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Abstract— In this work we study the DMP spatial scaling in
the Cartesian space. The DMP framework is claimed to have the
ability to generalize learnt trajectories to new initial and goal
positions, maintaining the desired kinematic pattern. However
we show that the existing formulations present problems in
trajectory spatial scaling when used in the Cartesian space
for a wide variety of tasks and examine their cause. We
then propose a novel formulation alleviating these problems.
Trajectory generalization analysis, is performed by deriving
the trajectory tracking dynamics. The proposed formulation
is compared with the existing ones through simulations and
experiments on a KUKA LWR 4+ robot.

I. INTRODUCTION

In recent years robotic systems tend to leave their tra-
ditional confined and static workstations and are beginning
to be integrated to unstructured human environments. In
such environments, it is necessary for a robot to move in
a more human-like manner, in order to be both safe for the
humans around it and predictable. In that direction Imitation
Learning and Programming by Demonstration (PbD) are
gaining popularity [1]. An essential feature that any PbD
framework must possess is the ability to generalize to new
environments. Human environments are characterized by
perpetual modifications and unpredictable alterations. Any
learned movement must be able to be scaled both spatially
and temporally, as well as be robust to perturbations.

Many PbD frameworks have been proposed in the lit-
erature. Such approaches involve optimization frameworks,
probabilistic setups or dynamical systems. In [2] an opti-
mization setup was proposed by minimizing simultaneously
an accuracy and a jerk cost term. However as pointed
out in [3] this framework fails to appropriately scale the
trajectory spatially far from the demonstration workspace.
Another optimization approach was proposed in [3], utilizing
frame invariant descriptors [4], [5]. The approach is indeed
successful in the desired trajectory generalization. However,
as it is discussed in the same paper, this approach has large
computation times for each control step.

Probabilistic approaches [6], [7], encode a large number
of possible trajectory evolutions through multiple demon-
strations. Then during execution the framework produces
a trajectory according to some similarity measure with the
demonstrated ones. These approaches are able to produce
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concrete results close to the demonstrated trajectory data,
but fail to appropriately generalize the movement far away
from the demonstrated trajectories.

Dynamical systems used for PbD are the DS [8] and DMP
[9]. DS use a Gaussian Mixture Model setup to encode
the trajectory characteristics. Their main disadvantages are
the requirement for multiple demonstrations, and again the
inability to generalize to new environment setup, outside
the demonstration space. DMP offer an intuitive training
process, as they require one demonstration to learn a desired
trajectory, as well as spatial and temporal scaling character-
istics. Due to their formulation as dynamical systems they
achieve adaptations to uncertainties and perturbations, by
being augmented with appropriate coupling terms [10], [11],
or with adaptive equations for their parameters [12]–[14].

Despite their favorable properties, the spatial scaling of
the DMP formulation in [9] is performed separately for
each coordinate and hence it is frame dependant. This is
undesirable in some tasks that demand the preservation of
the 3D path pattern. In an attempt to alleviate this problem
an alternative Biologically Inspired DMP formulation was
proposed in [10], which however loses its global scaling
property, as pointed out in [11] and [15].

In this paper we are going to showcase the problems
arising from both the original and the Biologically Inspired
DMP and propose a novel DMP formulation possessing
global scaling abilities. This formulation is inspired by the
observation made in [9], that DMP perform different motion
generalizations by selecting different coordinate systems. We
will demonstrate its effectiveness in various types of tasks
encountered in robotic applications with simulations and
experiments and compare it with the existing formulations.

II. DYNAMIC MOVEMENT PRIMITIVES

Dynamic Movement Primitives (DMP) are able to learn
arbitrary trajectories in the Cartesian space by augmenting a
single point attractor linear dynamical system by a non linear
forcing term:

τ ż = αz(βz(g − y)− z) + diag (g − y0)F (x)
τ ẏ = z

(1)

where y, z ∈ R3 are the position and the velocity scaled
by τ ; g and y0 are the goal and initial position, αz, βz are
positive gains of the linear part of the system, chosen αz =
4βz for the system to be critically damped, τ is the temporal
scaling parameter and diag (g − y0) is a diagonal matrix
with its elements being the coordinates of g − y0. Equation
(1) is called the transformation system of the DMP.



