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1 Executive Summary 

This deliverable describes the prototype implementation of the INFORE Architecture, which is defined in the 

deliverable D4.1 (Month 12) of the INFORE project. The following sections detail how the main objectives for the 

INFORE Architecture are achieved by initial implementations and prototypes of the components. The INFORE 

Architecture aims for a holistic, pluggable, extensible framework which supports the following objectives:  

 

i. supporting the non-programmer data analyst in rapid setup of streaming workflows tailored for her 

application scenario needs by providing graphical workflow design facilities,  

ii. automating the tuning of the underlying Big Data platform infrastructure that materializes the visually 

designed workflow as well as the provisioned physical resources in a way that optimizes specific 

performance metrics, 

iii. providing real-time, interactive machine learning and data mining tools that can be leveraged by the 

designed workflows, 

iv. enhanced interactivity via data summarization and approximate query processing techniques, 

v. distributed complex event processing and forecasting techniques to not only detect business events of 

interest as soon as they occur, but also forecast their occurrence well in advance. 

 

These goals are achieved by implementing the following components:  

• Graphical Editor Component 

• Connection Component 

• Manager Component 

• Optimizer Component 

• Synopsis Data Engine Component 

• Interactive Online Machine Learning Component 

• Complex Event Forecasting Component 

 

The functionality described in deliverable D4.1 is achieved by the respective implementations of the components 

and the interactions between them. 

 

The RapidMiner Studio software is extended by the streaming extension. The extension provides the implemented 

Graphical Editor Component, the Connection Component and the Manager Component. 

 

In addition, it provides the integration with the Optimizer Component, the Synopsis Data Engine Component and the 

Interactive Online Machine Learning Component. The implementation of the integration of the Complex Event 

Forecasting Component is ongoing and will be reported in Deliverable D4.3 (Month 32). 

 

Due to these implementations, the streaming extension enables users of the INFORE Architecture to design 

streaming analysis workflows via logical streaming operations without the need for programming or scripting skills. 

The designed workflow abstracts away the streaming logic from actual, physical implementations; there is no need 

for the user to concern himself with such details. The streaming extension of RapidMiner provides the Streaming 

Optimization operator which utilizes the capabilities of the Optimizer Component to perform an optimization of the 

designed workflow. The resulting physical workflow is then visualized in RapidMiner Studio and can be dispatched 

for execution by using the new Streaming Nest operator. This operator implements the functionality of the Manager 

Component by being able to create streaming jobs specific to streaming platforms and submitting those to the 

respective clusters. 

 

The streaming extension also provides the new operators Synopsis Data Engine, and Online Machine Learning. 

They make use of the interfaces, which are described in the deliverable D4.1, to integrate functionality provided by 

above-mentioned components in the streaming analysis workflow. The components can be configured through the 

graphical user interface of RapidMiner Studio and be leveraged in the designed workflow.  
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This deliverable focuses on the integration of the various components that together constitute the initial prototype of 

the entire INFORE Architecture. The implementations and inner workings are detailed for the Optimizer 

Component in deliverable D5.1 (Month 16, together with this deliverable), the Synopsis Data Engine Component in 

deliverables D6.1 (Month 12) and D6.3 (Month 24), the Interactive Online Machine Learning Component and the 

Complex Event Forecasting Component in deliverables D6.2 (Month 16, together with this deliverable), D6.4 and 

D6.5. 
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2 Introduction 

INFORE’s project objectives target the processing of large-scale data that is increasingly being produced as streams 

by a variety of industrial and scientific applications. To handle these massive data streams, transforming them, 

training and applying analytics functions on them, a flexible, extensible and customizable approach is needed. This 

approach should allow end users to easily model and manage streaming analysis workflows. Considering the 

evolution of streaming technologies, the subtle differences in their capabilities, as well as the complexity of 

streaming use cases, INFORE envisions a cross-platform framework approach to visually create streaming processes 

that can integrate complex disparate components or services using a flexible integration approach driven by a 

common middleware to act as an interfacing backbone. INFORE architecture incorporates a generic, technology-

agnostic and platform-abstract representation of visual workflows as streaming graphs, which are transformed and 

translated to multiple supported streaming platforms. This highly extensible and pluggable approach makes 

INFORE streaming workflows future-proof in terms of fast changing technology landscape. The INFORE 

architecture has the means to optimize processes at different levels, including reconfiguring process parameters, 

splitting up processes for placement on potentially multiple streaming platforms - given real-time usage statistics on 

infrastructural capacity of available platforms, functional (quality) objectives and non-functional requirements of 

streaming processes. The INFORE functional prototype deploys these optimized processes in a seamless fashion, 

which enables analysis of results in an interactive and continuous manner. 

 

A major challenge in INFORE is to bring the various components of the architecture together into one system, that 

has a common design principle and follows a unified user experience. The functional prototype introduced in the 

following sections, is the result of this effort to develop a consolidated system based on the envisioned architecture 

of the project team. It integrates the user-friendly design of streaming processes and allows the usage of different 

streaming technologies, without requiring an in-depth knowledge of the underlying technologies. The enhancements 

rendered by the Optimizer Component allow us to adapt and adjust the processes to different workflow layouts. This 

is arguably a highly novel approach since it bridges the gap between design-time and execution-time by providing 

the tooling to optimally harness available physical infrastructure. In addition, the integration of the components for 

the synopsis data engines and online machine learning using a common interfacing middleware allowed us to 

integrate disparate asynchronous components. In short, INFORE has leveraged state of the art technologies but more 

importantly, INFORE offers innovative functionalities that are not available in contemporary systems. Thus it can 

be claimed that INFORE has indeed extended the state of art to various degrees. 

 

The following sections will describe the different parts of the architecture, the technical and engineering aspects of 

various components and how they are implemented in the current version of the prototype. While still in an early 

stage, the system already clearly shows the flexibility and the expressiveness of the INFORE framework. 
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3 Integration of the Components of the INFORE Architecture 

This section describes how the developed prototype implements the structure and concepts of the INFORE 

Architecture. This structure and concepts were defined in the deliverable D4.1 (Month 12). As the definition of the 

Architecture is the theoretical background of the initial prototype the Sections 4 and 5 of the deliverable D4.1 are 

added to the appendix of this document (see Sections 8.1 and 8.2) for convenience. The main concept of the 

INFORE Architecture is also summarized in Section 3.1. This section also includes a refinement of the Architecture, 

needed by the experience gained while developing the prototype. 

 

Section 3.2 focuses on how the different components are integrated, how they interact with each other and how this 

is used to build the first functional prototype of the INFORE Architecture. Implementation details on the specific 

components and their integrations are described in Section 4. Section 3.3 discusses how far the functionality of the 

INFORE Architecture is achieved by the initial prototype. 

 

As mentioned, the streaming extension was added to the RapidMiner Studio and implements the Connection 

Component, the Graphical Editor Component and the Manager Component. The streaming extension also 

implements integrations of the Optimizer Component, the Synopsis Data Engine Component and the Online 

Machine Learning Component. These integrations enable the interaction with the specific components in the 

INFORE Architecture. Hence, the streaming extension is the implementation of the prototype of the INFORE 

Architecture, which is described in this document. 

3.1 INFORE Architecture Design 

Figure 1 shows an overview of the concept of the INFORE Architecture, designed in the deliverable D4.1. This 

subsection will give a short recap of the architecture and introduce an update to the concept. 

The user interface of the INFORE Architecture comprises the Graphical Editor, which provides the Streaming Nest 

operator, standard streaming transformation operators and the two “Component Operators” (Synopsis Data Engine, 

Online Machine Learning). It also provides various connection objects that store necessary information for 

interacting with specific clusters. Those clusters are either responsible for data streaming or the execution of 

streaming jobs. Users can utilize these operators and connection objects to design streaming analysis workflows in a 

visual environment.  

 

The designed workflow is then sent to the Manager Component. The Manager instructs the Optimizer Component to 

optimize the workflow. To do this, it retrieves information about available resources in the computing clusters. The 

optimized plan gets then executed on one or more computing cluster(s). After deployment, jobs can be monitored by 

the Manager Component. 

