

A Quantum Graph Neural Network Approach to Particle Track Reconstruction

Connecting The Dots Workshop Princeton University, Princeton, USA (Now Virtual)

Cenk Tüysüz Middle East Technical University, Ankara, Turkey

20 / 04 / 2020

- Particle Track Reconstruction and TrackML Challenge
- Hep.TrkX Graph Neural Network approach
- Quantum Graph Neural Network approach

High Luminosity LHC

and Particle Track Reconstruction

High Luminosity upgrade of LHC brings many computational challenges.

Particle Track Reconstruction to be much harder!

	Run -1	Run -2	Run -3
μ	21	40	150-200?
Tracks	~280	~600	~7-10k

 μ : Average number of interactions per bunch crossing

H. Gray, Track reconstruction in the ATLAS experiment, 2016.

TrackML Challenge

A Public Machine Learning Challenge for Particle Tracking

Feature Feature Fract High E	w Data N	Competition ticle Tracking Ch sics particle tracking in ms a year ago otebooks Discussion Lea	CERN detectors	\$25,000 Prize Money Join Competition				
	https	s://www.kaggle.coi	m/c/trackml-particle-identification/c	overview			y ()	
#	∆pub	Team Name	Notebook	Team Members	Score 🕝	Entries	Last	
1	_	Top Quarks		3	0.92182	10	1y	
2	_	outrunner			0.90302	9	1y	
3	_	Sergey Gorbunov			0.89353	6	1y	

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

AND DED THE ADDRESS AND ADDRESS AND ADDRESS AND ADDRESS ADDRES

Hep.TrkX GNN

Novel deep learning methods for track reconstruction

Steven Farrell^{1,*}, Paolo Calafiura¹, Mayur Mudigonda¹, Prabhat¹, Dustin Anderson², Jean-Roch Vlimant², Stephan Zheng², Josh Bendavid², Maria Spiropulu², Giuseppe Cerati³, Lindsey Gray³, Jim Kowalkowski³, Panagiotis Spentzouris³, and Aristeidis Tsaris³

¹Lawrence Berkeley National Laboratory ²California Institute of Technology ³Fermi National Accelerator Laboratory

https://arxiv.org/abs/1810.06111

Hep.TrkX GNN

Promising Results

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Quantum Computing

Quantum computing allows a new way of computation for certain problems including;

- Prime number factorization
- Solving Linear Equations
- Machine Learning!

Credit: IBM Research

Quantum Classifiers

Hierarchical quantum classifiers

Edward Grant^{1,2}, Marcello Benedetti^{1,3}, Shuxiang Cao^{4,5}, Andrew Hallam^{6,7}, Joshua Lockhart¹, Vid Stojevic⁸, Andrew G. Green⁶ and Simone Severini¹

Table 3. Binary classification accuracy on the MNIST dataset										
Classifier	Unitaries	Rotations	ls > 4	ls even	0 or 1	2 or 7				
TTN	Simple	Real	65.59 ± 0.57	72.17 ± 0.89	92.12 ± 2.17	68.07 ± 2.42				
TTN	General	Real	74.89 ± 0.95	83.13 ± 1.08	99.79 ± 0.02	97.64 ± 1.60				
MERA	General	Real	75.20 ± 1.51	82.83 ± 1.19	99.84 ± 0.06	98.02 ± 1.40				
Hybrid	General	Real	76.30 ± 1.04	83.53 ± 0.21	$\textbf{99.87} \pm 0.02$	98.07 ± 1.46				
TTN	Simple	Complex	70.90 ± 0.73	80.12 ± 0.64	99.37 ± 0.12	94.09 ± 3.37				
TTN	General	Complex	77.56 ± 0.45	83.53 ± 0.69	99.77 ± 0.02	97.63 ± 1.48				
MERA	General	Complex	79.10 ± 0.90	$\textbf{84.85} \pm 0.20$	99.74 ± 0.02	98.86 ± 0.07				
Hybrid	General	Complex	78.36 ± 0.45	84.38 ± 0.28	99.78 ± 0.02	98.46 ± 0.19				
Logistic	N/A	N/A	$\textbf{70.70} \pm \textbf{0.01}$	81.72 ± 0.01	99.53 ± 0.01	96.17 ± 0.01				

Mean test accuracy and one standard deviation are reported for TTN, MERA, and hybrid classifiers with five different random initial parameter settings using two different types of unitary parametrization. Hybrid classifiers consist of pre-training a TTN classifier and that transforming it into a MERA classifier by training additional unitaries. Bold values indicate the best result for each classification task