The desired trajectory is encoded with the non linear
function F (x), called forcing term:

F (x) =

∑N
i=1wiΨi(x)∑N
i=1 Ψi(x)

x (2)

where Ψi(x) = exp (−hi(ci − x)2) are N Gaussian kernel
functions, with hi, ci their inverse widths and centers, and
wi ∈ R3 their weights to be learned in order to encode
the desired trajectory. The weights are usually trained using
Locally Weighted Regression. To avoid explicit time depen-
dency the canonical system of the phase variable x is used:

τ ẋ = −αxx (3)

with its initial value x0 = 1 and αx a positive gain.
DMP where used for orientation trajectories using unit

quaternions in [11] and extended in [16]. However in [17] we
showed that those orientation formulations are problematic
and proposed a different DMP orientation formulation:

τ ż = −αz(βzeQ + z) + diag (Qg ∗Q0)F (x)
τ ėQ = z

(4)

with eQ, z we denote the orientation error and its scaled by τ
velocity, Q =

[
η ε

]
= exp

(
− 1

2eQ
)
∗Qg the orientation as

a unit quaternion and Q0,Qg the initial and goal orientation.
The Biologically Inspired DMP framework proposed in

[10], [18], [19] has the same structure with a modified
transformation system:

τ ż = αz(βz(g − y)− z) + αzβz (−(g − y0)x+ F (x))
τ ẏ = z

(5)
which can be generalized to the orientation space using the
formulation of [17]:

τ ż = −αz(βzeQ + z) + αzβz
(
−2 log(Qg ∗Q0)x+ F (x)

)
τ ėQ = z

(6)
The original DMP framework (1), (4) scales the forc-

ing term by multiplying it with the matrix diag (g − y0).
Conversely, the Biologically Inspired framework scales the
forcing term by using the additive component −(g − y0)x.

III. DMP SPATIAL SCALING

To find out how both DMP formulations scale the trajec-
tory, we will derive the trajectory tracking dynamics for each
formulation. We will perform our analysis to the position
DMP, however the same results apply to the orientation
formulation. To train a DMP, the trajectory data yd(t), ẏd(t),
ÿd(t) are collected for t ∈ [0 . . . Td], with y0,d = yd(0) and
gd = yd(Td). Then the values of αz, βz and τ are chosen,
with the most common choices for the temporal scaling
parameter being τ = 1 and τ = Td. Utilizing the trajectory
the desired forcing term is calculated. The resulting trained
forcing term will be equal to the desired plus an error term
εt for each time step. Thus, for the original DMP:

F = (diag (gd − y0,d))
−1(

τ2ÿd + αzτ ẏd + αzβz(yd − gd)
)

+ εt
(7)

and for the Biologically Inspired:

F =
1

αzβz

(
τ2ÿd + αzτ ẏd + αzβz(yd − gd)

)
+

(gd − y0,d)x+ εt

(8)

where indexes (t), (x) were omitted for better presentation.
Substituting (7) to (1) we get the trajectory tracking

dynamics of the original DMP:

τ2(ÿ − Sgÿd) + αzτ(ẏ − Sgẏd) + αzβz(y − Sgyd) =

αzβz(y0 − Sgy0,d) + diag (g − y0)εt
(9)

where matrix Sg is defined as:

Sg = diag (g − y0) (diag (gd − y0,d))
−1 (10)

and we also substituted g = Sg(gd − y0,d) + y0.
From (9) it is clear that the trajectory is scaled ac-

cording to the matrix Sg . The term αzβz(y0 − Sgy0,d)
serves the purpose of transferring the trajectory accordingly
when beginning from a different initial position than the
demonstrated. The training error is considered negligible,
therefore we assume that the DMP generated trajectory
follows the demonstrated one, scaled by Sg and translated
by αzβz(y0 − Sgy0,d). Notice that the scaling matrix is
diagonal, which implies that scaling is performed separately
for each coordinate and hence it is frame dependant. This
behavior is in general problematic with a few exceptions.
In fact, one cannot encode or execute trajectories when one
coordinate has the same initial and goal value. This case
often arises in tasks involving planar paths since then, the
same coordinate value is involved along the axis normal to
the plane. Moreover, when the initial and goal value are close
to each other along one coordinate, the scaling is amplified
and may demand positions and velocities that exceed the
robot’s limits or go through rigid working surfaces when
e.g. a Cartesian task is executed over a workbench.

Regarding the trajectory tracking dynamics of the Biolog-
ically Inspired DMP we can substitute (8) to (5) to get :

τ2(ÿ − ÿd) + αzτ(ẏ − ẏd) + αzβz(y − yd) =

αzβz(g − gd)− αzβzx(g − y0 − gd + y0,d) + αzβzεt
(11)

Notice that the term αzβz(g − gd) has the effect of the
appropriate trajectory displacement. From (11), it is also
clear that the scaling is performed by the exponentially
decaying term −αzβzx(g−y0−gd+y0,d) which affects the
scaled trajectory additively. Thus problems of the original
formulation are alleviated and for small initial position or
goal displacements, the Biologically Inspired framework
offers good results. However, when larger displacements are
required, the learned trajectory pattern is ruined since the
scaling term dominates the forcing term F (x). As the scaling
term is dependant on the gains αz and βz , large values yield
large initial trajectory displacements and velocities (where
x = 1). Small gain values cannot remedy this problem as
they deteriorate trajectory tracking (11).



We claim that the spatial scaling problems present in the
current formulations stem from the frame coordinate depen-
dence of the scaling. Our objective is a DMP formulation
achieving global scaling, by preserving the motion pattern
and its desired characteristics. We will consider free motion
tasks in unconstrained spaces, planar tasks and tasks with
orientation constraints. Planar tasks refer to demonstrated
planar paths that should be generalizable to different planes.
A lot of robotic tasks like spraying on tilted surfaces require
such type of generalization. In such tasks scaling with
the existing formulations, may generate non-planar paths.
Furthermore the user cannot explicitly define the desired
plane of task execution beforehand. When using the original
DMP formulation in particular, many planar tasks cannot
even be encoded. Tasks with orientation constraints refer to a
great number of industrial (e.g. pick and place, assembly etc)
and domestic (e.g. cutlery wielding, liquid pouring etc) tasks.
Such tasks usually have targets that are constrained with
regards to the orientation that is associated with the direction
of the workbench normal vector. Such constraints cannot be
handled by existing formulations and spatial scaling may
result to trajectories that may even penetrate the workbench
plane.

IV. PROPOSED DMP

To alleviate the original DMP framework’s problems,
and maintain its global scaling properties we propose the
following DMP structure:

τ ż = αz(βz(g − y)− z) + sgRgF (x)
τ ẏ = z

(12)

where matrixRg is a rotation matrix that rotates a unit vector
in the direction of gd−y0,d to a unit vector in the direction
of g−y0, and sg is a magnitude scaling constant, calculated
as:

sg =
‖g − y0‖
‖gd − y0,d‖

(13)

The forcing term F (x) is given by (2) and the desired val-
ues of the forcing term are calculated from the demonstrated
trajectory data as:

Fd(t) = τ2ÿd(t) + ταzẏd(t) + αzβz(yd(t)− gd) (14)

The proposed formulation alleviates the problems of the
original DMP as it does not scale each trajectory coordinate
separately, but performs a three-dimensional scaling, involv-
ing both a rotation and a magnitude scaling. To study the
spatial scaling of the proposed DMP we will again derive
the trajectory tracking dynamics, by substituting F (x) =
Fd(t) + εt to (12), using (14), assuming training error εt:

τ2(ÿ − sgRgÿd) + αzτ(ẏ − sgRgẏd)+

αzβz(y − sgRgyd) = αzβz(y0 − sgRgy0,d) + sgRgεt
(15)

