. a step-by-step instructions how to run the tools developed for this paper and how to reproduce the data
reported in the paper.

Note: This document contains output from executing R code whose line width spans over what can comfortably �t on
an A4 format in the PDF. Because of that, the evaluation of some of the code blocks is disabled in the PDF. It is
therefore much nicer to work with the HTML version or directly have it opened in RStudio (cf. below).

Requirements
The pipeline depends on a number of tools and R packages:

bash
git
GNU parallel >= 20190322
GNU bison >= 3.5
GNU make >= 4.1
R (https://cran.r-project.org) == 3.5.0
R-dyntrace (https://github.com/PRL-PRG/R-dyntrace/tree/r-3.5.0) 3.5.0
a number of our R packages with their dependencies

contractr (https://github.com/PRL-PRG/contractr/tree/typer-oopsla20) - runtime type assertions
injectr (https://github.com/PRL-PRG/injectr/tree/typer-oopsla20) - for injecting code into R functions
propagatr (https://github.com/PRL-PRG/propagatr/tree/typer-oopsla20) - tracing type usage
runr (https://github.com/PRL-PRG/runr/tree/typer-oopsla20) - running the experiments
tastr (https://github.com/PRL-PRG/tastr/tree/typer-oopsla20) - grammar and parser for our R types

and of course a corpus of R packages to be run.

Redoing the Paper Experiment

https://cran.r-project.org/
https://github.com/PRL-PRG/R-dyntrace/tree/r-3.5.0
https://github.com/PRL-PRG/contractr/tree/typer-oopsla20
https://github.com/PRL-PRG/injectr/tree/typer-oopsla20
https://github.com/PRL-PRG/propagatr/tree/typer-oopsla20
https://github.com/PRL-PRG/runr/tree/typer-oopsla20
https://github.com/PRL-PRG/tastr/tree/typer-oopsla20


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 2/10

To make it more convenient we have build a docker image that has all these dependencies installed. The image can be
pulled directly from Docker HUB (https://hub.docker.com/r/prlprg/oopsla20-typer) or built locally. To use the image,
you will need:

git
bash, and
docker community edition (https://docs.docker.com/install/) version 18+.

This artifact requires about ~20GB of free space, depending on the number of packages that should be analyzed. It has
been tested on Linux (Manjaro 19 and Ubuntu 18.04).

Getting Started Guide
For the initial kick-the-tires phase, please go over the following steps to determine if the artifact is usable in your
environment.

Clone the artifact git repository
In a terminal, run the following to get a copy of the artifact repository:

git clone https://github.com/PRL-PRG/OOPSLA20-typer-artifact 

cd OOPSLA20-typer-artifact

We will refer to this directory as $REPO .

The artifact has the following structure:

$REPO 

├── docker-image                    -- files needed to build the docker image 

├── README.Rmd                      -- this readme in R markdown format 

├── README.html                     -- this readme in rendered into HTML 

├── README.md                       -- this readme in rendered into markdown 

├── run.sh                          -- script to run Rstudio 

└── typeR                           -- directory in which the type inference pipeline runs 

    ├── data-corpus.tar.xz          -- archived data from analyzing the full 412 package corpu

s 

    ├── in-docker.sh                -- a helper script executinig given command in a container 

    ├── Makefile                    -- makefile orchestrating the type inference pipeline 

    ├── notebooks             

    │   ├── corpus-analysis.Rmd     -- data points for paper's Chapter 5 

    │   ├── evaluation-asserts.Rmd  -- data points for paper's Chapter 6.3 

    │   ├── evaluation.Rmd          -- data points for paper's Chapter 6.{1,2} 

    │   └── inc                     -- auxiliary R files for data analysis 

    ├── packages-corpus.txt         -- list of the 412 packages 

    ├── packages-small-corpus.txt   -- a smaller corpus to be run during the artifact evaluati

on 

    ├── packages-tiny-corpus.txt    -- a tiny corpus to be run during the kcik the tires phase 

    ├── scripts                     -- auxiliary scripts 

    └── type-analyzer               -- type analyzer source code

Run RStudio from the artifact docker container
To make the artifact evaluation a bit more convenient, the docker image includes RStudio (https://rstudio.com), a
popular R IDE. The following command will pull the docker image from Docker HUB and start an instance of RStudio on
port 8787. If you need to use an alternative port, you can specify it using -p PORT  argument to the run.sh  script.

