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1 Executive Summary 

Big Data processing workflows typically span a multitude of execution and storage platforms. Parts of the 

processing could be pushed to the input sensor level, as in the case of the wavegliders in the Maritime use case, 

while other more computationally intensive parts/operators (such as stock correlation functions in the Financial use 

case, or gene simulations in Life Sciences use case) could be executed either within one or more (potentially 

distributed) Big Data platforms or within other clusters (i.e., GPUs) of a supercomputer. Even within a single (i.e., 

BSC’s MareNostrum 4) supercomputer one often finds different available clusters, with different hardware and 

processing capabilities, which could process a given workflow. Hence, the space of potential plans (a.k.a. physical 

execution plans) to process a Big Data workflow could be vast. Finding in a timely fashion the right plan that is both 

efficient and cost effective is not trivial.  

 

This deliverable presents techniques for optimizing workflow execution in terms of a set of optimization objectives 

(e.g., throughput, resource utilization) of extreme-scale analytics across different, potentially geo-dispersed 

computer clusters each hosting one or more Big Data platforms. 

 

WP5 interacts with WP4 since the Optimizer Component is a fundamental component of the overall INFORE 

architecture. WP5 receives a logical workflow as JSON formatted input from the Graphical Editor Component of 

the architecture via the Manager Component. It ingests statistics collected by the Manager Component to perform 

cost estimations and judge the performance of alternative execution plans i.e., the Optimizer Component transforms 

the logical workflow to a physical one to be deployed in the available computer clusters and Big Data platforms. 

Having performed this mapping, it returns it to the Manager Component to visualize it to the Graphical Editor 

Component of the INFORE architecture and deploy it to the available computer clusters. Moreover, WP5 interacts 

with the Synopses Data Engine Component and the Machine Learning and Data Mining Component of WP6 which 

provide the physical implementations of respective logical operators drawn in the Graphical Editor Component 

during code-free workflow specification. Finally, WP5 optimizes the logical workflows satisfying the application 

needs of the Biological (WP1), Financial (WP2) and Maritime (WP3) use cases.  

 

  



 

 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP5 T5.1 & T5.2 
Deliverable D5.1 

Doc.nr.: WP5 D5.1 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 

6 of 86 

2 Introduction 

The INFORE architecture aims at processing workflows involving large-scale streaming data. These are complex 

workflows, typically spanning multiple computer clusters and Big Data platforms. Identifying an efficient workflow 

execution could involve decisions made on more than one platform. For example, consider a stream involving two 

platforms, Kafka and Spark. It is possible to optimize the stream on each platform using best practices for Kafka and 

Spark, respectively. Furthermore, platforms employing an intrinsic optimizer (e.g., Spark Catalyst) can provide an 

efficient execution plan for the part of the workflow running on the said platform, as they have more knowledge of 

system internals. However, a platform cannot know that a workflow it is executing is part of a larger workflow that 

spans other platforms. In other words, no platform has a complete picture of the workflow.  

 

The INFORE Optimizer helps with providing a holistic approach covering the entire workflow. Note, that the 

INFORE Optimizer is configurable so that it may optionally guide the platform specific optimizers (e.g. impose a 

certain parallelization degree for parts of a workflow executed over Spark), but always works complementarily by 

identifying optimization opportunities outside a platform and enabling further intra-platform optimizations by 

actions like function shipping (i.e., move a computation closer to the data) and data shipping (i.e., move the data 

closer to the computation). A basic optimization for the example Kafka-Spark workflow would be to push a filter 

from Spark down to Kafka to reduce the amount of data shipped over to Spark. 

 

The optimization in INFORE is multi-dimensional. Given a Big Data workflow and a set of optimization goals, the 

optimizer must make a number of decisions, including the following: 

 

• Many flows. Split the workflow in a number of subflows, such that each subflow contains operators to be 

executed on the same platform. If a workflow is executed entirely on a single platform, there is only one 

subflow the workflow itself. 

 

• Many platforms. Choose a platform to process each subflow of the workflow. Note, that two non-sequential 

subflows can be executed on the same platform.  

 

• Many implementations. Choose an implementation for each operator of the workflow. A workflow operator 

may have zero (i.e., the operator is not supported), one or more implementations within a single Big Data 

platform. For example, a join can be implemented in Spark1 as a Sort Merge join or a Shuffle Hash join or 

a Broadcast join, and in Flink2 as Broadcast Hash or Repartition Hash or Repartition Sort Merge, etc.  

 

• Many objectives. Choose a plan that satisfies multiple optimization goals, such as minimize runtime, 

increase throughput, maximize resource utilization, and so on. As an extra complexity, often these 

objectives may be conflicting, e.g., a fault tolerant plan may not have the optimal execution performance.  

 

The following subsections present a general overview of the Optimizer, its design, and its connectivity within the 

INFORE architecture. 

2.1 Workflow Optimization in INFORE – The Big Picture 

Workflow optimization in INFORE is based on a multitude of optimization objectives and configuration or system 

parameters such as resource availability, resource efficiency, workload parameters at runtime, efficiency of 

streaming technologies, availability of operator implementation on multiple platforms, availability of platforms, and 

so on. Typical goals considered by the optimizer include increased throughput, reduced latency, reduced 

communication under business and technical constraints. The multi-platform approach of the optimizer allows us to 

efficiently handle and select the best suited resource available. For example, a join operation on multiple streams is a 

common implementation on most frameworks and so the optimizer can decide which platform to use, for example 

based on network locality or on available compute resources. 

 

 
1 https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#join-operations  
2 https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/dataset_transformations.html#join  

https://spark.apache.org/docs/latest/structured-streaming-programming-guide.html#join-operations
https://ci.apache.org/projects/flink/flink-docs-stable/dev/batch/dataset_transformations.html#join
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The Optimizer receives a workflow from the Manager Component of the INFORE architecture. Then it optimizes 

the workflow (if applicable) and sends the optimized workflow back to the Manager which handles workflow 

execution. This operation can be done either offline or online, during the running execution of a workflow, which 

allows the INFORE architecture to adaptively react to changing condition of data streams and available resources. 

The runtime adaptation is future work planned for Deliverable D5.2. 

 

The workflow metadata describe the designed streaming analysis process, the available resource information, the 

involved platforms from the connected streaming backends, and user design choices. This information is encoded in 

a JSON format. An informed design choice we made is to decouple the workflow encoding of the Manager 

Component from that of the Optimizer. This is based on two reasons. First, in doing so, both the Manager and the 

Optimizer Components can be replaced by other tools if needed. This allows for increased pluggability and easy 

enhancement of the INFORE architecture, and of potential reuse of the code in future applications. 

 

The second reason was to enable a platform-agnostic workflow representation inside the Optimizer. Hence, a 

workflow designed for specific platforms (e.g., Spark) is platform specific. For example, consider a workflow 

getting data directly from Kafka and containing a filter operator and a join operator implemented in Spark. When the 

workflow is propagated into the Optimizer, it is converted to a platform-agnostic form that contains a logical filter 

operator and a logical join operator. This enables the Optimizer to look for optimization opportunities in other 

available engines (e.g., Kafka). A possible scenario for the example Kafka-Spark workflow could be as follows: (a) 

first, the workflow is transformed to a platform agnostic form and thus, the Spark filter and join are converted into a 

platform-agnostic filter and join, respectively; (b) then, the workflow is processed by the Optimizer that may 

identify an opportunity to push the filter back to Kafka; (c) next, the Optimizer converts the workflow to a platform 

specific workflow having two parts, one part with a filter to be applied to Kafka and one part with a join to be 

executed in Spark. We discuss this further in Section 4.1. 

 

Once a workflow is sent to the Optimizer, the Optimizer enumerates the space of possible and promising execution 

plans for the workflow and estimates plan costs using a dynamic cost model that predicts workflow execution 

runtime. The navigation of the execution plan space can be done exhaustively or in a greedy fashion using heuristics 

for improved performance. 

 

The optimization of complex Big Data processing workflows, consisting of several interconnected data processing 

operators, requires the collection of cost estimates for executing an operator, or a set of operators, at different 

available Big Data platforms, HPC systems, or even at the source/sensor level that generates data. This cost 

estimation is complex, since the number of patterns is large, the corresponding costs depend on the size and 

characteristics of the input data in each case, there may be system constraints (i.e., time or resources in an HPC 

system) imposed by an administrator on the time to collect the relevant statistics, etc. To deal with cost estimation, 

the Optimizer employs a dynamic cost model to enable accurate estimation of the processing cost and required 

resources (i.e., CPU utilization, memory requirements, etc.) for each workflow operator. The model is applicable at 

both Big Data platforms and HPC systems. Cost estimation is boosted by a statistics collection component that 

keeps a history of statistic observations over past workflow execution at various granularities such as at the 

workflow level, at the operator level, and at the platform level. We detail the cost model in Section 4.3. 

 

Next, we present how the Optimizer interacts with the INFORE architecture. 

2.2 Connection with the INFORE Architecture 

The conceptual design of INFORE Architecture is illustrated in Figure 1 and it comprises the following components:  

 

• Connection Component 

• Graphical Editor Component 

• Manager Component 

• Optimizer Component 

• Synopsis Data Engine Component (SDE) 

• Complex Event Forecasting Component (CEF) 

• Interactive Online Machine Learning and Data Mining Component (OMLDM) 
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Figure 1: Overview of the conceptual design of the INFORE Architecture 

 

All components are designed in a modular way, with clear interaction-interfaces between them. This enables an easy 

exchange between the modules and provides the necessary pluggability of the INFORE architecture. All 

architectural components communicate with each other via REST APIs. 

 

The Manager is the central component that orchestrates the interaction among the other components and handles the 

execution and monitoring of the designed streaming analysis processes. The Manager serves as the connection point 

of the Optimizer with the overall INFORE Architecture. The Manager also orchestrates the collection of workflow 

execution statistics, which are used by the Optimizer’s cost model.  

 

The Optimizer receives a workflow from the Manager, optimizes it, and returns the optimized version back to the 

Manager for further action, such as inspection, dispatch, execution or scheduling.  

 

The Graphical Editor and Connection Components are implemented in the RapidMiner Studio by the project partner 

RapidMiner. The RapidMiner Studio is extended to support a Streaming Optimization and a Streaming Nest 

operator, which are subprocess operators that allow an arbitrary number of operators to be placed inside them. The 

Streaming Optimization operator is used by the user of the Graphical Editor Component to define the initial logical 

workflow deprived of any platform specific details. The optimizer devises the corresponding physical workflow for 

the previously drawn logical one, with part of it to be executed in each of the available platforms. For each cluster, 

Big Data platform which undertakes the physical execution of a part of the workflow, a Streaming Nest operator is 

placed within the Streaming Optimization one. The Streaming Nest operator for each cluster, platform includes 

operators corresponding to the part of the workflow that has been assigned there. The operators in Streaming 

Optimization and Streaming Nest operators are inter-connected defining a streaming workflow. The connection of 

operators to underlying execution or messaging (e.g. Kafka) platforms are handled by RapidMiner Studio’s 

Connection objects. INFORE adds Connection object classes for all supported streaming backends, thereby 

implementing the Connection Component. This is essential for the cross-platform optimization of data stream 

analysis in INFORE. An example workflow representation is illustrated in Figure 2. Use case specific workflows are 

discussed in Section 7, while throughout our discussion we sketch appropriate exemplary workflows as well.  
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Figure 2: An example workflow design in the Graphical Editor component.  

 

More details on the INFORE architecture can be found in Deliverable D4.1 and Deliverable D4.2. 

2.3 Physical Infrastructure 

The INFORE Optimizer is designed to work with the most popular Big Data Platforms and HPC systems. In the 

current implementation, it supports:  

 

• Execution engines: Apache Spark3, Apache Flink4, and Akka5  

• Messaging systems: Apache Kafka6 

 

The architectural choices considered by the Optimizer include: 

 

• Processing on on-prem clusters or HPC 

• Processing components: CPU, GPU 

 

The design is generic and can be straightforwardly extended to support additional systems and platforms.  

2.4 Supported Operators 

A typical data analysis workflow may contain a large variety of operators implementing algorithms spanning areas 

such as traditional data processing (e.g., relational database operators), data analysis and data mining, complex 

events forecasting, synopses, machine learning, deep neural networks, and so on. INFORE takes a generic, black-

box approach to design, execute, and profile such rich set of options.  

 

Therefore, INFORE supports stream operators provided in Apache Spark and Flink. In addition, INFORE supports 

additional, homegrown complex analytic streaming operators, including:  

 

• Classification 

 
3 https://spark.apache.org/  
4 https://flink.apache.org/  
5 https://akka.io/  
6 https://kafka.apache.org/  

https://spark.apache.org/
https://flink.apache.org/
https://akka.io/
https://kafka.apache.org/
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- Passive Aggressive Classifier (PA). An online binary classification method for linearly separable 

data, capable of handling concept drifts [Cra+06]. The algorithm solves a constraint minimization 

problem and find the best possible separating hyperplane for the two classes. This method is based on 

minimizing the Hinge Loss function (the same used by SVM). This algorithm is used extensively for 

testing our component because of its simplicity.  

 

• Regression 

- Passive Aggressive Regressor (PAr). An online regression method that fits a linear function to the 

streaming data. This yet is another method used for testing our component [Cra+06]. 

- Online Ridge Regression (ORR). The online version of the well-studied ridge regression algorithm. 

The method incrementally solves the ordinary least squares regression problem with the addition of 

the l2 norm penalty [HoKe88, Vovk01]. 

 

• Preprocessing 

- Standardization. A normalization method that subtracts the population mean from each individual 

data point and then divides the difference by the population standard deviation. The mean and 

variance vector can be computed incrementally, or they can be given by the user. 

- Polynomial Features. A pre-processing method that generates extra features for each data point. The 

generated data points consist of all polynomial combinations of the features with degree less than or 

equal to the specified degree. 

 

• CEF Operator. The CEF operator is an implementation of a formal framework that attempts to address the 

issue of Complex Event Forecasting (CEF). It is based on symbolic automata and a variable-order Markov 

model and can capture long-term dependencies in a stream. Based on the dependencies it uncovers, it can 

provide forecasts in an online manner about when a complex event is expected to occur, before such an 

event is actually detected. More details can be found in Deliverable 6.2 and the interested reader may also 

refer to previous work on the topic [AlAP17, AlAP18]. 

 

• Synopses operators. A number of synopses is currently supported in INFORE via the Synopses Data 

Engine (SDE), including:  

- CountMin: A Count-Min Sketch is a two-dimensional array of w×d dimensionality used to estimate 

frequencies of elements of a stream using limited amount of memory.  

 

- BloomFilter: A Bloom filter is a space-efficient representation of a stream of elements from a certain 

universe, mainly used to deduce whether a certain element has been observed.  

 

- FM Sketch: The FM sketch is a bitmap used to estimate the number of distinct elements in a stream 

using a limited amount of memory.  

 

- HyperLogLog: The HyperLogLog algorithm constitutes the evolution of FM sketches. It is a simple, 

elegant algorithm that enables to extract distinct counts using limited memory and a simple error 

approximation formula.  

 

- AMS Sketch: The key idea in AMS sketch is to represent a streaming (frequency) vector v using a 

much smaller sketch vector sk(v) that is updated with the streaming tuples and provide probabilistic 

guarantees for the quality of the data approximation. 

 

- Discrete Fourier Transform (DFT): The Discrete Fourier Transform transforms a sequence of 

complex numbers into another sequence of complex numbers in increasing order of importance. In 

the context of the SDE, importance, involves preservation of cross-correlation similarity values 

among streams. Stream dimensionality reduction is achieved by keeping a subset of DFT coefficients. 

 

- Random Hyperplane Projection (RHP): The RHP LSH scheme as utilized in the SDE operates over 

tumbles, i.e., disjoint windows of a data stream of |W| size each. Given a tumble wi of observations 

for a stream i, RHP produces a bitmap of d dimensionality with 𝑑 ≪ 𝑏𝑖𝑡(𝑤𝑖), where 𝑏𝑖𝑡(𝑤𝑖), is the 

size in bits of the respective values in wi .   
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- Lossy Counting: The Lossy Counting algorithm maintains a data structure, which is a set of entries of 

the form <element, frequency, ε>, where element is a data element, frequency is an integer 

representing the estimated frequency of the element and ε tunes the allowed maximum possible error 

in frequency estimation.  

 

- Sticky Sampling: Sticky Sampling shares similarities with Lossy Counting, but differs in that (i) the 

size of buckets/windows is not steady and (ii) the count of an element is maintained with a certain 

sampling probability. 

 

- Chain Sampler: The chain sampling algorithm provides a simple random sample without replacement 

of size k over a sliding window of n cardinality where k is expected to be much lower than n.  

 

- GKQuantiles:quantile estimation using a small memory footprint. 

 

- CoreSetTree: computes a weighted sample of a data stream, called the CoreSet of the data stream. A data 

structure termed CoreSetTree is used to speed up the time necessary for sampling non-uniformly during 

CoreSet maintenance. 

 

- STSampler: The STSampler, tailored to the Maritime Use Case, samples vessel positions within its trajectory 

only when they are considered important, i.e., they cannot be deduced or approximated sufficiently well by 

interpolating other already sampled positions.  

 

The development of the SDE library leverages subtype polymorphism and hence, it allows for adding 

easily new synopses definitions. More details can be found in [KoGD20].  

 

• Stream Transformations  

- These essentially constitute the stream processing operators that are supported in the scope of the functional 

programming paradigm followed by the supported Big Data platforms. Such as Join, Filter, Map in Spark’s 

Structured Streaming, Flink’s DataStream API and so on. 

 

 

As on-going and future work is concerned, the INFORE team works on adding operators such as:  

 

• Clustering 

- Sequential k-means clustering. An online method of the original k-means clustering algorithm 

[Bah+12]. 

- BIRCH. A memory-efficient online clustering algorithm [ZhRL96]. 

 

• Classification 

- Online Support Vector Machines (OSVM). An online implementation of the linear Support Vector 

Machine classifier. 

- Vertical Hoeffding Tree (VHT). A distributed algorithm for learning decision trees in an online 

manner [KFMM16]. A novel way of distributing decision trees via vertical parallelism that performs 

well on non-linearly seperable data. 

 

• Regression 

- Autoregressive Moving Average (ARMA). An algorithm for time Series Analysis. An Autoregressive 

Moving Average model is used to describe weakly stationary stochastic time series in terms of two 

polynomials. The first of these polynomials is for autoregression, the second for the moving average. 
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3 INFORE Optimizer Design and Implementation  

The INFORE Optimizer is implemented as a Web service to enable lightweight communication with the other 

components of the INFORE Architecture and especially, with the Graphical Editor, the Connection, and the 

Manager components.  

 

Figure 3 illustrates a high-level overview of the Optimizer Web Service, which is implemented using the Java Spark 

Web Framework7 for creating web applications. The service receives as an input (a) the workflow to be optimized, 

and (b) a set of configuration files encoded in JSON. The latter are independent of the input workflow and are used 

to feed the Optimizer with environmental settings, such as:  

 

• Dictionary. It specifies the list of supported operators, available platform implementations, and a computed 

cost estimation per operator, implementation, and platform. 

  

• Network topology. It describes the topology of available compute resources and sites (e.g., clusters and 

their locations). 

 

• Configuration parameters. It contains tuning parameters for the optimization process, such as a choice of 

an optimization strategy, and heuristic values for various knobs.  

 

The output of the optimization service is an optimized workflow.  

 

 
Figure 3: Optimizer Web Service 

 

3.1 Optimizer Modules 

The Optimizer implementation is based on Maven modules, comprising three main modules (see also Figure 4):  

 

• Optimizer. It implements workflow optimization including the optimization algorithms, the cost model, and 

the plan creation.  

 

• Web. It implements a Web service responsible for receiving submitted workflows and transmitting back 

optimized workflows. 

 

• Core. It contains all Maven dependencies that are shared between modules and also the workflow parser.  

 

 
7 http://sparkjava.com/   

input workflow 

Optimizer Service  

Java Spark  

REST API optimized workflow 

dictionary network  

topology 
configuration  

parameters 

http://sparkjava.com/
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Figure 4: Optimizer modules 

 

3.2 Workflow File 

An INFORE workflow is encoded as a JSON file comprising three main elements: Operators, Operator 

Connections, and (optionally) Resources. These elements represent the operators of the workflow, the connections 

among them, and resources allocated to the workflow, respectively.  

 

Figure 5 depicts an example snippet of a workflow JSON encoding. The example shows an operator named “Logical 

Decision Tree”, which receives input data from the port “output 1” and propagates its result to the port “training 

set”. The example encoding shows also implementation details like the class that implements this operator.  

 

 
Figure 5: Example snippet of a workflow JSON encoding  

web 

core 

optimizer 
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3.3 Configuration Files 

There are three types of Configuration files: dictionary, network topology, and configuration parameters. 

 

Dictionary. A logical operator may have multiple physical implementations either on a single platform or across 

multiple platforms. In order to achieve platform inter-operability and preserve flow semantics across multiple 

platforms, we need a means for translating platform specific characteristics from one platform to another. To deal 

with this, INFORE uses a dictionary of mappings. In addition to keeping information useful for code interpretation 

and generation, the dictionary also contains attributes that can be used during workflow processing, like the operator 

cost models specific to an implementation and platform. The dictionary comprises the following elements: (a) 

supported operators; (b) available platform agnostic and platform specific implementations; and (c) a cost estimate 

per operator, implementation, and platform. Figure 6 shows an example snippet of a Dictionary entry. This snippet 

shows a fragment for a Filter operator, with implementations in SQL, Java, Apache Spark, Apache Flink, and Akka. 

 

 
Figure 6: Example snippet of a Dictionary entry 

 

Network Topology. The Network file describes the topology of available compute resources and sites including 

metrics and statistics of profile characterization of these resources. An example snippet of a Network entry is shown 

in Figure 7. The figure shows an example site called “site1” and drills down to the details of an Apache Spark 

deployment on that site. It also shows an example metric representing the measured latency in communicating with 

that site. Such metrics are frequently updated based on periodic benchmarks (see also Section 4.3). 

 
Figure 7: Example snippet of a Network entry 
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Configuration Parameters. The Configuration file lists a set of parameters required for tuning the optimization 

process. As described in Section 4.5 and Section 5, INFORE supports more than one optimization strategy for 

creating an optimized execution plan. Each strategy comes with a set of tuning knobs, which are tuned using the 

respective entries in the configuration file. Figure 8 shows an example snippet of a Configuration entry that includes 

an “exhaustive” optimization strategy, the cost estimator, and the concurrency level (a.k.a. multi-programming level 

or MPL). 

 

  
Figure 8: Example snippet of a Configuration entry 

 

3.4 Endpoints 

The Optimizer Web Service provides a set of endpoints via REST API to facilitate the communication with the other 

INFORE components. These endpoints include:  

 

• Monitor. A number of services to monitor the status of internal optimization processes, such as:  

- /progress: Returns the progress of a running optimization strategy 

- /plan: Returns the current best plan (this may change as better plans may be found over time as the 

optimization process progresses) 

 

• Control. A number of services to control an optimization process, such as  

- /start: Starts an optimization service 

- /pause: Pauses an optimization service 

- /kill: Stops an optimization service 

 

• Workflow. A number of services to handle workflow files, such as:  

- /workflow: Submits a workflow and receives an optimized workflow 

 

• Dictionary. A number of services to handle the dictionary, such as:  

- /dictionary: Loads a dictionary  

 

• Network. A number of services to handle the network topology, such as:  

- /network: Loads a network topology 

 

• Configuration. A number of services to handle the configuration parameters, such as:  

- /optcfg: Loads the configuration parameters  

 

The last three endpoints also include services such as (a) find: retrieve entries in a dictionary, (b) add: add an entry, 

(c) delete: delete an entry, (d) update: update an entry, and so on. 
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4 The INFORE Optimizer 

This section describes the operation of core functions of the Optimizer. 