From (15) it is clear that the DMP generated trajectory
is scaled by sgRg and translated by αzβz(y0 − sgRgy0,d)
to accommodate for different initial positions. Therefore, the
trajectory will be accordingly rotated, by the matrix Rg and

then multiplied by the magnitude scaling constant sg . Due
to the magnitude scaling being performed using the norms
of g − y0 and gd − y0,d, the only case where the proposed
formulation is not able to encode, is when the initial and the
goal position are identical, instead of having just one equal
coordinate as in the original DMP. However this property is
generally not true for discrete motions.

For the orientation space, the proposed formulation can be
written as:

τ ż = −αz(βzeQ + z) + sgRgF (x)
τ ėQ = z

(16)

where similarly to the position Rg is the rotation matrix that
rotates a unit vector in the direction of 2 log (Qg,d ∗Q0,d)

to a unit vector in the direction of 2 log (Qg ∗Q0), and sg
is a magnitude scaling constant, calculated as:

sg =
‖log (Qg ∗Q0)‖
‖log (Qg,d ∗Q0,d)‖

(17)

A. Selection of Rotation Matrix

The rotation matrix in (12) and (16) is a rotation matrix
that rotates the demonstrated trajectory during the execution.
For our analysis we denote nd =

gd−y0,d

‖gd−y0,d‖ and n =
g−y0

‖g−y0‖ . The same analysis yields for the orientation DMP
of (16). Therefore Rg is computed to rotate nd to n. The
rotation matrix is not however unique by construct and its
selection is highly dependant on the task to be executed. A
rotation around any equivalent axis that lies on the plane
normal to the plane defined by nd and n, passing from the
line dissecting the angle between them when put in the same
origin can be used. The dissecting plane’s normal vector can
be computed as:

p̂ =
n− nd

‖n− nd‖
(18)

Thus, a set of candidate rotation axes are defined as follows:

Sk =
{
k ∈ R3 | kT p̂ = 0, ‖k‖ = 1

}
(19)

Concerning the selection of the rotation axis, we study the
three groups of tasks discussed in Section III. For the free
category of tasks, the trivial choice k = nd×n suffices. This
selection gives the minimal angle rotation between the two
vectors, namely θ = cos−1(nT

dn). Then the rotation matrix
can be computed by the Rodrigues’ rotation formula [20]:

Rg = I3 + S(k) sin θ + S2(k)(1− cos θ) (20)

In the case of the planar task, we consider the normal
vector of the task plane during the demonstration p̂d and
during the execution p̂e. Then desired rotation matrix has to
rotate both nd to n and p̂d to p̂e. As nd and p̂d, as well
as n and p̂e are orthogonal, the resulting rotation matrix is
indeed unique and computed as:

Rg =
[
n p̂e n× p̂e

] [
nd p̂d nd × p̂d

]T
(21)

For the case of tasks executed over a workbench the
rotated trajectory is expected to be least modified in the
direction of the normal vector to the workbench plane,



Fig. 1: Rotation axis for workbench tasks

denoted p̂W . This requirement prevents the scaled trajectory
from penetrating the workbench and violating orientation
constraints. Thus, the rotation axis is chosen as the projection
of the workbench plane normal vector to the dissecting plane:

k =

(
I3 − p̂p̂T

)
p̂W

‖(I3 − p̂p̂T ) p̂W ‖
(22)

In Figure 1 an example of the rotation axis computation is
depicted. The yellow plane is the workbench plane, and the
gray the dissecting plane where Sk lies. To calculate the
rotation angle we use:

θ = cos−1
(

nT
d (I3 − kkT )n

‖(I3 − kkT )nd‖‖(I3 − kkT )n‖

)
(23)

Matrix Rg is then computed from (20).