 

As an update on this concept, the Streaming Optimization operator is introduced in this deliverable. It represents the 

optimization of the streaming workflow by the Optimizer Component, in the Graphical Editor. The user still designs 

the streaming workflow in the same manner, but now in the subprocess of the Streaming Optimization operator. All 

connection objects are provided to streaming execution backends, which can potentially be used for job execution. 

The Optimizer Component performs the optimization of the workflow and decides on the placement of the logical 

operators on the computing clusters. The Streaming Optimization operator creates Streaming Nest operators and 

links those with corresponding connection objects. This defines the computing cluster and big data technology on 

which the corresponding operators are to be executed. For a more detailed description of these operators see the 

following subsections. 

 

This deliverable also concretizes how logical streaming operators are implemented and used in the INFORE 

Architecture. The streaming operators (see Section 4.2 for a list of the operators) are implemented as logical 

streaming operations. They must be placed inside a Streaming Nest operator (or inside a Streaming Optimization 

operator, which by itself places them again in Streaming Nest operators). The connection object provided to the 

Streaming Nest operator defines the used streaming technology (the actual physical implementation). This causes an 

update of the JSON interface used in the communication between Manager Component and Optimizer Component 

(see Section 4.4). 
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Figure 1: Overview of the conceptual design of the INFORE Architecture (image from deliverable D4.1). 

3.2 Integrations of the Components of the INFORE Architecture 

This section describes the integrations of the different components in the prototype of the INFORE Architecture. 

3.2.1 Connection Component Integration 

To integrate the Connection Component new connection object types are added to the streaming extension of 

RapidMiner Studio. Connection objects (from now on called connections) in RapidMiner Studio store all necessary 

information to connect to a specific type of service, typically over network. They can be stored in the same way as 

other objects in the RapidMiner Studio repository and they are handled in the process panel in the same way. They 

can be retrieved from the repository with the Retrieve operator, be connected to different operators or placed into 

subprocesses by utilizing corresponding ports. The Multiply operator is suitable for duplicating connection 

information in the current process, so that the same connection can be used at different operators. They can also be 

shared with others, for example by using RapidMiner Server. Information in connections can be encrypted and user 

specific entries (e.g. username and password) can be left out from the connection object and injected by the 

corresponding user. For more details about connection objects, see the documentation of connection objects in the 

official RapidMiner Studio documentation1. 

 

The streaming extension adds three new connection types to RapidMiner Studio: Kafka Connection, Flink 

Connection and Spark Connection. They respectively allow configuring communication channels to Kafka, Flink 

and Spark clusters. Kafka Connections are used by the new operators Kafka Source and Kafka Sink to bring input 

data streams into the workflow and output processed data as a stream. They also play a central role in the new 

Synopsis Data Engine and Online Machine Learning operators to facilitate interaction with the corresponding 

components. Figure 2 shows the graphical interface to create a Kafka Connection object. As shown, the graphical 

interface empowers users with the ability to provide the necessary information to connect to the Kafka cluster. 

 

 

 
1 https://docs.rapidminer.com/latest/studio/connect/ 
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Figure 2: Graphical interface to create a new Kafka Connection. The type, the location (repository) and the 

name of the connection must be specified, as well as the Kafka specific settings. 

 

Flink Connections are used by the new Streaming Nest operator to deploy a streaming analysis workflow on a Flink 

cluster. Using a Flink Connection for the input of the Streaming Nest operator therefore defines the used technology 

of the logical streaming operators in the Streaming Nest operator. Figure 3 shows the graphical interface to create a 

Flink Connection object. The necessary information to connect to the Flink cluster can easily be provided. 

 

 

 

Figure 3: Graphical interface to create a new Flink Connection. The type, the location (repository) and the 

name of the connection must be specified, as well as the Flink specific settings. 

 

Like Flink Connections, Spark Connections are used by the new Streaming Nest operator to deploy a streaming 

analysis workflow on a Spark cluster. Hence, they also define the used technology of the logical streaming operators 

in the Streaming Nest operator. Figure 4 shows the graphical interface to create a Spark connection object. Like for 

Kafka and Flink, the necessary information can be easily provided as well. For more details about the deployment of 

streaming jobs by the Streaming Nest operator see Section 3.2.3 and 4.3. For the implementation details of the 

connection objects see Section 4.1. 
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Figure 4: Graphical interface to create a new Spark Connection. The type, the location (repository) and the 

name of the connection must be specified, as well as the spark specific settings. 

3.2.2 Graphical Editor Component Integration 

To integrate the Graphical Editor Component, the streaming extension of RapidMiner Studio is developed. It allows 

to utilize the already existing graphical editor of RapidMiner Studio to design streaming analysis workflows in a 

simple to use, visual design approach. The streaming extension adds several new operators to RapidMiner Studio. 

To define a streaming analysis workflow, the new Streaming Nest operator can be used. It is a subprocess operator, 

which means that it has an internal subprocess where operators can be placed. All streaming operators of a 

streaming analysis workflow are placed inside the Streaming Nest operator. 

 

Besides the Streaming Nest, the new extension adds several stream operators, which provide some standard 

streaming analysis functionality. The operators Kafka Source and Kafka Sink enable reading and writing of Kafka 

topics in a streamed way. The operators Duplicate Stream, Join Streams and Connect Streams enable stream flow 

handling in a streaming analysis. The operators Aggregate Stream, Filter Stream and Map Stream enable standard 

streaming transformations. 

 

All operators are designed as logical operators. They define only the logic of the streaming analysis, not the actual 

technology used to achieve this. This is done by providing the corresponding streaming execution connection to the 

Streaming Nest operator (see Section 3.2.1). The Streaming Nest send the designed workflow, together with the 

connection object to the Manager Component, which creates a backend specific streaming job from the logical 

streaming workflow. This backend specific streaming job is then deployed on the corresponding cluster. For more 

details about this, see Section 3.2.3 and Section 4.3. 

 

To utilize the different “INFORE Components”, the Streaming Data Engine and Online Machine Learning 

operators are also added to the streaming extension. They are designed as logical operators as well and can be 

integrated into executions on all streaming execution backends. For more details about the integration of the 

“INFORE Components” see the Sections 3.2.5, 3.2.6, 4.5 and 4.6. 

 

If the user intends to optimize his workflow via the Optimizer Component of the INFORE Architecture, he can use 

the new Streaming Optimization operator instead of the Streaming Nest operator. For more details see Section 3.2.4 

and 4.4. 

 

A streaming analysis workflow designed with the Graphical Editor Component of the INFORE Architecture is 

depicted in Figure 5. Section 4.2 describes the implementation of the graphical editor component. 
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Figure 5: A (demo) streaming analysis workflow designed with the Graphical Editor Component of the 

INFORE Architecture. All logical streaming analysis operators are placed inside the Streaming Nest operator. 

The Flink Execution Backend connection is provided to the Streaming Nest operator and defines where the 

streaming analysis workflow is deployed. 

3.2.3 Manager Component Integration 

One of the main principles in the INFORE architecture is to enable a general approach to create streaming analysis 

workflows that are automatically ported to multiple Big Data streaming backends. The streaming extension delivers 

this capability to design workflows in a platform-independent fashion, which can be seamlessly executed on any 

supported streaming backend. This fine engineering feat is achieved by the Manager Component. The user draws 

the visual streaming workflows using the logical operators (explained in Section 3.2.2). Using this visual workflow, 

the Manager Component builds a generic representation of the streaming workflow called Stream Graph. The 

Stream Graph is a framework-independent model that can be ported to any supported backend. Currently, these 

backends include Flink and Spark platforms. This current functionality validates the generic design of the Manager 

Component as envisioned in the last deliverable D4.1 and beyond proof of concept level. 

 

The Manager Component itself is integrated within the Streaming Nest operator, which invokes it upon execution. If 

the streaming process requires optimization, the user places the entire operator chain inside the Streaming 

Optimization operator (see Section 3.2.4) instead of a Streaming Nest operator. Optimization always results in one 

or more processes, which each start with Streaming Nest operator and then on, the Manager Component is invoked 

in the same fashion by the Streaming Nest. Upon invocation, the Manager Component performs various functions 

and interactions, which are briefly explained (detailed in Section 4.3) below: 

  

• Creating the stream graph from the visual streaming workflow. 