4.1 Logical Plan Creation  

As discussed, a workflow in INFORE may span multiple execution platforms. One may consider this workflow as a 

single, logical computation and it may be modeled as such. However, a logical flow has many possible 

implementations, each serving a different purpose. If the workflow designer directly creates an implementation (or 

physical workflow) that meets the desired objectives for the workflow, over time, objectives may change, data 

volumes may increase rendering an implementation sub-optimal, the underlying infrastructure may change, or the 

logical workflow may need modification. Creating and modifying physical workflows is labor-intensive, time-

consuming, and error prone. From an optimization perspective, optimizing a physical workflow containing subflows 

designed and tuned for different platforms and thus, often having different semantics is hard, and in some cases 

inefficient. To deal with these challenges, INFORE adopts the notion of platform independence for workflows 

[JoSW14]. Similar to the logical data independence that insulates a data modeler from physical details of a relational 

database, there are benefits in designing and optimizing workflows at a logical level. 

 

A logical, platform-independent workflow provides a unified, end-to-end view of the entire computation. This 

enables the optimizer to change the workflow design without altering its semantics and functionality. For example, 

simple, well-known, and effective techniques such as pushing a selective operator early in the computation can still 

be made even if the said operator is designed to run on a different platform. Simple cases as push down are already 

available in hybrid, batch-processing frameworks, but require additional plug-ins and specialized connectors; e.g., 

many relational databases employ specialized connectors to Map-Reduce systems (like Hadoop) to support pushing 

SQL filters down to external systems. In most cases though, this functionality has not been incorporated into the 

system optimizers and needs to be done manually. And still, these connectors support simple operators. Supporting 

much more complex operators as those described in Section 2.4 might be doable with specialized connectors, but 

building connectors for every possible operator is not trivial and does not scale. Considering the entire workflow at 

the logical level, opens optimization opportunities in a simpler way and at much lesser development cost.  

 

A logical workflow is independent of an execution platform. A workflow can be represented as a directed acyclic 

graph whose vertices are the logical workflow operators and its edges represent the data flow among these operators. 

Hence, a logical workflow contains vertices that do not necessarily have information about specific implementation, 

or resource allocation, etc. A logical workflow merely represents the computation intended by the workflow 

designer.  

 

A physical workflow is designed for a specific execution platform (e.g., Spark or Flink) and instantiates parts of a 

logical workflow or the logical workflow in its entirety. Therefore, the vertices of the graph representing a physical 

workflow contain the information needed to bound each operator to a specific implementation and platform.  

 

A logical operator may have multiple physical implementations either on a single platform or across multiple 

platforms. In order to achieve platform inter-operability, preserve flow semantics across multiple platforms, and 

enable conversions from physical to logical workflows and vice versa, we maintain a dictionary of mappings 

between logical constructs and their physical incarnations in the supported platforms. Figure 6 depicts an 

implementation of an example mapping.  

 

There are two ways to create a logical workflow: by design or by conversion.  

 

In a typical use case scenario, the INFORE user designs a logical workflow in the Graphical Editor. Such a 

workflow represents only the intended computation, which is quite convenient for the casual data scientist who does 

not want to get distracted by implementation details and prefers to leave that task to INFORE.  

 

The Optimizer also handles the case of physical workflows, which can either have been designed as such by the 

workflow designer (e.g., the designer creates a workflow to run on Spark) or they may have been created by a 

previous optimization process. In those cases, the Optimizer converts the physical workflow into a logical one as 

follows. For each workflow operator that contains information about a specific implementation, the Optimizer 
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identifies the implementation type and uses the dictionary to map it to its corresponding logical type. An example 

logical type is shown in Figure 5: the type of the operator “2” can be seen by its “com.rapidminer.extension. 

operator.logical.LogicalDecisionTree” operator class. 

 

The Optimizer operates on logical workflows. It decides an appropriate placement of operators and creates a plan 

(see Section 4.5 and Section 5). In the optimized plan, the logical operators have been instantiated with the 

information needed (e.g., implementation type, platform choice, respective cost) to get converted into their 

respective physical incarnations, by following the reverse process and mapping the logical operator types to the 

physical ones, again through the dictionary.   

4.2 Statistics Collection  

The most popular Big Data Platforms (such as Spark and Flink) offer several ways to monitor the execution of a 

workflow either online or after the fact, through a Web UI, metrics, and/or external instrumentation with cluster-

wide monitoring tools, profiling tools, or stack traces sniffing tools. For statistics collection on workflow execution, 

we rely on platform specific configurable metrics systems that report a plethora of execution metrics to a variety of 

forms like HTTP, Java Management Extensions (JMX)8, and CSV files.  

 

In INFORE, statistics collection relies on the REST API services provided by the Big Data Platforms to poll metrics 

and other useful information regarding running workflows, individual operators, cluster load, resource utilization, 

etc. In particular, we use Logstash9 to tap into these metrics via JMX connections. Using Logstash, we periodically 

probe the resource managers of the Big Data Platforms, collect metrics, transform them on the fly into a more 

readable format, and store them to a centralized storage. Our current choice for storage is ElasticSearch; other 

solutions such as a timeseries database can also be used.  

 

 
Figure 9: Statistics collection and utility from computer clusters to the INFORE Manager Component and 

finally to the Optimizer Component. 

 

As an example, we describe next the process for metrics collection from Flink. We work with other platforms in a 

similar way.  

 

A statistics collection driver starts with initializing an object to handle the data received from REST API calls and a 

parser used for JSON deserialization.  

 
objectMapper = new ObjectMapper(); 

objectMapper.configure(SerializationFeature.INDENT_OUTPUT, true); 

 
8 https://en.wikipedia.org/wiki/Java_Management_Extensions 
9 https://www.elastic.co/logstash 
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flinkParser = new FlinkParser(ClusterConstants.flink_master, objectMapper); 

 

We also initiate a Timer to handle communication with Flink:  

 
flink_timer = new Timer("FlinkMetricsTimer"); 

 

which can be called as:  

 
flink_timer.scheduleAtFixedRate(new TimerTask() { 

            @Override 

            public void run() { … } 

        }, FlinkDelay, FlinkRefreshPeriod); 

 

Then, a pseudocode to periodically collect metrics from Flink would be as follows. 

 
         // Connect to Flink JM and retrieve metrics 

         jobmanager = flinkParser.fetchFlinkJobManager(); 

         // Fetch running jobs 

         flinkJobs = flinkParser.fetchFlinkJobs(null, "RUNNING"); 

         // Get metrics per job 

         for (FlinkJob job : flinkJobs) {  

                    // process job metrics 

                    … 

          } 

The Flink runtime comprises two types of processes: the JobManagers (masters) and the TaskManagers (workers)10. 

The JobManagers coordinate the distributed execution (e.g., scheduling, checkpoint coordination, recovery from 

failures). The TaskManagers execute the tasks of a workflow and handle data stream buffers and exchanges. In 

INFORE, the metadata to orchestrate the metrics collection from Flink are stored in two files in JSON format, one 

for describing Flink Jobs and one for Flink Tasks. Example snippets for each file are as follows.  

 

JobManager script: 

{ 

  "host": "host.docker.internal", 

  "port": 9250, 

  "queries": [ 

    { 

      "object_name": "java.lang:type=Runtime", 

      "attributes": [ "Uptime", "StartTime"], 

      "object_alias": "Runtime" 

    }, 

    { 

      "object_name": "java.lang:type=GarbageCollector,name=*", 

      "attributes": ["CollectionCount", "CollectionTime"], 

      "object_alias": "${type}.${name}" 

    }, 

    { 

      "object_name": "org.apache.flink.jobmanager.*:host=jobmanager", 

      "attributes": ["Value"] 

    } 

  ] 

} 

 

 

 
10 More details can be found here: https://ci.apache.org/projects/flink/flink-docs-stable/concepts/runtime.html  
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The following example TaskManager script collects metrics such as number of buffers, numBytesOutPerSecond, 

numRecordsIn, numRecordsInPerSecond, numRecordsOut, numRecordsOutPerSecond. Additional metrics can be 

added trivially by extending the “queries” element. 

  

TaskManager script: 

{ 

  "host": "host.docker.internal", 

  "port": 9251, 

  "queries": [ 

    { 

      "object_name": "java.lang:type=Runtime", 

      "attributes": [ "Uptime", "StartTime"], 

      "object_alias": "Runtime" 

    }, 

    { 

      "object_name": "java.lang:type=GarbageCollector,name=*", 

      "attributes": [ "CollectionCount", "CollectionTime"], 

      "object_alias": "${type}.${name}" 

    }, 

    { 

      "object_name": "org.apache.flink.taskmanager.Status*:host=*,tm_id=*", 

      "attributes": ["Value"] 

    }, 

    { 

      "object_name":"org.apache.flink.taskmanager.job.task.buffers.*:task_name=*,job_id=*,                 

                                 task_attempt_id=*,job_name=*,tm_id=*,task_id=*, 

                                 task_attempt_num=*, host=*,subtask_index=*", 

      "attributes": ["Value"] 

    }, 

   { 

      "object_name": org.apache.flink.taskmanager.job.task.numBytesOutPerSecond:task_name=*, 

                                 job_id=*,task_attempt_id=*,job_name=*,tm_id=*,task_id=*, 

                                task_attempt_num=*,host=*,subtask_index=*", 

      "attributes": ["Count","Rate"] 

    }, 

    { 

      "object_name":org.apache.flink.taskmanager.job.task.numRecordsIn:task_name=*,job_id=*, 

                                 task_attempt_id=*,job_name=*,tm_id=*,task_id=*,task_attempt_num=*, 

                                 host=*,subtask_index=*", 

      "attributes": ["Count"] 

    }, 

    { 

      "object_name": org.apache.flink.taskmanager.job.task.numRecordsInPerSecond:task_name=*, 

                                job_id=*,task_attempt_id=*,job_name=*,tm_id=*,task_id=*, 

                                task_attempt_num=*,host=*,subtask_index=*", 

      "attributes": ["Count","Rate"] 

    }, 

    { 

      "object_name": "org.apache.flink.taskmanager.job.task.numRecordsOut:task_name=*, 

                               job_id=*,task_attempt_id=*,job_name=*,tm_id=*,task_id=*, 

                               task_attempt_num=*,host=*,subtask_index=*", 

      "attributes": ["Count"] 

    }, 

    { 

      "object_name":"org.apache.flink.taskmanager.job.task.numRecordsOutPerSecond:task_name=*, 

                               job_id=*,task_attempt_id=*,job_name=*,tm_id=*,task_id=*, 
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                               task_attempt_num=*,host=*,subtask_index=*", 

      "attributes": ["Count","Rate"] 

    }, 

  ] 

} 

 

In order to collect statistics from HPC infrastructures and the MareNostrum 4 in Barcelona’s supercomputer center 

we also have to integrate Slurm in our statistics collector11. Slurm stands for Simple Linux Utility for Resource 

Management and it is used at the HPC infrastructure available to INFORE as a job scheduler. Slurm interprets the 

amount of resources a job requires and controls how many resources are available for new jobs.  

 

The following python snippet sketches how to go through all the nodes of a Slurm cluster and get their 

CPU/GPU/Memory Usage information per partition12: 

 
nodes = pyslurmnode.get() 

for node in nodes: 

    node_data = nodes.get(node) 

 

    metrics['partition']['cpu_total']['ALL'] += node_data['cpus'] 

    metrics['partition']['cpu_usage']['ALL'] += node_data['alloc_cpus'] 

    …. 

    metrics['partition']['mem_total']['ALL'] += node_data['real_memory'] * 1048576 

    metrics['partition']['mem_usage']['ALL'] += node_data['alloc_mem'] * 1048576 

    ….. 

#Generic Resource Objects 

    if node_data['gres']: 

        gres_total = pyslurm.node().parse_gres(node_data['gres'][0]) 

        gres_usage = pyslurm.node().parse_gres(node_data['gres_used'][0]) 

        for g in gres_total: 

            is_gpu = re.match(r'^gpu:([0-9]+)\(?', g) 

            if is_gpu: 

                gpu_total = int(is_gpu.group(1)) 

 

        if gpu_total > 0: 

            for g in gres_usage: 

                is_gpu = re.match(r'^gpu:(?:[^:]*:?)([0-9]+)\(?', g) 

                if is_gpu: 

                    gpu_usage = int(is_gpu.group(1)) 

 

    metrics['partition']['gpu_total']['ALL'] += gpu_total 

    metrics['partition']['gpu_usage']['ALL'] += gpu_usage 

    ….. 

payload = [] 

for grouping in ['partition', …]: #we can also collect statistics per user, job etc 

    for reading in ['cpu_total', 'cpu_usage', 'gpu_total', 'gpu_usage', 'mem_total', 

'mem_usage']: 

        if reading in metrics[grouping] and len(metrics[grouping][reading]) > 0: 

            for key in metrics[grouping][reading].keys(): 

                payload.append({'measurement': '%s_%s' % (grouping, reading), 'time': 

now, 'fields': {reading: float(metrics[grouping][reading][key])}, 'tags': {grouping: 

key}}) 

 

client.writePoint(payload, database=config[`elasticsearch`]) 

 

The statistics that can be tracked using the above collection mechanisms differ between platforms and collection 

tools, JMX, Slurm. However, tracking quantities related to number of records/bytes received/sent, degree of 

parallelism, available/used processing nodes along with their cores and available/used memory is supported. These 

primary statistics can be obtained at the operator, part of workflow and entire workflow level implicitly (e.g. running 

 
11 https://www.bsc.es/user-support/faq.php#slurm 
12 https://slurm.schedmd.com/elasticsearch.html 

https://www.bsc.es/user-support/faq.php#slurm
https://slurm.schedmd.com/elasticsearch.html
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1 operator per submitted job) or explicitly. From these statistics we can observe other, derived metrics such as 

throughput (number of records being processed per time unit), latency (composed of processing, read/write and 

communication latency) as well as communication cost, by appropriate configurations. For instance, should one 

want to measure the read/write latency of an operator when the input/output is directed to a Kafka cluster, she can 

do so by configuring the same operator receiving/sending its input/output once internally from/to the Big Data 

platform where it is deployed (e.g from/to one Flink operator to/from another) and once externally, e.g. to Kafka. 

Having measured this, one can similarly derive the communication latency between geo-dispersed computer clusters 

using Kafka as a messaging service and so on. 

4.3 Cost Estimator 

4.3.1 Cost Estimator – Theoretic Foundations  

Before providing a formal formulation of our optimization problem let us consider the expected functionality of the 

INFORE optimizer. This will facilitate our discussion about the kind of cost estimator we need in order to evaluate 

alternative physical workflow execution plans. In its endeavor to convert the logical workflow to a physical one, the 

Optimizer Component shall attempt to examine the available options with respect to instantiating each logical 

operator to (a) a networked computer cluster (data center), (ii) a Big Data platform that is hosted there, (iii) prescribe 

the parallelization degree and account for resource capacity. These are the elements that should be provided so that 

the Manager Component that will receive the JSON of the prescribed physical plan, can dispatch jobs to be 

submitted to respective clusters and Big Data platforms.  

  

In INFORE we aim at optimizing the execution of various types of machine learning, data mining, complex event 

forecasting and stream transformation operators. Moreover, INFORE aims at a pluggable and extensible architecture 

which should allow customization driven by application specific needs. Therefore, potential adopters should be 

allowed to plug-in new operators, for instance, by defining new synopses in the SDE Component (see Deliverable 

D6.1 for further details). Moreover, the INFORE architecture is not tied to specific Big Data platforms but can be 

extended to support any future platform that gains popularity among stakeholders in academia and in the industry. 

Therefore, a workflow engages a variety of operators which behave differently. Even within a single component, 

such as the OMLDM or the SDE Component, operators of heterogeneous nature exist.  

 

For these reasons, we cannot rely on cost estimation methods that employ crisp assumptions to build analytic 

formulas for individual operator’s behavior, since this cannot accommodate all architectural components and limits 

pluggability and extensibility. The cost estimator that INFORE’s optimization module should adopt must allow us to 

treat each operator as a black box, i.e., the function f(x) describing the performance of the same operator in different 

clusters, Big Data platforms and provisioned resources, is a black box function. We cannot assume an analytical 

expression for f(x). What we want, is to find a set x that minimizes the cost f(x) of executing the operator.    

 

This is a set up where Bayesian optimization techniques [BrCF10] are most useful. They attempt to find the global 

optimum for predicting the value of f(x) using a minimum number of iterations/samples. Bayesian optimization 

incorporates prior belief about f(x) (i.e., a small set of the values) and updates the prior with samples drawn from f(x) 

to get a posterior that better approximates f(x). The model used for approximating the objective function is called 

surrogate model. Bayesian optimization also uses an acquisition function that directs sampling to areas where an 

improvement over what is currently considered as optimal is likely. 

 

The most commonly used surrogate model is Gaussian processes (GPs). GPs can initially be used to exploit prior 

beliefs about f(x). A Gaussian process is a random process where any point x ∈ Rd is assigned a random variable f(x) 

and where the joint distribution of a finite number m of these variables Pr(f(x1),…,f(xm)) is Gaussian as well, i.e., 

Pr(f|X) = Ν(f|μ,K), where X=(x1,...,xm), f=(f(x1),...,f(xm)), the expected value (which can be set to zero) 

μ=(μ(x1),...,μ(xm)) and 𝐾𝑖,𝑗 ∈ 𝐾: Ki,j=κ(xi,xj), ∀(𝑥𝑖 , 𝑥𝑗) ∈ 𝑋. κ is a positive definite kernel (or covariance) function. A 

Gaussian process is a distribution over functions. The smoothness of these functions is determined by the kernel. If 

points xi, xj are similar according to the kernel, the same would hold for the function values f(xi), f(xj). 

 

The GP prior Pr(f|X) described above can yield a GP posterior Pr(f|X,y) after having observed some more samples y. 

The posterior can then be used to make predictions f* given a new input (query) as a set X*. In particular: 
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Pr(f*|X*,X,y)=∫ 𝑃𝑟(𝑓∗|𝑋∗, 𝑓) ∙ 𝑃𝑟(𝑓|𝑋, 𝑦)𝑑𝑓 = Ν(f*|μ*,Σ*) 

 

The above function is also a Gaussian with mean μ* and covariance matrix Σ*. The joint distribution of observed 

data y and predictions f* is (
𝑦
𝑓∗) = (0, (

𝐾𝑦 𝐾∗

𝐾∗𝑇 𝐾∗∗
)). 𝐾𝑦 = 𝐾 + 𝜎𝑦

2𝐼, 𝐾∗ = 𝜅(𝑋, 𝑋∗), 𝐾∗∗ = 𝜅(𝛸∗, 𝛸∗). 

𝐾𝑦𝜖𝑅𝑛×𝑛, 𝐾∗𝜖𝑅𝑛×𝑛∗
, 𝐾∗∗𝜖𝑅𝑛∗×𝑛∗

 with n training data and n* new inputs. T denotes the conjugate transpose of the 

matrix. Moreover, 𝜇∗ = 𝛫∗𝛵𝐾𝑦
−1𝑦, 𝛴∗ = 𝛫∗∗ − 𝛫∗𝛵𝐾𝑦

−1𝛫∗. 

 
Figure 10: Operation of Bayesian optimization13 after a number of sampling iterations. Plots on the left show 

how well the true function (red line) is approximated by GP posterior (green line) in subsequent sampling 

iterations. The plots on the right show the shape of the acquisition function and the next point to sample. A 

combination of Matern and WhiteNoise kernels is used in the Gaussian Process. Expected Improvement (EI) 

is the utilized acquisition function.  

 
13 https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html 

https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html
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The GP posterior can be used to propose points in the search space where sampling is likely to yield an 

improvement. Proposing sampling points in the search space is done by the acquisition function. Popular acquisition 

functions are Maximum Probability of Improvement (MPI), Expected Improvement (EI) and Lower Confidence 

Bound (LCB). The acquisition function is expected to sample where GP predicts a high/low objective or where the 

prediction uncertainty is high due to noisy input. Both cases correspond to high/low acquisition function values and 

the goal is to maximize/minimize the acquisition function to determine the next sampling point. It is also possible to 

provide more sampled points in y without using the acquisition function’s proposed samples. In this case, the 

posterior GP would improve, but the improvement will be much less targeted in better predictions. When new 

samples are used in y without using an acquisition function, a fitting process is taking place, while using the 

acquisition function corresponds to training the developed process. Figure 10 and Figure 11 depict our previous 

discussion in toy examples of open-source libraries13. In Section 8, we present respective plots tied to INFORE 

experimental scenarios.  

 

 
Figure 11: Convergence plot from 13 for the setup of Figure 10. Initially one x is fitted and then the 

acquisition function chooses subsequent samples, after 9 such samples, no new sample improves predictions, 

i.e., the training process converges as the objective function reaches its minimum. 

4.3.2 Cost Estimator in Practice 

Given the lack of an a priori known f(x) for every possible operator and its alternative implementations, what we can 

do is to obtain some initial samples and construct a prior/posterior belief for the unknown function as described in 

the previous section. Practically this is achieved by performing some microbenchmarks and collecting information 

about respective statistics and performance metrics for each operator. In our case, x ∈ Rd is a vector describing for 

each operator the statistics mentioned in Section 4.2 per computer cluster and Big Data platform with available 

operator implementations. In the description of our algorithms in Section 4.5 and Section 5, when we refer to 

performance computation with respect to our optimization objectives, we mean that we query the developed cost 

estimator with input parameters involving input stream rates (records and bytes sent/received, execution time etc) 

per networked cluster and involved Big Data platforms. The cost estimator responds with a prediction f* with respect 

to the optimization objectives which are: throughput, latency, communication cost, CPU and memory usage (Section 

4.4). Later on, in Section 6.1 we add another objective reflecting output accuracy when SDE operators are used. 

  

Each experiment, in a microbenchmark we construct, involves the evaluation of the black box function, restricted to 

sampling each time at a point x and getting the result of the experiment including both the input parameters and 

performance objectives derived as described in Section 4.2. However, evaluating f(x) at many points is an expensive 

procedure which involves performing micro-benchmarks over different clusters, platforms, resource configurations. 

Thus, we cannot a priori sample at every possible point. Therefore, what we do is, having the prior and posterior GP 

by some initial experiments, we then let the acquisition function ask the next sample that corresponds to a new, 

useful microbenchmark we should perform. This essentially enhances the y dataset for obtaining the GP posterior. In 

particular, for every new operator, we run a number of microbenchmarks, we provide a small percentage of them to 
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initiate the GP posterior and let the acquisition function request the next samples that can be useful for training the 

model. If a sample is missing from the already performed microbenchmarks we run a new one.  

 

Notice that by using microbenchmarks our approach is proactive, in the sense that we obtain cost estimators before 

existing or new operators get deployed to full-fledged workflows. The advantage of this is that we avoid cold-start 

issues, i.e., situations where we know very little or nothing about an operator’s performance. The second advantage 

of the Bayesian optimization approach is that we can exploit a learn-by-example paradigm. That is, every time an 

operator is deployed in an actual workflow, we keep collecting statistics for it increasing the cardinality of the set X 

used to construct a more accurate GP posterior (fitting). A third advantage of our cost estimation approach is that it 

is not restricted to individual operators. The learn-by-example paradigm can be used for parts of a workflow or the 

workflow in its entirety. If parts or entire workflows are commonly used in submitted jobs, we are going to have 

accumulated a high number of statistics, because the INFORE architecture collects information for monitored jobs 

via the Manager Component which can be stored in ElasticSearch (Section 4.2). In the latter case, we can treat parts 

of the workflow, even spanning different Big Data platforms and clusters, as black boxes, use the statistics to better 

fit GPs and obtain predictions by querying the developed models. Having done this, a new job will be better 

optimized and deployed, and we are going to obtain new samples that can be useful for further enriching the GP 

posterior, simultaneously improving the overall accuracy of the predictions. 