./run.sh

Once you see an output like:

https://hub.docker.com/r/prlprg/oopsla20-typer
https://docs.docker.com/install/
https://rstudio.com/


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 3/10

[services.d] starting services 

[services.d] done.

you should be able to access RStudio in your browser at http://localhost:8787 (http://localhost:8787).

To terminate it, simply interrupt the process by pressing Ctrl-C  / Command-C .

Open this readme ( README.Rmd ) in RStudio
The rest of the steps in this guide can be done directly in the RStudio. To do that, open this readme �le README.Rmd
�le by either navigating to File  -> Open File...  menu item

The �le is written in Rmarkdown (https://rmarkdown.rstudio.com/) (or Rmd), also referred to as notebooks. It is
essentially a markdown document with code snippets. These snippets can be run directly from RStudio. Rmd �les can
be also rendered (knitted) to various output �le formats running all code snippets and embedding their outputs
directly to the resulting �le. Next to this readme �le, we use several of the Rmd �les to analyze the data for the paper.

The rest of the R code snippets can be run from within R by either clicking the play icon next to the snippet or by
placing cursor somewhere inside the snippet and pressing Ctrl+Enter  / Command+Enter .

Check that RStudio can load contractr package.
First, we need to make sure RStudio can load the contractr  package.

library(contractr)

You should see an output similar to this:

Loading required package: roxygen2 

Added contract to 118 roxygen2 function(s) 

No type declarations found for package stats 

No type declarations found for package graphics 

No type declarations found for package grDevices 

No type declarations found for package utils 

No type declarations found for package datasets 

No type declarations found for package methods 

No type declarations found for package base 

No type declarations found for package contractr

What is means is discussed in a later section.

Infer types for one package
For the last test, we will try to run the type inferring pipeline for a single package: stringr (https://cran.r-
project.org/web/packages/stringr/index.html).

This has to be done in a terminal. Navigate to the $REPO/typeR  and run the following:

./in-docker.sh make clean all PACKAGES_FILE=packages-tiny-corpus.txt 

Note: Even though it just one package, the pipeline runs all its reverse dependencies to capture type check assertions
which might take some time. On a Linux laptop (i7-7560U, 16GB RAM) it takes ~10 minutes to run.

The make  command must be pre�xed with in-docker.sh  as we want to run it inside a docker container. The
$REPO/typeR  directory is mounted into /home/rstudio/typeR  inside the container. All �les stored there will be

persisted.

The PACKAGES_FILE  parameter specify which package corpus we want to use. A package corpus is a simple text �le
with one package name at a time. In general, you could specify any package, but to keep the docker image size in a
reasonable bounds, we only include a small subset of the 15K CRAN packages.

http://localhost:8787/
https://rmarkdown.rstudio.com/
https://cran.r-project.org/web/packages/stringr/index.html


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 4/10

The result should be $REPO/typeR/data  with the following �les:

data 

├── assertions-all.csv      

├── assertions-failed.csv   

├── type-analysis     

│   ├── merged.csv          

│   └── packages 

│       └── stringr.csv     

├── TYPEDECLARATION 

│   └── stringr            -- the actual inferred types for contractr 

└── type-traces.csv        

data/assertions-all.csv : �le contains all the assertions.
data/assertions-failed.csv : �le contains only failed assertions with additional details for debugging.
data/type-analysis/packages/<package>.csv : �le contains information about type signatures of
<package>  functions.
data/type-analysis/merged.csv : �le contains information about type signatures of functions from all

packages.
data/TYPEDECLARATION/<package> : �les contain contractr type declarations for all recorded functions for a

given package.
data/type-traces.csv : �le contains type traces obtained from dynamic analysis of package code.