• Creating a deployment package that contains a serialized form of stream graph, along with its execution 

and translation utilities and required (platform-specific) binaries. This package is a self-contained and 

execution-ready streaming job. 

• Dispatching the deployment package to the streaming backend of choice. 

• The executable code of the dispatched job recreates the stream graph (at the target platform) by 

deserializing it and applies the translation utilities (also developed in the project work) to generate a 

platform-specific graph, which is native to the target platform e.g., Flink or Spark. 

 

From an integration perspective, the Manager Component handles the important link between design phase and 

execution phase of streaming workflows. To connect with the streaming backends, it uses the connection objects 

that are provided to the Streaming Nest operator as an input (as a collection of connection objects, e.g. to connect 

with potentially multiple Flink or Spark clusters). Further, the Manager Component provides an extendable 

programmable approach to implement additional features in the stream graph e.g., to support new sources, sinks, 

flow-control or transformation functions. This means that for each visual operator of the streaming extension, the 

relevant programmable hooks of the Manager Component (i.e., classes or methods) are extended or overloaded. This 

generalization also applies to operators that integrate (either connect or use) other architectural components, which 

may be distributed as services over different networks (i.e. Synopsis Data Engine (SDE) and Online Machine 

Learning (OML) components). Thus, on one hand, the functionality provided by these components can be easily 
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integrated within the visual workflows, and on the other hand, during the creation of the stream graph, the usage of 

these potentially external services (external to the environment where the streaming workflow executes) is also 

embedded and positioned within the stream graph. 

  

The main outcome of this highly generic and well-integrated design is that end-users can dynamically create varying 

workflows, without having to hard code any part of the workflow outside RapidMiner Studio. The extensible design 

allows us to incrementally include as many source, sink, flow-control, transformation or integration operators as 

required by the use case workflows. Hence, the role of Manager Component is quite broad in achieving the overall 

integration of INFORE components. For more details on the Manager Component design, please refer to Section 

4.3. 

3.2.4 Optimizer Component Integration 

To integrate the Optimizer Component, the operator Streaming Optimization is added to the streaming extension of 

RapidMiner Studio. It is a subprocess operator, which means that it has an internal subprocess where operators can 

be placed. 

 

The user designs the logical streaming analysis workflow inside the Streaming Optimization operator by utilizing 

the functionality provided by the Graphical Editor Component (see Section 3.2.2) and by the Synopsis Data Engine 

Component (see Section 3.2.5) and the Online Machine Learning Component (see Section 3.2.6). Such a designed 

workflow is shown in Figure 6. The user must also provide a connection to a Kafka cluster to the Streaming 

Optimization operator. This connection is used for the communication between the different execution sites. The 

user also provides a collection of connections to streaming execution backends on which the workflow can be 

executed (only on one of them or distributed over several). Both the Kafka Connection and the collection of 

streaming execution backends are handled by the Connection Component (see Section 3.2.1).  

 

 
Figure 6: A streaming analysis workflow in the Streaming Optimization operator. The Kafka Connection and 

the collection of the streaming execution backend connections are provided to the Streaming Optimization 

operator as well. They are used by the Optimizer Service to perform the optimization. 

 

Upon execution of the designed workflow, the Streaming Optimization operator starts the Optimizer Service as an 

in-memory (local) process (see Deliverable D5.1), creates the necessary input JSON files and utilizes the Optimizer 

Service to optimize the designed workflow. The response of the Optimizer Service contains the placement of the 

execution of the operators at the provided streaming execution backends. 

 

The Streaming Optimization operator receives this response and updates its inner process accordingly. It creates 

automatically Streaming Nest operators and connects the corresponding streaming execution backend connection 

objects to the input of the Streaming Nest operators. If different parts of the workflow are distributed to different 

streaming execution backends, Kafka Sink and Kafka Source operators are automatically placed to connect these 

workflow parts. For this Kafka Sink and Kafka Source operators, the connection to the Kafka cluster is used, which 

was provided to the input of the Streaming Optimization operator.  
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The optimized workflow (an example is shown in Figure 7) can be inspected in the inner subprocess of the 

Streaming Optimization operator after the optimization was performed. When the optimized workflow is executed, 

the different Streaming Nest operators deploy their corresponding streaming analysis workflows to the respective 

streaming execution backends as it is described in Section 3.2.3. The original (logical) workflow can be restored as 

well. 

 

Section 4.4 describes the implementation of the Streaming Optimization operator. 

 

 

 

Figure 7: The optimized version of the streaming analysis workflow from Figure 6. The logical operators are 

now placed in the Streaming Nest operators. The streaming execution connections are provided to the 

corresponding Streaming Nest operators. The two nests are connected by Kafka Sink (2) and Kafka Source (3) 

operators which uses the provided Kafka Connection object. 

3.2.5 Synopsis Data Engine Component Integration 

To integrate the Synopsis Data Engine (SDE) Component, the Synopsis Data Engine operator is added to the 

streaming extension of RapidMiner Studio. It enables users of the INFORE Architecture to utilize the functionality 

provided by the SDE Service into their streaming analysis, by simply drag and drop the operator into the designed 

workflow. Figure 8 shows a workflow using the SDE operator. The used synopsis and further configurations can be 

defined by the parameter panel of the operator (bottom right side of Figure 8). The SDE Service is deployed 

externally and can be used in different workflows. The Kafka Connection provided to the input port of the SDE 

operator is used to communicate with the SDE Service. For more details about the SDE component, see Deliverable 

D5.1. The implementation of the SDE operator is described in detail in Section 4.5. 
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Figure 8: Streaming workflow containing the Synopsis Data Engine operator. The parameter panel on the 

bottom right shows the configuration possibilities for the operator. 

3.2.6 Online Machine Learning Component Integration 

To integrate the Online Machine Learning (OML) Component, the Online Machine Learning operator is added to 

the streaming extension of RapidMiner Studio. Like the SDE operator, the new operator enables users of the 

INFORE Architecture to include online machine learning in their streaming analysis. The operator is placed in the 

streaming workflow by drag and drop. It can be configured by the parameter panel. The output is further processed 

in the streaming analysis workflow.  

 

Figure 9 demonstrates a workflow using the OML operator. The parameter panel of the operator is shown as well. 

The OML component is not deployed externally as a service like the SDE Service. It is deployed by the OML 

operator itself. To do this, the user must provide a Flink Connection to the operator, which defines the Flink cluster, 

the OML Service is deployed to. The provided Kafka Connection is then used to communicate with the new 

deployed OML Service. The training input data stream and the input data stream to be scored by the trained model 

must be provided to the corresponding input ports. 

 

For more details about the OML Component see Deliverable D6.2. For the implementation details of the OML 

operator see Section 4.5. 
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Figure 9: Streaming workflow containing the Online Machine Learning operator. The parameter panel on the 

bottom right shows the configuration possibilities for the operator. 

 

3.3 Interactions of the components to build a functional prototype of the INFORE 

Architecture 

Deliverable D4.1 presented a step-by-step process (see Section 8.2.3) on how a streaming analysis workflow is 

created, optimized and deployed using the INFORE Architecture. This process is also visualized in Figure 10. This 

subsection describes which steps are implemented by this prototype and which steps will be enhanced in the further 

development of the implementation of the INFORE Architecture. 
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Figure 10: Overview of the step-by-step process for creating and deploying a streaming analysis workflow in 

the INFORE Architecture (image from deliverable D4.1). 

 

The following list describes the different steps and how the prototype implements these steps: 

 

1) Design of the streaming analysis workflow:  

The implementation of the Graphical Editor Component (see Section 3.2.2) enables the user to define the 

logic of a streaming analysis, without the need to care of the technology-specific details. 

a) Streaming operators are implemented as logical operators, abstracting the streaming analysis 

functionality from the streaming technology providing this functionality. 

