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Abstract   

Human-Centered Artificial Intelligence is increasingly deployed in professional workplaces in Industry 

4.0 to address various challenges related to the collaboration between the operators and the machines, 

the augmentation of their capabilities or the improvement of the quality of their work and life in 

general. Intelligent systems and autonomous machines need to continuously recognize and follow the 

professional actions and gestures of the operators in order to collaborate with them and anticipate their 

trajectories for avoiding potential collisions and accidents. Nevertheless, the recognition of patterns of 

professional gestures is a very challenging task for both research and the industry.  There are various 

types of human movements that the intelligent systems need to perceive, e.g., gestural commands to 

machines, professional actions with or without the use of tools etc. Moreover, the inter- and intra- class 

spatiotemporal variances together with the very limited access to annotated human motion data 

constitute a major research challenge. In this paper, we introduce the Gesture Operational Model which 

describes how gestures are performed based on assumptions that focus on the dynamic association of 

body entities, their synergies, and their serial and non-serial mediations, as well as, their transitioning 

over time from one state to another. Then, the assumptions of the Gesture Operational Model are 

translated into a simultaneous equations system for each body entity through State-Space modeling. 

The coefficients of the equation are computed using the Maximum Likelihood Estimation method. The 

simulation of the model generates a confidence-bounding box for every entity that describes the 

tolerance of its spatial variance over time. The contribution of our approach is demonstrated both for 

recognizing gestures and forecasting human motion trajectories. In recognition, it is combined with 

continuous Hidden Markov Models to boost the recognition accuracy when the likelihoods are not 

confident. In forecasting, a motion trajectory can be estimated by taking as minimum input two 

observations only. The performance of the algorithm has been evaluated using four industrial datasets 

that contain gestures and actions from a TV assembly line, the glassblowing industry, the gestural 

commands to Automated Guided Vehicles as well as the Human-Robot Collaboration in the 

automotive assembly lines. 

1 Introduction 

Human motion analysis and recognition is widely researched from various scientific domains including 

Human-Computer Interaction, Collaborative Robotics and Autonomous Vehicles. Both the industry 
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and science, face significant challenges in capturing the human motion, developing models and 

algorithms for efficiently recognizing it, as well as for improving the perception of the machines when 

collaborating with humans.   

Nevertheless, in factories, « we always start with manual work » as explained by Mitsuri Kawai, Head 

of Manufacturing and Executive Vice-President of Toyota [50]. Therefore, experts from both 

collaborative robotics and applied ergonomics are always involved when a new collaborative cell is 

being designed. Nowadays, despite the significant progress in training robots by demonstration, 

automatizing the human tasks in mixed workspaces, still remains the goal. However, those workspaces 

are not necessarily collaborative. For example, in a smart workspace, a machine that perceives and 

anticipates gestures and actions of the operator, would be able to adapt its own actions depending on 

those of the operator, thus giving him/her the possibility to obtain ergonomically ‘green postures’. 

Furthermore, Automated Guided Vehicles (AGVs) should also be able to detect the intentions of the 

operator with the aim of collaborating with them, avoiding accidents and understanding gestural 

commands. Finally, in Industry 4.0, an important number of Creative and Cultural Industries, e.g. in 

luxury goods manufacturing, still base their know-how on manual dexterity, no matter whether the 

operator is in collaboration with a machine or not. Therefore, human movement representation and 

gesture recognition constitute a mean for identifying the industrial know-how and transmitting it to the 

next generation of the operators. 

From a scientific point of view, major research challenges are faced by scientists, especially when 

dealing with professional environments in an industrial context. Initially, there is an extremely limited 

access to motion data from real-life configurations. This is mainly due to acceptability issues from the 

operators or to limitations imposed by laws and regulations that protect the access to/use of  personal 

data, e.g. the ‘General Data Protection Regulation’ in the European Union.  Therefore, most of existing 

datasets include only gestures from the everyday life. Furthermore, when creating custom datasets with 

professional motion data, many practical and environmental issues might occur, e.g. variation in 

luminosity, various workspace with different geometries, camera in motion to record a person moving 

in space, low availability of real experts etc. Additionally, the community of actions and gesture 

recognition deals with challenges that are related to intra- and inter- class variations [49]. Frequent are 

the cases where a professional task involves gestures that have very similar spatiotemporal 

characteristics - low inter- class variation – together with very important differences in the way 

different humans perform the same gesture -high intra- class variation-. Finally, when applied to 

accident prevention, a small delay in predicting the action might be crucial. 

The work presented in this paper, contributes to the aforementioned challenges, through the proposition 

of a Gesture Operational Model (GOM) that describes how the body parts cooperate, to perform a 

situated professional gesture. The model is built upon several assumptions that determine the dynamic 

relationship between the body entities within the execution of the human movement. The model is 

based on the State-Space (SS) representation, as a simultaneous equation system for all the body 

entities is generated, composed by a set of first-order differential equations. The coefficients of the 

equation system are estimated using the Maximum Likelihood Estimation method (MLE), and its 

dynamic simulation generates a dynamic tolerance of the spatial variance of the movement over time. 

The scientific evidence of the GOM is evaluated through its ability to improve the recognition accuracy 

of gestural time series that are modeled using continuous Hidden Markov Models (HMMs). Moreover, 
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the system is dynamically simulated through the solution of its equations. Its forecasting ability is 

evaluated by comparing the similarity between the real and the simulated motion data using two real 

observations for initializing the models as well as by measuring the Theil’s inequality coefficient and 

its decompositions. 

The performance of the algorithms that implement the GOM, the recognition of gestures and the 

forecasting of the motion trajectories is evaluated by recording four industrial real-life datasets from a 

European house-holding manufacturer, a glassblowing workshop, an AGV manufacturer and a 

scenario in automotive industry. More precisely, the first dataset contains motion data with gestures 

and actions from a TV assembly line, the second from the creation of glass water-carafes, the third 

gestural commands to mobile robots, and the fourth from a scenario of Human-robot collaboration in 

the automotive industry. The motion data used in our experiments are 2D positions that are exported 

from computer vision and the application of a deep-learning based pose estimation using the OpenPose 

framework [37]. 

 

Section 2 presents a State of the Art on human motion modeling, representation, and recognition. In 

Section 3, the whole methodology analysis, modeling and recognition is presented, while in Section 4 

the different approaches in the evaluation of the ability of the models to simulate a gesture and forecast 

its trajectories are analysed. In the same section, the accuracy of the proposed method is also presented. 

Finally, in sections 5 and 6, a discussion and the future work and perspectives of the proposed 

methodology are described. 

2  State of the Art 

Movement can be defined as the change of someone’s position, while gesture is a form of non-verbal 

communication used for controlling or interacting with a machine. Professional gestures define the 

routine of workers in industry. To reach the point of movements’ interpretation, thus, to gesture 

recognition, it is essential to understand the existing relationships among human body parts.   

2.1 Movement modeling and representation 

Each body articulation is strongly affected by the movement of others. Observing a person running, 

brings evidence on the existing interdependencies between different parts of human body that need to 

move cooperatively for a movement to be achieved. Duprey et al.[1] attempted to study those 

relationships by exploring the upper body anatomy models available and describe their applicability 

using multi-body kinematic optimization, mostly for clinical and ergonomic uses. Biomechanics has 

also actively contributed to the study of human movement modeling by using Newtonian methods and 

approaches, especially in sports and physical rehabilitation [35]. Representing human movement with 

mathematical, physical and statistical models permits the estimation and forecasting of movement’s 

evolution. This is also the goal of the State-Space, a statistical method that allows to forecast time 

series based on methods like Kalman filtering. A State-Space (SS) representation is a mathematical 

model of a physical system as a set of input, output and state variables related by first-order differential 

equations. Kalman filtering is a method that estimates and determines values for the parameters of a 

model.  To represent human movement, Zalmai et al.[2], used linear SS models and provided an 

algorithm based on local likelihood for detecting and inferring gesture causing magnetic field 

variations. Lech and Kostek [3] used Kalman filtering to achieve hand tracking and presented a system 

based on camera and multimedia projector enabling a user to control computer applications by dynamic 

hand gestures. Finally, Dimitropoulos et al.[60] presented a methodology for the modeling and 

classification of multidimensional time series by exploiting the correlation between the different 
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channels of data and the geometric properties of the space in which the parameters of the descriptor lie 

by using a Linear Dynamical System (LDS). Here, multidimensional evolving data were considered as 

a cloud of points (instead of a single point) on the Grassmann manifold and we create a codebook in 

order to represent each multidimensional signal as a histogram of Grassmannian points, which is not 

always the case for professional gestures.  