 

4.3.3 Aggregative Cost Computations 

When we do have stored statistics about parts of a workflow or entire workflows, our algorithms can directly query 

the developed cost estimator to predict the performance of a candidate physical workflow execution plan for that 

part of the workflow. However, when a logical workflow includes a previously unseen combination of operators, 

since our microbenchmarks only ensure cost estimations per operator, we need an intuitive way to aggregate 

individual operator performances at each level of an examined part of a workflow. Therefore, below we define how 

this is performed.  

 

Throughput: The aggregative throughput of a physical workflow is computed as the minimum throughput of the 

participating physical operators.  

 

Latency: The aggregative latency of a physical workflow is computed as the sum of processing (per cluster, Big 

Data platform, parallelization degree), communication (per network link), read/write of its operators.  

 

Memory Usage: The aggregative memory usage of a physical workflow is computed as the sum of memory 

resources used by its operators (per cluster, Big Data platform, parallelization degree). 

 

CPU usage: The aggregative CPU usage of a physical workflow is computed as the sum of CPU resources used by 

its operators (per cluster, Big Data platform, parallelization degree). 

 

Communication Cost: The aggregative communication cost of a physical workflow is computed as the sum of bytes 

sent per time unit among the participating operators (placed at different networked clusters and Big Data platforms) 

per network link. 

 

In the sequel, we refer to operators which contribute input to another operator op as its upstream operators, while 

downstream operators are the ones that receive input from op. There is an important note we need to make here 

since it affects the ability of our proposed algorithms to provide optimal solutions or near optimal ones. When a 

logical workflow includes operators that share the same upstream operator, the computation of additive quantities, 

such as communication cost, is affected. If the downstream operators of the shared one are placed on the same 

cluster and Big Data platform the communication cost should be considered only once. This is a parameter that a 

designed algorithm should take into consideration in order to provide accurate estimations of the monitored metrics.  

4.4 Optimization Problem Formulation 

Given as input (i) a logical workflow (Section 3.2, Section 4.1), (ii) a set of configuration files (Section 3.3) 

describing the network topology with computer clusters, available Big Data platforms and resources, (iii) the 

dictionary enlisting how supported logical operators correspond to physical implementations and (iv) collected 
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statistics (Section 4.2) and cost models (at least) per operator, we want to perform a mapping of the logical operators 

to physical ones such that a multi-objective, constrained optimization problem is optimally solved. The notion of 

optimality is thought of as minimizing a cost quantity composed of multiple objectives under various resource 

constraints.  

 

A formal definition follows shortly, but before presenting it let us provide more details of our problem setup for 

clarity. The mapping provided by solving the optimization problem will include for each logical operator Op (i) the 

networked cluster on which it should be executed, (ii) the Big Data platform available at that cluster that will 

undertake its execution, (iii) the provisioned resources, mainly involving the required parallelization degree. The 

choice of a CPU or GPU unit for executing one or more operators (e.g. via virtualization) is orthogonal to our 

techniques.  

 

 
Figure 12: Abstract example of logical workflow to be executed over the available infrastructure 

 

Furthermore, we want to be able to handle uniformly the cases of optimizing a single logical workflow or a number 

of such designed workflows that are submitted over the available networked infrastructure. To achieve that, given a 

set of logical workflows that reach the optimizer, we add a logical disjunction, OR, operator and connect each 

output operator (i.e., an operator with no downstream operators) of each logical workflow to that virtual OR 

operator. Moreover, note that operators of the workflow which involve data ingestion, such as Kafka topics in the 

financial use case or sensors on wavegliders in the Maritime use case, are included in the logical workflow and are 

considered as unary operators which map the logical operator to a single physical one with only downstream, but no 

upstream, operators.  

 

 
Figure 13: Physical workflow, i.e., having assigned the execution of each operator at an available site along 

with the parallelization degree. 

 

To simplify our notation, we will consider a networked computer cluster (data center) hosting more than one Big 

Data platform as an equivalent number of separate clusters. For instance, a data center which hosts Flink, Spark and 
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Kafka will be considered as three computer clusters and, when needed, we will use the gathered statistics to derive 

that these clusters are physically near from a network (communication cost, network latency) perspective. We will 

term such a computer cluster, Big Data platform combination as “site” in what follows. Additionally, in our 

discussion hereafter, we will use the notation 𝐶𝑆𝑖,𝑗
𝜇

 to denote the set of candidate solutions for placing operator Opi 

at site Sj ∈ S and configuring it with a parallelization degree of μ. 𝐶𝑆𝑖,𝑗
𝜇

 is a set of solutions because each operator 

can be configured under various parallelization degrees, get instantiated in different Big Data platforms and 

available computer clusters. When needed, we will use the notation 𝑐𝑠𝑖,𝑗
𝜇

∈ 𝐶𝑆𝑖,𝑗
𝜇

 to refer to a particular solution from 

the corresponding set. The virtual OR operator is assumed to be fixed at the query source and is given an index of 

i=0. It corresponds to a physical operator with no alternative implementations in Big Data platforms (j=0) and is also 

virtually run with μ=1. However, since its cost depends on the choices made for its upstream operators, it also has a 

set 𝐶𝑆0,0
1  of solutions. This means that the cost computed when we reach the OR operator aggregates the values of 

the costs of all operators that directly or commutatively provide input to it. Recall that what we essentially want is to 

instantiate all operators so that we minimize the aggregative cost when we reach that OR operator. More formally, 

our optimization problem can be expressed as follows: 

 

 
 

Note that our problem definition is generic enough so that more objectives or constraints can be easily incorporated, 

while others may be omitted. Since we make the convention about optimally solving a minimization problem, some 

of the objectives participating in cost estimation may receive negative weight, i.e., λk, or own values, because we 

essentially want to maximize them. For instance, should we only care about maximizing throughput, we may set λ1= 

-1 (and all other weights to zero) because this converts the minimization problem to a maximization one.   

 

The posed constraints are grouped to system-wide and site specific. System-wide objectives may affect, for instance, 

pricing of cloud services and are thus considered separately. Site-specific constraints refer to the hardware 

infrastructure that can be made available per site. Moreover, the site-specific constraint regarding memory usage, 

essentially says that for all operators (i.e., the sum runs over i) that will be placed at some Sj under a chosen 

parallelization degree, cannot exceed the memory capacity of Sj. Similarly, the site-specific bandwidth constraint 

says that the required bandwidth that will be consumed by an upstream operator placed at Sq directing input to 

Minimize 𝑐𝑠0,0
1 .cost = 𝑐𝑠0,0

1 .∑ 𝜆𝑘
5
𝑘=1 ∙ 𝑂𝑘 

 

s.t.  

 

system-wide constraints: 

𝑐𝑠0,0
1 . 𝑂2 ≤ 𝐿𝑎𝑡𝐶𝑜𝑛𝑠𝑡𝑟  

𝑐𝑠0,0
1 . 𝑂3 ≤ 𝐶𝑃𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑠𝑡𝑟  

𝑐𝑠0,0
1 . 𝑂4 ≤ 𝑀𝑒𝑚𝐶𝑜𝑛𝑠𝑡𝑟  

𝑐𝑠0,0
1 . 𝑂5 ≤ 𝐶𝑜𝑚𝑚𝐶𝑜𝑠𝑡𝐶𝑜𝑛𝑠𝑡𝑟  

∀|𝜆𝑘| ≤ 1, ∑ |𝜆𝑘|

5

𝑘=1

= 1 

     

site specific constraints: 

∀𝑆𝑗 ∈ 𝑆, ∑ 𝑐𝑠𝑖,𝑗
𝜇

𝑖 . 𝑂4 ≤ 𝑀𝑒𝑚𝐶𝑜𝑛𝑠𝑡𝑟𝑗   

∑ 𝑐𝑠𝑖,𝑗
𝜇

𝑖 . 𝑂3 ≤ 𝐶𝑃𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑗   

∀(𝑆𝑞 → 𝑆𝑗), ∑ 𝑐𝑠𝑖,𝑗
𝜇

𝑖 . 𝑂5 ≤ 𝐵𝑎𝑛𝑑𝐶𝑜𝑛𝑠𝑡𝑟𝑆𝑞→𝑆𝑗
  

 

where 𝑐𝑠0,0
1  ∈ 𝐶𝑆0,0

1   

and 

O1: Throughput (tuples being processed per time unit – second) 

O2: Overall Latency (processing + communication + read/write latency – seconds)  

O3: CPU usage (expected CPU units used/available CPU units per time unit –second) 

O4: Memory Usage (expected memory used/total available memory) 

O5: Communication cost (transmitted bytes per time unit – seconds) 
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others (the sum runs over i) placed in Sj should not exceed the bandwidth capacity of the path Sq →Sj. Finally, there 

is a site-specific constraint that refers to CPU utilization. Note that since we want to serve all submitted workflows 

connected via the virtual OR operator, we do not directly relate the parallelization degree (μ) with CPU usage, since 

that would restrict the available options, such as exploiting pseudo-parallelism and hyperthreading or virtualization. 

Therefore, in the fourth constraint we refer to the expected CPU units used over the available CPU units per time 

unit at Sj. For instance, 𝐶𝑃𝑈𝑠𝑎𝑔𝑒𝐶𝑜𝑛𝑠𝑡𝑟𝑗  maybe set to 60% so as to allow future, not currently drawn, workflows to 

have the possibility to be executed at Sj, or currently running workflows may have occupied only 40% of CPU usage 

available.  

 

Our optimization objectives are conflicting. Thus, we cannot optimize all of them simultaneously, i.e., we cannot 

improve one objective without deteriorating at least one of the rest. For instance, increasing throughput or reducing 

communication cost may require placing all operators in a single site. However, this is also expected to increase 

CPU and memory usage. Therefore, we aim at providing Pareto optimal solutions. Pareto optimal solutions are 

solutions to the optimization problem so that no solution dominates another in all objectives. The set of solutions 

that satisfy this criterion forms a Pareto front as illustrated in Figure 14 for two dimensions (to ease the illustration). 

According to our problem definition, we have a multi-objective and thus multidimensional Pareto front. When we 

have to pick one solution out of the set of solutions that forms the Pareto front, we pick the one that minimizes the 

cost function as described above.  

 

 
Figure 14: Pareto Front formation in two dimensions 

 

The above setup and the algorithms we discuss (excluding our novel AStar-alike algorithm) generalize our research 

[FGD+20] published in the scope of INFORE. 

4.5 Integration into an Exhaustive Search Algorithm 

The Exhaustive Search Algorithm, as its name suggests, exhaustively enumerates the set of possible solutions 

(physical workflows) and computes the yielded performance with respect to the optimization objectives for each. To 

better explain the operation of the algorithm, let us proceed with an example. For exhibition purposes, we assume 

only 2 objectives and a fixed value μ for the parallelization degree at each site. Furthermore, we assume we are 

given a logical workflow as the one in Figure 15 to be executed over 3 sites. The Exhaustive Search Algorithm will 

first perform a topological sort of the logical workflow and then enumerate the set of possible physical worklows, 

i.e., solutions. In the example of Figure 15 we have 5 operators to be executed over 3 sites. 

 

In Figure 16 we see, in blue dots, the performance estimations we derive with respect to the pair of optimization 

objectives upon placing Op1 at each of the three available sites. Similarly, in Figure 17 for Op2. Figure 18 shows that 

having computed the performance per optimization objective for the upstream operators of Op3, the Exhaustive 

Search Algorithm will enumerate all possible physical plan executions for Op3 in combination with Op1 and Op2 and 

compute their overall (up to this point of the topologically sorted graph) performance with respect to the 

optimization objectives. So, for instance, in Figure 18 at the frame termed “Site 1 plans” we have set Op3 to be 

executed at S1 and we examine the overall performance with respect to the optimization objectives for alternative 

placements of its upstream operators at the lower level of the topologically sorted, logical workflow. 

Commutatively, the alternative solutions that the downstream operator of Op3, which is Op5 in Figure 15, will have 

to consider, after including itself in the search space, are the blue dots for each site in Figure 18.   
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Figure 15: Exemplary logical workflow drawn in RM Studio (left) and abstractly as a graph (right), used in 

our running example. 

 

 
Figure 16: Performance for Op1 with respect to the 

two objectives of our running example, upon placing 

it at various sites. Performance values correspond to 

the blue dots. 

 
Figure 17: Performance for Op2 with respect to the 

two objectives of our running example, upon placing 

it at various sites. Performance values correspond to 

the blue dots. 

 

 
Figure 18: Performance for Op3 with respect to the two objectives of our running example, upon combining 

alternatives for placing it at various sites along with alternative such placements of its upstream operators 

Op1, Op2. Performance values correspond to the blue dots. Each blue dot is examined in separate iterations of 

the algorithm. 

 

Remarkably, each of these solutions (blue dots) for Op3 will be examined at separate iterations of the algorithm, i.e., 

each iteration examines just one blue dot. That is, the Exhaustive Search Algorithm has an outer loop iterating over 

the set of all possible sites and parallelization degrees to produce a physical workflow’s execution plans. It fixes a 

placement picked from that set for the whole workflow and then computes the yielded values of the optimization 

objectives. Finally, when the algorithm reaches the logical OR operator, it computes a single solution with the 

minimum cost as stated in Section 4.4. Note that this solution can only lie in the Pareto front computed for OR. 
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Other solutions that do not lie in this Pareto front will be dominated by those in the front and their cost values will 

be worse. 

 

The pseudo-code in Algorithm 1 formally presents the operation of our Exhaustive Search Algorithm. The algorithm 

starts by creating a topologically sorted list of all operators (connected via the top-level, virtual OR operator) of the 

logical workflow (Line 2) and then proceeds by iterating through all possible operator placement and parallelization 

degree combinations (Line 3). Based on the already fixed snapshot, where operator placement and degree has been 

decided, a new, overall plan is initiated (Line 4). Then, the algorithm iterates for each operator (Line 5) and the 

actual performance of each operator can be found by iterating over the topologically sorted list of operators, 

additionally taking into account all sharing dependencies (Lines 6-10). Topological sorting is used so as to ensure 

that each operator is examined after its upstream operators. Upon the iteration reaches the top level OR operator, the 

computed solution satisfies all input constraints and the cost of the currently computed plan is lower than the 

previously optimal one, stored in 𝐶𝑆0,0
1  (Line 9), the algorithm keeps the current plan as the new optimal (Line 10) 

and accordingly resets the rest of 𝐶𝑆𝑖,𝑗
𝜇

 with the current placement and parallelization degree for each operator (Line 

12). Notice that for each operator we just keep in memory one candidate solution, which is the one that gives the 

minimum cost at the top-level OR. Therefore, 𝑐𝑠𝑖,𝑗
𝜇

 ≡ 𝐶𝑆𝑖,𝑗
𝜇

 (Line 1). 

 

 
Algorithm 1: The Exhaustive Search Algorithm 

 

In general, for |Op| operators and |S| sites we would have O(|Op||S|) alternatives and for different parallelization 

degrees, not above Π, the complexity of the search space would increase to O((|Op|∙Π)|S|). We further have an |Op| 

cost for computing the performance of each operator, which yields a total of O(|Op|∙(|Op|∙Π)|S|) running time for the 

Exhaustive Search Algorithm. 
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5 Advanced Optimization Algorithms 

5.1 The A*-alike Algorithm 

The Exhaustive Search Algorithm we presented in Section 4.5 is a baseline algorithm that provides optimal 

solutions to our optimization problem by enumerating all possible computer cluster, Big Data platform, i.e., site, and 

parallelization degree combinations. It does not make a distinction between these configurations at runtime. In other 

words, it cannot diagnose that one combination (candidate solution) is more promising to yield an overall Pareto 

optimal execution plan than another. This is because it fixes all possible instances of a candidate physical workflow 

and only then computes its performance. We now propose an advanced algorithm that can drastically reduce the 

number of examined physical execution plans in finding a proper solution to our optimization problem. This novel 

algorithm is a non-trivial variant of the A* algorithm [HNR68].  

 

As is, the A* algorithm is not suitable for our needs. This is because it can only compute shortest (of minimum cost) 

paths for the input graph (logical workflow). This is not acceptable in our design since it implies that the computed 

execution plan would leave some operators out and thus it would not instruct physical operator implementations for 

all logical operators of the input workflow. Therefore, we must significantly redesign the original algorithm. We are 

going to explain the functionality of our new algorithm in terms of our workflow optimization setup.  

 

For the new algorithm, besides the virtual OR operator, we add another virtual START operator which draws an 

edge towards source operators of the logical workflow, i.e., operators with no upstream operators. Our A*-alike 

algorithm does not examine pre-fixed plans with respect to the placement of operators. It begins with the newly 

added START operator and dynamically explores the search space of available options based on which partial (up to 

the level of the workflow explored so far) solution – placement is more promising to yield an overall physical 

workflow of the lowest cost. What we keep from the original A* algorithm is the basic principle that makes it 

practically efficient. This is the fact that instead of computing, at each operator and level it examines in the logical 

workflow, only the Real Cost of reaching that operator from a source (without upstream) operator, it also takes into 

account two additional costs. The first one is a Heuristic Cost, which is the (underestimated as explained shortly) 

cost from the currently examined candidate physical operator to the destination one. The destination operator is the 

virtual OR we add, as in the Exhaustive Search’s case. In our setting this heuristic cost is an estimation of the 

weighted combination (Section 4.4) of the optimization objectives from the examined operator, each time, to the 

virtual OR. The second cost we account for, is an Estimated Cost, which is the addition of the Real Cost and the 

Heuristic Cost. So, in all, we have three cost functions for real, heuristic and estimated costs that our algorithm 

should compute each time it examines a new physical operator assignment to a site along with its parallelization 

degree. All cost values can be computed using our cost estimator (Section 4.3).  

 

Figure 19 schematically depicts the operation of our A*-alike algorithm when it reaches an operator Op3, having 

started from the START operator. Roughly speaking (the exact algorithm will be presented shortly), Op3 computes 

the Real Cost for each site configuration. This real cost is the cost of each physical plan for the part of the workflow 

from START up to Op3 and is shown with the black-framed plots for site 1 and site 3 in the figure. Besides the real 

cost, Op3 will consult the Estimated Cost, i.e., the additional cost to reach the OR operator from Op3 is added to the 

real cost for all possible solutions in the black-framed plot. The red-framed plot in the figure shows the Estimated 

Cost for each such solution. This expresses how promising an overall (from START to OR) physical plan is 

predicted to be, when we make alternative choices for Op3 and its upstream operators. Op3 will then insert the 

candidate solutions of black-framed plot in a priority queue, based on increasing estimated cost. When the algorithm 

examines the downstream operators of Op3 it will prioritize and examine those promising solutions first. When a 

solution reaches the OR operator, as we move upwards the logical workflow, it is added in the 𝐶𝑆0,0
1 . And when a 

solution with higher estimated cost than the minimum cost of a solution in 𝐶𝑆0,0
1  is dequeued from the priority 

queue, the algorithm completes. Then, all solutions that remain in the priority queue are pruned from the search 

space of the algorithm. Thus, the alternative physical plans examined by the algorithm, though equivalent to the 

exhaustive search in the worst case, are practically by far fewer.  

 

As holds for the original A* algorithm, to guarantee the optimality of the overall prescribed solution (physical 

workflow), the Heuristic Cost must be consistent and admissible. Admissible means that the Heuristic Cost should 

never overestimate the real cost. In a naive execution of the algorithm, we should be able to set all heuristic costs to 

zero and that would simulate the execution of the Exhaustive Search Algorithm. Consistency refers to monotonicity. 
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Consider two operators u,v which are connected with an edge from u to v. A heuristic is consistent if Heuristic Cost 

(u) ≤  Heuristic Cost (v) + Real Cost (u,v).  

 

 
Figure 19: Rationale of our A*-alike Algorithm. Among all solutions available in the black-framed sets of 

Op3, which shows the RealCost of partial plans (beginning from START and reaching Op3) that have been 

considered so far, our algorithm will first examine those for which we estimate that will be overall more 

efficient i.e., the cost of the overall physical plan formed when the currently built plan reaches the OR 

operator will be lower. The decision is made based on EstimatedCost (red-framed set of solutions in the 

figure). The solutions that are most promising will have a lower EstimatedCost and will be placed first in a 

respective priority queue. 

 

Algorithm 2 presents the pseudocode for our A*-alike Algorithm. The main body of the algorithm lies in Lines 1-22, 

while Lines 23-35 and Line 36-40 sketch important methods utilized by the main algorithm. Let us first discuss what 

these methods do. The computeHeuristicCosts method receives as input a topologically sorted graph. That will be a 

topologically sorted version of the logical workflow in the main algorithm. It accesses the sorted logical workflow 

graph is reverse topological order and, thus, examines each operator op one by one starting from the OR operator 

(Lines 24-35). For each examined logical operator op, it initiates its Heuristic Cost to zero (Line 25) and then 

iterates through all its downstream operators (Lines 26-33). For each such downstream operator opPrev, it examines 

a particular site for which a physical operator (implementation) for opPrev exists and sets a possible parallelization 

degree (Lines 28-33). It predicts the cost of opPrev for the particular physical operator using our cost estimator and 

keeps the minimum cost for the physical instantiations of opPrev examined so far (Line 31). Having examined all 

available site, parallelization degree pairs for opPrev, the algorithm proceeds with adding the HeuristicCost of 

opPrev to the computed minimum (Line 32). The HeuristicCost for op is computed as the maximum 

minCost+HeuristicCost of its downstream operators (Line 33). In case, we have reached the START operator we set 

its HeuristicCost to zero (Lines 34-35). 

 

Let us now examine the functionality of the selectOpToAdd method in Lines 36-40. The method is used to select the 

operator that will be added to a partial plan that is being built by the main algorithm. It receives as input that partial 

plan (which is a graph of physical operators, instantiating logical ones for part of the logical workflow) and the 

logical workflow itself. It performs a graph subtraction operator which leaves in the produced graph, called 

remaining (Line 38), those logical operators without physical mapping in the plan. Among those, the algorithm 

selects the ones that have no upstream operator in the remaining graph. Practically, this says that we examine only 

operators in remaining that have all their upstream operators in the plan. Among the latter, refined set of candidate 

operators, the method returns the most seemingly efficient one, i.e., the one whose estimated cost upon added to the 

plan’s real cost is minimum (Line 40). Note that the set subtraction operation is used to ease the presentation. 

Operators that do not have all their upstream operators in the plan can be computed directly from the topologically 

sorted logical workflow produced by the main algorithm. We are now ready to proceed with the description of the 

operation of the main, A*-alike Algorithm. 
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The A*-alike Algorithm begins with initiating all 𝐶𝑆𝑖,𝑗
𝜇

 and the Estimated Cost-based priority queue (Line 1). It 

performs a topological sort of the logical workflow in Line 2 and computes the HeuristicCost of each operator of the 

logical workflow calling the respective method we already described. Notice that the HeuristicCost is the same 

irrespectively of the physical instantiation (physical operator) corresponding to the logical operator. In Line 4, the 

algorithm initializes a plan that includes START, it is placed at the query source (of zero index as is the case with 

OR) and admits a parallelization degree of 1. Then, the algorithm starts exploring the priority queue in Lines 5-22. 