Step 1a is completely implemented by the prototype. 

b) The operators Synopsis Data Engine and Online Machine Learning (see Section 3.2.5 and 3.2.6) 

enable us to bring in the functionality of the corresponding components into the streaming analysis 

workflow. The integration of the Complex Event Forecasting component is ongoing. 

Step 1b is completely implemented by the prototype for the SDE and OML components. 

c) The implementation of the Connection Component (see Section 3.2.1) enables to create 

connection objects for input and output streams and for streaming execution backends through the 

Graphical Editor Component. They can be easily handled by the user in the same drag-and-drop 

approach as the streaming operators. 

Step 1c is completely implemented by the prototype. 

 

2) Handover of streaming analysis workflow to Manager Component: 

The implementation of the Streaming Optimization operator (see Section 3.2.4) can create all necessary 

JSON representations of the designed workflow and of the available streaming execution backends, while 

the Streaming Nest operator (see Section 3.2.3) can create a stream graph representation of the designed 

workflow. This functionality achieves the desired handover of the streaming analysis workflow to the 

Manager Component. 

 

While the connection objects can be utilized to connect to the input and output streams and the streaming 

execution backends (which is used to deploy the workflows on the computing clusters), the information 

retrieval of available resources is not yet integrated fully in the INFORE Architecture. 

The main objectives of Step 2 are implemented by the prototype, while there will be ongoing development 

on the information retrieval. 
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3) Optimization of the streaming analysis workflow by the Optimizer Component: 

The implementation of the Optimizer Component (see Section 3.2.4 and deliverable D5.1) achieves the 

possibility to convert the created JSON representations of the workflows and available computing clusters 

(see step 2) into a tool-agnostic workflow representation which can be optimized. While the optimization 

includes the bundling of operators to specific streaming execution jobs (and thereby the placement of the 

operators on the computing clusters), additional optimization efforts are not yet integrated in the INFORE 

Architecture. 

 

The main functionality of Step 3, the optimization of a streaming analysis workflow provided by the 

Manager Component, is implemented by the prototype, while further optimization possibilities will be 

enhanced in future developments. 

 

4) Providing optimized workflow back to Manager Component: 

The implementation of the Streaming Optimization operator (see Section 3.2.4) can receive the response of 

the Optimizer Component. The Streaming Optimization operator automatically creates different Streaming 

Nest operators, depending on the response of the Optimizer Component. These different Streaming Nest 

operators can be visualized by the Graphical Editor, informing the user about the changes of the Optimizer 

Component. The Streaming Nest operators can create Stream Graph representations of the cluster specific 

streaming jobs and hence the Manager Component is updated on the optimized workflow. 

Step 4 is completely implemented by the prototype. 

 

5) Deployment of the workflow by the Manager Component: 

The implementation of the Manager Component (see Section 3.2.3) can create technology specific jobs 

from the Stream Graph representations of the workflows and deploy them on the corresponding computing 

cluster. 

 

Step 5 is implemented for the streaming technologies Flink and Spark by the prototype. 

 

6) Monitoring and management of the deployed workflow: 

The monitoring and management of the deployed workflow is not yet implemented in this prototype of the 

INFORE Architecture. Users must monitor, abort or pause running workflows manually. They can still use 

the already implemented functionality of steps 1) to 5) to update existing workflows, perform a re-

optimization and re-deploy them on the computing clusters. 

 

Step 6 is not yet implemented by the prototype. But the steps 1) to 5) enable an easy manual version of Step 

6. 

 

7) Retrieving and consuming results: 

The implementation of the Kafka Sink operator (see Section 3.2.2) enables to create output streams, which 

can be further consumed by different streaming consumers. Other means of providing results of streaming 

analysis workflows are not yet implemented by this prototype. 

 

The main functionality of Step 7 is implemented by the prototype, while further means of providing results 

will be added in future developments. 

 

To summarize, the prototype of the INFORE Architecture, described in this deliverable achieve the implementation 

of the main functionality of all steps. Hence, it is a functional prototype of the architecture design, which was 

described in deliverable D4.1.  
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4 Specification and Design of INFORE Software Stacks 

This section details the implementations of the different components in the streaming extension of RapidMiner 

Studio. Hence, the implementations of the Connection Component, the Graphical Editor Component and the 

Manager Component are described. In addition, the implementations of the integrations of the Optimizer 

Component, the Synopsis Data Engine Component and the Online Machine Learning Component are described in 

this Section. The details of the implementations of the components themselves are described in the respective 

deliverables. A first discussion about the realization of the INFORE Architecture was already presented in 

deliverable D4.1. The following implementation details are based on this discussion, hence the Section 5 of the 

deliverable D4.1 is added to the appendix of this document (see Section 8.2) for convenience. 

4.1 Connection Component 

The new Connection Component of the INFORE Architecture extends the already existing connection object 

management of RapidMiner2. It adds three new connection objects types which are utilized to connect to the 

corresponding streaming backends. Section 3.2.1 describes the usage of the new connection objects in the INFORE 

Architecture. Following the settings of each new connection type is listed. While the current list of settings is 

enough to achieve the goals of the prototype of the INFORE Architecture, the connection object types will probably 

be enhanced in the future while finalizing the prototype in the upcoming development in the INFORE research 

project. 

 

Kafka Connection: The Kafka Connection objects are utilized by the Kafka Source, Kafka Sink, Synopsis Data 

Engine and the Online Machine Learning operators to receive streamed data from Kafka topics or to produce 

streamed data to Kafka topics on a Kafka Cluster. This can be used for input and output data in the streaming 

analysis workflow, as well as the middleware communication between the different components of the INFORE 

Architecture. 

 

To create a Kafka Connection, a comma separated lists of hosts and ports must be provided. This host and port 

combinations are the connection points to a running Kafka Cluster. The topic names from which data is received or 

to which data is produced are configuration parameters of the corresponding operators and are not provided in the 

connection object. Figure 2 shows the creation of a Kafka Connection object. 

 

Flink Connection: The Flink Connection objects are utilized by the Streaming Nest operator to deploy a logical 

streaming analysis workflow on a Flink cluster. Like for the Kafka Connection, the user must specify the host and 

port used to connect to a running Flink Cluster. In addition, the user must specify the parallelism used for submitted 

Flink jobs on this cluster. Figure 3 shows the creation of a Flink Connection object. 

 

Spark Connection: Like the Flink Connection objects, Spark Connection objects are used by the Streaming Nest 

operator to deploy logical streaming analysis workflows on Spark clusters. Upon creation of a Spark Connection 

object, the user must specify the name of the Spark Master node to connect to. In addition, he must specify the URI 

to the HDFS (cluster) path where the artefacts (job execution package, serialized stream graph) will be deposited 

and thus made available for jobs running on Spark. 

 

Figure 4 shows the creation of a Spark Connection object. 

4.2 Graphical Editor Component 

The Graphical Editor Component builds on the graphical user interface of RapidMiner Studio. The streaming 

extension adds new operators, which provides the functionality to design and deploy a streaming analysis workflow 

in a non-coding way by a simple-to-use drag & drop approach. The main two new operators are the Streaming Nest 

operator and the Streaming Optimization operator.  

 

Streaming Nest: The Streaming Nest operator is a subprocess operator. A workflow designed in its inner 

subprocess represents a single streaming analysis job on a streaming execution backend. The connection object 

 
2 https://docs.rapidminer.com/latest/studio/connect/ 
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provided at the “connection” input port defines which backend will be used. Any RapidMiner object (e.g. 

connection objects used in the streaming analysis workflow) can be passed in and taken from the inner subprocess of 

the Streaming Nest operator by using the corresponding “in” and “out” throughput ports. The “job name” 

parameter specifies the name of streaming job which will be deployed by the Streaming Nest operator to the 

streaming execution backend. For deploying streaming analysis workflows, the Streaming Nest operator uses the 

Manager Component, which is described in Section 3.2.3 and 4.3. 