2.2 Machine learning for gesture recognition 

Movement modeling and representation methods lead to gesture estimation but don’t allow the 

modeling of precise movement patterns and consequently their recognition, as well as taking into 

consideration qualitative aspects of human movement such as expressivity. These limitations can be 

overcome with the use of machine learning methods. An important number of studies have been done 

in the past years in the field of gesture and movement recognition with the use of machine learning. 

Two different machine learning approaches have been mainly adopted to recognize various types of 

gestures: the model-based and the template-based methods.  

 

2.2.1 Template-based Machine Learning 

Template-based machine learning has been widely used for gesture recognition in the context of 

continuous real-time human-machine interaction. Dynamic Time Warping (DTW) is an example of 

methods that have been used to reach high gesture recognition accuracy results. DTW makes it possible 

to find the optimal global alignment between two sequences. Bevilacqua et al. [16], [17], [18] 

successively developed a system based on DTW, the Gesture Follower, for both continuous gesture 

recognition and following, between the template or reference gesture, and the input or performed one. 

A single example allows the training of the system [19]. During the performance, a continuous 

estimation of parameters is calculated in real-time, providing information for the temporal position of 

the performed gesture. Time alignment occurs between the template and the performed gesture, as well 

as an estimation of the time progression within the template in real-time. Instead of Psarrou et al.[11] 

used the Conditional Density propagation algorithm to perform gesture recognition, and make sure that 

they won’t get probabilities for only one model per time-stamp. The experiments resulted to a relatively 

good accuracy for the time period conducted.  

 

2.2.2 Model-based Machine Learning 

One of the most popular methods of model-based machine learning that has been used to model and 

recognize movement patterns are Hidden Markov Models (HMMs).  Pedersoli et al. adopted this 

method [4] to recognize in real-time static hand-poses and dynamic hand-gestures of American Sign 

Language. Sideridis et al. [6] created a gesture recognition system for everyday gestures recorded with 

Inertia Measurement Units, based on Fast Nearest Neighbors and Support Vector Machine methods 

while Yang and Sarkar [7]chose to use an extension of HMMs. Vaitkevičius et al. [10] used also HMMs 

with the same purpose, gesture recognition, for the creation of virtual reality installations, as well as 

Williamson and Murray-Smith [23] that used a combination of HMMs with a dynamic programming 

recognition algorithm, along with the granular synthesis method for gesture recognition with audio 

feedback. In a more industrial context, Yang, Park and Lee [25] used gesture spotting with HMMs to 

achieve efficient Human-Robot collaboration where real-time gesture recognition was performed with 

extended HMM methods like Hierarchical HMMs [8]. HMMs seem to be a solid approach allowing 

achieving satisfying results of gesture modeling and recognition and are suitable for real-time 

applications.  
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The aforementioned methodologies and research approaches permit the identification of what/which 

gesture is performed by giving a probability, but not how expressively the gesture has been performed. 

Caramiaux et al. [15] extended the research, by implementing a Sequential Monte Carlo technique to 

deal with expressivity. The recognition system, named Gesture Variation Follower, is being adapted 

to gesture expressive variations in real-time. Specifically, in the learning phase only one example per 

gesture is required. Then, in the testing (recognition) phase, time alignment is computed continuously 

and expressive variations (such as speed, size) are estimated between the template and the performed 

gesture [15][24].  

The model-based and template-based methods present an interesting complementarity and their 

combination, in most of cases, give the possibility to achieve satisfying gesture recognition accuracy. 

However, when the probability given per class presents a high level of uncertainty, these methods need 

to be completed with an extra layer of control that will permit to take a final, more robust, decision 

about the probability of an observation to belong to each class. One of the goals of this work is to focus 

on the use of the State-Space method for human movement representation and modeling, and use this 

representation as the extra control layer to improve gesture recognition results. 

2.2.3 Deep architectures for action recognition 

Deep Learning (DL) is another approach with an increasing scientific evidence in action and gesture 

classification. Mathe et al. [27] presented results on hand gesture recognition with the use of a 

Convolutional Neural Network (CNN), which is trained on Discrete Fourier Transform images that 

were resulted from raw sensor readings. In [28], the authors proposed an approach for the recognition 

of hand gestures from the American Sign Language using CNNs and auto-encoders. 3DCNNs are used 

in [29] to detect hand movements of drivers and in [30] continuously recognize gesture classes from 

the Continuous Gesture Dataset (ConGD), which is the larger user-independent dataset. A two-stage 

approach is presented in[31], which combines feature learning from RGB-D using CNNs with Principal 

Component Analysis (PCA) for selecting the final features. Devineau, Xi, Moutarde and Yang [32] 

used a CNN model and tested its performance on classifying sequential humans’ tasks using hand-

skeletal data as input. Shahroudy et al.[57] wanting to improve their action recognition results and 

decrease the dependency in factors like lightning, background and color clothing, used a Recurrent 

Neural Network to model the long-term correlation of the features for each body part. For the same 

reason, Yan et al.[58] proposed a model of dynamic skeletons called Spatial-Temporal Graph 

Convolutional Network (ST-GCN). This Neural Network (NN) learns automatically the spatial and 

temporal patterns from the given data, minimizing the computational cost and increasing the 

generalization capability. In other cases, action recognition was achieved using either 3DCNNs [54] 

or two stream networks [59]. CNNs are the NNs used in all cases above, as they are the main method 

used for image pattern recognition.  

The particularity of DL methods is that they require for a big amount of data in order to be trained. In 

some applications, having access to an important volume of data, might not be possible for various 

reasons. One application with extremely limited amount of data is the recognition of situated 

professional actions and gestures performed in an industrial context, such as in manufacturing, 

assembling lines, craftmanship, etc.  Deep NNs are powerful methods for pattern recognition with great 

accuracy results, but they present some limitations for real-time applications, which are linked to the 

computational power that is required both for training and testing purposes. In this paper, given the 

fact that the available examples per gesture class are also limited, it is assumed and proved that 

stochastic model-based machine learning can give better results than DL.  
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The aim of this paper is to get advantage of existing knowledge in machine learning, and more precisely 

in the stochastic modeling for the recognition of gestures and the forecasting of their motion 

trajectories, and compare their performance with a recent DL-based end-to-end architecture.  

2.2.4 Our previous work 

Manitsaris et al. [52] previously defined an operational model explaining how the body parts are related 

to each other, which was used for the extraction of confidence bounds over the time series of motion 

data. In [52], as well as in this from Volioti et al. [22], the operational model has been tested on Euler 

angles. In this work, the operational model is expanded to the full body and is tested with various 

datasets having different characteristics, e.g. more classes, more users and various real-life situations.   

3 Methodology 

3.1 Overview 

The motion capturing of the operators in their workplace is a major task.  A number of professional 

gestural vocabularies is created, to build the methodology and evaluate its scientific evidence. 

Although the proposed methodology (Figure 1) is compatible with various types of motion data, we 

opted for RGB sensors and, in most of cases, with 2D positions to avoid any interference between the 

operator and his/her tools or materials.  Thus, RGB images are recorded for every gesture of the 

vocabulary, segmented into gesture classes, annotated, and then introduced to an external framework 

for estimating the poses and extracting the skeleton of the operators.   

As shown in Figure 2, the GOM is based on a number of assumptions that describe the way the different 

entities of the human body cooperate to efficiently perform the gesture. The assumptions of the model 

refer to various relationships between the entities, which are: the intra- joint association, the inter-limb 

synergies, the intra-limb mediation and the transitioning over time. Following the theory of the SS 

modeling, the GOM is translated into a simultaneous equations system that is composed by two first-

order differential equations for each component (e.g. dimension X, Y for 2D or X, Y, Z for 3D) of each 

body entity. 