Until the queue is not empty and the next plan in the queue does not have an Estimated Cost greater than the 

minimum Real Cost of a, if any, complete plan (reaching the OR operator, therefore the 𝐶𝑆0,0
1  – Line 5) the plan 

with the minimum Estimated Cost is dequeued (Line 6). In Line 7 the algorithm calls the selectOpToAdd method to 

select the next, preferable operator op that should be used to expand the plan with a physical implementation of an 

operator that lies at the next level of the topologically sorted logical workflow. For each possible configuration for 

op (loops in Lines 8-22) a new plan p’ that includes such a physical operator is created (Lines 10-11). In other 

words, the algorithm creates as many new solutions as the number of combinations of available implementations of 

the dequeued operator and admissible parallelization degrees. In Lines 12-13 we compute the EndingOperators for 

p’. We term EndingOperators, the operators that are included in p’, but some of their downstream operators are 

missing from p’. For each operator in the EndingOperatorSet of p’ (Lines 14-16), we compute its Real Cost (to 

reach the EndingOperator from START) and its Estimated Cost (to get to the OR operator). The Estimated Cost for 

the partial plan p’ we build, is the maximum of the EstimatedCost of its EndingOperators (Line 17). If op is the OR 

operator and the optimization constraints are satisfied, the whole plan is included in the set of candidate physical 

plans and all sets of the rest of the operators 𝐶𝑆𝑖,𝑗
𝜇

 are updated accordingly (Lines 19-20). Otherwise, p’ receives a 

place in the priority queue (Line 22). Note that 𝐶𝑆0,0
1  includes only one solution at each time, the one that minimizes 

the cost of our optimization problem. Moreover, note that for simplicity we did not refer in our description to 

computing the optimization objectives separately, as we did in the Exhaustive Search Algorithm. These are given by 

our cost estimator and then we procced with computed the weighed cost each time we need it.  

 

As already commented for Line 5, the algorithm will stop when it peeks the plan at the head of the queue and sees 

that its EstimatedCost is greater than the cost of the current optimal solution in 𝑐𝑠0,0
1 ∈  𝐶𝑆0,0

1 . The plans that remain 

in the queue after that, are pruned altogether from the examined search space of possible physical execution plans.  
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Algorithm 2: The A*-alike Algorithm 
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5.2 Designed Algorithms 

In this section we outline the operation of algorithms we have designed and will be incorporated in the optimization 

process. So far, we have incorporated the Exhaustive Search Algorithm which does not scale well when the 

examined site, parallelization degree combinations increase and the A*-alike Algorithm which examines fewer plans 

due to the utilized heuristic. Here, we present Dynamic Programming-alike, Heuristic and Greedy algorithms. The 

Dynamic Programming Algorithm improves the worst-case performance of the Exhaustive Search, but still may not 

be satisfying from a scalability perspective. Therefore, in the Heuristic Algorithm we attempt to reduce the number 

of examined sites for placing an operator and in the Greedy Algorithm we design, besides employing a heuristic, we 

also keep one Pareto optimal solution for each operator (the one with the minimum cost) before evaluating its 

downstream operators. As we move from Exhaustive Search to the Dynamic programming and to the Heuristic and 

Greedy algorithms, what we achieve is to design algorithms with progressively improved computational complexity. 

On the other hand, these algorithms do not necessarily provide optimal solutions to our optimization problem but 

attempt to approximate the optimal one in a best effort fashion.  

5.2.1 Dynamic Programming-alike Algorithm 

In a nutshell, the difference between the Exhaustive Search and the Dynamic Programming Algorithm we introduce 

in the current section lies in the number of possible solutions an operator examines from its upstream operators. 

More precisely, recall from Section 4.5 and Figure 16, Figure 17, Figure 18 that Op3 will receive and consider all the 

blue dotted performances for solutions with respect to the two objectives in our running example. In addition, Op3 

will convey to the downstream operator Op5 (see Figure 15) all the blue dotted performances for possible solutions, 

shown at the top of Figure 18, in separate iterations of the Exhaustive Search Algorithm. The difference of the 

Dynamic Programming-alike Algorithm we introduce, is that Op5 will only examine solutions that lie at the Pareto 

front of Op3 in Figure 18 and will visit Op3 only once while traversing the topologically sorted logical workflow. 

This is illustrated in Figure 20 where only the solutions that correspond to blue-doted performances for each site will 

be examined at Op5’s level, while red-doted ones will not. 

 

 

 
Figure 20: Contrary to the Exhaustive Search Algorithm in Figure 18, in the Dynamic Programming 

Algorithm, the downstream operator Op5 (see Figure 15) of Op3 will not examine alternatives for Op3 that 

exhibit performances corresponding to the red dots in this figure. Only the blue ones, lying at the Pareto front 

of Op3, for each site will be examined at Op5’s level. 

 

Algorithm 3 presents our Dynamic Programming-alike Algorithm. The algorithm first sorts the operators in the 

logical workflow using a topological sort. The sortedList in Line 3 includes the result of the topological sorting. 

Then, it computes the Pareto optimal plans, calling the BuildPlans procedure, for each operator op (Line 5) using 

this sort order, which ensures that an operator is processed after all its input operators. The BuildPlans procedure 

(Lines 6-15) takes as input an operator op to process, along with its index opIndex in the sortedList, and considers 

all potential (and valid with respect to available operator implementations) placements (Line 7) and all possible 

parallelization degree configurations (Line 8) for this operator. For each such combination of operator location S j 

and parallelization degree μ, the procedure then iterates through all possible combinations of solutions computed at 

the input (upstream) operators of op (Lines 10-11) and computes their performance for each optimization objective 
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(Line 12). Each computed candidate solution p is checked to see if it satisfies the input constraints (Section 4.4) and 

for Pareto optimality (Line 13) within the corresponding 𝐶𝑆𝑖,𝑗
𝜇

 set. If so, p is inserted into the set (Line 15), removing 

candidate solutions that were dominated by p (Line 14). 

 

Let I denote the maximum number of upstream operators an operator in the logical workflow may have and let T 

denote the maximum number of Pareto optimal plans that is kept per placement and operator. Our Dynamic 

Programming-alike Algorithm makes O(|S|∙Π) iterations per operator op. Each iteration considers all combinations 

with candidate solutions at input operators of op, which are O((|S|∙T)I). This yields a total of O(|Op|∙Π∙|S|ITI) 

combinations for all operators, placements and parallelization degrees. The space complexity in this case will be 

O(|Op|∙|S|∙T). 

 

Contrary to the approach employed in Exhaustive Search Algorithm, the Dynamic Programming we introduce here 

does not examine all possible combinations of operator placements and parallelization degrees, but, for each 

operator, it considers only the physical instantiations of its upstream operators that exhibit Pareto optimal 

performance. Due to this behavior, this algorithm retains the property of optimality when either (i) there is no 

upstream operator sharing (see end of Section 4.3) or (ii) the considered objectives with non-zero weights in the 

optimization problem setup of Section 4.4 have an aggregative performance computation formula that is not 

duplicate sensitive. This holds for O1:Throughput which is computed based on a minimum value.   

 

 
Algorithm 3: The Dynamic Programming-alike Algorithm 

 

Let us see the reason why the Dynamic Programming-alike Algorithm loses its optimality in any other case. 

Consider a shared operator as the one termed BL in Figure 1. It propagates its Pareto optimal solutions to both its 

downstream operators, but these operators will run their own BuildPlans procedure without knowing anything about 

sharing. Thus, each will compute the communication cost, latency of BL separately and, when the OR operator is 

reached, the respective cost will have been included in each objective’s performance calculations, i.e., twice. For the 

communication cost, for instance, this is invalid. On the contrary if we compute a performance objective such as the 

minimum throughput of an operator in the workflow (which we seek to maximize), this performance calculation 

duplication does not affect the overall performance computed at the top-level OR. 
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5.2.2 Heuristic Algorithms 

The basic principle behind the algorithms we introduce in this section is that we use intuitive heuristics so as to (i) 

prune the number of sites (recall that this corresponds to <computer cluster, Big Data platform> pairs for which 

implementations for a given operator exist) the algorithm examines for placing the physical execution of operators 

and (ii) limit the number of configurations with respect to the parallelization degree of each operator.  

 

In order to limit the number of examined sites our algorithms compute two sets. The first set is called Candidate 

Centers (CCs) and involves sites for which, if we determine to place – assign the physical execution of an operator 

there, optimize at least one of the individual objectives of our problem setup (Section 4.4). The CCs are intuitively 

considered as good starting points from which a heuristic that prunes examined sites should begin with. The idea is 

that the more we leave the neighborhood of candidate centers the worse some of the optimization objectives are 

expected to become and thus respective solutions are pushed away from the Pareto front. So, it is considered “safe” 

not to examine sites away from such neighborhoods. We also have a set of Candidate Locations (CLs) which will 

include sites that are not CCs but are included in the search space because they lie in the neighborhood of CCs and 

can also yield Pareto optimal solutions upon being examined. For operators with no upstream operators, which are 

source operators (e.g. Kafka Topics), the CCs and CLs coincide. 

 

For each operator op that receives input only from sources, we set as its CCs the union of the CLs of the input 

streams of op. We then create a queue of candidate locations (candidateQueue) that initially contains these CCs. For 

each candidate location in candidateQueue, the algorithm will compute the performance of candidate solutions for 

op, starting with a default parallelization degree μ0 that is possible for that operator (i.e., we leave the parallelization 

degree to be set by the intrinsic optimizer of the Big Data platform), for each solution. Each candidate solution that 

is Pareto optimal is examined further, expanding our search in two ways. First, the parallelization degree of the 

Pareto optimal candidate solution is expanded to look for solutions that potentially give new Pareto optimal 

solutions that satisfy the input constraints. Second, since it seems as an intuitive idea that op should be executed 

somewhere “in-between” its CCs, we consider a site to be in the vicinity of the CCs, if the optimization objective(s) 

that are optimized at the individual CCs do not get worse compared to a situation where we place the examined 

operator at either one of the CCs. We say, then, that such sites lie in the “vicinity” of the candidates. Given this, we 

expand the area of search with the potential insertion of such neighboring sites of the candidate location to the 

candidateQueue. The process ends when examining various, beyond the default, parallelization degrees cannot 

provide any more Pareto optimal solutions (that satisfy the input constraints) for op and when all candidate locations 

in the candidateQueue list have been processed. At that point, the locations corresponding to the remaining Pareto 

optimal solutions constitute the Candidate Locations for op. The algorithm for operators that have as inputs 

operators that are not stream sources is the same, since we just mentioned how we compute the CL list of an 

intermediate operator in the logical workflows. Formal descriptions for our Heuristic and Greedy algorithms are 

presented later on in Algorithm 4. For improved readability, Algorithm 4 does not include the details of determining 

CLs, but we just described their formation. 

 
Figure 21: Example of candidate location set formation upon examining the (network) latency as an 

optimization objective. Network latency values are tagged on the depicted communication links. 
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Figure 21 presents an example on how candidate locations are determined having set the location of Op1, Op2 which 

in the example are considered as source operators. S4 executes Op1 while S9 executes Op2, which are the respective 

CCs. On the right of the figure the overall logical workflow is depicted. For ease of exposition, assume that we 

examine one objective, that of (network) latency. The question is where to evaluate operator Op3 that receives input 

from the sources. Popping Op1’s CCs from the candidateQueue we will examine its two neighbors. Among them, 

only S7 has a latency value that does not exceed the latency between S4 and S5. Therefore, S7 will be included in the 

candidateQueue. Then, we pop S9 for which again, only S7 does not surpass the latency constraint. Then S7 is 

popped out of the queue which will in turn admit S5 in the candidates. When S5 is popped, no other site can be 

included in the candidate locations’ set due to violating the latency constraint.  

 

Let us return to our running example and initially see how our Heuristic algorithms would work in this simplified 

case. We have two heuristic variations that we propose. The first one, termed Heuristic, prunes examined sites 

according to the aforementioned rationale and only uses the default μ0 parallelization degree. The second one, 

termed Heuristic+, prunes sites in the same way as Heuristic, but also examines alternative parallelization degrees 

that reach the Pareto front. The difference between the two approaches is illustrated in Figure 22 and Figure 23, 

correspondingly. 

 
Figure 22: The Heuristic variant prunes examined 

sites and uses a default parallelization degree. It can 

lose pareto optimal solutions (marked with  ) from 

the solution set of the sites it examines as well. Op3 

will provide to the downstream operator Op5 (see 

Figure 15) only the blue – dotted solutions of its (even 

locally partial) Pareto front.  

 

 
Figure 23: The Heuristic+ variant just prunes the 

examined sites. Op3 will provide to the upstream 

operator Op5 (see Figure 15) only the blue dotted 

solutions of its (locally complete) Pareto front. 

 

5.2.3 Greedy Algorithms 

Besides the Heuristic variant we also introduce two Greedy variants. The first variant, termed Greedy+, does what 

Heuristic+ does, but keeps only one Pareto front per operator. In other words Greedy+ will merge the two plots of 

Figure 23 and communicate the newly formed Pareto front to the downstream operator of Op3. The second variant, 

termed Greedy, will do what the Heuristic variant does, but keep only one solution from the Pareto front to convey 

to the downstream operator of Op3. That solution will be the one that minimizes (locally, up to the part of the 

workflow that reaches Op3) what we refer to Section 4.4 as cost. 

 

Recall that as we move from Heuristic+ to Heuristic, Greedy+ and Greedy the algorithms are expected to run much 

faster even for high numbers of networked computer clusters and hosted Big Data platforms. However, it is 

important to note that since we prune the search space heuristically and greedily, respectively, the fewer solutions 

are conveyed to downstream operators of the topologically sorted logical workflow, the more likely becomes to 

reach a situation where the input constraints are not satisfied by any computed solution in the partial Pareto fronts. 

In such a case, we rerun the optimizer using the next algorithm that is likely to provide more solutions. For instance, 

if Greedy reaches a situation where no execution plan can provide a solution that satisfies the given constraints, we 

then try with Greedy+. If the optimizer still cannot find a proper solution we proceed with Heuristic and Heuristic+, 

is necessary. 
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Figure 24: Greedy conveys to downstream operators 

only the solution with the locally minimum cost 

among the solutions examined by Heuristic.  

 
Figure 25: Greedy+ conveys to downstream 

operators the Pareto front formed from all possible 

placements at the available sites, i.e., it merges the 

Pareto fronts of all sites examined by Heuristic+ and 

provides a new Pareto front of blue-dotted solutions. 

 

 

Algorithm 4 presents the pseudocode of the discussed Greedy and Heuristic variations. The algorithm is easily 

configured to one of the proposed variants using a pair of Boolean variables, isHeuristic, isPlus, to determine the set 

of solutions that each operator will convey to its downstream operators and the number of examined parallelization 

degrees. It begins with a topological sort of the logical workflow (Line 3). Then, for each operator in the 

topologically sorted graph, we build alternative plans (Line 5), after having computed its Candidate Centers (CCs) 

(in Line 5 as well). In the BuildPlans procedure (Lines 6-32) for each CC (initially) and CL (in subsequent 

iterations) in the candidateQueue (Lines 7-24) we pick a site for placement of op and we also keep the examined 

sites in a list (Line 9) so that the Greedy variant can later merge the Pareto optimal solutions computed for each site. 

Lines 10-11 determine the number of times the loop in Lines 12-20 will be executed by either setting the allowed 

parallelization degree to a default one or not. If the allowed parallelization degree is set to μ0, the loop in Lines 12-

20 will be executed only once. Inside that loop, we create a new plan (Line 13) and consider the set of Pareto 

optimal solutions that are input to this plan by op’s upstream operators. The latter set is determined in Lines 25-32 

which will be explained shortly. Having acquired the set of input Pareto optimal solutions from op’s upstream 

operators, Lines 15-20 compute the performance of the newly formed plan per objective. If the plan provides a 

Pareto optimal solution that satisfies input constraints, it is added to the 𝐶𝑆𝑖,𝑗
𝜇

 set of op. Then, 𝐶𝑆𝑖,𝑗
𝜇

 is updated so that 

candidate solutions that are not Pareto optimal anymore are deleted. We use a Boolean variable pWasAdded to 

distinguish the fact that a new plan for the examined site was added (Lines 17-20). We need pWasAdded since if the 

examined site helped at least once in the loop to produce Pareto optimal solutions, we should expand our search 

around it for Candidate Locations (Lines 21-24). Note that the same site may be examined multiple times for 

candidate locations (Lines 21-24 may be executed for different parallelization degrees) since changing the 

parallelization degree may render the plan/site optimal (or not) for different optimization objectives. If the 

isHeuristic variant is not false (i.e., we run a Greedy variant), we need to merge the 𝐶𝑆𝑖,𝑗
𝜇

 of the examined sites to 

one Pareto front (Lines 25-32) and if we also run Greedy (instead of Greedy+), we need to keep only the solution 

with the minimum cost (see Section 4.4) for op (Lines 31-32). The algorithm terminates when the CreatePlans 

procedure finishes examining candidate solutions for the OR operator (of zero index).  
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Algorithm 4: Heuristic and Greedy Algorithmic Variations. Depending on the value of isHeuristic and isPlus, 

input Boolean variables, the search space of solutions that is examined is determined. 
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6 Extensions  

6.1 Synopsis-based Optimization 

The Synopses Data Engine (SDE) Component of the INFORE architecture can be exploited in a number of ways for 

optimization purposes. In this section we discuss the detailed of synopsis-based optimizations that are admissible by 

our algorithms.  

6.1.1 …for enhanced horizontal scalability 

First, the SDE includes a number of operators as detailed in Section 2.4. For instance, a CountMin sketch provides 

approximate counts and frequency values for monitored quantities or the Discrete Fourier Transform operator 

receives a stream and reduces its dimensionality preserving the values of stream similarity metrics, such as 

correlation coefficient, in the reduced output streams. Different synopses possess different characteristics, but the 

bottom-line is that synopses attempt to reduce the amount of utilized memory and/or speed up the processing. The 

latter is because parallel versions of data summarization techniques hosted in the SDE, besides scaling out the 

computation to a number of processing units, as operators in Big Data platforms typically do, reduce the volume of 

processed high-speed data streams. Hence, the complexity of the problem at hand is harnessed and execution-

demanding tasks are severely sped up. For instance, sketch summaries can aid in tracking the pairwise correlation of 

streams in space/time that is sublinear in the size of the original streams. The trade-off for reduced resource 

consumption is that the accuracy of the output stream is controllably compromised, with predefined accuracy 

bounds.  

 

Hence, one way to exploit the SDE Component for optimization purposes is to treat it as an additional site hosting 

implementation of operators. These implementations are equivalent in the form of the output they provide but 

constitute approximate versions of other, exact operators. For instance, a CountMin sketch applied to count the 

number of trades per stock in a stream of thousands of stocks of the Financial Use Case in INFORE, can use only a 

fraction of the memory an equivalent exact count operator would use. This is an optimization related to objective O4 

in our problem setup (Section 4.4) and can be directly supported by our algorithms. In fact it is as simple as 

modifying the optimizer’s dictionary (see Section 3.3) to add an additional implementation for a count operator 

provided the SDE Component (approximate count), besides the supported Big Data platforms (exact count). 

 

Nevertheless, there exist two issues that arise in practice. The operators that are matched in the dictionary, this time, 

are not precisely equivalent since the one stemming from the SDE provides output streams which are inaccurate to 

some extent, as described by the theoretical background of each synopsis [KoGD20]. This introduces an additional 

objective, that of O6: Accuracy, in our optimization problem that should be appropriately weighted to compute the 

overall cost of a physical workflow. The whole cost of a physical workflow/ execution plan is affected, because 

some objectives such as O1,O4 are improved upon using synopses while O6 is deteriorated. While it is easy to plug-

in this new objective in the optimization setup of Section 4.4 and also mute it by assigning a weight of zero if we do 

not allow approximate output for the design workflow, it is much more complex to impose constraints on the new 

objective.  

 

Because SDE operators are part of a workflow, having one of them providing, even quality-aware, approximate 

output may affect the output of the entire workflow in various ways depending on the structure of the logical 

workflow. For instance, between approximate operators there might exist stream transformations operators that alter, 

e.g. filter, the approximated stream. Consider the scenario in Figure 26 which performs a join operation which is a 

commonly used operator in analytic workflows. In the left scenario of the figure, we apply a filter operator after the 

join. Assume that the filter operator is applied on one of the fields of the upper Kafka sourced stream. Then, the 

workflow will be equivalent in terms of the output to the one on the right of the figure, where the filter is applied on 

the stream where the field belongs to. These two logical workflows are equivalent in terms of their output streams. 

This will be true for any physical execution plan which maps the logical operators to their physical implementations 

in various computer clusters, Big Data platforms and parallelization degrees. The profound reason for this is that 

they engage relational algebra operators and we are aware of their equivalent rewritings. 

 

Now consider the physical operators the optimizer may prescribe upon including synopses operators in its search 

space. In Figure 27, the uniform sample is applied on a different (unfiltered) stream of different cardinality 
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compared to the physical plan on the right of the figure. Although there exist works in the literature that describe the 

notion of equivalence of workflows engaging synopses in terms of relational algebra operators [NDJ13], none of 

them generalizes the discussion to non-relational algebra operators important for INFORE (such as machine learning 

operators) and for any given synopsis, beyond samples. Thus, such issues involve a broad range of open research 

topics, for different operator classes and synopses. 

 

 
 

Figure 26: Equivalent Logical workflows drawn on the Graphical Editor Component of INFORE’s 

architecture. They both apply a filter logical operator based on a field belonging to the stream of the upper 

Kafka source after the join operation (left) or before (right), respectively. 

 

 

 

 
Figure 27: Alternative physical plans for the respective logical workflows. The resulted physical workflows 

that engage approximations are not directly comparable as far as their structure and accuracy is concerned.  

 

On the other hand, since we can indeed accommodate accuracy in our optimization objectives and synopses in the 

prescribed physical plans, employing the SDE would be important to boost interactivity in the execution of 

workflows at extreme scale. The plausible convention that we make is that we leave examining the notion of 

equivalence as future work and treat a topologically sorted logical workflow as an entity that cannot be further 

rewritten or reordered.  

 

But then, we run into another, important issue we need to deal with. It is not easy to figure out how to compute 

aggregative accuracy values for an entire workflow or parts of it, during the operation of our algorithms, similarly to 

the way we did in Section 4.3.3. The difficulty comes from the fact that there is no single way to compute 

aggregated accuracies of streams that have been approximated by different data summarization techniques. Despite 

the fact that certain synopses have been proven to be mergeable and thus an overall, aggregated accuracy bound can 

be provided [ACH+13], the position of the synopses operator in a given workflow may also affect individual (per 

synopsis operator) and overall accuracy bounds.  

 

If we try to interpret the above remark, we observe that the unknown aggregated accuracy that we seek is essentially 

another black box function. The difference between SDE operators and the rest of the supported operators is that 

since we cannot aggregate the cost per SDE operator, micro-benchmarks are not enough, and a cold start cannot be 

prevented. However, since we have built models for the exact equivalent operators, we can tolerate a cold start only 

for their approximate versions. After that, upon a workflow is submitted the optimizer can built up small-scale 

replicas that will be used for optimization purposes to which it will substitute combinations of exact operators with 
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approximate ones and use the learn-by-example ability of the cost estimator of Section 4.3.2 to build models for the 

aggregated accuracy in various parts of the workflow and the entire workflow.  

 

To sum up, our optimization algorithms can perform synopsis-based optimization without internal changes. The 

only thing we should do is to assign a non-zero weight to the newly introduced optimization objective of accuracy 

Ο6 and train Bayesian optimization models to predict the aggregated accuracy during the operation of the 

algorithms. In that, we can both judge the performance of each examined execution plan for this objective and check 

the abidance of the plan with any given accuracy constraint.  

6.1.2 …for vertical scalability 

There is another form of optimization that can be provided using the SDE Component and is not directly spawned 

by the optimization algorithms we have discussed so far. The talk regards vertical scalability, i.e., the ability to scale 

the computation with the number of processed streams. For instance, to detect systemic risks in the Financial Use 

Case of INFORE, i.e., stock level events that could trigger instability or collapse of an entire industry or economy, 

requires discovering and interactively digging into correlations among tens of thousands of stock streams. The 

problem involves identifying the highly correlated pairs of stock data streams under various statistical measures, 

such as Pearson’s correlation over M distinct, high speed data streams, where M is a very large number. To track the 

full Θ(M2) correlation matrix results in a quadratic explosion in space and computational complexity which is 

simply infeasible for very large M. The problem is further exacerbated when considering higher-order statistics (e.g., 

conditional dependencies/correlations). The same issue arises in the Maritime Surveillance Use Case for trajectory 

similarity scores over hundreds of thousands of vessels. Clearly, techniques that can provide vertical scaling are 

sorely needed for such scenarios. 