 

Streaming Optimization: Like the Streaming Nest operator, the Streaming Optimization operator is a subprocess 

operator. A logical streaming analysis workflow is designed by the user in its subprocess. In addition, the user 

provides a Kafka Connection object to the “kafka connection” input port of the Streaming Optimization operator. 

Also, a collection (e.g. by using the Collect operator) of streaming execution connection objects are provided to the 

“streaming execution connections” input port of the operator. The Streaming Optimization operator uses the 

Optimization Component, to optimize the designed workflow. The parameter “optimizer directory” defines where 

the Optimizer Component is installed. The collection of streaming execution connections is used as the possible 

execution backends for the optimization. The Kafka Connection is used to connect different parts of the workflow in 

case the execution is distributed to different backends. The button “Restore Process” can be used to restore the 

original logical streaming analysis workflow. For more details about the optimization component and its integration 

see Sections 3.2.4 and 4.4. 

 

The logical streaming operators of the streaming extension can be grouped into different subgroups. 

Stream In- and Output Operators: 

• Kafka Source:  

o Enables to receive streamed data from a Kafka topic. 

o A Kafka Connection is used to connect to the Kafka Cluster the parameter “topic” specifies the 

name of the Kafka topic from which data is received. 

• Kafka Sink: 

o Enables to write streamed data to a Kafka topic. 

o A Kafka Connection is used to connect to the Kafka Cluster the parameter “topic” specifies the 

name of the Kafka topic to which data is written. 

 

Stream Transformation Operators: 

• Aggregate Stream: 

o Enables to calculate aggregates (sum, average, count, min, max) of values in streamed data over a 

time window. 

o The parameter “key” specifies the partitioning of the data, the parameter “value key” specify the 

value, which is aggregated, the parameter “window length” the length of the time window and the 

“function” specifies the aggregation function. 

• Filter Stream: 

o Enables to filter streamed data items. 

o The parameter “key” specifies the key of the value to be evaluated in the filter, the parameter 

“value” specifies the operand of the filter predicate and the parameter “operator” specifies the 

filter operation. 

• Map Stream: 

o Enables to map a field in streamed data to a new value. 

o The parameter “key” specifies the key, which is mapped, while the parameter “value” specifies 

the new value of the field. 

 

Stream Flow Control Operators: 

• Duplicate Streams: 

o Enables the duplication of a data stream. 

o The two output stream ports represent the duplicated data streams. 

• Join Streams: 

o Enables to join two data streams. 

o The two streams must be provided to the input ports. The parameters “left key” and “right key” 

specify the keys in the left/right data stream to perform the join. The parameter “window length” 

specifies the time window within the join is performed. 
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• Connect Streams: 

o Enables to connect to data streams. 

o The control stream and the data stream must be provided to the input ports. The parameters 

“control key” and “data key” specify the keys used in the corresponding streams. 

 

INFORE Component Operators: 

• Synopsis Data Engine: 

o Enables to leverage the functionality of the Synopsis Data Engine component in a streaming 

analysis workflow 

o A Kafka Connection, which is used to connect to the Synopsis Data Engine Component, must be 

provided at the input port. Several parameters configure the used Synopsis. For more details see 

Section 3.2.5 and 4.5. 

• Online Machine Learning: 

o Enables to leverage the functionality of the Online Machine Learning component in a streaming 

analysis workflow 

o A Kafka Connection, which is used to connect to the Online Machine Learning Component, must 

be provided at the input port. Several parameters configure the used Synopsis. For more details see 

Section 3.2.6 and 4.6. 

4.3 Manager Component 

The Manager Component is designed as a set of extensible programmable modules, which together offer a 

comprehensive functionality as outlined in Section 3.2.3. In this section, we present these modules and show how 

the multi-layered translation of the streaming workflows is achieved by these modules; starting from visual design to 

a framework-independent representation (stream graph) and further downstream into a platform-specific translation. 

 

The high-level design of Manager Component can be expressed in terms of its multi-layered functionality, as shown 

in Figure 11. 

 



 
 
 
 
 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP4 T4.2-4.4 
Deliverable D4.2 

Doc.nr.: WP4 D4.2 

Rev.: 1.0 

Date: 30/04/2020 

Class.: Public 

  21 of 61 

 

Figure 11: High-level design of Manager Component can be expressed in terms of its multi-layered 

functionality. 

 

Extendable and Programmable Module for Graph Creation: 

 

The Manager Component provides programmable interfaces to convert each new visual operator into a node of the 

stream graph. Upon execution of process (within RapidMiner Studio), the stream graph is built progressively and as 

per the sequential execution order of the visual operators in the operator chain. The stream graph gets extended with 

each next operator in operator chain, which may be source, sink, flow-control, transformation or integration 

operators. Under the hood, the programmable interface for each visual operator (consider a transformation operator 

for instance), is composed of a Transformer class, which is instantiated to represent a node in the stream graph. An 

instance of the Transformer class encapsulates all consuming (incoming/upstream) and producing 

(outgoing/downstream) streams that affect the node, which the transformer instance represents. Some additional 

framework-level classes have been written, which serve as base classes to be extended for each visual operator and 

some standard methods need to be overloaded, so that the stream graph could be processed using a common scheme 

for different operators. 

 

Once the stream graph is created, it is serialized and packaged along with its executing code into a so-called fat-jar 

file, which also contains the platform-specific binaries as well translation utilities. There are a few subtleties when it 

comes to preparing and dispatching the packages targeting the underlying platforms e.g., the platform-specific 

binaries that accompany the streaming graph may be separately posted for Spark, but in any case, the delivery of the 

streaming graph and its dependencies is ensured before the streaming graph is executed. These rather low-level 

integration mechanisms have been resolved considering the most feasible approaches available in individual 

platforms, with the result being that the end-user is not affected and can rely on seamless dispatching of her 
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streaming graph.  Once received and assembled at the backend, the streaming graph is executed. The executing code 

is basically a platform-specific program (a Job in case of Flink or Spark) that first, deserializes the stream graph on 

the target platform and then performs platform-specific translations on the stream graph. These translations are taken 

care by the Translation Utilities module. 

 

The transformation of the visual workflow into a generic stream graph, its dispatchment as a deployment package 

and subsequent translation into platform specific stream graph executed as a native job is sketched out in the Figure 

12 below. 

 

Figure 12: Various stages in the transformation, deployment and execution of workflows – represented here 

as states (rectangles) and actions (numbered sequences) to progress to next state. 

 

Translation Utilities Module: 

 

A platform-specific Translation Manager utility (class) traverses the stream graph object model to convert it into a 

streaming program (or Job) that can be executed on the said platform. Traversal is performed using the Visitor 

design pattern. As each node of the stream graph represents a unique function, hence, for each operator, a new visit 

method needs to be overloaded in the Translation Manager class, with a new parameter representing the transformer 

instance. The visit method provides the hook where the generic representation of the operator is converted into the 

target platform’s representation. Inside the visit method, the platform specific libraries (also shipped with the fat jar), 

are utilized to perform sanity tests e.g. the existence or availability of all incoming and outgoing streams on the 

target environment and then the transformer functionality is translated into natively compatible streaming functions. 

 

Remember that the Translation Manager utilities are platform-specific, so there are separate Translation Manager(s) 

for each backend, which are also structured in different project-modules, but within the codebase of the streaming 

extension. The Translation Manager for Flink for instance, would require a library of so-called Translator classes - 

each shadowing a unique (but generic) transformer or another operator. The Translator classes must implement their 

platform-specific logic on stream handling, transformation or more, within a translate method, which is invoked by 

the Translation Manager.  

 

As an example, let us consider that we need to create a new transformation operator (say Connect Streams operator) 

to connect two streams. For this, the developer implements a ConnectTransformer class (for the generic model), 

then adds a visit method in the TranslationManager classes – separately for Flink and Spark and finally, to achieve 

the translation into native platform (within the visit method), the ConnectTransformerTranslator class has to be 

implemented for both Flink and Spark Translation Managers and provides respective implementations of the 

translate method in each. The translate method acts as the place-holder, where the libraries and APIs specific to the 

target platform are used to provide the desired functionality e.g., in our example case, the DataStream class from 

Flink (and Spark) can now be used to read two different streams incoming in the Connect Streams operator and 

connect them on the user-provided key parameter. 