During the training phase, the motion data of the training dataset are used to compute the coefficients 

of the equations system using the MLE method but also to execute a supervised learning of the 

continuous HMMs. Moreover, the motion data are used to solve the simultaneous equations system 

and simulate the whole gesture, thus generating values for the state variables. Once the solution of the 

system is completed for all the gestures of the vocabulary, the forecasting ability of every model is 

evaluated using the Theil’s coefficients as well as their performance in comparison with the motion 

data of other gestures. 

During the testing phase, the HMMs output their likelihoods, which are multiplied by a confidence 

coefficient when their maximum likelihood is under a threshold. Finally, a motion trajectory can be 

dynamically or statically forecasted at any time by giving as input at least two time-stamps values from 

the real motion data. 

3.2 Industrial datasets and gesture vocabularies 

The performance of the algorithms is evaluated by recording four industrial real-life datasets from a 

house-holding manufacturer, a glassblowing workshop, an AGV manufacturer and an automotive 

industry. For each dataset, a gesture vocabulary has been defined in order to segment the whole 

procedure into small human motion units. 
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As shown in Table 2, the first gesture vocabulary (𝐺𝑉1), includes 4 gestures where the operator takes 

the electronic card from one box, then takes a wire from another, connects them and places them on 

the TV chassis. The gestures are performed in a predefined working space, in front of the conveyor 

and with the boxes placed on the left and right side respectively. However, the operator has a certain 

degree of variation in the way of executing the tasks, since the gestures are ample involving the whole 

body. Moreover, in order to avoid self- and scene- occlusions, the camera is mounted on the top, which 

is not necessarily the optimal camera location for pose estimation algorithms, e.g. OpenPose. Currently 

in the factory, together with the operator who performs the actions of 𝐺𝑉1 there is also a second operator 

who will be progressively replaced by a collaborative robot.  

The second dataset proposes gestural commands for controlling an AGV. As shown in Table 2, 𝐺𝑉2 

contains five gestures involving mostly the arm and forearm. G2,1 initiates the communication with the 

AGV, by shaking the palm, while G2,2 and G2,3 turn left and right the AGV by raising the respective 

arms. G2,4 speeds up the AGV by raising three times the right hand, while G2,5 speeds down the AGV 

by rolling the right hand away from the hips with a distance of around 20/30cm. All gestures of 𝐺𝑉2 
start and end with the i-pose.  

The third gesture vocabulary 𝐺𝑉3 contains four gestures performed by a glassblower when creating a 

water carafe (Table 2). The craftsman executes the gestures in a very limited space that is defined by a 

specific metallic construction. The craftsman puts the pipe on the metallic structure and to perform 

various manipulations of the glass by using tools, such as pliers, etc. The three out of four gestures are 

performed while the craftsman is sitting. More precisely, he starts by shaping the neck of the carafe 

with the use of pliers (G3,1), then he tightens the neck to define the transition between the neck and the 

curved vessel (G3,2), he holds in his right hand a specific paper and shapes the curves of the blown part 

(G3,3) and finalizes the object and fixes the details by using a metallic stick (G3,4). In general, the right 

hand is manipulating the tools while the left is holding and controlling the pipe. In parallel with G3,2 

and G3,3, an assistant is helping and blowing promptly the pipe to permit the creation of the blown 

curved part.  

The last dataset (𝐺𝑉4) (Table 2) used in this paper, is related to a real-life Human-Robot Collaboration 

scenario that has been recorded in the automotive assembly lines of PSA Peugeot Citroën (PSA Group).  

A dual-arm robot and the worker are facing each other in order to cooperate for assembling motor 

hoses. More precisely, for the assembling of the motor hoses, the robot gives to the worker one part 

from the right and one part one from the left claw, the worker takes two hose parts from the robot, joins 

them, screws them, and finally places the mounted motor hose in a box.  In order for the robot to 

achieve the appropriate level of perception and move accordingly, it needs to make two specific actions 

“to take a piece in the right claw” and “to take a piece in the left claw”. Then, the worker can screw 

after the first gesture “to assemble”, or can choose to screw later during the last assembly sub-task. At 

the end of the assembly task, the worker puts the assembled piece in a box, which means that a cycle 

has just ended. Therefore, it is important for the robot to recognize the actions “to assemble” and “to 

screw” of the worker, so as to give at the correct moment the next motor piece with its arm. Twelve 

operators have been recorded in 𝐺𝑉4. 

The four datasets and vocabularies contain professional gestures performed in different industries and 

contexts. Important differences may be observed between them though. For example, 𝐺𝑉1, 𝐺𝑉3 and 𝐺𝑉4 

involve the manipulation of tools from the operator. Therefore, the distribution of variances alternates 

between high, e.g. when moving for grabbing the tool, and low values, e.g. when tools or objects are 

put on a specific position. In 𝐺𝑉1, despite the fact that the gestures are performed in a predefined space, 

the operator has a certain degree of variation between different repetitions of the same gesture. Human 
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factors such as the level of experience, fatigue or even stress, influence the way these gestures are 

performed without necessarily having a direct impact on the final result, which is to place the card on 

the TV. However, this is not the case of the 𝐺𝑉3 where a high level of technicity and dexterity is 

required. In 𝐺𝑉3, only a low spatial and temporal variation can be accepted. The glass blower performs 

the gestures with a high repeatability from one repetition to another and successfully reproduce the 

object with exactly the same specifications, e.g. size, diameter etc. The gestural commands of 𝐺𝑉2 are 

simpler and ampler. A bigger freedom and variation are thus expected in the way they are performed. 

In 𝐺𝑉4, the operator is performing actions with a high repeatability. Since the dual-arm robot Motoman 

SDA20 has been used, the operator, depending on if he/she is left or right-handed, has various 

possibilities for grabbing the parts from the robot and the tools. 

In 𝐺𝑉1, while all the gestures are performed by a single user, the different position of the operator in 

space in each gesture makes it an interesting dataset to work on.  Also, this dataset appears to have a 

lot of noise, and it was an opportunity to examine the reaction of the pose estimation framework to 

noisy data. The second dataset (𝐺𝑉2) has multiple users, giving the opportunity to examine how gesture 

recognition works with a high variation among the performance of the same gestures. In the third 

gestural vocabulary (𝐺𝑉3), all gestures have been performed by an expert artist. They are fine 

movements where hands are cooperating in a synchronous way. Consequently, investigating body parts 

dependencies in this 𝐺𝑉 becomes extremely interesting. The fourth gestural vocabulary (𝐺𝑉4), has a 

robot involved in the industrial routine. 

From an intra- class variance point of view, the Root-Mean-Square-Error is used to evaluate the 

datasets. The root-mean-square-error (RMSE) allows the measurement of the difference between two 

times-series and it is defined as shown in equation 1. 

RMSE = √(o1 − o2)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ (1) 

where o1 is one of the iterations of a specific gesture within a gestural vocabulary and o2 is another 

iteration of the same gesture, among which the variance is to be examined. A high variance between 

the iterations of each gesture of  𝐺𝑉2 is noticed, which is the expected result, since this dataset consists 

of gestures performed by six different users (Table 3).  The RMSE for 𝐺𝑉3 appears to have low intra- 

class variation, as expected, since the gestures are performed by an expert, who is able to repeat them 

in a very precise way.  

3.3 Pose estimation and features extraction 

After the motion capturing and recording of the data, each image sequence of the three first datasets, 

is imported to the OpenPose framework, which detects body keypoints on the RGB image and extracts 

a skeletal model together with the 2D positions of each body joint [61] (Figure 2). These joints are not 

necessarily physical joints. They are keypoints on the RGB image which, in most cases, correspond to 

physical joint centers. OpenPose uses the neck as the root keypoint to compute all the other body 

keypoints (or joints). Thus, the motion data are normalized by using the neck as the reference joint. In 

addition to this, the coordinates of each joint are derived by the width and height of the camera. With 

regard to 𝐺𝑉4, 3D hand positions are extracted from top-mounted depth imaging by detecting keypoints 

on the depth map. The keypoints are localized by the computing the geodesic distances between the 

closest body part to the camera (head) and the farest visible body part (hands), as it is presented in our 

previous work [34]. Any vision-based pose estimation framework may output 2D positions of a low 

precision, depending on the location of the camera, such as OpenPose for a top-mounted view. 
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However, these errors may not strongly affect the recognition accuracy of our hybrid approach. This 

is also proved by the fact that our approach outperforms the End-to-End 3DCNNs that doesn't use any 

skeletisation of the human body to recognize the human actions. 