 

INFORE’s SDE Component specifically provides techniques such as the Discrete Fourier Transform (DFT) and the 

Locality Sensitive Hashing (LSH) operator which can be inserted by an informed user in a workflow for vertical 

scalability related optimization purposes, instead of substituting an exact operator with its equivalent version. 

Indicatively, the coefficients of DFT-based synopses or the number of set bits (a.k.a. Hamming Weight) in LSH-

based bitmaps can be used for correlation-aware hashing of streams to respective processing units. Based on the 

synopses, using DFT coefficients or Hamming Weights as the hash key respectively, highly uncorrelated streams are 

assigned to be processed for pairwise comparisons at different processing units. Thus, such comparisons are pruned 

for streams that do not end up together. All these details can be configured graphically in the workflow in a simple 

way.  

 
Figure 28: Exemplary workflow utilizing the SDE for vertical scalability 

 

Figure 28 shows such an example of using the SDE operator of DFT for achieving horizontal scalability in the entire 

workflow. In the figure all input streams arrive at a Kafka topic and we finally (after the Join operator in the figure) 

want to perform pairwise comparisons for correlation estimation. We duplicate the incoming streams (note that this 

may be acceptable if we can then prune millions or billions of pairwise comparisons later on in the workflow) 

directing their original tuples once to the join operator and once to the SDE. The SDE applies the DFT operator 

configured to return a bucket ID. We then join the bucket ID, stream ID pair provided by the SDE with the 

respective stream IDs and fields of the original streams. The output of the join can be directed to a reduce/aggregate 

operator using the bucketID as the key. When the physical operators are submitted as a job all streams with the same 

key will be directed to the same reducer which will perform pairwise comparisons locally. All streams directed to 

different buckets, even within the same reducer, will not be compared for similarity. Therefore, the number of 

performed comparisons is drastically reduced and vertical scalability is achieved by the design of the workflow. 
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Note that in this case the result of pairwise comparisons is not approximate, but exact. The SDE operator is used 

only to determine the keys. All such optimizations for vertical scalability are orthogonal to the optimization 

algorithms we presented in Section 4.5 and Section 5.  

6.1.3 …for federated scalability 

Recall our discussion in Section 6.1.1 where we pointed out the advantages of defining the approximate versions of 

operators provided by the SDE, as additional, implemented physical operators for the ones defined in the logical 

workflow. Substituting exact operators with approximate ones also enhances federated scalability, i.e., the ability to 

scale the computation in settings where data arrive at multiple geographically dispersed computer clusterσ each 

hosting Big Data platforms. Communicating the result of synopses instead of exact operators (i) reduces the 

communication load in the network of clusters we have available and (ii) reduces the network and read/write to 

Kafka times, which are ingredients of the overall latency of a physical workflow.  

 

Therefore, substituting exact logical operators with the approximate versions of their physical representatives, 

besides what we discussed earlier in this section, also affects the optimization objectives of communication, that is 

O5, and overall latency, that is O2, in Section 4.4. The reduced communication and latency will be depicted in the 

cost estimation of learned-by-example Bayesian models and all our algorithms will favor solutions engaging 

synopses, provided they abide by the posed accuracy constraints on O6, introduced in Section 6.1.1. 

6.2 Optimizations tailored to Geo-distributed Complex Event Processing 

Our algorithms are directly extensible to completely decentralized settings composed, apart from computer clusters, 

of sensor boards placed in environments of interest and let to function in an unsupervised manner for a protracted 

period of time. Such sensor boards possess certain processing and memory capabilities as well as limited power 

supply, mainly stemming from installed batteries or solar panels. Since in sensor settings communication is by far 

the biggest culprit in energy drain, it is important to reduce unnecessary communication as much as possible, 

simultaneously abiding by constraints on the latency introduced in the analytics procedures which collected data 

participate in.  

 

The above described setting arises in INFORE especially in the Maritime use case where sensor boards correspond 

to on site observation devices, called wavegliders. Wavegliders are used in WP3 so that Maritime Surveillance is 

enhanced with non-collaborative data collection from acoustic sensors, thermal cameras etc in order to detect illegal 

or other abnormal activities at sea. Such activities cannot be pinpointed solely using collaboratively collected AIS 

data, since the availability of the latter, e.g., in case of piracy or smuggling, is highly unlikely just because, pirates 

and smugglers will turn off their AIS antennas in their pursuits.  

 

We consider two approaches to reduce communication in such settings. Both approaches could exploit the rationale 

of the Complex Event Forecasting (CEF) Component of the INFORE architecture in order to achieve our 

optimization goals. In Complex Event Processing (CEP) [GAA+20], the detection of Complex Events (CEs) 

engages operators such as logical conjunctions (logical AND operation), or time ordered conjunctions (SEQuences) 

of simple events. It may also involve thresholded versions of aggregate, linear functions such as counts and sums of 

variables. In the Maritime Surveillance use case, as simple events may be thought of the reception of an AIS 

message or a data tuple describing a detected vessel, while CEs involve piracy, smuggling, illegal fishing and other 

activities of interest composed of simple events. The difference among CEP and CEF is that CEP detects CEs, while 

CEF probabilistically predicts such CEs well in advance to allow for proactive decision making. 

 

The first approach to reduce communication, also accounting for latency constraints, uses a lazy communication 

approach, termed push-pull rationale. The push-pull rationale prioritizes the transmission of frequent simple events 

or CEs conditional upon the occurrence of rarer ones. Thus, if rare events do not occur, a sensor will not transmit the 

rest of the more frequent events it collected. After a streaming window expires, these events will expire as well. In 

that, communication will be avoided altogether. The second approach involves the installation of local filters on 

sensor boards. These filters are constructed in such a way, so that if they hold, the conditions of the posed CEP 

query cannot be satisfied and thus communication can be safely suppressed. Unless in situ filters are violated in at 

least one of the sensors participating in the analytics procedure, it is not necessary for communication to take place.  
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We here sketch how these techniques are encompassed by our algorithms and get tailored to specific use cases. 

Further details are included in our recent publications in the scope of INFORE [FGD+20][GAD+19]. We will 

henceforth use the term endpoint site to distinguish computer clusters from other data collection devices. 

6.2.1 Leveraging the push-pull rationale  

Consider for exhibition purposes that a piracy event lies in the higher level of a hierarchy of events. The lower level 

events are as follows: e1 – low speed of detected vessel, e2 – U turn of detected vessel, e3– high speed of detected 

vessel. The lowest level of the event hierarchy consists of simple events of collected data regarding target vessels, 

their speed and estimated distance from a sensor, or their AIS location itself. The described simplistic scenario 

essentially says that a detected vessel attempts a maneuver where it initially slows down, it then changes direction 

and then starts speeding up as if it tries to run away from, potentially, a pirate vessel. In terms of CEP, the above can 

be expressed in SQL-like syntax as: 

 
SEQ(lowSpeed e3, UTurn e2, highSpeed e1) 

Partition By VesselId 

Within W seconds 

 

The additional statement Partition By says that input data are partitioned for each distinct vessel and the 

Within W statement restricts the allowed interval within which e1, e2, e3 should occur.  

 

To see the big picture, consider that we are given a logical workflow which engages some CEP/CEF operator such 

as a simple SEQ(uence) one in the example. The versions of our algorithms presented in Section 4.5 and Section 5 

will determine the physical operator for the corresponding logical one and assign its execution to a computer cluster 

of the available network, hosting a Big Data platform, e.g. Apache Flink and prescribing a specific parallelization 

degree [FGD+20]. 

 

In order to further optimize the execution of the physical workflow and reduce communication in a case where 

query operators (such as AND, SEQ) require all of their input events to occur to output a higher-level event, we can 

additionally use the push-pull rationale [FGD+20]. According to the push-pull mechanism, the transmission of 

frequent events is rendered conditional upon the occurrence of rare ones. So, for instance, if e2 is a frequent event, 

but e1 and e3 are not, e2 will not be transmitted until e1 and e3 occur. In other words, e2 will be set in pull mode and it 

will be cached at the endpoint sites, where it is detected, until a request for transmitting such an event to the 

respective endpoint site is received. At the same time, e1 and e3 will be set in push mode, meaning that they will be 

transmitted immediately towards the query source as soon as they occur. 

 

 
Figure 29: Example of different push-pull applications for a SEQ operator receiving 3 events (e1, e2, e3) 

expressed using NFAs. This is a subset of alternative push-pull strategies that can be considered for the 

specific operator and its input. Self-transiting edges are used for the occurrence of ei’s at the corresponding 

state. Blue edges represent events that may be pulled. Pulling events reduces bandwidth, increasing latency. 
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In our exemplary scenario and in generic setups, this is not the only way to go. There are a number of alternative 

push-pull strategies that may be employed. In Figure 29 and henceforth in this subsection, we utilize Non-

deterministic Finite Automata (NFAs) [FGD+17] to enumerate push-pull strategies. A first option (left) may set all 

engaged events in push mode, i.e., they are transmitted as soon as they occur. This is what our optimization 

algorithms will do in case they are not enhanced in the ways we describe in this section. In the middle of the figure, 

we see the push-pull strategy we described above. Finally, a third option shown in the figure will be to set e3 to push 

mode and e1, e2 in two pull mode steps. That is, if e3 occurs, only e1 is transmitted. And then, if e1 has occurred and 

has been transmitted, e2 is pulled. Still, these are not the only admissible push-pull strategies. In fact, what is not 

shown in Figure 29 and would be preferable from the Maritime Surveillance application perspective would be to set 

e2 in push mode and e1, e3 in a single pull mode step. This admits that a U turn event is the rarest event that can 

occur, and, upon its occurrence, we should instantly examine events related to vessels’ speed. In fact, the number of 

alternative push-pull strategies that should be examined for AND and SEQ operators is equivalent to the Bell 

number [FGD+20]. 

 

The trade-off that occurs here is that the more we delay communication of frequent events, i.e., the more pull steps 

we introduce, the more we increase the potential of event expiration when the respective window expires. Thus, we 

increase the potential for overall communication reduction. On the other hand, if both rare and frequent events 

involved in the monitored, higher-level CE do occur, the fact that we did not flash all events upon their occurrence 

increases the overall latency of the physical workflow. Therefore, introducing the push-pull rationale in our 

optimization plans affects objectives related to communication cost, that is O5, and latency, which is O2. 

 

Our optimization algorithms can directly incorporate the examination of different push-pull strategies. The only 

modifications required is iterating and keeping solution sets, apart for all admissible parallelization degrees of an 

operator, for all possible push-pull strategies that the CEP operator admits. That is instead of 𝐶𝑆𝑖,𝑗
𝜇

 we have 𝐶𝑆𝑖,𝑗
𝜇,𝑣

 

where ν (=1 for non-CEP operators in a logical workflow) enumerates all admissible push-pull strategies computing 

the performance per objective. For our Greedy and Heuristic (i.e., non-plus (+)) algorithmic variants the default 

push-pull alternative ν0 is the one that sets all events in push mode.  

 

However, the physical plan that the optimizer will return to the Manager Component needs modifications with 

respect to window computations that may have been described in the logical workflow. Next, we outline the 

required physical operator window rewritings needed, so as to describe and implement the chosen push-pull strategy 

at the (non-endpoint) sites that undertake the AND or SEQ, CEP operator physical execution. For ease of 

presentation, we utilize examples of operator executions using three input events, but the discussion easily 

generalizes to broader operator instances engaging more input events. 

 

 
Figure 30: AND(e1, e2, e3) with window W =2.5 secs execution example. FS denotes the Final State which upon 

reached a CE is detected. 
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Operator-Specific Rewriting - AND operator. For an NFA state, let tmin/tmax denote the minimum/maximum 

realOccurence timestamp of all detected events in the previous NFA states of the AND operator. Then, the pull 

request when the NFA state is activated includes all detected events with OccurenceTime within the window tmax-W 

≤ tpull ≤tmin+W. Figure 30 presents an example of the execution of the complex event AND(e1, e2, e3) within a 

window W=2.5 secs and an execution plan composed of 3 push-pull steps (e3 → e1 → e2). All depicted timestamps 

are realOccurence timestamps. The site that has been assigned the aforementioned operator waits for events of type 

e3. Upon detection of an event of type e3, a pull request is issued upon the transition to the second state of the NFA 

that includes events of type e1. The pull request searches for events of type e1 from sensor/ data sources in our 

network with realOccurence time: te3- W ≤ te1 ≤ te3 + W. Upon detection of an event of type e1 a pull request is issued 

for events of type e2 with realOccurence time: te1- W ≤ te2 ≤ te3+ W. Upon the arrival of an e2 event within the 

requested time range, a complex event is generated. All these window calculations should be included in the 

physical plan that will be delivered to the cluster, Big Data platform that will undertake the physical execution of the 

CEP operator and the rationale described above is easily extensible to broader AND operator instances engaging 

more input events.  

 

Operator-Specific Rewriting - SEQ operator. The sequence operator is similar to the AND operator but 

additionally requires that the time ordering of the events will also uphold t1st event ≤ ... ≤ ti-th event. As such, the SEQ 

operator is transformed into a series of AND operators (1 per state of the NFA) and the transition from one state to 

the next marks the pull request of the events included in the next state. The pull request must simultaneously 

conform with the time ordering of the events and with the window constraints. 

 

 
Figure 31: SEQ(e6, e7, e8) with window W =3 secs execution example. FS denotes the Final State which upon 

reached a CE is detected. 

     

Figure 31 presents an example for the execution of the complex event SEQ(e6, e7, e8) within W= 3 secs and a 3-state 

push-pull strategy (e7 → e8 → e6). In this example, we use different input event indices to make the distinction with 

the previously discussed AND operator easier. Upon detection of an event of type e7, a pull request is issued for the 

transition to the second state of the NFA that includes events of type e8. The pull request involves events of type e8 

with realOccurrence time: te7+ W ≤ te8 that may occur in the future. Upon detection of an event of type e8, a pull 

request is issued for events of type e6 with realOccurrence time: te8 - W ≤ te6 ≤ te7.  

 

Having argued about how our algorithms can be extended to examine push-pull strategies for physical execution 

plans that incorporate CEP operators, the final step in order to incorporate the push-pull rationale and the above-

mentioned rewritings is to include the respective configurations in the JSON file that will be returned to the 

Manager Component of the INFORE architecture.  

 

The more intriguing part is that these CEP-oriented optimizations require the flow of the data to change. So far, in 

all the operators supported by INFORE, the information data flow is always forward. That is, a site (computer 

cluster, Big Data platform) undertakes to execute parts of the workflow and as soon as a site completes its part, it 
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delivers the output via Kafka to the next site. In the settings we described in this subsection this forward-only data 

flow model does not hold. The site that undertakes the execution of a CEP operator need to go through rounds of 

two-way communication with other endpoint sites, such as sensors, in order to evaluate the operator using a non-

default (all input events in push mode) strategy. This change in the flow of data cannot be taken for granted since it 

requires access to the endpoint sites themselves, so that they are programmed on-the-fly to implement the push-pull 

rationale chosen by the optimizer, instead of simply transmitting detected events.  

6.2.2 Uncertainty-aware In situ Processing 

In this section we present additional optimizations that involve the evaluation of uncertainty-aware CEP queries 

engaging not only SEQ and AND but also AGGRegation, such as count, sum, operators [GAD+19]. For exhibition 

purposes, we use a running example instantiating a particular motivating scenario. Assume we are given a CEP 

query of the form:  

 
AND (COUNT(CARGO_VESSEL) ≥ Tcv Q1),(COUNT(HIGH_SPEED_CRAFT)>THSC) Q2)Q 

PARTITION BY vesselID 

HAVING Q.certainty>C 

WITHIN W minutes, Area 

 

The above query aims at detecting the existence of a number (greater than Tcv) of cargo ships in a spatiotemporal 

window together with the existence of smaller, high-speed vessels. Again, the idea is to detect a potential piracy 

event that may take place in an area of interest. Further assume that AIS data are not available and, thus, the vessel 

type has been deduced with a correctness probability for each of the two mentioned vessel types. What is expressed 

in the query by HAVING Q.certainty>C is that we do not simply want to receive a data update whenever the 

AND pattern is satisfied, but instead, a CE is produced when the vessel types have been aggregated in respective 

counts are identified with a certain level of confidence, higher than C. Given such a query, the goal of the 

optimization process we introduce in this section is to decompose the given query into local filters – constraints that 

can be installed in each endpoint site so that unless the local filter is violated in at least one endpoint site, no 

communication takes place. The trade-off with respect to communication and latency for our optimization 

algorithms is analogous to our discussion in Section 6.2.1. The difference is that here (leaving the push-pull 

rationale which is orthogonal to the in situ filters we introduce, aside) we do not have to examine many alternatives, 

but just choose whether the physical plan will use the prescribed in situ filters or not.    

 

The first step the optimizer does is to decompose the given query Q to individual Q1, Q2 ones. Assuming event 

independence, the intersection of the engaged events (having the corresponding counts of vessel types exceed the 

defined threshold Tcv,THSC, respectively) provides a probability (certainty) that comes as the product of individual 

query certainties. Therefore, the first decomposition step gives: 

 
PATTERN COUNT(CARGO_VESSEL) ≥ Tcv Q1 

PARTITION BY vesselID 

HAVING Q1.certainty>C 

WITHIN W minutes, Area 
 

PATTERN COUNT(HIGH_SPEED_CRAFT)>THSC Q2 

PARTITION BY vesselID 

HAVING Q2.certainty>C 

WITHIN W minutes, Area 
 

 

This enables the optimizer to examine in situ filters for each query separately. Taking Q1 as an example (the case of 

Q2 is similar) let us see when communication of the count of detected cargo vessels is necessary. If we leave the 

certainty criterion aside for the moment and we assume that we have N endpoint sites (e.g. wavegliders) in the area, 

communication is meaningless if COUNT(CARGO_VESSEL) < TCV/N at every endpoint site. This is because then 

∑
𝑇𝐶𝑉

𝑁
<𝑁

𝑖=1 𝑇𝐶𝑉 and thus Q1 will never output a CE. However, even this filter allows for unnecessary communication. 

This is because the (un)certainty criterion in Q1 has been neglected. Thus, even if the probability of every ship to be 

of cargo type is very low, communication will still take place, which is unnecessary based on the definition of the 

given query.  

 

Assume, for exhibition purposes, that each detected cargo ship has a probability p of being correctly classified and 

1-p probability of being reported as cargo while it is not. This confidence value may be set by a domain expert or get 

derived from past data. Therefore, each detected cargo vessel is a Bernoulli random variable with success 
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probability p regarding its correct classification. The total number of cargo ships detected in the area (Bernoulli 

trials) is the sum of the number of such ships detected by all nearby endpoint sites {A1, . . . , AN }: ∑ 𝑏𝑖
𝑁
𝑖=1  with bi 

being the local count of cargo vessels for endpoint site Ai. Let X denote the random variable representing the count 

of cargo vessels throughout the network of endpoint sites. Then X follows a Binomial distribution, i.e., X ∼ B(b,p), 

where b is the total number of detected cargo vessels the last Y minutes and p the probability of correct 

classification. Our contribution comes exactly because of the ability of our in situ filters to account for both the 

distribution and uncertainty dimensions of the posed query Q1. In particular, our in situ filters will recognize the fact 

that if globally X ∼ B(b,p), then for each endpoint site Ai, Xi ∼ B(bi ,p). Our techniques exploit probability theory to 

recognize that, for common p, the binomial distribution is self-decomposable, i.e., if Xi ∼ B(bi ,p) → X = ∑ 𝑋𝑖
𝑁
𝑖=1 ∼ 

B(b ,p). Therefore, the in situ filter constructed by our approach will be: each Ai suppresses communication if the 

probability of the local count Xi of vessels of cargo type is at most TCV/N with probability above √1 − 𝐶
𝑁

: Pr [𝑋𝑖 ≤
𝑇𝐶𝑉

𝑁
] ≥ √1 − 𝐶

𝑁
 or, equivalently, communication is suppressed when for every endpoint site 𝐶𝐷𝐹[𝑋𝑖 ,

𝑇𝐶𝑉

𝑁
] ≥

√1 − 𝐶
𝑁

 . The latter filter accounts for both the criteria (cargo vessel count, confidence) included in the posed query. 

Our work [GAD+19] shows that such in situ filers are applicable in a wide variety of distributions that are self-

decomposable, some of which are summarized in Table 1. 

 

Table 1: Some supported probability distributions, uncertainty criteria and respective in situ filter examples. 

PDF: Probability, CDF: Cumulative Distribution Function. For log-versioned distributions a product instead 

of some of Xi is used. 1 − CDF (X, T ) > C ⇔ P[X > T ] > C in the fifth column exemplifies the query 

uncertainty criterion, which corresponds to the global filter: P[X > T ] ≤ C.  

 
 

Having decided the in situ filter, again a communication protocol between the cluster at which the CEP operators are 

installed and the various endpoint sites should exist to determine the rounds of communication that need to take 

place. There is a variety of complex communication protocols that one can use to exploit such in situ filters. We 

discuss such elaborate communication protocols in our research in the scope of the project [GAD+19]. We here 
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describe a simple communication protocol that requires only one round of communication (from endpoint sites to 

sites) so that it can more easily be applied simultaneously with the push-pull strategy discussed in Section 6.2.1: 

 

Initialization Phase: During the initialization phase, the computer cluster running a Big Data platform that will 

execute the involved CEP operators (i.e., the site) constructs the local filters and transmits them to endpoint sites 

together with the chosen push-pull rationale. The transmission of in situ filters to endpoint sites can also be done 

directly by the Manager Component, provided that information as of to which computer cluster each site should 

report is included in the exchanged information.  

 

Monitoring Phase: Each endpoint site keeps up receiving updates of its local data and contacts the handling 

computer cluster only in case it finds its local in situ filter violated and a pull request has arrived to set the event in 

push mode. 

 

Synchronization Phase: When a local filter is violated at an endpoint site and the involved event is in push mode, 

the endpoint site pushes its events to the computer cluster than runs the respective CEP operator. Then, that site 

pulls the relevant events from the rest of the endpoint sites. In the scope of a push-pull rationale this means that an 

event may have occurred. In our running example, this is the event implied by query Q1. If this is true, the site 

handling the CEP operator pulls the events that follow in the next step of the push pull strategy. Otherwise, the 

endpoint sites return to the Monitoring Phase.   
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7 Applications on INFORE Use Cases 

In this section we describe application scenarios related to INFORE use cases and showcase the functionality of the 

Optimizer Component in practice. The logical workflows are defined in the Graphical Editor Component of the 

INFORE architecture. At the workflow design time, there is a higher-level part of the logical workflow that is 

common in all use cases that utilize the streaming extensions of RapidMiner Studio developed in the scope of the 

project.  

 
Figure 32: Higher level of the logical workflow definition. Inter Communication connection object defines the 

Kafka cluster with which parts of workflow later assigned to different clusters and Big Data platforms will 

communicate with. Spark/Flink Execution connection objects provide connections to the available clusters 

hosting Big Data platforms, grouped together via the Collect operator and passed to the Streaming 

Optimization operator. 

 

Figure 32 shows this higher-level part of the logical workflow definition. It includes an Inter Communication 

connection object which defines the Kafka cluster with which parts of workflow later assigned to different clusters 

and Big Data platforms will communicate. Spark/Flink Execution connection objects provide connections to the 

available cluster hosting respective Big Data platforms, grouped together via the Collect operator and passed to the 

Streaming Optimization operator. The Streaming Optimization operator that has been introduced in the RapidMiner 

Studio is a subprocess operator, i.e., the user can double click on it to go through a lower level workflow definition 

level, to start drawing the desired workflow using families of operators stemming from stream transformations 

provided by the Big Data platforms which have been abstracted in the Streaming extension of the RapidMiner 

Studio, the Synopses Data Engine, the Online Machine Learning and Data Mining or the Complex Event 

Forecasting Components. 