 

This standard nomenclature for model conversion has been tested to satisfaction with the first batch of operators in 

the streaming extension. The design has eased development and is expected to ease management effort over time, 
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while also affording pluggability of operators as the number of streaming operators would increase in accordance 

with and subject to the use case requirements. 

4.4 Integration of the Optimizer Component 

The Streaming Optimization operator is added to the streaming extension of RapidMiner to integrate the Optimizer 

Component. The operator has two input ports. A Kafka Connection object must be connected to the first “kafka 

connection” input port. A collection of streaming execution connection objects (e.g. Flink and/or Spark 

Connections) must be provided to the second input port (“streaming execution connections”). The user defines a 

streaming analysis workflow in the inner subprocess of the operator. The user can drag and drop logical streaming 

operators provided by the Graphical Editor Component (see Section 4.2) in the subprocess. 

Upon execution of the operator the Optimizer Service is started as an in-memory (local) process. To do this the 

parameter “optimizer directory” specifies the location of the Optimizer. The operator creates then the input JSON 

objects for the Optimizer: 

 

Network.json: The Network JSON describes the available execution sites and platforms. The collection of 

streaming execution connection objects is used to create the Network JSON. Each connection is used to create an 

entry of one platform on one site in the Network JSON. For this prototype, resource variables in the JSON objects 

are set to dummy values. Figure 13 shows an example Network JSON object. 

 

 

Figure 13: Example Network JSON objects for communication with the Optimizer Component. Each 

connection object is represented by a site-platform entry. Resource variables are set to dummy values for this 

prototype. 
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Config.json: The Config JSON describes the setting of the optimizer algorithms. For this prototype, default settings 

are used, without the possibility to change the settings by the user. This will be enhanced in the future. Figure 14 

shows an example Config JSON object. 

 

 

Figure 14: Example Config JSON object for communication with the Optimizer Component. For this 

prototype default settings are used, without the possibility to change the settings by the user. 

 

Dictionary.json: The Dictionary JSON describes the available logical streaming operators. For this prototype, all 

streaming operators of the Graphical Editor Component (see Section 4.2) are listed in the Dictionary JSON. As 

described in Section 3.1 streaming operators are all designed as logical operators, while the physical implementation 

is defined by the connection object provided to the Streaming Nest operator. Thus, the field “platform” in the 

Dictionary JSON object lists the supported technologies for the operators by providing dummy “operatorName” 

fields for the different technologies. For this prototype all operators support Flink and Spark. Figure 15 shows an 

example Dictionary JSON object. 
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Figure 15: Example Dictionary JSON object for communication with the Optimizer Component. For 

demonstration purpose, the list of supported streaming operators is shortened in this figure. The 

“operatorName” fields contain dummy entries, only indicating that the operator supports the corresponding 

platform. 
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Workflow.json: The Workflow JSON describes the designed streaming analysis workflow in the subprocess of the 

Streaming Optimization operator. For each operator it contains information about the name, the parameters, the 

input and output ports and the operator class (e.g. its logical functionality). In addition, all connections between 

operators are provided in the workflow JSON. deliverable D4.1 already contained a description of the Workflow 

JSON, as the description of the interface between Manager Component and Optimizer Component (see Section 

8.2.1, Table 2 and Figure 28). While developing the prototype of the INFORE Architecture, the implementation of 

the streaming operator as well as the integration concepts of the Optimizer Component were concretized (see 

Section 3.1). This leads to an update of the fields in the engine-agnostic workflow representation in comparison to 

deliverable D4.1. Table 1 gives an overview about the updated fields and their meaning in the representation. Most 

notable is the removal of the “isLogicalOperator” field, cause all operators are logical ones. Also, the “Resources” 

information fields are moved to the Network JSON object. Other changes address necessary fields to correctly 

interpret the representation of the workflow, which came up during the development of the integration of the 

Optimizer Component. 

 

 

Key Description Key Description 

Workflow Information numberOfSubprocesses 
Number of subprocesses  

(can be null) 

workflowName 
Name of the current 

workflow 
innerWorkflows 

List of inner workflows (each 

field contains a complete 

workflow representation, see 

Workflow Information)  

(can be null) 

enclosingOperatorName 
Name of enclosing operator 

of this workflow 
Parameter 

innerSourcesPorts-

AndSchemas 

List of inner sources of the 

current workflow (fields of 

each entry described in 

PortAndSchema) 

key Key of the parameter 

innerSinksPorts-

AndSchemas 

List of inner sinks of the 

current workflow (fields of 

each entry described in 

PortAndSchema) 

value 
Current parameter value (as 

String) 

operatorConnections 

List of Operator 

Connections (fields of each 

entry described in Operator 

Connections) in the current 

workflow 

defaultValue Default value (as String) 

operators 

List of Operators (fields of 

each entry described in 

Operator) in the current 

workflow 

range 
String representation of the 

range  

Operator Connections typeClass 
Name of the Java parameter 

class 

fromOperator Name of source operator PortAndSchema 

fromPort Name of source port name 
Name of the input or output 

port 

fromPortType 
Type (normal output port or 

inner source) of source port 
objectClass 

Name of java class of the 

object delivered or received 

at this port 

toOperator Name of sink operator portType 

Type (output port, input port, 

inner source, inner sink) of 

the port 

toPort Name of sink port isConnected 
Indicator if the port is 

connected 

toPortType 
Type (normal input port or 

inner sink) of sink port 
schema 

If object is a data set, Schema 

of this data set 

Operator Schema 
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 name 
(unique) name of the 

operator 
fromMetaData 

Indicator if schema is 

retrieved from meta data 

classKey 
RM specific key for the 

operator class 
size Size of the data set at the port 

operatorClass 
Name of the java operator 

class 
attributes List of Attributes  

isEnabled 
Indicator if the operator is 

enabled 
Attribute 

parameters 
List of Parameters (see 

Parameter) 
name Name of Attribute 

inputPortsAndSchemas 

List of input ports and their 

schema (see 

PortAndSchema) 

type Value type 

outputPortsAndSchemas 

List of output ports and their 

schema (see 

PortAndSchema) 

specialRole Special role 

hasSubprocesses 
Indicator if the operator has 

subprocesses 
  

Table 1: Updated overview of the different fields and their meaning in the engine-agnostic workflow 

representation. 

 

The created JSON objects are send with HTTP requests to the Optimizer Service. The information is used by the 

Optimizer Service to perform an optimization of the provided Workflow JSON. The response of the Optimizer 

Service is the Workflow JSON with updated information about the placement of the operators on the different 

streaming execution backends. Figure 16 shows the response JSON of the Optimizer Service and a visualization of 

the placement of the operators. It is also indicated that two operator connections in the workflow will be split by the 

placement of the operator. 

 

 

Figure 16: Response JSON from the Optimizer Service, containing updated information about the placement 

of the operators on the different streaming execution backends. This placement is also visualized for the 

designed example workflow. Two operator connections will be split by this placement. 

The Streaming Optimization operator creates now automatically Streaming Nest operators for all streaming 

execution backends on which at least one operator is placed on. The corresponding streaming execution connection 

is connected to the Streaming Nest operators. This is shown in the top of Figure 17.  

 

If parts of the Streaming Analysis Workflow are placed on different streaming execution backends, which is the case 

for the connection between the operators Map Stream and Join Streams in the workflow shown in Figure 17, the 

parts must be connected by the Kafka Middleware. To achieve this, Kafka Sink and Kafka Source operators are 
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automatically placed at the now split operator connections. The name of the Kafka topic used is constructed as 

follows: 

 

<SourceOp>.<SourcePort> to <TargetOp>.<TargetPort> 

 

SourceOp: Name of the source operator of the original split operator connection 

SourcePort: Name of the source port of the original split operator connection 

TargetOp: Name of the target operator of the original split operator connection 

TargetPort: Name of the target port of the original split operator connection 

 

The topic parameters of the inserted Kafka Sink and Kafka Source operator are set accordingly. The Kafka 

Connection object from the “kafka connection” input port of the Streaming Optimization operator is connected to 

the Kafka Sink and Kafka Source operators. This Stream connection based on Kafka between the different streaming 

execution backends is symbolized by the red dashed line (small dashes) in Figure 17. 