The extracted features for each joint, were the X and Y positions, as they are provided by OpenPose. 

More specifically, for 𝐺𝑉1 the 2D positions of the two wrists have been used, while for 𝐺𝑉2 and 𝐺𝑉3, 

the 2D positions of the head, neck and shoulder, elbows, wrists and hands, as they were proven to give 

optimal recognition results. With regard to 𝐺𝑉4, 3D hand positions are used. 

3.4 Gesture Operational Model 

When a skilled individual performs a professional situated gesture, the whole body is involved 

combining thus theoretical knowledge with practical motor skills. Effective and accompanying body 

movements are harmonically coordinated to execute a given action. The expertise in the execution of 

professional gestures is characterized by precision and repeatability while the body is continuously 

shifting from one phase to another, e.g. from specific postures (small tolerance for spatial variance) to 

ample movements (high tolerance for spatial variance). For each phase of the movement, each body 

entity, e.g. articulation or segment, moves in a multidimensional space over time. When considering 

the 2D motion descriptors of the movement, two mutually depended variables represent the entity, e.g. 

X and  Y positions. Each of these variables is associated with the other, creating thus a bidirectional 

relationship between them. Furthermore, they also depend on their history while some entities might 

‘work together’ to execute an effective gesture, e.g. when an operator assembly two parts. However, a 

unidirectional dependency might be observed when one entity influences the other entity and not vice 

versa as well as a bidirectional dependency when both entities influence one each other, e.g. when a 

potter shapes the clay with both hands. 

The above observations on situated body movements can be translated into a functional model, that we 

define here as the Gesture Operational Model (GOM), which describes how the body skeletal entities 

of a skilled individual, are organized to deliver a specific result (Figure 2). It is assumed that each of 

the assumptions of ‘intra-joint association’, ‘transitioning’, ‘intra-limb synergies’ and ‘intra-limb 

mediation’, contribute at a certain level to the production of the gesture. As far as the intra-limb 

mediation is concerned, it can be decomposed into the ‘inter-joint serial mediation’ and the ‘inter-joint 

non-serial mediation’. The proposed model works perfectly for all three dimensions (X, Y and Z), but 

for simplicity reasons, it will be presented only for two dimensions, the X and Y. In addition to this, in 

this work only positions are used, but the model is designed to be able to receive joint angles as input 

as well. 

Η1: Intra-joint association 

It is hypothesized that the motion of each body part (𝐸𝑛𝑡𝑖𝑡𝑦) (e.g. right hand) is decomposed in a motion 

on X-axis and Y-axis, thus described by two mutually depended variables. It is assumed that there is a 

bidirectional relationship between the two variables, defined here as intra-joint assumption and 

indicated by .  

Η2: Transitioning 

It is also assumed that each variable depends on its own history, also called inertia effect. This means 

that the current value of each variable depends on the values of previous times, also called lag or 

dynamic effect, which is defined here as transitioning and indicated by .  
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Η3: Inter-limb synergies 

It is assumed that some body entities, work together to achieve certain motion trajectories, e.g. hands 

when assembling two parts, defined here as inter-limb synergies. 

 

Η4: Intra-limb mediation 

Inter-joint serial mediation: It is assumed that a body entity may depend on its neighboring entities to 

which it is directly connected to, e.g. a glassblower, while using the pipe, moves his/her wrists along 

with his/her shoulders and elbows.  In case this assumption is statistically significant there is an inter-

joint serial mediation. 

Inter-joint non-serial mediation: It is assumed that each body entity depends on non-neighboring 

entities of the same limb, e.g.  the movement of the wrist may depend on the movement of the elbow  

and shoulder. Thus, it is highly likely that both direct and indirect dependencies simultaneously occur 

in the same gesture. 𝐸𝑛𝑡𝑖𝑡𝑖𝑒𝑠 are named after the first letters of the respective body joint. More 

specifically, LSH and RSH represent the left and right shoulder respectively. Accordingly, LELBOW and 

RELBOW represent the left and right elbow, LWRIST and RWRIST, the left and right wrist, LHAND and 

RHAND the left and right hand. HEAD, NECK and HIPS represent, as their names indicate, the head, the 

neck and the hips.  

So, an example of the representation of those assumptions for the X-axis would be a below: 

𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡) = 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑌(𝑡 − 1) + 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑋(𝑡 − 1) + 𝐸𝑛𝑡𝑖𝑡𝑦1,𝑋(𝑡 − 2) + 𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) (2) 

3.5 Simultaneous Equations System 

The simultaneous equations system concatenates the dynamics of an 𝑁𝑡ℎ order system, the GOM, into 

𝑁 first-order differential equations. The number of equations is equal to the number of associated 

dimensions to a given entity multiplied by the number of body entities. Therefore, the steps to follow 

are the estimation of the model, with the aim of verifying its structure, as well as the simulation of the 

model to verify its forecasting ability. 

3.5.1 State-Space representation 

The definition of the equations of the system follows the theory of the SS modeling, which gives the 

possibility for the coefficients to dynamically change over time. A SS model for 𝑛−dimensional time 

series y(𝑡), consists of a measurement or observation equation relating the observed data to an 

𝑚−dimensional state vector 𝑠(𝑡) and a Markovian state or transition equation that describes the 

evolution of the state vector over time. The state equation depicts the dependence between the system’s 

past and future and must ‘canalize’ through the state vector. The measurement or observation equation 

is the ‘lens’ (signal) through which the hidden state is observed and it shows the relationship between 

the system’s state, input and output variables. Representing a dynamic system in a SS form, allows the 

state variables to be incorporated into and estimated along with the observable model. 

Therefore, given an input u(𝑡) and a state 𝑠𝑆(𝑡), a SS gives the hidden states that result to an observable 

output (signal).  A general SS representation is as follows: 

 

𝑑𝑠𝑠
𝑑𝑡
= A𝑠𝑆(𝑡 − 1) + w(𝑡) 

(3) 
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y = C
𝑑𝑠𝑠
𝑑𝑡
+ Du 

(4) 

where (3) is the state equation, which is a first-order Markov process (4) is the measurement equation, 

𝑠𝑆 is the vector of all the state variables, 
𝑑𝑠𝑠

𝑑𝑡
 is the time derivative of the state vector, u is the input 

vector, y is the output vector, A is the transition matrix that defines the weight of the precedent space, 

C is the output matrix and D is the feed-through matrix that describes the direct coupling between u and 

y, and 𝑡 indicates time.   

When capturing the gestures with motion sensors, Gaussian disturbances are also added in both the 

state and the output equation. After performing the experiments presented in this work, it was observed 

that Gaussian disturbances didn’t change at all the final estimation result, so they were considered to 

be negligible.   

The SS representation of the positions on the X-axis for a body 𝐸𝑛𝑡𝑖𝑡𝑦𝑖,𝑗 -where 𝑖 represents the body 

part modeled in a SS form and 𝑗 the dimension of each 𝐸𝑛𝑡𝑖𝑡𝑦- according to the GOM is structured as 

follows:  

𝑑𝑠𝑠
𝑑𝑡
= 𝐴 ∗ 𝑠𝑆(𝑡 − 1) = [

𝛼1 0
0 𝛼2

] [
𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1)

−𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2)
] = [

𝛼1𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1)

−𝛼2𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2)
] (5) 

(5)
⇒ 𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡) = [1 0]

𝑑𝑠𝑠
𝑑𝑡
+ 𝛼3𝐸𝑛𝑡𝑖𝑡𝑦1,Y(𝑡 − 1) + 𝛼4𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) = 

= 𝛼1𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 1) − 𝛼2𝐸𝑛𝑡𝑖𝑡𝑦1,X(𝑡 − 2) + 𝛼3𝐸𝑛𝑡𝑖𝑡𝑦1,Y(𝑡 − 1) + 𝛼4𝐸𝑛𝑡𝑖𝑡𝑦2,X(𝑡 − 1) 

(6) 

Where αi, the coefficients that need to be estimated. In equation 6, 𝐸𝑛𝑡𝑖𝑡𝑦X(𝑡 − 2) is subtracted by 

𝐸𝑛𝑡𝑖𝑡𝑦X(𝑡 − 1), indicating difference between successive levels of dimensions, e.g. positions on Y-axis 

(transitioning assumption). Equations 5 and 6 occur by equations 3 and 4 respectively. More 

specifically, equation 6 consists of the exogenous variables to which the endogenous ones, coming up 

from the state equation (equation 5), are added. 