Once completed, you can see the inferred types for the stringr package:

navigateToFile("~/typeR/data/TYPEDECLARATION/stringr")

This concludes the getting started guide and the kick the tires part.

Step-by-step Instructions
In this section we will provide more details about the tooling and the type inference pipeline. We start with a quick
tutorial about how the contractr package work. Next, we will infer types for a small corpus. Finally, using the original
data, we will reproduce the data points provided in the paper.

Quick Tutorial
The best is to interactively follow the tutorial in RStudio, running the code snippets one by one.

contractr

The contractr  library helps generates runtime contracts from function type signatures. It modi�es the function body
to check for function argument and return value types. Let us look at how this library works.

First we load contractr . It depends on the R package roxygen2 , which gets loaded as well. contractr  comes
equipped with type declarations (https://github.com/PRL-PRG/contractr/tree/typer-oopsla20/inst/TYPEDECLARATION)
for 395 packages, roxygen2  being one of them. As shown in the console output below, when roxygen2  is loaded,
contractr  automatically inserts contracts to it’s 118 functions. In general, contractr  sets up package load hooks. So

if any of the 395 packages are loaded, contractr  automatically adds contracts to their functions. If no type
declarations are available for a package, contractr  reports that as well.

library(contractr)

Now, we load the stringr  library, for which contractr  has type declarations.

library(stringr)

https://github.com/PRL-PRG/contractr/tree/typer-oopsla20/inst/TYPEDECLARATION


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 5/10

The aim of contractr  is to insert runtime type checks and provide meaningful error messages when the checks are
violated. Let us call one of the stringr  functions and observe contractr  in action. For this, we choose the
str_count  function from stringr . This function counts the number of matches of a pattern in each element of a

string vector (character vector in R speak). Here is an example of a type-correct interaction withe the str_count
function.

fruit <- c("apple", "banana", "pear", "pineapple") 

str_count(fruit, "a")

Now, we will pass a pattern value with incorrect type, a double instead of a character. Firstly, as expected the function
terminates with an error because the pattern argument is not supposed to be a numeric value. Secondly, we observe
two warning messages. These warning messages are provided by contractr . The �rst message originates from the
type checking of the pattern  argument of str_count . The error message contains the following bits of information:

Parameter name and position
Function name
Expected type
Actual type
Stack trace

Since the str_count  function is called from the top-level, the stack trace only has a single frame, the
str_count(fruit, 1)  call.

The second warning message originates from a call to the stringr::type  function from within the de�nition of
str_count  function. It turns out that passing a numeric argument to str_count  also violates the type declaration of
type  function. As can be seen from the warning message, the trace  has size 2 with type(pattern)  being called

from str_count(fruit, 1) .

fruit <- c("apple", "banana", "pear", "pineapple") 

str_count(fruit, 1)

An important point to note here is that contractr  reports type mismatches as warnings. Unfortunately, if there are
too many warnings, R collects them together and reports them at the end of the program. It may be desirable to report
the mismatch when it happens and halt the program at that point. contractr  allows this behavior to be con�gured
using the set_severity  function. The default severity is set to "warning" . It can be set to "error"  to report type
mismatch as an error and stop the program. With this setting, execution halts with the type mismatch error, so only the
�rst type mismatch is reported.

set_severity("error") 

str_count(fruit, 1)

Severity can also be set to "silence"  to ignore all type mismatches. With this setting, the execution halts with the
error message from the function execution.

set_severity("silence") 

str_count(fruit, 1)

We set the severity back to "warning"  for the rest of the session.

set_severity("warning")

Let’s look at how the function de�nition is modi�ed by contractr  to enable the type mismatch checks. If we type the
function name on the R console, it prints out the de�nition of the function as it parsed from the package code.