 

If an operator connection, which was used for process flow control and which was not part of the stream graph, is 

split between different Streaming Nests, the connection is re-established by using the “in” and “out” throughput 

ports of the Streaming Nest operators. This is symbolized by the red dashed line (larger dashes) in Figure 17. 

 

 

Figure 17: Updated subprocess of the Streaming Optimization operator after the response of the Optimizer 

Service is received. Streaming Nest operators for the streaming execution backends are automatically created 

and the operator placed, according to the optimizer response. Split connections are re-established by either 

inserting Kafka Sink and Kafka Source operators (in case of a stream graph connection) or by using the “in” 

and “out” throughput ports of the Streaming Nest operators. 

The optimized workflow is directly executed after it is updated. The different Streaming Nest operators deploy their 

inner workflows to the corresponding streaming execution backends. The actual optimization result can be visually 

investigated by checking the different Streaming Nest operators. They represent the placement of the operators 

according to the optimization. 

 

With the “Restore Process” button, the original logical streaming analysis workflow can be restored by the user. 
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4.5 Integration of the Synopsis Data Engine Component 

The interface and connection to Synopsis Data Engine (SDE) component is implemented via a RapidMiner operator 

with the same name. The operator has two input ports, one for the incoming data stream and one “connection” input 

port, which expects a Kafka Connection with the connection details to communicate with the SDE component. The 

SDE acts as a service component that can analyse an incoming data stream and return a synopsis of the data. For 

interacting with the SDE component additional nodes of the stream graph are required and created by the operator. 

The first is a SynopsisDataProducer that produces the data stream that goes into the SDE. The second is a 

SynopsisEstimateConsumer that receives the synopsis from SDE. Because the SDE exists as an independent service 

a third node is required, the SynopsisEstimateQuery, that periodically queries the SDE Service. Also, a SDERequest 

object is used to request the initial addition of selected synopsis in the SDE Service. 

 

Figure 18 shows the different streams the operator creates internally. Upon execution of the process, an “ADD”- 

command to create and add the selected synopsis is written to the request Kafka topic (on the Kafka cluster defined 

by the Kafka Connection object provided to the operator) of the SDE Service (this is done by the SDERequest 

object. Then, the data items received from the data stream, which is connected to the input port, are written by the 

SynopsisDataProducer to the input Kafka topic of the SDE Service. Periodically, the SynopsisEstimateQuery node 

is writing estimate queries to the Request Kafka topic of the SDE Service to initiate an estimation of the synopsis. 

The SynopsisEstimateConsumer is consuming the output Kafka topic of the SDE Service. Data items written to this 

topic by the SDE Service are consumed, and then written to the output data stream, which is connected to the 

“output” port of the SDE operator. 

 

 

Figure 18: Overview over the different streams, which are created by the Synopsis Data Engine operator 

internally to communicate with the SDE Service. 
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Figure 8 shows a designed workflow using the new Synopsis Data Engine operator. Also, the parameters of the 

operator are shown. The parameter “synopsis type” defines the used synopsis. The SDE operator can support many 

different types of synopsises. For now, the SDE operator supports the following operations: 

• Count min 

• Bloom filter 

• AMS 

• DFT 

• LSH 

• Core Sets 

• HyperLogLog 

• Sticky sampling 

• Lossy counting 

• Chain sampler 

• GK Quantiles 

 

The parameters for the specific synopsis can be provided by the parameter “synopsis params”. The parallelism used 

in the computing of the synopsis is specified by the parameter “synopsis parallelism”. The parameters “data set 

key”, “data value key, “u id” und “stream id” are used to configure the corresponding ids and keys in the synopsis. 

The parameter “estimate key” specifies key of the estimated value (the value computed by the synopsis) in the 

output data stream. The frequency of queries for receiving the estimate by the SynopsisEstimateQuery can be 

defined by the parameter “estimate frequency”. 

 

The parameters “request topic”, “data topic” and “output topic” are used to configure the names of the Kafka 

topics used by the SDE operator to communicate with the Synopsis Data Engine Service. 

4.6 Integration of the Interactive Online Machine Learning Component 

The integration of the Online Machine Learning (OML) Component is achieved by an operator with the same name. 

The OML Service is deployed by the operator itself. The connection information to the Flink Cluster on which the 

OML Service shall be deployed (from now called OML-Flink-Cluster) must be provided to the “flink-connection” 

input port of the operator. The connection information to the Kafka Cluster used to communicate with the deployed 

OML Service (from now called Communication-Kafka-Cluster) must be provided as a Kafka Connection to the 

“kafka-connection” input port. 

 

First the operator creates the Kafka streams to the necessary Kafka topics (“training topic”, “request topic”, 

“forecast input topic”, “forecast output topic”) on the Communication-Kafka-Cluster. The user can specify the 

topic names by the corresponding parameters. Then the operator deploys the jar file of the OML Service (provided 

by the parameter “job jar”) to the OML-Flink-Cluster which starts the OML Service on the cluster. The Service is 

configured to use the earlier created Kafka topics, for communication. 

 

An initial “Create” request is then written to the request topic to create and configure the algorithm used in the 

current streaming analysis workflow. The configuration includes the selected learner (configured by the parameters 

“learner name”, “learner hyperparameters” and “learner parameters”), the training configuration (configured by 

the parameter “training config protocol” and “training config mini batch size”) and a list of preprocessor 

algorithms (configured by the parameter “preprocessors”, for each preprocessor the “name”, “hyperparameters” 

and “parameters” must be specified).  

 

The data items which are received from the data stream connected to the “training input” port, must have labelled 

information. They are written by the OML operator to the training topic of the OML Service. The data items, 

received from the data stream connected to the “input stream” port, are likewise written to the forecast input topic 

of the OML Service. This is achieved by two internally used KafkaSinks. An internal KafkaSource is used to 

consume the forecast output topic of the OML Service and provide the scored data items to the data stream 

connected to the "output stream” output port of the OML operator. Figure 19 visualizes the internal streams created 

by the operator and the different steps performed. 
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Figure 19: Overview over the internal structure of the Online Machine Learning operator. The diagram 

shows how the OML Service is deployed by the operator, as well as the internal streams created by the 

operator to communicate with the OML Service. 
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5 Analysis of INFORE Architecture 

5.1 Advantages 

The INFORE architecture targeted some of the most ambitious design, execution and management time 

requirements regarding streaming workflows. The various functional and non-functional aspects that were targeted 

as the aim of the project have met with fruition in the functional prototype that has been developed as a result of 

several iterations, critical evaluation of the state of art in streaming technologies, considering the use case 

requirements and keeping input from various project partners in sight. Based on the functional prototype already 

developed, we are able to clearly assess and report some of the advantages the INFORE architecture and system 

prototype is delivering at par and even beyond the state of art in creating, configuring, optimizing, deploying and 

managing complex streaming workflows on multiple streaming backends. Hence, we argue that INFORE 

technology can substantially contribute to enable the new breed of long running, high throughput and low latency 

streaming applications that utilize machine learning and smart data processing in complex industrial and scientific 

domains. Some of these advantages are concretely listed below. 

• Visual Approach to Create Streaming Workflows: A visual design approach has been realized that 

eases creation of streaming workflows. To our knowledge, this is a severely under-addressed area in 

current art. A lack of visual tooling to create streaming workflows restricts many different personas such as 

non-programmers. INFORE has reused and extended the RapidMiner visual design (coding-optional) 

approach, which arguably has enabled a host of personas such as domain experts, scientists and analysts, 

who would otherwise be withheld due to the overwhelming burden to learn various streaming technologies 

and develop programming skills. INFORE’s approach not only removes this burden by enabling to create 

streaming workflows visually, but these workflows also port to multiple backends. 