Equation 6 has the form of a first-order Autoregressive (AR) model. An AR model predicts future 

behavior based on past behavior. The order of the autoregressive model is adapted in each case 

according to the data characteristics and the experiments. During the performance of the experiments, 

the use of an autoregressive model of second order led to better estimation results. As such, in the 

transitioning assumption, the position values of the two previous time periods (frames) of a given axis 

are considered. 

For the modeling of the full human body, the simultaneous equations system is based on the equations 

5 and 6, which consist of 2 sets of equations for each used entity, one for each dimension X, and Y. 

Thus, for a full body GOM, we obtain 32 equations describing 32 endogenous variables with 64 state 

variables that contain 2 exogenous variables for 𝑡 − 1 and 𝑡 − 2. 

As an example, the SS representation for the right wrist is given: 

RWRISTX(t) =  α1RWRISTX(t − 1) − α2RWRISTX(t − 2) + α3RWRISTY(t − 1) + α4LWRISTX(t − 1) (7) 
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In equation 7, RWRISTX(t − 1) and RWRISTX(t − 2) are the endogenous variables, while 

RWRISTY(t − 1), and LWRISTX(t − 1) are the exogenous ones.  

3.6 Computing the coefficients of the equations 

The coefficients of the simultaneous equations system are computed using the MLE method via 

Kalman filtering [45]. Let consider a gesture Gj∈ℕ of a gesture vocabulary 𝐺𝑉𝑖∈[1,3] and an observation 

𝒪0:𝑘 = {o1…o𝑘 }𝑘∈ℕ, where o𝑘 is one observation vector and 𝑘 the total number of observations. Thus, 

the probability 𝒫s to observe o𝑡 at time 𝑡 ∈ [0 , 𝑘]  will be as follows:  

𝒫s(𝒪0:𝑘) =∏𝒫(𝑜𝑡  |

𝑘

t=0

𝒪0:𝑡−1) (8) 

where 𝑘 represents the observed data, 𝒫(𝑜𝑡|𝒪0:𝑡−1)  is the probability of 𝑜𝑡 given all the observations 

before time 𝑡.  

Also, the probability of time series given a set of parameters 𝛹, is 

𝒫(𝒪0:𝑡−1|Ψ) = ∏ exp {−
(𝑜𝑡−𝑜̃t

𝑡−1)
2

2F𝑡
𝑡−1 } (2π|𝑘

𝑡=1 𝐹𝑡
𝑡−1|)−

1

2 dθ (9) 

with variance 𝐹𝑡
𝑡−1 and mean 𝑜̃𝑡

𝑡−1. So, the log-likelihood of 𝜓 given data 𝒪0:𝑡−1 is 

logL(𝛹|𝒪0:𝑡−1) = −
𝑘

2
log2π −

1

2
∑log|𝐹𝑡

𝑡−1| −
1

2

𝑘

𝑡=1

∑
(𝑜t − 𝑜̃𝑡

𝑡−1)2

𝐹𝑡
𝑡−1

𝑘

𝑡=1

 (10) 

For the computation of this log-likelihood, the estimation, the variance and mean that appear in 

equation 4, need to be estimated optimally. Kalman filtering gives the optimal estimates of the mean 

and covariance for the calculation of the maximum likelihood of 𝜓. Kalman filtering consists of two 

main recursive steps, prediction and update. In the first step, there is an estimation of the mean and 

covariance, along with the predicted error covariance. In the update step, the optimal Kalman gain is 

computed, so the estimation of mean and covariance from the prediction step is updated according to 

it. These two steps appear recursively, until the optimal õ𝑡
𝑡−1 and 𝐹𝑡

𝑡−1 that fit the observed data, are 

computed. This derives the computation of the coefficients of the SS equations and the forecasting of 

a new time series given those observed data.  

3.7 Learning with Hidden Markov Models 

HMMs follow the principles of Markov chains that describe stochastic processes. They are commonly 

used to model and recognize human gestures. They are structured using two different types of 

probabilities, the transition probability from one state to another and the probability for a state to 

generate specific observations on the signal [46]. In our case, each professional gesture is associated 

to an HMM, while the intermediate phases of the gesture constitute internal states of the HMM. 

According to our datasets, these gestures define the gesture vocabulary 𝐺𝑉𝑖∈[1,3] = {Gj}j∈ℕ.   
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Let 𝒮h be a finite space of states, corresponding to all the intermediate phases of a professional gesture. 

The transition probability between the states 𝒬 (sh, sh
′ ) where sh, sh

′ ∈ 𝒮h are given in the transition 

matrix 𝒬 = [𝒬 (sh, sh
′ )]. A hidden sequence of states where 𝒮h0:k = {sh1…shk }k∈ℕ where shk ∈ 𝒮h is also 

considered. A given sequence of hidden states Sh0:k is supposed to generate a sequence of observation 

vectors 𝒪0:k.  We assume that the vectors ok depends only on the state shk. From now on, the likelihood 

that the observation o is the result of the state sh, will be defined as  𝒫h(o|sh). It is important to outline 

that in our modeling structure; each internal state of the model depends only on its previous state (first-

order Markov property). Consequently, the set of the models for all gestures for every gesture 

vocabulary is 𝐺𝑉𝑗∈[1,3] = {HMMi}i∈ℕ, where HMMi = (ϱi, 𝒬i, 𝒫hi)i∈ℕ are the parameters of the model and 

ϱi is the initial state probability. Thus, the recognition becomes an issue of solving three specific 

problems: evaluation, recognition and learning [47]. Each one of those problems was solved with the 

use of the algorithms, Viterbi [43], Baum’s “forward” [38]and Baum-Welch respectively [44]. 

3.8 Gesture recognition 

In the recognition phase, the main goal is to recall with a high precision the hidden sequence of internal 

states 𝒮h0:k that correspond to the sequences of the observation vectors. Thus, let consider the 

observation of motion data 𝒪0:k, which need to be recognized. Every HMM𝛌 with λ ∈ [1, j] of a given 

𝐺𝑉𝑖 with i ∈ [1,3]  generate  the likelihood 𝒫hλ(𝒪0:k|HMMλ). If there is at least one HMMξ with ξ ∈ [1, j] 

that generates 𝒫hξ ≥ 0.55 then it is considered that 𝒪0:k is generated by Gi,ξ. Otherwise, the following 

quantity is computed for every SSλ of 𝐺𝑉𝑖 (confidence control): 

where 𝒹 is the minimum distance between the simulated values 𝒪0:k,λ
𝑠  from the model SSλ and the 

original observations 𝒪0:k. 

Then, for every SSλ of 𝐺𝑉𝑖 the likelihood 𝒫′hλ(𝒪0:k|HMMλ
SS) is computed as follows: 

𝒫′hλ(𝒪0:k|HMMλ
SS)=𝒫hλ(𝒪0:k|HMMλ) ∙SSλ

score (12) 

Therefore, the final formula providing the way the algorithm recognizes the observation of motion data 
𝒪0:k 

ℛ𝐺𝑉𝑖(𝒪0:k) = {
𝑚𝑎𝑥1

j (𝒫hi(𝒪0:k|HMMi)), 𝑚𝑎𝑥(𝒫hλ(𝒪0:k|HMMλ)) ≥ 0.55

𝑚𝑎𝑥1
j
(𝒫′hλ(𝒪0:k|HMMλ

SS)) , 𝑚𝑎𝑥(𝒫hλ(𝒪0:k|HMMλ)) < 0.55
 (13) 

4 Evaluation 

The evaluation of the accuracy and performance of the method follows an ‘all-shots’ approach for the 

training of the Hidden Markov Models and an ‘one-shot’ approach for estimating the coefficients of 

the State-Space models. 

