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General formalisms for force evaluation and related calculations

General form of empirical potential functions

In classical molecular dynamics, the total potential energy  of a system can be written as the sum of site
potentials :

Here

is the position difference vector used throughout this online manual.

General form of interatomic forces

Recently, a well-defined force expression for general many-body potentials that explicitly respects (the weak
version of) Newton's third law has been derived as [Fan 2015]:
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Here,  is a shorthand notation for a vector with cartesian components , , and 
.

Starting from the above force expression, one can derive expressions for the stress tensor and the heat current.

Stress tensor

Stress tensor is an important quantity in MD simulations. It consists of two parts: a virial part which is related to
the force and an ideal-gas part which is related to the temperature. The virial part must be calculated along with
force evaluation.

The validity of Newton's third law is crucial to derive the following expression of the virial tensor [Fan 2015]:

where only relative positions  are involved.

After a little algebra, we can also express the virial as [Gabourie 2020]

The ideal-gas part of the stress is isotropic, which is given by the ideal-gas pressure:

where  is the number of particles,  is Boltzmann's constant,  is the absolute temperature, and  is the volume of
the system.

The total stress tensor is thus

Heat current

Using the force expression, one can derive the following expression for the heat current for the whole system (
 is the total energy of atom ) [Fan 2015]:
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The potential part of the per-atom heat current can also be written in the following equivalent forms [Fan 2015]:

Therefore, the per-atom heat current can also be expressed in terms of the per-atom virial [Gabourie 2020]:

where the per-atom virial tensor cannot be assumed to be symmetric and the fully tensor with 9 components should be
used [Gabourie 2020]. This result has actually been clear from the derivations in [Fan 2015], but it was wrongly stated
there that the potential part of the heat current cannot be expressed in terms of the per-atom virial.

One can also derive the following expression for the heat current from a subsystem  to a subsystem  [Fan
2017]:

Integration by one step

The aim of time evolution is to find the phase trajectory

starting from the initial phase point

The time interval between two time points  is called the time step.

The algorithm for integrating by one step depends on the ensemble type and other external conditions. There are
many ensembles used in MD simulations, but we only consider the following 3 in the current version:

The  ensemble

This is also called the micro-canonical ensemble. We use the velocity-Verlet integration method with the
following equations:
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Explanations:

 is the velocity vector of particle  at time .
 is the position vector of particle  at time .

 is the force vector of particle  at time .
 is the mass of particle .
 is the time step for integration.

The  ensemble

This is also called the canonical ensemble. We have implemented quite a few thermostats for the NVT ensemble.

The Berendsen thermostat

The velocities are scaled in the Berendsen thermostat [Berendsen 1984] in the following way:

Here,  is a dimensionless parameter, is the target temperature, and  is the instant temperature calculated
from the current velocities. The parameter  should be positive and not larger than 1.
When , the above formula reduces to the simple velocity-scaling formula:

A smaller  represents a weaker coupling between the system and the thermostat. Practically, any value of 
in the range of  can be used.

The above re-scaling is applied at each time step after the velocity-Verlet integration.

This thermostat is usually used for reaching equilibrium and is not good for sampling the canonical ensemble.

The Nose-Hoover chain thermostat

In the Nose-Hoover chain method [Tuckerman 2010], the equations of motion for the particles in the
thermostatted region are (those for the thermostat variables are not presented):

Here,
 is the position of atom .
 is the momentum of atom .
 is the mass of atom .

 is the total force on atom  resulting from the potential model used.
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 is the mass of the thermosat variable directly coupled to the system and  is the
corresponding momentum.

 is the degree of freedom in the thermostatted region.
 is Boltzmann's constant and  is the target temperature.

 is a time parameter, and we suggest a value from 0.01 ps to 1 ps.
We used a fixed chain length of 4.

The Langevin thermostat

In the Langevin method, the equations of motion for the particles in the thermostatted region are

Here,
 is the position of atom .
 is the momentum of atom .
 is the mass of atom .

 is the total force on atom  resulted from the potential model used.

 is a random force with a variation determined by the fluctuation-dissipation relation to recover the
canonical ensemble distribution with the target temperature.

 is a time parameter. We suggest a value from 0.01 ps to 1 ps.
We implemented the integrator proposed in [Bussi 2007a].

The Bussi-Donadio-Parrinello thermostat

The Berendsen thermostat does not generate a true NVT ensemble. As an extension of the Berendsen thermostat,
the Bussi-Donadio-Parrinello (BDP) thermostat [Bussi 2007b] incorporates a proper randomness into the
velocity re-scaling factor and generates a true NVT ensemble.