 
Figure 33: The intermediate level created after the submission of the logical workflow of Figure 32 creates a 

Multiply operator to duplicate Kafka connection objects for cluster, Big Data platform communication and 

creates one Streaming Nest operator for Flink and one for Spark in this example 

 

In the use cases we discuss in this section, when the user has finished drawing the desired workflow within the 

Streaming Optimization operator, she presses a submit button. The response of the Optimizer Component is 

visualized to the user and within the Streaming Optimization operator, the logical operators are now placed in one 
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(if all operators have been assigned to the same cluster/Big Data platform) or more Streaming Nest operators. In 

other words, a Streaming Nest operator appears for each cluster, Big Data platform that has been used in the 

prescribed physical workflow. The initial logical workflow has now been divided to parts that will be submitted in 

different Big Data platforms. The Streaming Nest operator is another subprocess operator that groups together the 

parts of the initial workflow that will be executed in Spark or Flink as shown in the example of Figure 33. In the 

figure, the streaming execution connections are provided to the corresponding Streaming Nest operators. The 

Multiply operator in the figure, just replicates the Kafka connection object to be used by each Streaming Nest 

operator. The two Streaming Nest operators in the figure are connected to denote that one part of the workflow 

provides input to another. The parts of the initial logical workflows that lie in the two Streaming Nest operators are 

not logical anymore, but have been interpreted to physical because the cluster and Big Data platform they are to be 

executed is defined in the connections of the respective Streaming Nest operator as shown in Figure 33 for Spark 

and Flink. 

 

Given these, in what we discuss here, when we refer to the logical workflow we mean the workflow the user designs 

within a Streaming Optimization operator and when we refer to physical workflows in Spark and Flink we mean 

those assigned to a respective Streaming Nest operator. The higher level of the logical and physical workflow in 

each use case is equivalent.  

7.1 Life Sciences Use Case 

In this use case the aim is to use INFORE to provide a virtual laboratory for simulating tumor behavior under 

various drug combinations. We produce simulated tumor data of several GB/min from various instances of the 

PhysiBoss14 framework. INFORE ingests from PhysiBoss data related to the state of each cell agent, the 

concentration of various densities such as oxygen and time series data on the number of necrotic, apoptotic or 

proliferating cells. In this model, effective drugs' activity forces tumor cells into necrosis and fewer to apoptosis. 

  

Figure 34 depicts an exemplary logical workflow, where our target is to distinguish which simulations and thus 

respective drug combinations are effective in terms of increasing the number of necrotic and apoptotic cells, 

simultaneously reducing the proliferating ones. For that purpose, data from the various PhysiBoss instances are 

loaded via two Kafka topics for unlabeled and labeled simulations. Using the SDE.DFT operator of the SDE 

Component, respective time series are approximated via their Discrete Fourier Transform (DFT) coefficients 

[KoGD20] for interactivity purposes. Then, they are fed to an online classification operator from the OMLDM 

Component to train models for distinguishing “useful” drag combinations from “unuseful” ones. The extracted 

model is validated via the Forecast Validation operator and is then fed to the Tag Simulation operator which applies 

the model and classifies the running simulations. The Split operator separates unuseful simulations from useful ones. 

Those with unuseful outcomes correspond to PhysiBoss instances that should be killed (Figure 34, top split branch). 

The top-k, in terms of killed tumor cells, of the rest are chosen for visualization and further study (Figure 34, bottom 

split branch).  

 
Figure 34: Exemplary Logical Workflow for the Life Science Use Case submitted to the Optimizer. 

 

 
14 https://github.com/gletort/PhysiBoSS  

https://github.com/gletort/PhysiBoSS
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Figure 35: Part of the physical workflow the Optimizer prescribes to be executed in Flink for the logical 

workflow of Figure 34. 

 

Figure 35 and Figure 36 show the lower level of the physical workflow when the Optimizer Component decides to 

assign the execution of parts to workflow in Flink and Spark Structured Streaming, respectively. The structure of the 

intermediate level including the corresponding Streaming Nest operators lying in the higher-level Streaming 

Optimization operator remain as described at the beginning of this section. 

 

 
Figure 36: Part of the physical workflow the Optimizer prescribes to be executed in Spark Structured 

Streaming for the logical workflow of Figure 34. 

7.2 Financial Use Case 

We use Level 115 and Level 216 stock data provided by Spring Techno INFORE partner stemming from 9 markets. 

More precisely, Level 1 data involve stock trades of the form < Date, Time, Price, Volume > for each data tick of an 

 
15 https://www.investopedia.com/terms/l/level1.asp  
16 https://www.investopedia.com/terms/l/level2.asp  

https://www.investopedia.com/terms/l/level1.asp
https://www.investopedia.com/terms/l/level2.asp
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asset (stock). Level 2 data show the activity that takes place before a trade is made. Such an activity includes 

information about offers of shares and corresponding prices as well as respective bids and prices per stock. Thus, 

Level 2 data are shaped like series of < Ask price, Ask volume, Bid price, Bid volume > until a trade is made. These 

pairs are timestamped by the time the stock trade happens. The higher the number of such pairs for a stock, the 

higher the popularity of the stock.  

 

 
Figure 37: Exemplary Logical Workflow for the Financial Use Case submitted to the Optimizer. 

 

The logical workflow of Figure 37 illustrates an exemplary scenario that utilizes Level 1 and Level 2 stock data to 

discover cross-correlations and clusters of stocks. In the figure, both Level 1 and Level 2 data arrive at a Kafka 

source. The Split operator separates Level 1 from Level 2 data. It directs Level 2 data to the bottom branch of the 

workflow. There, the Level 2 bids are Filter-ed (i.e., for monitoring only a subset of stocks or keep only bids above a 

price/volume threshold). The bids per stock are counted using a CountMin sketch provided by the SDE Component. 

When a trade for a stock is realized, a new Level 1 tuple is directed by Split to the upper part of the workflow. A 

Project operator keeps only the timestamp of the trade for each stock. The Join operator joins the stock trade, Level 

1 tuple with the count of bids the stock received until the trade. The result is inserted in a time Window of recent 

such counts, forming a time series. Pairwise similarities of stocks' time series are computed using the 

approximations of the Discrete Fourier Transform operator of the SDE. The StreamKM operator of the OMLDM 

Component computes clusters of stocks based on the original time series. 

 

 
Figure 38: Part of the physical workflow the Optimizer prescribes to be executed in Flink for the logical 

workflow of Figure 37. 

 

Figure 38 and Figure 39 show the lower level of the physical workflow when the Optimizer Component decides to 

assign the execution of parts of workflow to Flink and Spark Structured Streaming, respectively. In this particular 

occasion, only the clustering operator is assigned to a cluster, Big Data platform other than Flink. The reason is that 

the visualization topic for the result of the clustering algorithm is in a Kafka cluster co-placed with Spark. Again, the 

structure of the intermediate level including the corresponding Streaming Nest operators lying in the higher-level 

Streaming Optimization operator remain as described at the beginning of this section. 
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Figure 39: Part of the physical workflow the Optimizer prescribes to be executed in Spark for the logical 

workflow of Figure 37. 

7.3 Maritime Use Case 

Let us now continue with a logical workflow for the Maritime use case. Assume that we focus on one type of event 

that indicates a zig zag movement that we want to detect for each vessel. Such a pattern may correspond to an illegal 

fishing activity in practice. Furthermore, consider that in order to identify such a simple event we check a threshold 

on the variance of the direction of each vessel within a given window of AIS message updates.  

 

 
Figure 40: Exemplary logical workflow for zig zag movement detection in the Maritime Use Case. 

 

As shown in the logical workflow of Figure 40, AIS messages are ingested via a Kafka topic and each vessel’s 

trajectory undergoes a sampling process, denoted by SDE.STSample, using the operator provided by the SDE 

Component (see Section 2.4). We then perform a projection that keeps only the vessel-id and the direction from the 

sampled AIS messages. The resulted trajectory stream is duplicated (Duplicate Stream operator in the figure). We 

use an aggregate operator to compute the average direction of the vessel’s movement within a window and we then 

join the resulted stream with the original one, so that we have a stream with vessel-id, direction, avg_direction. The 

Map Stream operator computes squared differences of direction-avg_direction divided by the window size, for each 

streaming tuple and these are then summed up to compute the variance in direction using the Aggregate Stream 

operator. The Filter Stream operator keeps the vessels which exhibited a variance in direction of movement 

surpassing a given threshold. 

 

Figure 41 and Figure 42 show the lower level of the physical workflow when the Optimizer Component decides to 

assign the execution of parts to workflow in Flink and presumably Akka, respectively. In this particular occasion, 

only the SDE operator is assigned to Flink where the current implementation of the SDE Service runs. The reason is 

that the optimizer has been configured so that it detects that the Kafka cluster used for (i) interconnection of the 

components of the INFORE architecture, (ii) input Kafka Source topic and (iii) the Visualization topic are co-placed 

with the Akka cluster.  
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Figure 41: Part of the physical workflow the Optimizer prescribes to be executed in Flink for the logical 

workflow of Figure 40. 

 

Again, the structure of the intermediate level including the corresponding Streaming Nest operators lying in the 

higher-level Streaming Optimization operator remain as described at the beginning of this section, replacing Spark 

with Akka. Note that this is the output of the optimizer with respect to the definitions of operators that exist in its 

dictionary. These definitions may include a superset of the currently supported Big Data platforms. 

 

 

 
Figure 42: Part of the physical workflow the Optimizer prescribes to be executed in Akka for the logical 

workflow of Figure 40. 
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8 Experimentation and Benchmarking  

8.1 Benchmarking our Cost Estimator  

In this section we benchmark our cost estimator presented in Section 4.3. In these experiments, the evaluation of the 

cost estimation process is performed as follows:  

 

• Step 1: for each supported operator we perform a set of microbenchmarks. In each microbenchmark, we run a 

job including only the benchmarked operator and we provide the following input parameters which are varied 

among microbenchmarks: 

o Big Data platform: where the job is submitted, such as ‘Apache Flink’, ‘Apache Spark Structured 

Streaming’. 

o Source type: here there are two options ‘Custom Source’ or ‘Kafka Source’. ‘Custom Source’ accounts 

for the case when an upstream operator of the benchmarked one is executed in the same Big Data 

platform. ‘Kafka Source’ accounts for the case when an upstream operator is executed in a different 

Big Data platform or cluster, since these two operators will communicate via Kafka according to the 

design of the INFORE architecture.  

o Sink type: similar to the above, ‘Custom Sink’ for conveying the output to downstream operators in the 

same Big Data platform, or ‘Kafka Sink’ otherwise.  

o Rate of arrival of input streams: we test the performance with respect to the optimization objectives 

(Section 4.4) of the operator under various incoming stream rates. 

o Degree of parallelism: in each microbenchmark we also alter the chosen parallelization degree of the 

said operator.   

       The output of the benchmark is the value of each optimization objective mentioned in Section 4.4.  

 

• Step 2: Having performed microbenchmarks for each operator where we alter the input parameters as described 

in Step 1, we feed the majority (~80%) of the results to the cost estimator to fit and/or train the Bayesian 

optimization model for this operator. Note here that the model may converge earlier without using all the results 

that were intended for the training step. This is denoted in the experiments as ‘percentage of explored space’ 

which is the percentage of benchmarking results, which the training (sampling) process asked for. This 

percentage shows how fast the model converges (see also Figure 11). The lower the percentage, the less 

microbenchmarks we need to develop what the Bayesian optimization considers a “good” model.  

 

• Step 3: We test the predictive accuracy of the cost estimator using the rest of the microbenchmarks. In 

particular, having trained the cost estimator, we interrogate the developed model at each stage of the 

fitting/training process. Each time we query the model using the input parameters (those of Step 1, but for ~20% 

of the microbenchmarks that were not used in Step 2) receiving a response about the predicted performance of 

the operator. We measure the accuracy of the model in terms of cumulative L1 distance17 and R2 score18 

(coefficient of determination) between the actual performance during the microbenchmarks and the predicted 

one. 

 

For ease of presentation, in this section, we focus on one of the most commonly used operators in many real-life 

workflows, that of a 2-way inner join, over Flink and to limit the number of presented graphs, we bin the input 

stream rates to 1K, 10K, 100K, 1M records/sec and we present results for a parallelization degree of 12. For the 

same reason, we also concentrate on the accuracy of our cost estimator in predicting the throughput (objective O1 in 

Section 4.4) among our optimization objectives. Table 2 presents a couple of instances of the result of Step 1 of the 

evaluation process. The first 6 columns are part of the input and having executed the microbenchmark we obtain the 

last column related to throughput. This type of records will be fed in our cost estimator during the fitting and 

training process of Step 2.  

 

 

 

 
17 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html 
18 https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html  

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.manhattan_distances.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
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Table 2: Example Input/ Output of a performed microbenchmark 

Source 1 Source 2 
Source 1 

rate 

Source 2 

rate 

Output 

Sink Parallelism Throughput 

CustomSource CustomSource 1000000 1000000 CustomSink 12 204541,0556 

CustomSource CustomSource 1000 1000 KafkaSink 1 1966,666667 

 

To execute Step 2, we use Gaussian Processes (GPs) as the surrogate model and we experiment with 2 commonly 

used acquisition functions, Expected Improvement (EI) and Lower Confidence Bound (LCB). In each experiment, 

excluding the one where we just perform fitting and no acquisition function is needed, we also alter a 

xi=[0.0001,0.001,0.01(default),100,1000] parameter for EI and kappa=[1K, 2.5K, 5K, 10K, 100K] for LCB which 

trade-off exploration vs exploitation. In a nutshell, exploitation drives the training on sampling microbenchmarks in 

the vicinity of the current best results by penalizing for higher variance values, while exploration pushes the search 

towards unexplored regions. The higher the xi or kappa parameters, the farthest from the current best exploration is 

allowed to reach, i.e., the higher these values are, the more we are favoring exploration over exploitation. 

 

Because of the fact that, in this set up, we want to maximize throughput (which has a negative weight in the 

optimization set up of Section 4.4), the convergence plots that follow show maxf(x) in their vertical axes, while the 

horizontal axes account for the percentage of explored space as commented above.  

 

In a first experiment illustrated in Figure 43, we use no acquisition function and we simply perform a fitting process 

in order to improve the posterior probability of the surrogate model, but in a less targeted way compared to sampling 

based on exploitation or exploration criteria. This is useful in order to check the effect of the learn-by-example 

training paradigm (see Section 4.3.2) where we use the statistics that are made available to us due to the execution of 

submitted workflows of the application domain, to improve the accuracy of the cost estimator after deploying it.  

 

 
 

 

 
Figure 43: Accuracy (up) and convergence speed (down) of cost estimator performing a fitting process 
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As shown at the bottom of Figure 43, the maximum value of the objective function is reached after half (50%) of the 

microbenchmarks are used for fitting. The rest of the microbenchmarks that are fed to the model do not alter this 

maximum value. What they do alter, as illustrated at the top of the figure, is the accuracy of the model since the L1 

distance progressively zeros and R2 reaches a value of 1 as the corresponding lines approach the 100% of the fed 

microbenchmarks. Recall that this is the result of executing Step 3 of the cost estimator evaluation process, 

measuring the distance between the predicted and the actual throughput using the corresponding metric. As a 

general observation, using 50-60% of the performed experiments makes the fitting process converge to the 

maximum of the objective function and keep acceptable absolute and relative error values. 

 

Note that the L1 distance measures a cumulative absolute error, while R2 score shows whether the trends (rather than 

the absolute values) in predicted and actual throughput vectors (of the 20% of the microbenchmarks not used for 

fitting in Step 2) are similar. This is also important because the bottom line is that we want the optimizer to choose 

the best site for each examined operator. Thus, even if predictions are not accurate in terms of absolute values (L1 

distance), if they can still capture the trends of throughput (R2 score), they can tell which option is the best to 

include in a physical workflow. Hence, our overall goal of choosing the physical workflow that maximizes 

throughput is practically achieved.  

 

We then proceed with experimenting on EI and LCB acquisition functions. In this series of experiments, we first 

provide 10 microbenchmarks to the Bayesian optimization process and we then let it ask for samples driven by the 

utilized acquisition function. The 10 initially fitted microbenchmarks are chosen uniformly at random from the set 

of all microbenchmarks with a random seed (rand_state in the graphs) of 10. Later on, in this section, we will also 

alter the number of microbenchmarks used for initial fitting and the way they are chosen.  

 

In Figure 44 and Figure 45 we plot the prediction accuracy (left columns) and convergence speed (right columns) of 

Bayesian optimization using EI and LCB while we vary the xi and kappa parameters respectively. Increasing the xi 

and kappa values improves the accuracy of the model, but also increases the percentage of explored space. This says 

that the training process asks for more samples before it concludes. Comparing the two figures we extract a number 

of useful observations: 

 

• With respect to L1 and R2, EI and LCB behave similarly in the sense that for the same percentage of 

explored microbenchmarks they provide comparable accuracy.  

• EI uses less microbenchmarks before it concludes the training process, i.e., the percentage of explored 

space is lower compared to that of LCB, but also provides lower accuracy by the end of the training 

process. 

• LCB samples more microbenchmarks before it concludes, i.e., the percentage of explored space is higher 

and, due to that, it can also provide better prediction accuracy. 

• If we focus on the convergence speed plot, we can observe that EI approaches faster max f(x), while LCB 

needs more samples to do that. This is shown by the fact that the first step, after the 10 initially fed 

microbenchmarks, of the blue line in the respective graphs is always flatter for LCB which means that the 

first samples it asks for do not help in approaching the maximum of the objective function.  

 

Based on the above observations, from an application viewpoint, EI and LCB are useful in different situations. If 

one has a priori performed an exhaustive list of microbenchmarks and then applies the training phase, LCB seems 

the most preferable option since it will exploit most of the microbenchmarks to improve accuracy as much as 

possible. On the other hand, if one performs only an initial set of microbenchmarks and then lets the training process 

indicate which microbenchmark should be conducted afterwards, EI will conclude the training phase faster, with 

acceptable accuracy and thus fewer, on-demand microbenchmarks are needed. In other words, LCB is more 

accurate, but also more expensive in terms of the required effort that should be devoted for benchmarking each 

operator.  

 

Another observation involving LCB that can be extracted by studying its convergence plots (right column of Figure 

45) is that it samples a lot of microbenchmarks which do not actually improve the currently best (max f(x)) value. 

This is evident by the fact that the blue line remains steady although the training process does not conclude for a 

considerable percentage of the explored space (in the horizonal axis).  



 

 

 

 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP5 T5.1 & T5.2 
Deliverable D5.1 

Doc.nr.: WP5 D5.1 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 

59 of 86 

 
Figure 44: Accuracy (left) and convergence speed (right) of cost estimator using EI with 10 randomly chosen 

micro benchmarks for initial fitting, varying the xi (exploitation vs exploration) parameter.  
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Figure 45: Accuracy (left) and convergence speed (right) of cost estimator using LCB with 10 randomly 

chosen microbenchmarks for initial fitting, varying the kappa (exploitation vs exploration) parameter. 

 

In the next set of experiments, we investigate the effect of the number of microbenchmarks that are used for initial 

fitting before beginning the sampling, training process. We fix xi=100 and kappa=100K for EI and LCB 
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respectively. As shown in Figure 46 and Figure 47, the trend is that the more initial microbenchmarks we use, the 

higher the accuracy, in terms of L1 distance and R2 score, for lower percentages of the explored space. This is 

particularly true for LCB in Figure 47, while EI occasionally (for instance, switching from 8 to 10 initial 

microbenchmarks) provides worse L1 distance values (but R2 is improved).  

 

The other characteristic that is affected, by providing more initial microbenchmarks, is how quickly the model 

converges to the final max f(x) value. In the right columns of Figure 46 and Figure 47 we observe that the steps of 

the blue line are fewer and the distance between these steps is shorter as we increase the number of initially fed 

microbenchmarks. As a whole, the percentage of the explored space when the training phase concludes is not 

affected in case of LCB in Figure 47, while for EI (Figure 46) the percentage of the explored space increases by up 

to 10%.  

 

Among all the presented graphs we have seen so far, from Figure 43 to Figure 47, the best one in terms of 

convergence speed and accuracy of prediction is that of the last line of plots in Figure 47. There, LCB is used as the 

acquisition function with kappa=100K and 12 randomly chosen microbenchmarks are utilized for initial fitting. The 

L1 distance steeply decreases, the R2 approaches 1 even for low percentages of the explored microbenchmark space 

(left), while the training process also quickly approaches the final, maximum value of the objective function 

(throughput in our setup). 

 

If we try to compare the last line of plots in Figure 47 with Figure 43 (fitting all experiments without using an 

acquisition function), we see that the L1 distance and R2 score lines of LCB meet at the half of the percentage of 

explored space used by the fitting process. The same happens for the converge plots where max f(x) is approached at 

almost ~20%, for LCB, compared to ~50% for exhaustive fitting.  

 

To further investigate the effect of choosing initial microbenchmarks for fitting, we perform another iteration of 

experiments, where we alter the number of fitted microbenchmarks as before but, instead of selecting them 

uniformly at random, we use Sobol sequences [Sob67]. In Figure 49, the generic observation for LCB is that 

choosing the initial microbenchmarks using Sobol sequences worsens the accuracy and the speed of convergence of 

the model. On the contrary, Figure 49 illustrates that choosing initial benchmarks employing Sobol sequences may 

be beneficial for EI compared to sampling initial points uniformly at random. This is due to the fact that the left 

column of Figure 48 shows that the training process approaches faster the final max f(x), exploring less (5%-10%) of 

the space of microbenchmarks. Moreover, Sobol sequences simultaneously provide similar L1 distance and R2 score 

values with the uniform sampling case. 
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Figure 46: Accuracy (left) and convergence speed (right) of cost estimator using EI, for xi=100, varying the 

number of randomly chosen microbenchmarks for initial fitting initial_fit_exp=1,6,8,10,12 in successive rows 

of plots. 
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Figure 47: Accuracy (left) and convergence speed (right) of cost estimator using LCB, for kappa=100K, 

varying the number of randomly chosen microbenchmarks for initial fitting initial_fit_exp=1,6,8,10,12 in 

successive rows of plots. 
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Figure 48: Accuracy (left) and convergence speed (right) of cost estimator using EI, for xi=100, varying the 

number of Sobol sequence-chosen microbenchmarks for initial fitting initial_fit_exp=1,6,8,10,12 in successive 

rows of plots. 
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Figure 49: Accuracy (left) and convergence speed (right) of cost estimator using LCB, for xi=100, varying the 

number of Sobol sequence-based chosen microbenchmarks for initial fitting initial_fit_exp=1,6,8,10,12 in 

successive rows of plots. 
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8.2 Comparative Benchmarks on Optimization Algorithms 

We now compare the performance of the optimization algorithms we have already implemented (Exhaustive Search, 

A*-alike) in terms of the number of physical workflows they examine during their execution (recall that the A*-alike 

Algorithm dynamically prunes candidate physical workflows, while Exhaustive Search does not) as well as their 

execution time. Note that this is the number of candidate physical plans each algorithm considers during its 

execution, before devising the optimal one to be deployed. Similarly, the execution time of the algorithm accounts 

for the time it takes to the algorithm to find the physical workflow that should be deployed.  

 

We use the workflows described in Section 7, for each use case. Since the logical workflows of the Life Science and 

the Financial use case have similar structure, the performance of the algorithms was similar, so we plot these two 

use cases together. In all experiments of this section, we leave the intrinsic optimizer of the Big Data platform to set 

the parallelization degree μ for each physical operator participating in a physical workflow.  