V. SIMULATION RESULTS

To demonstrate the proposed DMP formulation’s spatial
scaling capabilities we simulated (3), (12), (16) and com-
pared the results with the original DMP formulation (3), (1),
(4) and the Biologically Inspired DMP formulation (3), (5),
(6). As desired trajectory data we used trajectories demon-
strated by a user to a KUKA LWR 4+ robotic manipulator
in gravity compensation. The desired trajectory begun from
initial position and orientation y0,d = [−0.32 0.54 0.18]T ,
Q0,d = [0.37 0.6263 − 0.67 − 0.14]T and reached gd =
[0.11 0.75 0.4]T , Qg = [0.49 − 0.73 0.39 − 0.27]T in
Td = 7.7s. All DMP formulations where trained using the
same parameters αz = 80, βz = 20, αx = 4.61, τd = Td,
N = 100. Then all formulations where executed from new
initial position and orientation y0 = [−0.1 0 0.05]T , Q0 =
[0.74 0.51 − 0.42 0.13]T to new goal g = [0.4 0.05 0.7]T ,
Qg = [0.72 − 0.39 0.48 − 0.31]T . For the selection of
the rotation axis, we used (22), assuming a task executed
over a workbench. The workbench plane’s normal vector was
p̂W = [0 0 1]T . Thus the computed rotation axis and angle
were kP = [0.33 0.58 0.74]T , θP = −0.99rad for position
and kQ = [0.3 0.14 0.94], θQ = 0.25rad for orientation.
The trajectory was scaled at sg,P = 1.57 and sg,Q = 1.58.
The results are shown in Figures 3 - 5.

In Figure 2 the proposed formulation is depicted, where
the trajectory has been appropriately rotated and scaled,

Fig. 2: Demonstrated trajectory and proposed DMP trajectory

Fig. 3: Demonstrated trajectory and original DMP trajectory

Fig. 4: Demonstrated trajectory and Biologically Inspired DMP trajectory
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Fig. 5: Norms of velocity and angular velocity of demonstration and all
DMP executions



maintaining the learnt pattern. In Figure 3 the original DMP
formulation is shown. The trajectory is scaled using matrix
(10) yielding Sg,P = diag [1.19 0.23 2.88]T and Sg,Q =
diag [2.41 1.41 1.19]T . As the figure depicts, the scaling
performed by the original formulation does not maintain
the trajectory shape in three-dimensional space and leads
to large scalings. Thus the robot’s trajectory exceeds its
workspace and penetrates the workbench plane. The Bio-
logically Inspired DMP formulation is depicted in Figure 4.
As explained in Section III this formulation generalizes the
motion by an additive term. The effect of this term is clear
at the beginning of the trajectory, where effect of the learnt
pattern is minimal, and the generalization term is dominating.
Thus the demonstrated motion profile is again not preserved.

Figure 5 depicts the velocity and angular velocity norms
of all formulations. The original DMP scales the velocity
with the same matrix as the trajectory, leading to large ve-
locity values. Due to the Biologically Inspired formulation’s
additive term, which is dependant of the phase variable there
is a velocity peak in the beginning of motion, until the effect
of the additive term diminishes. This peak however leads to
non human-like behavior and can exceed the robot’s velocity
capabilities. The proposed formulation’s velocity profile is
higher than the demonstrated, in order to reach the new goal,
but is kept to low enough levels to be able to be executed
by a robotic system maintaining human-like characteristics.

VI. EXPERIMENTAL RESULTS

For our experiments we demonstrated trajectories to a 7
dof KUKA LWR 4+ robotic manipulator, in gravity com-
pensation, with control frequency 500Hz. We then used
the demonstrated data to train all DMP formulations and
executed the systems with new initial and goal positions.
During the execution the robot was under position control
where the DMP generated velocity was fed to a Closed
Loop Inverse Kinematics scheme [21], and mapped to the
joint velocity with the Jacobian pseudoinverse. The resulting
joint velocity was integrated to produce the commanded joint
position.

We performed two experiments. In the first one, the robot
was taught a planar task, and then was required to execute it
on a different plane. In the second experiment a liquid pour-
ing task was demonstrated, and then the robot was required
to execute it with new initial and goal positions. A video of
both tasks can be found in https://youtu.be/VgjZB3wVQ1c.