In the BDP thermostat, the velocities are scaled in the following way:

Here,
 is the velocity of atom  before the re-scaling.
 is the degree of freedom in the thermostatted region.

 is instant temperature and  is the target temperature.
 is the time step for integration.

 is a time parameter, and we suggest a value from 0.01 ps to 1 ps.

 are  Gaussian distributed random numbers with zero mean and unit variance.

The  ensemble

This is also called the isothermal-isobaric ensemble. We have only implemented the Berendsen barostat
[Berendsen 1984].
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In the Berendsen barostat algorithm, the particle positions and box length in a given direction are scaled if
periodic boundary conditions are applied to that direction.
For example, the scaling of the positions in the  direction reads

Here,  ( ) is the target (instant) pressure in the  direction.
The parameter  is not dimensionless, and it requires some trial-and-error to find a good value of it for a given
system. A harder/softer system requires a smaller/larger value of . In the unit system adopted by GPUMD, it is
recommended that .
Only directions with periodic boundary conditions will be affected by the barostat. The target pressure in a non-
periodic direction is thus irrelevant, although the code requires you to set one. You can just set it to zero.

Heat transport

The EMD method for heat transport

In MD simulations, a popular approach of computing the lattice thermal conductivity is to use the Green-Kubo
formula. In this method, the running lattice thermal conductivity along the -direction (similar expressions apply
to other directions) can be expressed as an integral of the heat current autocorrelation (HAC):

Here,  is Boltzmann's constant,  is the volume of the simulated system,  is the absolute temperature, and 
is the correlation time. The HAC is

where  and  are the total heat current of the system at two time points separated by an interval of . The
symbol  means that the quantity inside will be averaged over different time origins.

Related keyword in the run.in file: compute_hac

Related output file: hac.out

Related tutorial: Tutorial: Thermal conductivity from EMD

We only used the potential part of the heat current. If you are studying fluids, you need to output the heat currents
(potential and kinetic part) using the compute keyword and calculated the HACs by yourself.

We have decomposed the potential part of the heat current into in-plane and out-of-plane components [Fan 2017].
If you do not need this decomposition, you can simply sum up some components in the hac.out file.

The NEMD method for heat transport

Nonequilibrium molecular dynamics (NEMD) can be used to study thermal transport. In this method, two local
thermostats at different temperatures are used to generate a nonequilibrium steady state with a constant heat flux.

If the temperature difference between the two thermostats is  and the heat flux is , the thermal
conductance  between the two thermostats can be calculated as

Here,  is the energy transfer rate between the thermostat and the thermostated region and  is the cross-sectional area
perpendicular to the transport direction.

x

= [1 − ( − )] .xscaled
i

xi αp px0 px

px0 px x
αp

αp

= ∼αp 10−4 10−2

x

(t) = d ( ).κxx

1

VkBT
2

∫
t

0

t′HACxx t′

kB V T t

(t) = ⟨ (0) (t)⟩,HACxx Jx Jx

(0)Jx (t)Jx t

⟨⟩

ΔT Q/S
G

G = .
Q/S

ΔT

Q S

https://gpumd.zheyongfan.org/index.php/The_compute_hac_keyword
https://gpumd.zheyongfan.org/index.php/The_hac.out_output_file
https://gpumd.zheyongfan.org/index.php/Tutorial:_Thermal_conductivity_from_EMD
https://gpumd.zheyongfan.org/index.php/The_compute_keyword
https://gpumd.zheyongfan.org/index.php/The_hac.out_output_file


8/31/2020 Theoretical formulations - GPUMD

https://gpumd.zheyongfan.org/index.php/Theoretical_formulations 7/10

We can also calculate an effective thermal conductivity (also called apparent thermal conductivity)  for
the finite system:

where  is the length between the heat source and the heat sink. This is to say that the temperature gradient should be
calculated as , rather than that extracted from the linear part of the temperature profile away from the local
thermostats. This is an important conclusion in Ref. [Li 2019].

To generate the nonequilibrium steady state, one can use a pair of local thermostats. Based on Ref. [Li 2019], the
Langevin thermostatting method is recommended. Therefore, the ensemble keyword with the first parameter of
heat_lan should be used to generate the heat current.

The compute keyword should be used to compute the temperature profile and the heat transfer rate .