str_count



8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 6/10

However, contractr  modi�es this de�nition internally, without a�ecting the printed representation of the function
de�nition. The modi�ed function body can be obtained using the body  function. As shown below, contractr  adds
two code blocks at the top of the body. The on.exit  block attaches a function exit handler to check the type of the
return value. The next block checks the type of all the arguments. The real heavy-lifting happens inside native code. The
blocks immediately call C functions (pre�xed with C_ ) using the .Call  function. The reason is that contractr  has to
get around R’s laziness semantics for argument type checking. Due to laziness, the arguments to a function call are
unevaluated code thunks (promises). To maintain non-strict evaluation semantics, contractr  inserts type-checking
and error-reporting logic inside these thunks. It would have been easier to evaluate thunks at this point and check the
type of arguments values but that would modify the semantics and break code by prematurely evaluating arguments
which may not even be evaluated or perhaps evaluated in a speci�c order.

body(str_count)

contractr  comes equipped with type declarations for 395 packages. Furthermore, type declarations can be provided
during package development as part of function documentation as shown below in the de�nition of add3  function. All
type declarations from the @type  tag are exported to TYPEDECLARATION  �le inside the package that during the
package’s installation. These �les are automatically read by contractr  when the package is loaded.

#' NOTE: running this block has no effect, it has be part of package definition

#' @type <int> => int 

add3 <- function(x) { 

  x + 3 

}

contractr  also provides API to inject type annotations for functions. This is useful for adding contracts to functions
de�ned interactively on the console. Note how contractr  provides type errors for return types and all parameter
types.

f <- function(x, y) { 

    x + y - 1L 

} 

insert_contract(f, "<int, int> => int") 

 

f(1L, 2L) 

 

f(1, 2) 

 

f(1L, 2) 

 

f(1, 2L)

A user may wish to get all the contract assertions at the end of the sessions. contractr  provides an API,
get_contracts , to query all contract assertions. The following interaction outputs a large data frame. Each row is a

contract assertion (failed or succeeded). The columns contain information about the assertions.

get_contracts() %>% str()

clear_contracts  API clears the internal record of contract assertions.

clear_contracts() 

get_contracts()

For large programs, a user might be interested in selectively capturing and ignoring contract assertions. For this,
contractr  provides two functions, capture_contracts  and ignore_contracts  to execute code blocks by enabling

and disabling contract assertion respectively. The two functions can be arbitrarily nested. capture_contracts  returns
an R list with two �elds, result  �eld contains the result of evaluating the code block and contracts  �eld contains
the data frame of all contract assertions from the code block. ignore_contracts  returns just the result of evaluating
the code block as it does not perform any contract assertions.



8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 7/10

In this code block, type checking of argument and return values for f(1, 2)  will not happen. Only f(1L, 2)  will be
type checked.

result <- ignore_contracts({ 

    capture_contracts({ 

        f(1L, 2) 

    }) 

    f(1, 2) 

}) 

result

In this code block, the behavior is reversed.

result <- capture_contracts({ 

    ignore_contracts({ 

        f(1L, 2) 

    }) 

    f(1, 2) 

}) 

result

In summary, this section has described the design and use of contractr  library and discussed the following salient
aspects of its design.

Error messages
Contract violation severity (silent, warning and error)
Addition of type annotations as roxygen2  tags
Injection of type declarations for custom user-de�ned functions
API to get and clear contract assertions
API to enable and disable contract assertions for code blocks

Inferring Types from R Code
In this section we run the type inference pipeline on a small corpus of 5 packages:

assertthat
dbplyr
glue
lubridate
stringr

The reason why we run only 5 packages is that (1) the dynamic tracing is quite resource intensive as all invocations are
recorded and (2) running 12M of R lines (runnable code of the corpus + reverse dependencies) takes a lot of time.

Running the small corpus is similar to the tiny one in the above getting started guide:

./in-docker.sh make clean all

This time, we do not need to not need to specify the PACKAGES_FILE  as the packages-small-corpus.txt  is the
default.