In both experiments all DMP formulations were trained
using the data collected from the demonstrations. The pa-
rameters used for all DMP were αz = 40, βz = 10, N = 80,
αx = 4.61, τ = τd = Td.

For the first experiment, the robot was taught to write
the letter ”R”, on the plane z = 0 and then was tasked to
execute the learnt motion pattern on the plane y = 0.67. The
demonstrated trajectory begun from initial position y0,d =
[0 0.59 0]T to goal gd = [0.1 0.6 0]T in Td = 9.55s
and was executed from y0 = [−0.02 0.67 0.21]T to g =
[0.13 0.67 0.21]T . Thus the resulting trajectory is scaled by
sg = 1.4 and rotated with a rotation matrix for a planar task,

Fig. 6: Demonstration trajectory of planar task and trajectory of Biologically
Inspired and proposed DMP

calculated from equation (21). The manipulator’s orientation
in both experiments is kept fixed, orthogonal to the task
plane. The result of the first experiment is shown in Figure
6, where the trajectory of the robot, denoted pr is shown for
the proposed and Biologically Inspired DMP formulations.
The original DMP formulation fails to encode this task, as
the initial and the goal position have the same Z coordinate
in training and Y coordinate in execution. The proposed
formulation is indeed successful in reproducing the pattern
on the new plane. The Biologically Inspired formulation
however fails to rotate the trajectory, and corrupts the pattern.
Notice the unconnected line in the middle of the letter in the
Biologically Inspired execution.

For the second experiment a liquid pouring task was
demonstrated from initial position and orientation y0,d =
[−0.1 0.66 0.38]T , Q0,d = [0.06 0.01 − 0.71 − 0.7]T to
gd = [0.26 0.43 0.1]T , Qg,d = [0.1 −0.73 0.13 −0.66]T in
Td = 9.63s. During the execution the robot was initialized
at y0 = [0.64 − 0.36 0.43]T , Q0 = [0.62 0.61 0.34 0.36]T

and the goal was set at g = [0.05 − 0.67 0.12]T , Qg =
[0.45 0.45 − 0.6 0.49]T . The task can be characterized as a
task performed on a workbench, thus the calculated rotation
axes, angles and scalings for the proposed formulation are
kP = [0.09 0 0.99]T , θP = −2.08rad, sg,P = 1.42,
kQ = [0 0.06 0.99]T , θQ = −1.91rad and sg,Q = 0.86.
The results are presented in Figures 7 - 9. In Figure 7
the proposed formulation has successfully generalized the
trajectory, staying inside the robot’s workspace and pouring
the liquid inside the cup successfully. Conversely, in Figures
8 and 9 the trajectories produced by the original and the
Biologically inspired DMP formulations are shown to fail
to appropriately generalize the trajectory. In both cases
the resulting motion would result in spilling the liquid.
Furthermore, both trajectories are not able to be executed
by the robot, as in the case of the original DMP the robot’s
workspace is violated and in the case of the Biologically
Inspired DMP the robot’s velocity limits are exceeded.

VII. CONCLUSIONS

In this paper we proposed a novel DMP for encoding a
trajectory in the Cartesian space, which produces reasonably

https://youtu.be/VgjZB3wVQ1c


Fig. 7: Demonstrated trajectory of liquid pouring task and trajectory of
proposed DMP

Fig. 8: Demonstrated trajectory of liquid pouring task and trajectory of
original DMP

scaled trajectories globally, maintaining the learnt character-
istics. We showed that spatial scaling of the original DMP
formulation is problematic in a variety of tasks owing to the
frame dependency of the trajectory generalization method
while the subsequent Biologically Inspired formulation per-
forms satisfactorily only locally. Our approach remedies this
problem by appropriately rotating the executed trajectory
and scaling its magnitude to alleviate frame dependency.
The proposed formulation is shown to achieve the desired
behavior through theoretical analysis, and validated through
simulations and experiments.
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