 

In the first of the experiments we run the Exhaustive Search and the A*-alike Algorithm over a network composed 

of a single cluster hosting three Big Data platforms, assuming each of the involved operators is implemented in all 

three platforms. Figure 50 shows the ability of the A*-alike algorithm to prune the number of examined physical 

workflows, in a per use case fashion (horizontal axis). More precisely, we observe that in the Life Science and 

Financial workflows the A*-alike Algorithm reduces the number of examined physical workflows (vertical axis – 

Log Scale) by almost 6 orders of magnitude, while, for the Maritime workflow, the A*-alike Algorithm reduces the 

number of examined physical workflows by almost 5 orders of magnitude.  

 

Upon switching to Figure 51, where we plot the execution time of the respective algorithms on the vertical axis (Log 

Scale, again), we observe that, in the Life Science and Financial workflows, the A*-alike Algorithm is faster by 3.5 

orders of magnitude, while, for the Maritime workflow, the A*-alike Algorithm reduces the time it takes to devise 

the preferable physical workflow by more than two orders of magnitude. 

 

 
Figure 50: Number of Examined Physical Workflows per use case:  

Exhaustive vs A*-like Optimization Algorithms 
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Figure 51: Execution time for determining the prescribed physical workflow per use case:  

Exhaustive vs A*-like Optimization Algorithms 

 

In order to study the behavior of the algorithms under various numbers of operators’ implementations in different 

Big Data platforms, in Figure 52, we plot in the vertical axis the ratio between the number of physical workflows 

examined by the Exhaustive Search Algorithm over the respective number of the A*-alike alternative. In this 

experiment we assume that there are implementations for all operators in all available Big Data platforms. As shown 

in the figure, the more we increase the number of Big Data platforms (horizontal axis), i.e., from 2 to 3, the higher 

the gains of the A*-alike algorithm compared to the Exhaustive Search candidate. In particular, for 2 Big Data 

platforms, A*-alike examines almost 3 orders of magnitude fewer physical plans while this ratio approximately 

doubles (in orders of magnitude) upon switching to 3 Big Data platforms. In Figure 52, for 1 Big Data platform the 

Exhaustive Search Algorithm creates just 1 physical workflow, while the A*-alike, due to its design, instantiates 

various partial physical workflows. Therefore, it inserts more partial plans in the priority queue, that converge to the 

same physical workflow. 

 

 
Figure 52: Ratio of Examined Plans varying the number of available Big Data platforms:  

Exhaustive vs A*-like Optimization Algorithms 
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Let us now see what happens if we keep the number of available implementations for each operator steady to, for 

instance, 1 Big Data platform, but vary the number of clusters in the network from 1 to 5. As Figure 53 illustrates, 

the A*-alike Algorithm can examine from 2 and up to 8 orders of magnitude fewer physical workflows across 

various network sizes and use case setups.  

 

 
Figure 53: Ratio of Examined Plans varying the number of available clusters:  

Exhaustive vs A*-like Optimization Algorithms 

 

In Figure 51 we saw that the ratio of Exhaustive Search over A*-alike upon considering execution time was lower 

compared to the respective ratio in terms of examined physical workflows. To further study this issue, in Figure 54 

we plot the ratio of respective execution times varying the number of available Big Data platforms. If we compare 

the current figure with Figure 52, we again see that the ratios are lower in terms of execution time. For instance, for 

2 Big Data platforms in Figure 52 the ratio of examined plans is 3 and 2 orders of magnitude for the (Life Sciences, 

Financial) and the Maritime use case, respectively. In Figure 54, the corresponding ratios in terms of execution time 

are reduced to 1.5 and 0.5 orders of magnitude for each use case.  

 

 
Figure 54: Ratio of Algorithm Execution Time varying the number of available Big Data platforms:  

Exhaustive vs A*-like Optimization Algorithms 
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The difference between these ratios is due to the fact that A*-alike consumes more memory for keeping plans in the 

priority queue, most of which are never dequeued and thus they are pruned altogether at the end of the algorithm. 

These are the plans that are never further examined. Moreover, the A*-alike Algorithm keeps more complex data 

structures and performs more memory accesses during its operation, e.g., for determining Ending Nodes and for 

selecting the next operator to add (see Section 5.1). On the other hand, the memory requirements of the Exhaustive 

Search Algorithm are negligible because in each iteration it fixes a plan and simply computes its cost so that it 

updates the currently best physical workflow, if needed. When scalability to high number of clusters and Big Data 

platforms is considered, the Exhaustive Search Algorithm fails to improve, in contrast to the A*-alike alternative. 

Therefore, our immediate goal is to improve the implementation of the A*-alike Algorithm so that more efficient 

memory management is achieved, since based on the assessed ability of the algorithm to prune examined physical 

workflows, a more fine-tuned implementation can make it scale even better than what we showed in the previous 

plots. 

8.3 Benchmarks on Optimized Workflow Execution 

To show the improvement in performance yielded by having our optimization algorithms (Exhaustive Search and 

A*-alike) prescribing the physical workflow of the logical one fed to the optimizer, we utilize a Kafka cluster with 3 

Dell PowerEdge R320 Intel Xeon E5-2430 v2 2.50GHz machines with 32GB RAM each and one Dell PowerEdge 

R310 Quad Core Xeon X3440 2.53GHz machine with 16GB RAM. We use a Flink cluster with 10 Dell PowerEdge 

R300 Quad Core Xeon X3323 2.5GHz machines with 8GB RAM each. We employ a real dataset composed of 5000 

stocks of Level 1 and Level 2 data from the Financial use case of INFORE provided by the Spring Techno partner in 

the project.  

 

We feed the optimizer with the workflow discussed in Section 7.2. We ingest every related tuple in a Flink cluster 

via Kafka and we essentially let the optimizer decide the parallelization degree of the physical plan execution for 

each operator and in some experiments, we allow synopsis-based optimization. Note that we form a worst-case 

scenario for the effect of our optimizer where it can only improve performance by choosing the parallelization 

degree (not the cluster or the Big Data platform). In fact, we have split the workflow into two parts for more detailed 

experimentation purposes. The upper part of Figure 37 which computes pairwise correlations among stocks is 

included in one experiment along with the rest of the workflow, while the lower part of the same figure involving 

the StreamKM operator is tested in a separate experiment along with the rest of the workflow.  

 

For pairwise correlation of stocks in the first of our experiments, indicatively, we note that when 5K stocks are 

monitored, the pairwise similarity comparisons that need to be performed by naive approaches are 12.5 M, which 

shows the importance of optimizing the execution of the workflow and, as we will shortly see, of the synopsis-based 

optimization approach we propose in Section 6.1. 

 

In Figure 55 we measure the performance of the physical workflow instructed by the Optimizer Component against 

two alternative physical plans. One that does not use parallelization or synopses and another one that uses synopses, 

but still does not distribute the processing. More precisely, the compared approaches are: 

 

- Naive: This is the baseline approach which involves a physical workflow where sequential processing of 

incoming tuples without parallelism or any synopsis is performed. Pairwise comparisons are executed without 

using the DFT operator we described, but on the original data. So that no enhanced horizontal or vertical 

scalability is achieved and no optimization whatsoever is performed. 

 

- DFT(NoParallelism): The performance of DFT(NoParallelism) physical execution plan utilizes DFT synopses 

to (via hashing) bucketize financial time series so as to prune pairwise comparisons for stocks that are not 

hashed in the same bucket. DFT also achieves dimensionality reduction of the original financial time series, 

but no parallelism is used for executing the workflow. 

 

- Parallelism(NoDFT): This physical workflow performs parallel processing prescribed by the optimizer, but 

there is not any synopsis defined in the optimizers dictionary. In other words, the optimizer does not use the 

ideas of synopsis-based optimization in Section 6.1 and pairwise comparisons of stocks are executed without 

using the DFT operator of the SDE. 
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- SDEaaS(DFT+Parallelism): This is the performance of synopsis-based optimization which combines the 

virtues of parallelism and data summarization (for bucketizing financial time series so that pairwise 

correlation comparisons are pruned and for dimensionality reduction)  and is termed as SDEaaS, because the 

SDE Component of INFORE architecture is provided as a service (see Deliverable D6.1). Here, we have 

defined DFT as an equivalent operator for pairwise comparisons in the optimizers dictionary and the 

optimizer chooses this approximate operator instead of the exact one to perform pairwise comparisons.  

 

It is important to emphasize, that SDEaaS(DFT+Parallelism) shows the performance of plans prescribed by either 

of the implemented optimization algorithms of Section 4.5 and Section 5.1 upon allowing the SDE to be considered 

as an additional execution platform for an operator. This is to be declared in the optimizer dictionary. In cases when 

SDEaaS(DFT+Parallelism) performs better than Parallelism(NoDFT) in the experiments that we present in this 

section, this does not mean that using synopsis is better than the optimizer, but the fact that if we equip the INFORE 

Optimizer Component with the ability to perform synopsis-based optimization in one of the ways discussed in 

Section 6.1, using our devised optimization algorithms, the physical workflows it will prescribe ensure interactivity 

to the major extent.  

 

Each line in the plot of Figure 55 measures the ratio of throughputs of each examined physical execution plan over 

the Naive approach varying the amount of monitored stock streams.  Let us first examine each line individually. It is 

clear that when we monitor few tens of stocks (50 in the figure), the use of DFT in the DFT(NoParallelism) 

marginally improves (1.5 times higher throughput) the throughput of the Naive approach. On the other hand, the use 

of the INFORE optimizer Parallelism(NoDFT) improves the Naive by 2.5 times. The SDEaaS(DFT+Parallelism), 

taking advantage of both the synopsis and parallelism improves the Naive by almost 4 times. Note that when 50 

streams are monitored, the number of performed pair-wise similarity checks in the workflow of Figure 37 for the 

Naive approach is 2.5K/2.  

 

This is important because, according to Figure 55, when we switch to monitoring 500 streams, i.e., 250K/2 

similarity checks are performed by Naive, the fact that the Parallelism(NoDFT) physical execution lacks the ability 

of the DFT to bucketize time series and prune unnecessary similarity checks, makes its throughput approaching the 

Naïve approach. This is due to DFT Correlation operator in Figure 38 starting to become a computational bottleneck 

for Parallelism(NoDFT) in the workflow. On the contrary, the DFT(NoParallelism) line remains steady when 

switching from 50 to 500 streams. The DFT(NoParallelism) physical workflow starts to perform better than 

Parallelism(NoDFT) on 500 monitored streams showing that the importance of using synopsis-based optimization 

becomes higher than the importance of having the optimizer simply inscribing the parallelization degree, as more 

streams are monitored. The line corresponding to the SDEaaS(DFT+Parallelism) physical workflow exhibits steady 

behavior upon switching from 50 to 500, improving the Naive execution plan by 4 times, the DFT(NoParallelism) 

execution plan by 3 and the Parallelism(NoDFT) one by 3.5 times.  
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Figure 55: Performance of different execution plans prescribed by INFORE’s optimizer Parallelism(NoDFT), 

SDEaaS(DFT+Parallelism) versus two (Naïve, DFT(NoParallelism)) baselines for the physical workflow of 

the upper part of Figure 37 which computes pairwise similarities of stocks.  

 

The most important findings come upon switching to monitoring 5000 stocks (25M/2 similarity checks using Naive 

or Parallelism(NoDFT)). Figure 55 says that because of the lack of synopses that ensure vertical scalability (see 

Section 6.1.2), the Parallelism(NoDFT) physical execution plan becomes equivalent to the Naive one. The 

DFT(NoParallelism) execution plan improves the throughput of the Naive and of Parallelism(NoDFT) by 7 times. 

The SDEaaS(DFT+Parallelism) physical workflow exhibits 11.5 times better performance compared to Naive, 

Parallelism(NoDFT) and almost doubles the performance of DFT(NoParallelism). This validates the potential of 

SDEaaS(DFT+Parallelism) to support interactive analytics upon judging similarities of millions of pairs of stocks. 

In addition, studying the difference between DFT(NoParallelism) and SDEaaS(DFT+Parallelism) we can quantify 

which part of the improvement over Naive, Parallelism(NoDFT) is caused due to comparison pruning based on time 

series bucketization, i.e., vertical scalability and which part is yielded by parallelism. That is, the use of DFT for 

bucketization and dimensionality reduction increases throughput by 7 times (equivalent to the performance of 

DFT(NoParallelism)), while the additional improvement entailed by SDEaaS(DFT+Parallelism) is roughly 

equivalent to the parallelization degree prescribed by the optimizer. This indicates the success of synopsis-based 

optimization in integrating the virtues of data synopsis and parallel processing. 

 
Figure 56: Performance of different execution plans prescribed by INFORE’s optimizer 

Parallelism(NoCoreSetTree), SDEaaS(CoreSetTree +Parallelism) versus two (Naïve, CoreSetTree 

(NoParallelism)) baselines for the physical workflow of the lower part of Figure 37 which computes clusters 

of stocks. 
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We then perform a similar experiment for the lower part of the workflow in Figure 37 which engages the StreamKM 

[AMR+12] clustering operator instead of the DFT correlation one. In particular, in this experiment the Naive 

execution plan corresponds to StreamKM++ clustering without parallelism and coreset sizes equivalent to the 

original data points (time series). The Parallelism(NoCoreSetTree) execution plan involves performing 

StreamKM++ with coreset sizes equivalent to the original data points, but allowing the optimization algorithm to 

prescribe the parallelization degree. The CoreSetTree(NoParallelism) exploits the CoreSetTree synopsis but uses no 

parallelism, while SDEaaS(CoreSetTree +Parallelism) combines the two. 

 

The conclusions that can be drawn from Figure 56 are very similar with what we discussed in Figure 55. However, 

the respective ratios of throughput over the Naive physical workflow execution plan are lower (2-3 times higher 

throughput than the second best candidate in Figure 56). This is by design of the data mining algorithm and the 

reason is that the clustering procedure includes a reduce step with the only admissible parallelization degree of 1. 

This is in contrast with the DFT Correlation operator of the previous experiment which can be executed by different 

processing units independently for each bucket. 
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9 Related Work 

This section describes related work on (a) statistics collection, (b) query optimization, including learning query 

optimizers, (b) cost estimation, including join ordering, cardinality and selectivity estimation, (c) query runtime 

prediction using machine learning, and (d) query and operator cost modelling in multi-engine systems, (e) 

optimizations in high performance computing. 

 

9.1 Statistics Collection and Monitoring Solutions 

Monitoring and collecting statistics is an essential task for analysing performance and behaviour of distributed 

systems. The goal of the first monitoring systems [MCC04], [Nagios], [Zabbix] is to monitor infrastructure or, in 

other words, to monitor resource metrics. The limitation of non-conclusive infrastructure metrics motivated the 

design and development of monitoring systems aiming to enable effective monitoring on the service-level, often 

known as Application Performance Monitoring (APM) systems. The general architecture of these systems is to have 

a set of APIs that interface with resources and services and collect raw information; a collection mechanism that 

may perform some preliminary filtering and aggregation; a storage system that holds collected data for analysis; a 

query mechanism to compute metrics; and a visualisation layer to interface with system managers and operators. 

 

For instance, the popular ELK stack that we adopt is composed by Logstash, ElasticSearch, and Kibana. An 

alternative is the Graphite/Grafana combination [Grafana], an open-source monitoring system that only stores 

numeric time-series data and display plots of stored data in real-time. Prometheus [Prometheus] is a very popular 

open-source full monitoring system initially developed at SoundCloud. It collects measurements related to both 

infrastructure and services and stores them in their own time series database. A flexible query language is also 

provided for querying metrics and the status of the monitored system, thus enabling the relation of infrastructure and 

service-level metrics. Nonetheless, this relation is limited since it does not consider dependencies between processes 

and thus services, in a higher level, which consequently represents a limit on the scope of retrievable knowledge. 

 

A deeper insight into monitored systems can be achieved by instrumentation that reveals system and operation 

structure. For instance, the CoherentPaaS X-Ray subsystem targets federated polyglot query systems and is able to 

trace execution across multiple query engines with a combination of ad-hoc and general-purpose instrumentation 

[GP15]. Systems such as Falcon [NMP18] are able to trace interactions in distributed systems and derive causality 

relations, key to verification of distributed properties, although at small scale. 

 

DynaTrace [DynaTrace] is a cloud-based Monitoring-as-a-Service solution. Besides raw resource information, it 

aims at automatically detecting system structure such as containers, processes, services, and applications. However, 

it lacks a query language for detailed analysis. 

 

All these approaches are orthogonal to our optimization approach. Since we use Bayesian optimization for our cost 

estimation, raw metric collection suffices while interrelations of processes can be modelled similarly by 

benchmarking cost estimations for parts of or entire workflows. Additionally, we preferred to rely on statistic 

collection tools that are either available for every platform that works over JVMs or are currently used in the 

infrastructure available to INFORE, as is the case with Slurm in Barcelona’s supercomputer center.  

9.2 Query Optimization  

There has been extensive work in query optimization since the early ’70s and presenting the breadth and depth of 

this work is out of the scope of this document. Still, the specific characteristics of the INFORE Architecture that is 

designed for performing efficient analytics at scale over data stream workflows running on a multiplicity of 

distributed, heterogeneous platforms make it clear that traditional, relational style optimizers (e.g., Starbust 

[HFLP89] and Volcano/Cascades [GrMc93, Grae95]) do not suffice to overcome the challenges in such a complex 

environment. In a streaming context, several techniques have been proposed including batching, placement, load 

balancing, load shedding, state sharing, operator separation, operator reordering, fusion, redundancy elimination, 

algorithm selections, and so on [HSGS19]. Although such techniques are still applicable in INFORE, applying them 

to a multi-platform setting is not straightforward.  
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Due to the large variety and heterogeneity of the operators considered in INFORE (see Section 2.4), the INFORE 

Optimizer follows a black-box approach, where the operator semantics and cost are not, generally, available. Hence, 

the Optimizer needs to learn the operators’ behavior over time. This is similar to another line of work in query 

optimization, namely the learning query optimizers.  

 

[MaLR03] presents Leo, DB2's LEarning Optimizer, which learns from its mistakes by adjusting its cardinality 

estimations over time. Although Leo was a promising start, it still relied on a human-engineered cost model, a hand-

picked search strategy, and developer-tuned heuristics. In addition, Leo had the ability to learn better cardinality 

estimations, but not new optimization strategies (e.g., how to account for uncertainty in cardinality estimates, 

operator selection, etc.). [TzSJ08] proposes an unsupervised learning approach to adaptive query optimization 

[DeIR07], which models query execution with eddies [AvHe00] as a reinforcement learning problem with 

quantitative rewards. This was a promising idea for a specific class of conjunctive selection and join queries, but it 

did not consider practical aspects such as correlated selectivities and complex (e.g., content-based) routing 

techniques with adaptation characteristics.  

 

Many argue that the advances in machine learning can be used to build better, smarter, and easier to use (as in 

maintain, tune, optimize) data management systems. In fact, the argument goes further and supports that learned 

components can fully replace core components of a data management system, such as indices, sorting algorithms, 

and query execution [BLC+15, KBC+18]. As an example, [KAB+19] presents SageDB, a vision about a new type 

of a data processing specialized to an application through code synthesis and machine learning. SageDB models the 

data distribution, workload, and hardware to learn the structure of the data, optimal access methods, and query plans.  

[TWM+19] presents SkinnerDb that uses reinforcement learning to improve adaptive query processing. To that end, 

this system uses a specialized query execution engine, which has some limitations (e.g., operator pipeline, 

parallelism), but still the ideas it describes although not directly applicable to production systems, they can still be 

useful in improving learning query optimizers.  

 

[MNM+19] presents Neo (NEural Optimizer), an attempt to build an end-to-end learned optimizer. Neo learns to 

make decisions about join ordering, physical operator selection, and index selection. But it cannot learn these tasks 

from scratch and makes a few assumptions such as (a) it requires a-priori knowledge about all possible query rewrite 

rules to guarantee semantic correctness; (b) it works with project-select-equijoin-aggregate-queries; (c) it does not 

generalize from one database to another. However, it can generalize to unseen queries containing any number of 

known tables. The Neo paper reports that the learning process can be extremely time consuming (days, weeks). To 

reduce it, Neo uses a technique called learning from demonstration [HVP+18], which is it employs a traditional 

query optimizer (i.e., PostgreSQL optimizer) as a source of expert demonstration to bootstrap its initial policy.  

Neo replaces most traditional optimizer components with machine learning models. The query representation is 

performed through features instead of an object-based operator tree à la Volcano [GrMc93]. The cost model is 

represented as a deep neural network (DNN) instead of cost formulae. Neo uses a DNN-guided learned best-first 

search strategy instead of plan space enumeration or dynamic programming. For cardinality estimation, it uses 

histograms and/or a learned vector embedding scheme, combined with a learned model.  

 

In order to train a neural network to predict the latency of partial or complete query plans, it employs two encodings: 

(a) a query encoding (e.g., as an R-Vector inspired by word2vec [MCCD13]) that involves e.g., tables and 

predicates, but it is independent of the query plan, and (b) a plan encoding (as a tree of vectors) that represents a 

partial execution plan. The query encoding provides the predicate semantics and it plays a strategic role to the 

efficacy of the method; however, producing it is a slow operation (each row in every table is treated as a training 

sequence, augmented by rows in other tables that are functionally dependent) and currently, it does not lend itself 

nicely to database changes.  

 

[WJA+18] presents a machine learning based approach, in the context of shared cloud workloads, to learn 

cardinality models from previous job executions and use them to predict the cardinalities in future jobs. The core 

idea is to extract overlapping subgraph templates that appear over multiple query graphs and learn cardinality 

models over varying parameters and inputs to those subgraph templates. The paper describes the application of three 

models: linear regression, Poisson regression, and multi-layer perceptron (MLP) neural network. Although the latter 

in theory could provide a more sophisticated solution, in practice the paper argues that training and using an MLP 

for cardinality estimation is more challenging as (a) it requires careful designing of the neural network architecture 

as well as a significant hyper-parameter tuning effort, (b) without “enough” training data for a given subgraph 
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template, there is the risk of overfitting, and (c) it is more challenging to explain and justify the output of MLP to 

human analysts even though the output might as well be quite an accurate prediction of the cardinality. 

9.3 Cost Estimation 

Query optimization largely depends on cardinality and selectivity estimation, and in particular, on having reasonably 

good estimates for intermediate result sizes (e.g., as in join-crossing correlations). Many approaches have been 

proposed employing a large variety of techniques e.g., histograms [BrCG01, DeGR01, GKTD05, MuDe88, PoGI99, 

ShDG17], entropy [MHK+07, ReSu12], samples [HNSS96, EsNa06, HeKM15] and index-based sampling 

[LRG+17], histograms and samples [MuMK18], probabilistic models [GeTK01, TzDJ11], randomized hashing and 

data sketching [CaBS19], and so on. These approaches work with assumptions (e.g., attribute value independence – 

AVI, uniformity, data independence) and when these assumptions cannot be met the techniques usually fall back to 

an educated guess. Hence, in practice the estimates are routinely wrong by orders of magnitude causing slow queries 

and unpredictable performance.  

 

Motivated by such limitations, another line of work departs from traditional techniques and exploits machine 

learning to improve cardinality estimation. A very first attempt to use neural networks for cardinality estimation for 

udf predicates dates to 1998 [LaZh98]. Several works have focused on optimizing specific operators using 

reinforcement learning. These works aim to learn more efficient search strategies for the best join ordering [e.g., 

KYG+18, MaPa18], to improve cardinality estimation [e.g., KKR+19, NMM+20, WHT+19] or selectivity 

estimation [e.g., DWZ+19, LXY+15, PaZM18, YLK+19,], or to learn the entire plan generation process through 

reinforcement learning [OBGK18]. Although in general these works do not describe how the techniques introduced 

lead to improved query plans [LRG+18], overall it is a promising start. 

 

[KYG+18] and [MaPa18] combine reinforcement learning with a human-engineered cost model to automatically 

learn search strategies to navigate the space of possible join orderings. These methods rely on the optimizer’s 

heuristics for cardinality estimation, physical operator selection, and plan cost estimation. Furthermore, they make 

assumptions that, in general, are hard to meet in practice. [KYG+18] assumes perfect cardinality estimation for 

predicates over the base table.  