The type inference pipeline does the following:

1. package-functions : get information about all exported functions from a package
( runs/package-functions/functions.csv ),

2. propagatr-code : extract the runnable code from a package and wrap it inside a tracing block,
3. propagatr-run : run the code using R-dyntrace (https://github.com/PRL-PRG/R-dyntrace), a modi�ed R VM with

a support for dynamic tracing (cf. more information (https://zenodo.org/record/3625397#.Xy-9pWNfgUE))
recording all types seen at function invocations,

4. consolidate-types : consolidate recorded types,
5. package-revdeps : �nd packages’ reverse dependencies,

https://github.com/PRL-PRG/R-dyntrace
https://zenodo.org/record/3625397#.Xy-9pWNfgUE


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 8/10

6. revdeps-code : extract runnable code from these dependencies, and �nally
7. revdeps-run : run this code with contractr enabled using type de�nitions inferred in the step 4.

Each of this task has a target in the make�le ( ~/typeR/Makefile ). The intermediate results of these steps are stored
in ~/typeR/run  directory. We use GNU parallel (https://www.gnu.org/software/parallel/) and runr
(https://github.com/PRL-PRG/runr/tree/typer-oopsla20).

The make�le has a few arguments: - TIMEOUT  set to 30 minutes by default - if any of the above tasks per package takes
longer, it will be terminated - JOBS  the number of jobs to be run in parallel. The default for this artifact is 1.

Redoing the Paper Experiment
In this section, we present an R Notebook capable of reproducing the �gures and key numbers seen in the paper.

To obtain the data for the paper, we conducted an experiment wherein we chose a subset of CRAN packages with > 5
reverse dependencies and > 65% code coverage. We ran our type tracing tool on the runnable test, example, and
vignette code for these packages, and obtained types for exported package functions. Then, we loaded those types
into the aforementioned contractr  tool, and ran the test, example, and vignette code of the clients of our core
corpus. We recorded contract assertion successes and failures during this stage of the evaluation.

As you may guess, the data we worked with is too large to be reasonably processed on standard computers. Our data
collection and processing pipeline ran on the order of days on a server with 72 cores and 256GB of RAM. To that end,
we packaged our data and include it with this artifact. The data itself is liable to be useful to any future type-based
research of R.

To rerun the analysis, �rst we have to extract the data for the entire corpus:

./in-docker.sh make data-corpus

These should gives us similar �les as in the previous section where we only analyzed a few packages. The additional
cran  directory and corpus-details.csv  include package metadata obtained for the entire CRAN and the corpus of

412 packages respectively. This is used in the next two sections. The reason why we include them here is that these
were the most resource intensive to generate. This is because we needed to get the information about package code
coverage and package reverse dependencies code coverage. It on itself took about 2 days of run on 72 cores machine.

All results are store in ~/typeR/evaluation  directory.

Expressiveness & Robustness

In this section we show how to generate data presented in Section 6.1 Expressiveness and Section 6.2 Robustness. We
do this in a separate notebook: ~/typeR/notebooks/evaluation.Rmd .

navigateToFile("~/typeR/notebooks/evaluation.Rmd")

Note: As you conduct your evaluation, you will �nd a number of small discrepancies between the numbers seen here
and those in the paper. Running large experiments involves random failures, non-deterministic function behavior, and
weird environment con�gurations leading to sporadic issues. These discrepancies are very minor, amounting to
di�erences on the order of fractions of a percent, and we don’t believe this issue to be a cause for major concern.

Rendering the evaluation.Rmd  can be done by running:

./in-docker.sh make evaluation

Note: the evaluation takes a lot of time, it can easily be over an hour on a regular laptop.

If you successfully infered types for the small corpus (cf. above), you can run the evaluation using these data:

./in-docker.sh make evaluation DATA_CORPUS_DIR=data

However, the obtained numbers will be quite di�erent.