In order to select which gestural iteration to use for computing the coefficients of the State-Space 

models, the “leave one out method” is used. It is a resampling technique which is also useful for 

SSλ
score =

1

1 + 𝒹(𝒪0:k, 𝒪0:k,λ
𝑠 )

 (11) 
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variance and bias estimation (and avoidance), especially when the data are limited. It consists in 

systematically leaving out one observation from a dataset, calculating the estimator and then finding 

the average of these calculations. In our case, the estimator was the likelihood of the HMM when 

trained with one iteration of a gesture and tested with all the other iterations. The iteration giving the 

maximum likelihood is selected for computing the coefficients of the State-Space models. 

4.1 Statistical significance and simulation of the models 

In order to evaluate the significance of the assumptions concerning the body parts dependencies that 

are defined within the GOM, a statistical significance analysis is done. The statistical significance p-

value indicates whether the assumptions are verified or not. The level of statistical significance is often 

expressed by using the p-value, which takes values between zero and one. Generally, the smaller the 

p-value, the stronger the evidence that the null hypothesis should be rejected. In this work the 0.05 p-

value was used as the threshold for the statistical significance tests. If the p-value of the estimated 

coefficient is smaller than 0.05, then the specific coefficient is statistically significant and need to be 

included in the SS representation of the model. 

 In the case of the professional gestures, investigating the significance level of the coefficients of each 

variable within the GOM, explains how important is each joint for each gesture in the gestural 

vocabulary. Examples of some of the gestures from 𝐺𝑉2 and 𝐺𝑉3 are given, to observe cases where 

some of the coefficients affect strongly the results and need to remain dynamic, while others not, and 

can remain constant. In the GOM below, the equation of G2,1 for RWRISTX is as follows, starting from 

equation 2.  

RWRISTX(t) = a12RWRISTY(t − 1) + a13RWRISTX(t − 1) − a14RWRISTX(t − 2) + a15LWRISTX(t − 1) = 

= −0.0629⏞      
 0.266

 RWRISTY(t − 1) + 1.3438⏞    
0.00

RWRISTX(t − 1) − (−0.3648⏞      
0.00

)RWRISTX(t − 2) + (−0.6625⏞      
0.449

)LWRISTX(t − 1) 
(14) 

Having performed the statistical significance analysis of the model in equation 14, we get the 

estimation of the coefficients. Where equation 14 is the general equation for X-axis of the right wrist, 

along the p- values that indicate the level of significance of each part of the equation. The p-values 

show that in the case of the 𝐺2,1, the past values on the same axis appear to be significant, while the 

respective p-values of the left wrist or the Y-axis of the right wrist, are not statistically significant. This 

result was expected, as this gesture is a ‘hello waving movement’, where the right wrist is moving 

across the X axe and the left wrist remains still through the performance of the gesture, leading to the 

result that there is no intra-limb mediation in this specific gesture.  

Following, there is one more example of the same 𝐺𝑉, from gesture G2,3, for X-axis (equation 15) and 

Y-axis (equation 16). The numbers above the estimated coefficients correspond to their respective p-

values. 

RWRISTX(t) = a12RWRISTY(t − 1) + a13RWRISTX(t − 1) − a14RWRISTX(t − 2) + a15LWRISTX(t − 1) = 

= −0.2871⏞      
0.00

 RWRISTY(t − 1) + 0.6392⏞    
0.00

 RWRISTX(t − 1)−0.0273⏞      
0.86

 RWRISTX(t − 2) + 0.0516⏞    
0.00

 LWRISTX(t − 1) 

(15) 
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RWRISTY(t) = a12RWRISTX(t − 1) + a13RWRISTY(t − 1) − a14RWRISTY(t − 2) + a15LWRISTY(t − 1) = 

= −3.9907⏞      
0.00

 RWRISTX(t − 1) + 0.5003⏞    
0.00

 RWRISTY(t − 1) − (−0.0818)
⏞      

0.616

RWRISTY(t − 2) + (−0.0927)
⏞      

0.00

LWRISTY(t − 1) 

(16) 

In this gesture, the operator moves his right wrist towards his right side both on the X and Y axes, 

indicating to the AGV to turn right. So, according to the results, all coefficients appear to be statistically 

significant, apart from the 2 previous time-periods value of the X-axis of the right wrist. The same 

results occur for the Y-axis of the same wrist.  

To verify the results, a significance level test is presented for G3,2 of 𝐺𝑉3. During the performance of 

this gesture, the glassblower is moving both wrists cooperatively, to tighten the base of the glass piece. 

The right wrist works more intensively to complete tightening the glass, while the left wrist 

complements the movement by slowly rolling the metal pipe.  

RWRISTX(t) = a12RSHX(t − 1) + a13RELBOWX(t − 1) + a14RWRISTY(t − 1) + a15LWRISTX(t − 1) + 

+a16RWRISTX(t − 1) + a17RWRISTX(t − 2) = 

= (−0.0778⏞      
0.562

)RSH𝑋(t − 1) + 1.1126⏞    
0.00

RELBOWX(t − 1) + (−0.4757⏞      
0.00

)RWRISTY(t − 1) + 0.3423⏞    
0.00

LWRISTX(t − 1) + 

+0.4585⏞    
0.00

RWRISTX(t − 1) + 0.4604⏞    
0.00

RWRISTX(t − 2) 

(17) 

 

RWRISTY(t) = a12RSHY(t − 1) + a13RELBOWY(t − 1) + a14RWRISTX(t − 1) + a15LWRISTY(t − 1) + 

+a16RWRISTY(t − 1) + a17RWRISTY(t − 2) = 

= 0.290⏞  
0.117

 RSHY(t − 1) + 0.3678⏞    
0.00

RELBOWY(t − 1) + (−1.0912⏞      
0.00

)RWRISTX(t − 1) + (−0.1602⏞      
0.045

)LWRISTY(t − 1) + 

+1.1298⏞    
0.00

RWRISTY(t − 1) + (−0.1679⏞      
0.00

)RWRISTY(t − 2) 

(18) 

 

 

LWRISTX(t) = a12LSHX(t − 1) + a13LELBOWX(t − 1) + a14LWRISTY(t − 1) + a15RWRISTX(t − 1) + 

+a16LWRISTX(t − 1) + a17LWRISTX(t − 2) = 

= 0.3668⏞    
0.00

LSHX(t − 1) + 0.11180⏞    
0.007

LELBOWX(t − 1) + 0.9589⏞    
0.00

LWRISTY(t − 1) + (−0.0126⏞      
0.339

)RWRISTX(t − 1) + 

+1.1111⏞    
0.00

LWRISTX(t − 1) + (−0.1398⏞      
0.052

)LWRISTX(t − 2) 

(19) 
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LWRISTY(t) = a12LSHY(t − 1) + a13LELBOWY(t − 1) + a14LWRISTX(t − 1) + a15RWRISTY(t − 1) + 

+a16LWRISTY(t − 1) + a17LWRISTY(t − 2) = 

= 0.9313⏞    
0.00

 LSHY(t − 1) + 0.5433⏞    
0.00

LELBOWY(t − 1) + 0.1144⏞    
0.272

LWRISTX(t − 1) + 0.0162⏞    
0.356

RWRISTY(t − 1) + 

+1.0463⏞    
0.0

LWRISTY(t − 1) + (−0.1095)⏞      
0.124

LWRISTY(t − 2) 

(20) 

In the equations presented above, all coefficients appear to be statistically significant, except from 
RSHX(t − 1) in equation 17, LWRISTX(t − 1) in equation 18,  LWRISTX(t − 1)  and RWRISTX(t − 2) in 

equation 19, RWRISTX(t − 1),  RWRISTY(t − 1), LWRISTX(t − 1) in equation 20. As a result, the hands 

of the operator work mostly independent (there appears to be a dependency in the inter-limb synergies 

in equation 16), while all the other assumptions seem to be statistically significant for both X-axis and 

Y-axis of the right and left wrist. 