 

[KKR+19] formulates cardinality estimation as a supervised learning problem, where query features is the input and 

the estimated cardinality is the output. Query features are expressed as sets (e.g., (A⋈B)⋈C and A⋈(B⋈C) are both 

represented as {A,B,C}) and fed to a multi-set convolutional network (MSCN). This saves capacity by avoiding 

numerous permutations and results into smaller models. The join enumeration and cost model are left to the query 

optimizer. This approach builds on sampling-based estimation by including cardinalities or bitmaps derived from 

samples into the training signal. As this work studies join-crossing correlations, it is different from works that create 

samples per table samples and sketches, which focus on single-table queries and are vulnerable to the 0-tuple 

problem (empty base table samples) [EsNa06, WuNS16]. Each table is represented by a unique one-hot vector 

identifying the table id and optionally, the number of qualifying table samples or a bitmap indicating their positions. 

Joins are represented with a unique one-hot encoding. For predicates of the form (col, op, val), columns (col) and 

operators (op) are represented one-hot vectors and values (val) are represented as a normalized value in [0,1] w.r.t. 

the minimum and maximum values of the respective column after logarithmization obtained from the training set. 

Note that this needs to be recomputed (i.e., it requires re-training) when data changes. The MLP (multi-layer 

perceptrons) modules used in the model are in general are two-layer fully connected neural networks with ReLU 

activation functions for hidden layers. The model is trained to minimize the q-error (i.e., the factor between an 

estimate and the true cardinality or vice versa) [MoNS09] and the Adam optimizer [KiBa15] is used for training. 

 

To handle the cold start problem, the authors obtained an initial training corpus by generating random queries 

(unique queries containing up to two joins) based on schema information and recording their true cardinalities, while 

skipping queries with empty results. They also enrich the training data with information about materialized base 

table samples; for each table in a query, the corresponding predicates on a materialized sample are evaluated and the 

query is annotated with the number of qualifying samples. The training is performed on an immutable database 

snapshot. Although the method does not support updates, in the presence of those the main challenge as identified 

by the authors would be to address catastrophic forgetting when data distribution shifts over time [KPR+16]; the 

neural network would overfit to the most recent data and forget what it has learned in the past. 
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[WHT+19] proposes a cardinality estimation technique based on building smaller neural networks (models) 

representing local models, each of which focuses on a small part of the database schema. This differs from most 

approaches that consider a global approach, by creating a neural network (global model) over the entire database 

schema. The local models are built at the granularity of n-ary joins and their corresponding filter predicates 

occurring at a given workload. The local approach has two advantages: (a) the local models are simpler and smaller 

in structure, and (b) the query sampling is less sparse. The approach is presented in the context of equi-joins with 

selections on non-key predicates, and employs a regression neural network whose input is a vectorized query (with 

one-hot encoding) and its output is the estimated cardinality of the query. 

 

[LXY+15] uses neural networks to learn and approximate selectivity functions that take a bounded range on each 

column as input, effectively estimating selectivities for all relational operators. It considers queries with range 

predicates, each having a lower value and an upper value specified only by non-strict range operators (i.e., ≤ and ≥). 

Presumably (but not shown in the paper) the technique could be expanded to other relational operators as OR, IN, 

NOT, etc. Then, a selectivity function is expressed in terms of the lower and upper values of all predicates involved 

in the query, and a three-layer neural network with a sigmoid activation function is used to produce the output of 

this function. For training, it samples each column proportionately to the number of distinct values within it and 

applies predicates on up to k columns at a time; k is tunable to ensure that the amount of column-tuples is not too 

large for efficient random generation. 

 

[YLK+19] present Naru, a technique to formulate join ordering and general-purpose selectivity estimation as a 

reinforcement learning problem. It uses a Monte Carlo integration technique called progressive sampling on top of 

deep autoregressive models to estimate range queries (including numeric and categorical attributes) at high 

dimensionality. By leveraging the availability of conditional probability distributions provided by the model, 

progressive sampling steers the sampler into regions of high probability density, and then corrects for the induced 

bias by using importance weighting. The estimator works without supervision (like classical synopses), but it 

approximates the joint data distribution without any independence assumptions. Αutoregressiveness is achieved via 

information masking and training is done via maximum likelihood estimation. The loss function between the data 

distribution and the loss estimate is fed into a gradient descent optimizer (Adam). Encoding values is a lossless 

transformation (i.e., a bijection). Values in table columns are dictionary-encoded into integers; for numerics or 

strings, the domain is sorted so that the dictionary order follows the column order. One-hot encoding is used for 

small-domain columns and embedding encoding for large-domain columns. Although Naru does not consider 

incremental model update, for periodic updates (e.g., daily partitions) it is possible to consider that each partition 

trains its own Naru model.  

 

[OBGK18] presents an experimental study of deep learning techniques for cardinality estimation, evaluating the 

trade-offs between the size of the model (measured by the number of trainable parameters), the time it takes to train 

the model, and the accuracy of the predictions. The study compares neural networks, recurrent neural networks, tree 

ensembles, and PostgreSQL’s optimizer.  

 

In [DWZ+19], the authors explore application of neural networks and tree-based ensembles to improve selectivity 

estimation of multi-dimensional range predicates. The paper describes that straightforward application of these 

techniques could be worse than simple baselines, but they can be improved by simple design choices, such as 

regression label transformation (i.e., log-transform with base 2 of selectivity values) and feature engineering 

motivated by the selectivity estimation context e.g., using heuristic estimators like AVI, EBO, and MinSel (i.e., the 

minimum selectivity across individual predicates) as features. A query (q) in a labeled set (S) is represented as a 

vector containing the query predicate value ranges and the actual selectivity value (act(q)), which serves as a 

regression label. For example, S = {(q1:act(q1),(q2:act(q2),...) and an instance might be 

S={((10≤A1≤20)/\(0≤A2≤20):500), ((10≤A1≤20)/\(40≤A2≤80):300), …}, in which case the input features would be 

(10,20,0,100) and (12,20,40,80) with regression labels 500 and 300, respectively.  

 

The regression model takes as input a point location in the query space defined over the domain of range features, 

and the task for the regression method is to learn a function over the query space to approximate multi-dimensional 

range selectivity estimation. To evaluate the accuracy of the model the q-error is used, and in particular the 

geometric mean of q-error values, which is more resilient to outlier errors compared to the arithmetic mean. The 

regression techniques evaluated include: (a) neural networks with ReLU units as the activation functions for hidden 

neurons and a linear function of input features as the regression function; and (b) tree-based ensembles, where leaf 
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nodes correspond to a query space region defined by the conjunction of the ranges on input features from the 

internal nodes along the path from root; hence, each learned tree partitions the query space using hyper-rectangular 

regions corresponding to its leaf nodes. Updates resulting into a significant change in data distribution pose a 

significant limitation as the models trained on actual selectivities (which is the most time-consuming step of the 

process) become inaccurate quickly. 

 

[PaZM18] describes a selectivity learning framework that uses a mixture model to capture the unknown distribution 

of the data. A mixture model is a probabilistic model to approximate an arbitrary probability density. Although a 

promising approach, it has significant practical limitations as for example it does not support join selectivity 

estimates. 

 

[MaBC07] describes a semi-automatic alternative for explicit machine learning where the feature space is 

partitioned using decision trees and for each split a different regression model was learned. 

 

In [KAB+19], the authors describe their experience to make a traditional cost model [SAC+79] differentiable; i.e., 

start with the original model, but then improve the model after every query to customize it for a particular instance 

of data. That would solve the initialization model and answer the question of how the model would handle ad hoc 

queries. Although this effort shows promising results, it also shows that it cannot achieve practical gains without 

having significant improvements in cardinality estimation. 

 

CherryPick [ALC+17] aims at building accurate performance models. The goal is to find the optimal (or near-

optimal) deployment configuration, in terms of number and types of VM instances, that allows achieving a given 

performance target. CherryPick is flexible and incurs low overhead, as it relaxes the need to find the best cloud 

configuration for the application. Instead, it applies Bayesian optimization to only a few samples of deployment 

configurations in order to obtain a performance prediction that suffices to quickly prune out inefficient setups. 

9.4 Runtime Prediction  

Previous work has shown that post-processing an optimizer’s cost estimate is not generally effective for predicting 

query runtime. [ACR+12] shows that using linear regression to map PostgreSQL’s estimate to actual execution time 

is not effective. Similar disappointing results are shown in [GKD+09], where the authors tried to map HP Neoview’s 

estimates to actual runtime using linear regression.  

 

[WCZ+13] argues that the optimizer estimates can be useful if the optimizer’s internal cost model is tuned just 

before making an estimate. The paper describes an approach based on sampling. Sampling-based approaches can be 

very expensive when searching for a good execution plan. But in this paper, the authors start from a ready-to-be-

executed plan and use sampling to correct the potentially erroneous cardinality estimates. Still, getting random 

samples requires significant random reads at the sampling phase, which can be very expensive in practice. Hence, 

the sampling is performed offline and the results are stored as materialized views in the database. Their experiments 

show that the number of samples required is quite small, and thus can be cached in memory at runtime. Two of the 

arguments they present to favor their approach vs. machine learning based approaches is that (a) the profiling stage 

finishes in significantly less time than a typical training phase and also that (b) once the cost units are being 

computed through calibration (which is orthogonal to data distribution) they do not have to be recomputed as long as 

the hardware does not change, whereas in machine learning approaches usually when the data distribution changes 

significantly the training data collection and prediction model creation need to be repeated.  

 

There are several attempts to predicting query execution time using various machine learning techniques, which 

treat a data management system as a black box and aim at building efficient query runtime prediction models, e.g., 

[ACR+12], [GKD+09], [MAH+18], [ToBA10], [XCZT11]. 

9.5 Cost Modeling in Multi-Engine Systems 

There is related work in the context of heterogeneous databases, but their focus is limited to a single problem. For 

example, [DuKS92] focuses on cost models for particular operators like selections and 2-way joins. Other works 

focus on a subset of cost units dedicated to a particular subsystem. For example, [SMA+10] focuses on CPU in the 

context of DB resource virtualization and [ZTPH11] focuses on I/O in the context of storage type selection.  
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In the last decade or so, several approaches to multi-engine execution have been proposed. These depart from 

previous work on federated databases that provide a single interface to disparate DBMSs and on parallel databases 

that achieve high performance through replication, partitioning, and scale-out architecture. The main reason is the 

need for processing many types of data (not only relational) and support many types of analytics, which often is 

difficult to perform with a single programming or data model.  

 

An example work is the BigDAWG architecture, a polystore database, which supports multiple database and storage 

engines (e.g., PostgreSQL, Accumulo, and SciDB) [GCD+16]. In the core of BigDAWG, the cross-engine query 

execution has been described in the context of shuffle joins (equijoin operations), where data is migrated to multiple 

different engines and computed in parallel [GuGS16]. The key idea to achieve parallelizable join execution of large 

tables across multiple engines is for the matching tuples of the two inputs to always be hosted on the same engine; 

this allows for parallel tuple comparison where each engine joins local data. When the planner determines a query 

execution plan, it passes it to the executor, which runs it in parallel in a blocking fashion as it waits for all 

dependency nodes to complete.  

 

The optimization process assigns join-units (small non-overlapping ranges of tuples) to participating engines. A 

join-unit consists of a fraction of the full query predicate, and tuples are assigned to a join-unit based on the value of 

their join attribute. Tuples belonging to a single join-unit may be distributed over multiple engines participating in 

the join but are brought to the same engine for the join computation.  

 

To dealing with skew, the executor collects information about the data distribution on each engine using a histogram 

that encodes the distribution of the join attribute for each table. The histogram is either created or extracted from the 

internal statistics utilized by each engine. The histogram creation is done either with (a) full table scan, which scans 

every element involved in the join, for every participating table (accurate histogram, slow performance), or (b) table 

sampling, which samples at random a fixed number or proportion of tuples from each table. If sampling statistics are 

provided by an engine’s built-in query planner, table sampling is skipped.  

 

Strategies for join-unit assignments are determined based on a number of factors including (a) the cost of migrating 

tuples between engines, the network can be a scarce resource for joins in a shared-nothing architecture [MeDe97]; 

(b) the number of tuple migrations, as the join computation at an engine is blocked until all tuples assigned to that 

engine have been migrated; and (c) the runtime of the tuple-comparison phase, which is dominated by the engine 

that takes the longer to complete this phase. Potential strategies include: (a) full table assignment (the entire table is 

a join-unit) with full broadcast (works best for smaller and less skewed tables); (b) join-attribute assignment, with a 

skew agnostic hash-assignment and skew-aware minimum bandwidth heuristic and tabu search (both adopted from 

SciDB).  

 

The cost estimation primarily includes the cost of migrating join units to a given engine and the cost of comparing 

the migrated tuples once the migrations have completed (cost = maxMigrationCost + tupleComparisonCost). The 

cost of the overall plan is equivalent to the maximum cost of all engines, as every engine should complete its local 

executions before the results can be propagated to a union operator and returned to the user.  

 

A previous work on multi-engine execution presented HFMS, a multi-engine system focused on information flows 

consisting of programs written in different programming languages (e.g., SQL, Pig, Hive) and involving data stored 

in multiple storage engines [SWDH13]. The HFMS plan writer inputs a flow definition, checks its validity, 

translates it into an internal, machine-interpretable form, and passes it to the optimizer. The optimizer generates a 

functionally equivalent flow graph optimized for user-specified objectives (e.g., partitioning the flow into subgraphs 

for different execution engines). It considers alternative execution plans and estimates their cost. The optimal plan 

(i.e., the least-cost relative to the objectives) is sent to the executor. The executor schedules flows for execution, 

generates executable code, dispatches flow fragments to execution engines, and monitors flow execution.  

 

HFMS has a hybrid rule-based and cost-based optimization model. The core elements for the cost model are: (a) 

operator cost, and (b) statistical summary of operator’s output. Both depend on statistical summaries of the data. 

 

Each flow operator has associated cost models, a different model per implementation and engine. The operator cost 

involves measures like CPU, memory (e.g., buffer sizes), I/O, and communication costs. Unless the operator cost is 

known (not typical), it is computed through a series of micro-benchmarks [SiWi12]. This provides a baseline for 
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operator cost. More elaborate computations (e.g., including concurrent execution of multiple flows) employ 

prediction models using machine learning techniques over execution logs [GuMD08]. The operator cost models can 

be refined by running flows with a sample of the input data (e.g., with Reservoir sampling) and feed the optimizer 

with the statistics obtained. 

 

The complexity of dealing with multiple streaming platforms has been studied in the literature. [Beg+19] describes a 

standardization initiative aiming for a unified interface for SPEs and other data management systems, which 

integrates streaming into the SQL standard, including time-varying relations as a foundation for classical tables and 

streaming data, event time semantics, and keyword extensions to control the materialization of time-varying query 

results. Still, the SQL extensions it proposes are not rich enough to capture the semantics and the functionality of the 

complex Bid Data analytics operators involved in INFORE workflows. 

9.6 Optimization Aspects over High Performance Computing Infrastructure 

Besides sheer scale, HPC technologies can increase the cost of extreme-scale analytics which means that they 

should be judiciously employed and configured. There is a growing number of research proposals that exploit HPC 

hardware in data science platforms. HERD [KKG14] is a key-value system focused on reducing network round trips 

while using efficient RDMA primitives. Mega-KV [ZWY+15] shows how to use GPUs to accelerate the operations 

of in-memory key-value stores. 

 

Facebook researchers have shown that they can reduce the training time for a convolutional neural network 

(RESNET-50 on ImageNet) from two weeks to one hour, using 256 GPUs spread over 32 servers [GDG+17]. In 

software, they introduced a technique to train convolutional neural networks with very large mini-batch sizes to 

make the learning rate proportional to the mini-batch size. This means anyone can now scale out distributed training 

to 100s of GPUs using TensorFlow. 

 

Some efforts have focused on enabling the use of GPU on typical Big Data computing frameworks, such as 

MapReduce. PMGMR [JCQ+15] is a C++ implementation of the MapReduce programming model that runs on 

GPUs, providing speed-ups of up to two orders of magnitude when compared with CPU execution. Heter-oSpark 

[LLZ+15] exposes GPUs to Spark jobs through Java RMI, enabling users to offload computation to GPUs. Spark-

GPU [YSH+16] is another solution that enables the execution of applications in both CPU and GPU, while 

extending/improving Spark to avoid overheads with memory copies and scheduling, providing speed-ups of an order 

of magnitude on machine learning applications. 

 

All the above approaches do not account for cross-platform and stream processing optimizations. A number of 

works have taken some preliminary steps towards optimizing data stream processing on HPC infrastructure 

[ZZW+19]. 

 

[VSS11] presents an algorithm for processing data streams with real-time stream scheduling constraints on GPUs. 

This algorithm assigns data streams to CPUs and GPUs based on their incoming rates. It tries to provide an 

assignment that can satisfy different requirements from various data streams. [ZHH15] develops a holistic approach 

to building stream management systems using GPUs. They design a latency-driven GPU-based framework, which 

mainly focuses on real-time stream processing. Due to the limited memory capacity of GPUs, the work concludes 

that the window size of the stream operator plays an important role in system performance. To tackle this issue, 

[PBS15] studies the influence of window size and proposes a partitioning method for splitting large windows into 

different batches, considering both time and space efficiency. SABER [KWF+16] is a window-based hybrid stream 

processing framework aiming to utilize CPUs and GPUs concurrently. 

 

Multi-GPU systems provide tremendous computation capacity, but also pose challenges like how to partition or 

schedule workloads among GPUs. [VSS12] extend their method [VSS11] to a single node with multiple GPUs. 

GStream [ZM11] is a data streaming framework for GPU clusters. GStream supports stream processing applications 

in the form of a C++ library; it uses MPI to implement the data communication between different nodes and uses 

CUDA to conduct stream operations on GPUs. [NL16] develops a GPU performance model for stream workload 

partitioning in multi-GPU platforms. [CXT+15] proposes G-Storm, which enables Apache Storm to utilize GPUs. 
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9.7 Geo-distributed CEP Optimization 

The role of works attempting to optimize gro-distributed CEP is to assign the evaluation of a physical CEP operator, 

in-network, i.e., to a cluster that is closer to the event producing sources, so as to reduce communication 

simultaneously harnessing the network latency. Few of them also employ the push-pull rationale we discuss to 

further limit the amount of communicated data or account for uncertainty in event occurrence.  

 

There is a number of approaches on geo-distributed CEP including SIENA [CRW01], Gryphon [ASS+99], Hermes 

[PSB03], PADRES [LG05] and the more recent works of Cordies [KKR10], DHCEP [SKR11] and FAIDECS 

[WEJ14]. SIENA and Gryphon do not consider in-network aggregation of events, but have focused on the efficient 

routing of simple events by reducing the communication costs between clients and brokers in pub/sub systems, thus 

avoiding the flooding of events to all subscribers. Hermes (a.k.a DistCED) uses a Distributed Hash Table (DHT) to 

determine in-network, CEP operator placement for execution, while FAIDECS employs Hermes’s DHT for the 

same reason. However, as discussed in [PLS+06] DHT tables minimize the hop count as opposed to network latency 

or communication cost. Thus, DHT routing paths lead to inefficient CEP operator physical execution plans. 

Although PADRES and Cordies opt for optimizations involving network traffic and routing delay, they neither take 

into account any network-, latency- or system-specific information, nor provide any specific algorithmic suite for 

operator placement. DHCEP, uses network usage in its optimization process. Network usage is defined as the sum of 

products of dataRate×latency on communication links. However, using such a blended metric, instead of seeking for 

Pareto optimal solutions as we do, does not allow for latency-constrained optimization and communication cost 

minimization, separately. All constraints examined in DHCEP involve processing, security or domain restrictions, 

but not bandwidth consumption or latency.  

 

The FERARI framework [FMG+16] enables CEP over multiple clusters or clouds. Geo-distributed CEP is 

optimized by a query optimizer that receives as input the CEP query composed of a number of CEP operators and 

determines the physical execution of CEP operators assigned to networked clusters, patched with a proper push-pull 

strategy. To achieve that, FERARI enhances the algorithms of [ACT08] with in-network placement. It seeks for 

overall Pareto optimal solutions in terms of both in-network processing and push-pull strategy not only per operator, 

but also among operators shared by multiple queries. However, it does not account for other important optimization 

objectives such as resource consumption minimization or throughput maximization and works only with one Big 

Data platform, i.e. Apache Storm.  

 

The work in [WCZ13] is reported as the only one that considers uncertain CEP over distributed settings. However, 

contrary to the techniques we present, it does not impose in-situ filters in order to avoid communication. Instead, the 

proposed technique lets every site compute probabilities of full or partial pattern matches locally per site and then 

accumulates these results to a central site to compute the final CEs. These final CEs are then forwarded to the CEP 

query source. The techniques we develop significantly differ because, by employing in-situ filters, we totally 

suppress communication among sites in case these local filters indicate that a CE cannot have occurred even upon 

synthesizing data from other sites. 
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10 Conclusions and Future Work 

In this deliverable we describe the internal architectural design of the Optimizer Component of INFORE and the 

algorithmic arsenal it has been equipped with, to boost timely analytic results at scale. The goal of the optimizer is to 

receive the initial workflow drawn by the user, i.e., a logical workflow, and optimize its execution over multiple, 

networked clusters, Big Data platforms and admissible parallelization strategies, prescribing a preferred physical 

plan.  

 

Our optimization problem examines conflicting constraints related to throughput maximization, latency, 

communication cost, memory, CPU usage minimization under global (for the entire workflow) or local (e.g., 

memory, CPU per platform) constraints. Since we cannot improve one objective without deteriorating another, we 

resort to finding Pareto optimal solutions to our optimization problem. We propose optimal (Exhaustive Search, A*-

alike, Dynamic Programming-alike) algorithms and fast Heuristic and Greedy ones. These algorithms trade-off 

reduced execution time for proximity of the prescribed physical execution plan to the optimal one. Our algorithms 

utilize Bayesian Optimization to deal with the complexity and heterogeneity of INFORE data processing operators 

in predicting the performance of a physical plan.  

 

We extend our algorithms to exploit the SDE Component of INFORE and we also devise algorithms for fully 

decentralized networked settings incorporating, apart from clusters, sensor devices of certain hardware capabilities.  

 

Our experimental evaluation shows that our cost estimator can accurately predict the performance of important 

workflow operators utilizing a limited number of microbenchmarks for each. Moreover, the A*-alike algorithm we 

propose can drastically reduce the number of alternative physical execution flows that are examined, compared to 

the exhaustive search approach, in its effort to prescribe a proper physical execution plan (workflow). We further 

experimentally observe the ability of our synopsis-based optimization approach in yielding physical workflows 

whose performance enable interactive, advanced analytics to the major extent. 

 

Our future work concentrates on optimization algorithms that instead of trying to predict the performance of a 

physical plan, quickly compute and start with one such plan and then attempt to detect bottlenecks and stragglers so 

as to improve it at runtime. This new approach together with enhanced versions of the algorithms presented in this 

deliverable will have to rely on robust and fault tolerant adaptation mechanisms across multiple clusters and Big 

Data platforms to ensure or preserve, respectively, the desirable performance of physical workflows in the long run. 

This introduces additional objectives to our optimization goals, such as migration cost minimization upon switching 

between execution plans, which calls for new, robust cost estimations. Besides, our cost estimator should be 

extended to not only provide the primitive so that the developed algorithms pick a good execution plan for a 

physical workflow, but also allow them to predict the ability of the devised plan to maintain high performance as 

time passes and stream characteristics are altered. All these issues, together with fine-tuned optimization over 

heterogeneous infrastructures composed of both GPUs and CPUs, open new horizons both for research and applied 

solutions to get materialized in INFORE’s prototype in Month 32 of the project.  
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