Our Work

Introducing Quantum Graph Neural Networks for Particle Track Reconstruction

• First results were showcased at CHEP 2019, proceeding submitted: <u>https://arxiv.org/abs/2003.08126</u>

Aim:

• Using Gate Level Quantum Computers for Particle Track Reconstruction by altering an already good performing Graph Neural Network Approach (Hep.TrkX)

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Preprocessing the Data

- Each event is divided into 8 segments in η and 2 segments in z directions.
- 1% of TrackML data is used.
- Following cuts are applied to the data to construct graphs:

Plotting the Data

In Cylindrical Coordinates

1000

800

600

400

200

0

-1000

-800

-600

Z[mm]

-400

-200

R[mm]

Blue: After preprocessing with Hep.TrkX methods

Red: Ground Truth

1/16 of an event

A Quantum Classifier

How does it work?

Quantum Networks

Quantum Edge Network

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Training the Network

Training Results of the QGNN

Training with Different Amount of Iterations (Single epoch)

AUC: Area Under ROC, a measure of accuracy for different thresholds. AUC = 1.0 means perfect score See slide 25 for details.

Training set: 1400 subgraphs, Validation set: 200 subgraphs, using ADAM, binary cross entropy, lr = 0.01, shots =1000. **Hidden Dimension Size = 1**.

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Training Results of the QGNN

Comparison to Simple Classical Networks (2 epochs)

Same Dataset. Classical Networks have x100 learning rate. Simple experiments with Classical Networks show the potential for the Quantum Network.

Conclusion

First results are promising. With this approach we are optimistic to get better results.

There are things to explore;

- More layers (iterations)
- More hidden features (qubits)
- Different Quantum Networks/Architectures
- Testing with more data

Simulation times of Quantum Networks are limiting fast development, due to very long run times $\mathcal{O}(weeks)$.

Contributors

<u>C. Tüysüz</u>^{1,2}, F. Carminati³, B. Demirköz¹, D. Dobos^{4,6}, F. Fracas³, K. Novotny⁴, K. Potamianos^{4,5}, S. Vallecorsa³, J.R. Vlimant⁷

¹Middle East Technical University, Ankara, Turkey, ²STB Research, Ankara, Turkey, ³CERN, Geneva, Switzerland, ⁴gluoNNet, Geneva, Switzerland, ⁵DESY, Hamburg, Germany, ⁶Lancaster University, Lancaster, UK, ⁷California Institute of Technology, Pasadena, California, USA

QUESTIONS?

Email: <u>ctuysuz@cern.ch</u> Twitter: @cenk_tuysuz github.com/cnktysz/heptrkx-quantum

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Backup Slides

Cenk Tüysüz – 20.04.2020 – Connecting The Dots Workshop

Preprocessing

Following cuts are applied to the TrackML data:

- P_t > 1.0 GeV
- $\Delta \emptyset / \Delta r < 0.006$
- z_o < 100
- $-5 > \eta > 5$

Plot from: https://github.com/HEPTrkX/heptrkx-gnn-tracking

Quantum Gates

Simple Gates : single parameter, rotation on a plane $\left[\cos(\frac{\theta}{2})\right]$

$$0\rangle = \begin{bmatrix} 1\\ 0 \end{bmatrix} \rightarrow \text{Apply } \mathsf{R}_{\mathsf{y}}(\theta) \rightarrow \begin{bmatrix} 0\\ s \end{bmatrix}$$

General Gates:

multiple parameters, rotation on the whole bloch sphere

$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \rightarrow \text{Apply } U_3(\theta, \emptyset, \lambda) \rightarrow$$

 $\cos(\frac{\theta}{2})$ $(e^{i\emptyset}\sin(\frac{\theta}{2}))$

Taking Gradients of a Q. Circuit

Gradient taking operation can be composed as 2 Quantum Circuits.

Pennylane is a software that supports automatic differentiation of quantum circuits.

AUC

True Positive Rate (TPR) is a synonym for recall and is therefore defined as follows:

 $TPR = \frac{TP}{TP + FN}$

False Positive Rate (FPR) is defined as follows:

 $FPR = \frac{FP}{FP + TN}$

ROC is the curve for TPR vs FPR. AUC is the integral of ROC.

AUC = 1.0 means perfect score.