The simulation of the models is based on the solution of their simultaneous equations system. Figures 

3, 4 and 5 show examples of the graphical depiction of real observations of motion data together with 

their simulated values from the State-Space model of the right wrist. A general conclusion that can be 

exported by looking at the depictions is that the behavior of the models is very good because the two 

curves are really close in most cases. 

4.2  Recognition performance of professional gestures and comparison with end-to-end deep 

learning architectures 

For the evaluation of the performance and the proposed methodology, the metrics 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 

and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 were calculated. Those metrics are defined as shown below. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) + #(𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)
 (21) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

#(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) + #(𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
 (22) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙 and 𝑓 − 𝑠𝑐𝑜𝑟𝑒 are calculated for all the gestures that each gestural vocabulary consists 

of. For a gesture of class 𝑖, #(𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) represent the number of gestures of class 𝑖 that were 

recognized correctly, #(𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠) represent the number of gestures that didn’t belong in class 𝑖 
and they were recognized from the algorithm as parts of class 𝑖. Finally, #(𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠) represents 

the number of gestures belonging to class 𝑖 that were not recognized as part of it.  

More precisely, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 represents the rate of gestures that really belong in class 𝑖, among those who 

are recognized as class 𝑖, while 𝑟𝑒𝑐𝑎𝑙𝑙 represents the rate of iterations of gestures of class 𝑖 that have 
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been recognized as class 𝑖. A measure that combines both precision and recall is the 𝑓 − 𝑠𝑐𝑜𝑟𝑒, which 

is given by equation (23).  

𝑓 − 𝑠𝑐𝑜𝑟𝑒 = 2
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (23) 

The performance of the algorithms was tested with the four different gestural vocabularies. As 

presented before the 𝐺𝑉1 contains 4 classes, from 44 to 48 repetitions for each. 4 hidden states were 

used for HMMs training. To simplify the evaluation task, a simplified GOM with only X and Y positions 

of two wrists are used for training and recognition. Table 4 presents the results when only the HMMs 

are used for recognition without any confidence control, and also the results with the confidence control 

provided by the simulation of the State-Space models. 

It is possible to observe that HMMs provide a recall superior to 90% in 3 out of 4 gestures. The G1,3 

presents the lowest recall of 81.81 % and this can be due to the fact that this is the most complex 

gesture, where both hands interact more than in the other 3 gestures. The lowest precision is detected 

for the HMM1,4. When the SS representation and confidence control is used, the 𝑟𝑒𝑐𝑎𝑙𝑙 for G1,2 is slightly 

improved while in the case of the G1,3 a significant improvement of 15,91% is achieved. Especially for 

G1,3, the improvement can be justified by the fact that the operator is connecting the wire with a very 

small card outside the conveyor. Thus, the operator has the possibility to perform very small 

movements in different positions of his/her workplace. The 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 of HMM1,4
SS  has been also 

positively impacted by the SS augmenting the accuracy from 90,2% to 97,67. However a slight decline 

can also be seen in the case of G1,4 recall. (Table 3) 

The 𝐺𝑉2 contains 5 classes, 16 repetitions of each gesture and 1-11 hidden states were used for the 

machine learning gesture recognition engine according to the best states’ number for each iteration. 

The joints selected for training with 𝐺𝑉2 were the wrist, elbow and shoulder joints for each hand, along 

with the neck. In Table 5 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙 using only HMM and the HMMSS approach is presented 

respectively. For G2,1, G2,4 and G2,5 ergodic topology was used, as iterations of the same gestural part 

appear during the performance of each gesture, while left to right topology was used for the rest of the 

gestures. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 appears improved for every model, while 𝑟𝑒𝑐𝑎𝑙𝑙 is decreased for G2,2 and G2,5. 

(Table 4) 

𝐺𝑉3 consists of 4 different gestures with 35, 34, 21 and 27 repetitions respectively. 5-20 hidden states 

were used for training the gesture recognition algorithm, the number of which were again computed 

for every iteration in the resampling phase. The joints selected for training with 𝐺𝑉3 were again the 

wrist, elbow and shoulder joints for each hand, along with the neck. 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 appears improved in 

almost every observation and maximum likelihood. The 𝑟𝑒𝑐𝑎𝑙𝑙 in almost every gesture has remained 

stable except from G3,3 where it was increased by +4%. (Table 5) 

𝐺𝑉4 consists of five different gestures. The clusters used in the k-means approach in combination with 

an HMM with 12 hidden states, were 25. The proposed methodology in this work performed better 

than the rest machine learning methods, with 𝑓 − 𝑠𝑐𝑜𝑟𝑒 results improved by +12%. 

In Table 7, the comparison of mean 𝑓 − 𝑠𝑐𝑜𝑟𝑒𝑠 for each 𝐺𝑉 and each approach is presented. The score 

of 𝐺𝑉1 and 𝐺𝑉2 was improved by approximatively 2% while the most important contribution is observed 

for the 𝐺𝑉3. The HMMSS allow to improve significantly (+7.5%) the recognition results of this last 

dataset. 
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A similar conclusion can be extracted from the same table, where the total accuracy for the 𝐺𝑉3 has 

reached 80.34% from 70.94%. The accuracy improvement of the two other datasets remain at the same 

level with the one of the mean 𝑓 −  𝑠𝑐𝑜𝑟𝑒, around +2%. 

In order to compare the results of the approach proposed in this paper with other classification 

techniques, a Deep Learning End-to-End 3D Convolutional Neural Network has been used to classify 

the gestures of the three first vocabularies described in the section 3.2. More precisely a 3DCNN has 

been initially trained on spatiotemporal features from a medium sized UCF-101 video dataset and the 

pretrained weights have been used to finetune the model on small sized datasets including images of 

operators performing customized gestures in industrial environments.   

The architecture of the network was based on the one proposed in [54] with 4 convolution and 2 pooling 

layers, 1 fully-connected layer and a softmax loss layer to predict action labels. It has been trained from 

scratch on the UCF-101 video dataset, using batch size of 32 clips and Adam optimizer [55] for 100 

epochs, with Keras deep learning framework[56]. The entire network was frozen and only 4 last layers 

were finetuned on customized datasets by backpropagation. 

The comparison of recognition accuracy results between HMMs, HMMSS and 3DCNN is shown in the 

tables 3, 4, 5, 6 and 7. As far as the 𝐺𝑉1 is concerned, the use of a 3DCNN improves the recognition of 

only one gesture (G1,1 ) as shown in the table 3. However, in total the HMMSS  outperform the other two 

methods reaching a total accuracy of 96.19% (Τable 7). In the second dataset  (𝐺𝑉2), 3DCNN doesn’t 

achieve a satisfying recognition result for the G2,5 (66%) in comparison to other methods that reach 

100% (Τable 4) and in total HMMSS still performs the best as it is possible to observe in the Table 7. In 

the 𝐺𝑉3, the HMMSS performs again the best among the three methods, as shown also in Table 7, with 

a total accuracy almost +4% higher and an 𝑓 − 𝑠𝑐𝑜𝑟𝑒 of +1.5% higher than the DL method. 

4.3  Forecasting ability for motion trajectories 

For the evaluation of the ability of the 4 State-Space models that are used to explain the assumptions 

of the two-entities GOM, a simulation using equation (2) for all three dimensions and for all used joints 

was performed (Table 8). It includes the computation of Theil’s inequality coefficient (U) and its 

decomposition into the inequality of bias proportion UB, variance proportion UV and covariance 

proportion UC. UB examines the relationship between the means of the actual values and the forecasts, 

UV considers the ability of the forecast to match the variation in the actual series and UC captures the 

residual unsystematic element of the forecast errors [48]. Thus, UB + UV + UC = 1. Theil inequality 

coefficient measures how close the simulated variables are to the real variables and it gets values from 

0 to 1. The closer to zero the value of this factor is, the better the forecasting of the variable. Also, the 

forecasting ability of the model is better, when UB and UV are close to zero and UC is close to one. The 

computed coefficients as shown in Table 8, result to a sufficient forecasting performance of the 

simulated model and the error results reinforce this conclusion. Also, since the UV values are really 

very close to 0, we could extract the potential conclusion that model is able to forecast efficiently even 

when the real motion data vary significantly (e.g. different operators). 