The result can be viewed using:

https://www.gnu.org/software/parallel/
https://github.com/PRL-PRG/runr/tree/typer-oopsla20


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 9/10

viewer("~/typeR/evaluation/evaluation.html")

Assertions

In this section we show how to generate data presented in Section 6.3 Usefulness of the Type Checking Framework. We
do this in a separate notebook: ~/typeR/notebooks/evaluation-asserts.Rmd .

This notebook uses two inputs:

data-corpus/corpus-details.cvs  - metadata of the corpus 412 packages
data-corpus/cran/cran-asserts.csv  - information about the use of runtime assertions.

The latter has been generated by a make�le target ( package-asserts ). This task runs an R script which loads an AST
of each function in a given package and look for calls to one of the R runtime assertion functions (e.g. stopifnot
(https://stat.ethz.ch/R-manual/R-devel/library/base/html/stopifnot.html) or assertthat (https://cran.r-
project.org/web/packages/assertthat/index.html)).

To render this notebook, in $REPO/typeR  run:

./in-docker.sh make evaluation-asserts

Once �nished, the resulting HTML �le can be viewed by:

viewer("~/typeR/evaluation/evaluation-asserts.html")

This also produce a corresponding Latex tags to be included in the paper:

viewer("~/typeR/evaluation/package-asserts.tex")

Corpus

In this section we show how to generate data presented in Chapter 5 - Project Corpus. We do this in a separate
notebook: ~/typeR/notebooks/corpus-analysis.Rmd .

It loads the metadata collected for the whole of CRAN, namely: - cran-details.csv  - CRAN packages metadata
including code coverage and reverse dependencies code coverage - cran-revdeps.csv  - reverse dependencies of R
packages

These CSV �les were obtained by running the corresponding tasks from rapr (https://github.com/PRL-
PRG/runr/tree/typer-oopsla20/inst/tasks).

To knit the notebook, run:

./in-docker.sh make corpus-analysis

This will generate the following �les:

corpus-analysis.html : an HTML �le rendering the notebook

viewer("~/typeR/evaluation/corpus-analysis.html")

corpus.tex : a Latex tags to be included in the paper

viewer("~/typeR/evaluation/corpus.tex")

corpus.pdf : a plot of the corpus

viewer("~/typeR/evaluation/corpus.pdf")

Building Image Locally

https://stat.ethz.ch/R-manual/R-devel/library/base/html/stopifnot.html
https://cran.r-project.org/web/packages/assertthat/index.html
https://github.com/PRL-PRG/runr/tree/typer-oopsla20/inst/tasks


8/9/2020 OOPSLA20 Artifact - Designing Types for R, Empirically

prl3:8787/files/README.html 10/10

To build image locally, run the following in $REPO :

make -C docker-image

If you do not have GNU make, you can run:

docker build --rm -t prlprg/oopsla20-typer docker-image

Troubleshooting

File Permissions
The problem with docker is that it runs as root and so do its containers. A common trick is to setup a user in an entry-
point script which will have the same UID and GID as the current user on the host system and then run the rest of the
script as that user. Even though we have tried that, it does not work since GNU parallel cannot then reliably set working
directory using the --workdir  �ag. In the current version therefore, all the generated �les will be owned by root user.

To mitigate this problem, at least partially, the in-docker.sh  script at the end runs:

docker run \ 

    --rm \ 

    -v "$base_dir/typeR:/home/rstudio/typeR" \ 

    prlprg/oopsla20-typer \ 

    chown -R $(id -u):$(id -g) /home/rstudio/typeR

text to r ### Docker on OSX

It is better to use homebrew cask to install docker:

brew cask install docker

in case you see
docker: Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?.

error message cf: https://stackover�ow.com/a/44719239 (https://stackover�ow.com/a/44719239)

Docker on Linux
In some distribution the package does not add the current user to docker  group. In this case, either add yourself to
docker  group or run all docker-related command with sudo .

https://stackoverflow.com/a/44719239