Related output file: compute.out

Related tutorial: Tutorial: Thermal transport from NEMD and HNEMD

The HNEMD method for heat transport

The homogeneous nonequilibrium molecular dynamics (HNEMD) method for heat transport by Evans has been
recently generalized to general many-body potentials [Fan 2019]. This method is physically equivalent to the
Green-Kubo (EMD) method but is computationally much faster.

In this method, an external force of the form [Fan 2019]

is added to each atom , driving the system out of equilibrium. According to [Gabourie 2020], it can also be written as

Here,
 is the total energy of particle .
 is the potential energy of particle .

 is the per-atom virial.
, and  is the position of particle .

The parameter  is of the dimension of inverse length and should be small enough to keep the system
within the linear response regime.

The driving force will induce a nonequilibrium heat current  linearly related to :

where  is the thermal conductivity tensor,  is the system temperature, and  is the system volume.

A global thermostat should be applied to control the temperature of the system. For this, we recommend using the
Nose-Hoover chain thermostat. So one should use the ensemble keyword with the first parameter of nvt_nhc.
The compute_hnemd keyword should be used to add the driving force and calculate the thermal conductivity.
The computed results are saved to the kappa.out file.
Related tutorial: Tutorial: Thermal transport from NEMD and HNEMD
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Spectral heat current

In the framework of the NEMD and HNEMD methods, one can also calculate spectrally decomposed thermal
conductivity (or conductance). In this method, one first calculates the following virial-velocity correlation
function [Gabourie 2020]:

which reduces to the nonequilibrium heat current when .

Then one can define the following Fourier transform pairs [Fan 2017]:

By setting  in the equation above, we can get the following spectral decomposition of the nonequilibrium
heat current:

From the spectral decomposition of the nonequilibrium heat current, one can deduce the spectrally decomposed
thermal conductance in the NEMD method:

where  is the temperature difference between the two thermostats and  is the volume of the considered system or
subsystem.

One can also calculate the spectrally decomposed thermal conductivity in the HNEMD method:

where  is the magnitude of the driving force parameter in the HNEMD method.

This calculation is invoked by the compute_shc keyword and the results are saved to the shc.out file.

Related tutorial: Tutorial: Thermal transport from NEMD and HNEMD

Modal Analysis Methods

A system with  atoms will have  vibrational modes. Using lattice dynamics, the vibrational modes (or
eigenmodes) of the system can be found. The heat flux can be decomposed into contributions from each
vibrational mode and the thermal conductivity can be written in terms of those contributions [Lv 2016].
To calculate the modal heat current in GPUMD, the velocities must first be decomposed into their modal
contributions:
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Here,

 is the normal mode coordinates of the velocity of mode 
 is the mass of atom 
 is the eigenvector that gives the magnitude and direction of mode  for atom 

 is the velocity of atom 

The heat current in GPUMD can be rewritten in terms of the modal velocity to be:

This means that the modal heat current can be written as:

This modal heat current can be used to extend the capabilities of the EMD and HNEMD methods. The extended
methods are called Green-Kubo Modal Analysis (GKMA) [Lv 2016] and Homogeneous Nonequilibrium Modal
Analysis (HNEMA) [Gabourie 2020].

GKMA

The Green-Kubo Modal Analysis (GKMA) calculates the modal contributions to thermal conductivity by using
[Lv 2016][Gabourie 2020]:

Here,  is Boltzmann's constant,  is the volume of the simulated system,  is the absolute temperature, and  is the
correlation time.  is the total heat current and and  is the mode-specific heat current of the system at
two time points separated by an interval of . The symbol  means that the quantity inside will be averaged over
different time origins.

Related input file: eigenvector.in
Related keyword in the run.in file: compute_gkma
Related output file: heatmode.out
For the GKMA method, we only used the potential part of the heat current.

HNEMA

The Homogeneous Nonequilibrium Modal Analysis (HNEMA) method calculates the modal contributions of
thermal conductivity using [Gabourie 2020]:

Here,  is the thermal conductivity tensor of mode ,  is the system temperature, and  is the system volume.

The mode-specific nonequilibrium heat current is  and the driving force parameter is .

Related input file: eigenvector.in
Related keyword in the run.in file: compute_hnema
Related output file: kappamode.out
For the HNEMA method, we only used the potential part of the heat current.
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A global thermostat should be applied to control the temperature of the system. For this, we recommend using the
Nose-Hoover chain thermostat. So one should use the ensemble keyword with the first parameter of nvt_nhc.
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