Finally, Figure 6 presents an example of trajectory forecasting for 𝐺𝑉2. More specifically, it shows that 

when asking to all the State-Space models for the RWRISTX of G2,1 to forecast an unknown observation 

of the same gesture, we conclude to two results. The simulated values of the RWRISTX of G2,1 for time 

𝑡, when providing it with real observations until 𝑡 − 1 (starting from 𝑡 = 3), as well as the real 

observations between 𝑡 and the end of the sequence, for every time 𝑡, is minimum from the first time-

stamp (thus high similarity). 
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4.4 Sensitivity analysis 

As mentioned, the GOM depicts all the possible relationships that take place during the process of the 

performance of a gesture. Following the GOM, the next steps are the estimation of the model, its 

dynamic simulation and its sensitivity analysis. All those steps lead to checking the model’s structure, 

forecasting ability and its reaction to shocks of its variables respectively.  

The sensitivity analysis of the simulated GOM follows two steps. During the first step, all the simulated 

values of the model are being estimated, after an artificial shock is provoked for the first two frames. 

In the second step, all the simulated values that came up after the disturbance, are being compared to 

the simulated values before it (baseline). For example, in Figure 7 the simulated values of RWRISTX 
are depicted before (red color) and after (blue color) the disturbance on the values of RWRISTY by 80%. 

The disturbance on the simulated variables of RWRISTX is observed for ten frames in total, eight more 

frames than the duration of the initial shock. A similar behavior is also observed for RWRISTY. The 

quick adaptation of the models after the application of the artificial shock is observed, which also 

confirms the low sensitivity of the models to external disturbances. 

5  Discussion 

The proposed method for human movement representation on multivariate time series has been used 

for recognition of professional gestures and forecasting of their trajectories. A comparison has been 

done between the recognition results of our hybrid approach and the standard continuous HMMs. In 

general, with both approaches, the best recognition accuracy is achieved for the 𝐺𝑉1. This can be 

explained by the beneficial inter- and intra- class variation of this vocabulary. The gestures are 

sufficiently discrete, while the different repetitions performed by one operator are sufficiently similar. 

Nevertheless, we observe an improvement on the recognition accuracy for micro-gestures, when the 

confidence control of the HMMSS is applied for micro-movements, e.g. assembling small pieces, while 

the performance of HMMs is satisfactory for macro-movements.  

The second-best results are given for the 𝐺𝑉2. Even though these gestures are simpler, and do not 

require any particular dexterity, less good results in recognition accuracy in comparison to the 𝐺𝑉1 are 

expected mostly because of the high intra class variation due to multiple users. Although, they followed 

a protocol each person had significant variations in the way he/she performed the commands. For both 

datasets a slight improvement of results has been achieved. 

As explained in section 3.2, the biggest difference of the 𝐺𝑉3 in comparison to the other two gesture 

vocabularies is the low inter-class variation since the gestures are similar between them. in 3 out of 4 

gestures common gestural patterns are presented: the glass master if controlling the pipe with the left 

hand, is manipulating the glass with the right while sitting etc. These common gestural patterns 

generate the low intra-class variation. This low variation can be due to the high level of expert’s 

dexterity, the use of a predefined physical set up (metallic construction) that places his body and 

gestures in a spatial framework (situated gestures) and the use of professional tools that also reduces 

potential freedom in gesture performances. The low intra- class variation is also underlined by the 

comparison of the RMSE values for different repetitions of the same gesture performed by the same 

person. The HMMs are thus expected to provide the less good results among the four datasets, for the 

𝐺𝑉3, since this method may struggle in managing low inter class variation. An important similarity 

between classes is expected to augment the uncertainty in the maximum likelihood probabilities given 

by the HMMs. This hypothesis can be confirmed through the current recognition results based on HMMs. 

However, it can be clearly noticed that HMMSS had the most beneficial impact on the recognition 
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accuracy of the 𝐺𝑉3. A conclusion can be thus formulated that the proposed methodology permits the 

improvement of the gesture recognition results to a significant level. 

The recognition results of all the three gestural vocabularies using machine learning methods were also 

compared to those when using 3DCNNs as a DL method for gesture recognition. In all of the three 

experiments, the HMMSS method outperformed, and especially in 𝐺𝑉1 achieved +3% higher 𝑓 − 𝑠𝑐𝑜𝑟𝑒 

and accuracy compared to the 3DCNNs. In the gestural vocabularies 𝐺𝑉1 and 𝐺𝑉3 the HMM method, 

even if it was not combined with the SS method achieved slightly higher 𝑓 − 𝑠𝑐𝑜𝑟𝑒 results than the 

3DCNNs.  

As far as the 𝐺𝑉4 is concerned, our current approach of continuous HMMs and SS outperforms our 

previous one that used K-Means and discrete HMMs (Table 7). More precisely, an improvement of at 

least +12% is observed on the mean 𝑓 −  𝑠𝑐𝑜𝑟𝑒, together with an improvement of at least +10% at the 

total accuracy. 

As far as the ability of the models to effectively simulate the professional gestures is concerned, the 

graphical depiction of the simulated values of the models together with the real motion data can lead 

to encouraging conclusions. Initially, the simulated values follow very well the real ones for the whole 

gesture. Especially the results on 𝐺𝑉1 are quite promising because the pose estimation had some fails 

because of the top-mounted camera. Nevertheless, the changes or discontinuities on the motion data 

didn’t affect the simulation ability of the models. With the regard to the forecasting ability of the 

models, it is obvious that if the model follows the trajectory from the very beginning then its forecasting 

ability is maximized, which is the case in the Figure 6. Moreover, the evaluation of the forecasting 

ability of the models using the coefficient of Theil is also encouraging, thus opening a possibility for 

an efficient forecasting of motion trajectories. In parallel the sensitivity analysis applied to equations 

variables proves forecasting’s ability of the model to react rapidly to shocks and to provide a solid 

prediction of motion trajectories.  

6 Conclusion and future work 

In this paper, a Gesture Operation Model is proposed to describe how the body parts cooperate to 

perform a professional gesture. Several assumptions are formulated that determine the dynamic 

relationship between the body entities within the execution of the human movement. The model is 

based on the State-Space statistical representation and a simultaneous equations system for all the body 

entities is generated, which is composed by a set of first-order differential equations. The coefficients 

of the equation system are estimated using the Maximum Likelihood Estimation (MLE) and its 

simulation generates a tolerance of the spatial variance of the movement over time. The scientific 

evidence of the GOM is evaluated through its ability to improve the recognition accuracy of gestural 

time series that are modeled using continuous Hidden Markov Models.  Four datasets have been created 

for this experiment, corresponding to professional gestures from industrial real-life scenarios. The 

proposed approach overperformed the recognition accuracy of the HMMs by approximately +2% for 

two datasets while a more significant improvement of +10% has been achieved for the third dataset 

with strongly situated professional gestures. Furthermore, the approach has been compared with an 

End-to-End 3D Convolutional Neural Network approach and the mean 𝑓 −  𝑠𝑐𝑜𝑟𝑒 of the proposed 

method is significantly higher than the DL, varying approximately from +1.57% to +2.9% better 

performance depending on the dataset. A second comparison is done by using a previously recorded 

industrial dataset from a Human-Robot Collaboration. The proposed approach gives approximately 

+13% for the mean 𝑓 −  𝑠𝑐𝑜𝑟𝑒 and +12% for total accuracy, compared to our previous hybrid K-Means 

and discrete HMMs approach. 
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Moreover, the system is simulated through the solution of its equations. Its forecasting ability has been 

evaluated by comparing the similarity between the real and the simulated motion data, using at least 

two real observations to initialize the system, as well as by measuring the Theil’s inequality coefficient 

and its decompositions. This paper opened a potential for investigating simultaneous real-time 

probabilistic gesture and action recognition, as well as forecasting of human motion trajectories for 

accident prevention and very early detection of the human intention. Therefore, our future work will 

be focused on extending the proposed methodology for real-time recognition and enhancing the 

Gesture Operational Model to include kinetic parameters as well. Finally, there will be a continuous 

enrichment of the datasets by adding new users and more iterations. 
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