 

• Generic, Technology Agnostic and Multi-Platform Portable Design: INFORE’s functional prototype 

has successfully demonstrated its generic design for creating workflows that are technology-agnostic and 

platform-independent in terms of supported platforms. For example, INFORE workflows use 

transformations that have a logical-physical separation. This separation enables the user to focus on 

designing streaming workflows in general terms using logical operators, while the architecture translates 

these logical operators into their platform specific physical forms. Thus, INFORE approach allows us to 

write streaming workflows once, while executing them on any of its supported backends. This high level of 

abstraction delivers a flexibility that is beyond some of the popular streaming (abstraction) frameworks 

(e.g., Apache Beam), which address this generalization to some degree, but without a visual design 

approach or real-time optimizations that INFORE is capable of. The visual design approach coupled with 

platform-abstract execution alone makes INFORE solution highly plausible for adoption. 

 

• Workflow Optimization and Intelligent Placement: Another differentiator for INFORE is its use of the 

Optimizer Component, which induces real-time intelligence in terms of re-configuring parameters of the 

workflow, its deployment and execution-time decisions. The INFORE Optimizer Component evaluates 

streaming workflows on basis of their functional (qualitative) and non-functional (quantitative) 

requirements and considers the infrastructural details of available streaming backends (network and 

resource information, etc.). The optimization determines the best placement strategy for a given workflow 

(to be used either as a singular whole or split into multiple workflows) as well the exact backend(s) for 

executing the workflow(s). Moreover, the optimized workflow(s) can be rendered in the visual Graphical 

Editor component (RapidMiner Studio GUI), so that the human user (workflow designer) can inspect the 

results of optimization and reconfigure the Optimizer (if need be). 

 

• Futureproofing Workflows through Extensibility and Pluggability: INFORE is designed for 

extensibility and pluggability from its foundations upwards, with the intent to keep the streaming 

workflows as future-proof as can be envisioned at this stage. The extensibility of the architecture is 

achieved (to a large degree) by the Manager Component, which provides programmable modules, using 

which, new features can be added to the INFORE prototype in a pluggable manner. Following this 

inclusive, extensible and pluggable approach, new operators can be added rather conveniently to the 

Streaming Extension. This enables not just the project partners, but also third-party developers and 

potentially all following adopters, to implement operators for new sources, sinks, flow-control, 

transformations and/or integration operators (to interface with custom components or services) – using 
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INFORE’s standardized programmable approach. Hence, the outcome of INFORE, or any of its successors, 

is expected to have an impact beyond the scope of INFORE as a project. 

 

• A Reliable, Robust and Flexible Middleware for Interfacing Disparate Components: The INFORE 

architecture had to integrate some highly complex components that offer very specialized and advanced 

features, such as online machine learning and generating continuous synopsis on streaming data. Many of 

these components posed integration challenges due to various reasons, including but not limited to 

distribution and scaling requirements, latency guarantees, configuration and computational requirements, 

upstream, downstream and lateral dependencies. These challenges have been resolved in INFORE by a 

broad adoption of Kafka as the connection middleware to achieve integration among disparate services – 

all of which can be seamlessly accessed, in a location-transparent manner, using the integration operators 

developed in the Streaming extension. Leveraging Kafka to achieve this backbone-level interfacing on one 

hand, allowed INFORE streaming workflows to benefit from the novel facilities provided by SDE and 

OML components, but on the other hand, also led to the realization of a highly reliable, robust, flexible and 

common interfacing approach to integrate disparate components and services not just limited to those listed 

here. 

5.2 Release of the INFORE Software Stack and Extensibility of the INFORE 

Architecture 

The individual implementations of the INFORE components will be publicly available at the project bitbucket 

repository (https://bitbucket.org/infore_research_project/). The different components are implemented by the 

following repositories: 

• Connection Component, Graphical Editor Component, Manager Component: 

RapidMiner Studio Streaming Extension: https://bitbucket.org/infore_research_project/rapidminer-

extension-streaming 

 

• Optimizer Component: 

Workflow Optimizer: https://bitbucket.org/infore_research_project/optimizer 

Metric collection tools: https://bitbucket.org/infore_research_project/platformstatistics 

 

• Synopsis Data Engine Component: 

Synopsis Data Engine (SDE): https://bitbucket.org/infore_research_project/6.1-sde 

A Client for the Synopsis Data Engine (CSDE): https://bitbucket.org/infore_research_project/a-client-for-

the-synopsis-data-engine-csde 

 

• Online Machine Learning Component: 

Online_Machine_Learning_via_Flink: 

https://bitbucket.org/infore_research_project/online_machine_learning_via_flink 

Online Machine Learning Clients: 

https://bitbucket.org/infore_research_project/online_machine_learning_client 

 

The graphical workflow design component is available as RapidMiner extension via the code repository of the 

project. The compiled extension can be added to any existing RapidMiner installation and allows the user to create 

and submit their own graphical workflows to the supported streaming platforms (Apache Flink, Apache Spark). 

Furthermore, the RapidMiner API provides the option to write own operators based on the INFORE architecture. 

With this possibility developers can provide code free realization for specific operations for the platforms, which are 

not yet provided by the INFORE prototype. It’s also possible to use the architecture as a blueprint for developing the 

support of more platforms and streaming engines. This is the same approach the INFORE project team will follow 

in further iterations to enhance the architecture.  

 

The full guide on how to use the RapidMiner developer API for writing extensions is available here: 

https://docs.rapidminer.com/latest/developers/extensions/ 

 

https://bitbucket.org/infore_research_project/
https://bitbucket.org/infore_research_project/rapidminer-extension-streaming
https://bitbucket.org/infore_research_project/rapidminer-extension-streaming
https://bitbucket.org/infore_research_project/optimizer
https://bitbucket.org/infore_research_project/platformstatistics
https://bitbucket.org/infore_research_project/6.1-sde
https://bitbucket.org/infore_research_project/a-client-for-the-synopsis-data-engine-csde
https://bitbucket.org/infore_research_project/a-client-for-the-synopsis-data-engine-csde
https://bitbucket.org/infore_research_project/online_machine_learning_via_flink
https://bitbucket.org/infore_research_project/online_machine_learning_client
https://docs.rapidminer.com/latest/developers/extensions/
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5.3 Graphical Specification of complex Data Processing Workflows with the Prototype of 

the INFORE Architecture 

This section showcases how the graphical specification of complex data processing workflows with the initial 

prototype of the INFORE Architecture, which is described in this deliverable, can be performed. The example 

workflows shown in the following subsection illustrate how workflows for the Life Science Use Case (see work 

package 1) and the Financial Use Case (see work package 2) could look like. For this initial state of the prototype 

and the evaluation of the use cases in the INFORE project, these are only demonstration workflows. Some of the 

operators shown are only in the concept phase and are not yet implemented. In the future development, the 

functionality of the INFORE Architecture will be enhanced to support the analytic needs of the use cases in the 

INFORE project. The designing and implementation of the workflows for the different Use Cases will therefore also 

function as a good evaluation of the usability of the INFORE Architecture. 

5.3.1 Complex Data Processing Workflow for the Life Science Use Case 

Figure 20 shows an example workflow for the Life Science Use Case. It is only a demonstration of a how a 

streaming analysis workflow could look like for this use case. As the execution of the workflow shall be optimized, 

the streaming part of the workflow is designed inside the subprocess of the Streaming Optimization operator. As 

described in Section 3.2.4 and 4.4 a Kafka Connection for the inter communication between different computing 

clusters is provided to the Streaming Optimization operator. Also, a collection of Flink Connection and Spark 

Connection, which are the execution sides for this example workflow, are provided to the Streaming Optimization 

operator.  

 

In the designed workflow, labelled Simulation Data is received by the Kafka Source (2) operator and provided to the 

Synopsis Data Engine operator, which computes a discrete Fourier Transformation representation of the input data. 

The output is provided to the Online Machine Learning operator which trains an online Support Vector Machine 

(SVM) model on the input data. The target variable of this model is the usability (in terms useful simulation results, 

see deliverable D1.1 for a description of the Use Case scenario). In addition to the model, the Online Machine 

Learning operator produced a test results set, which is used by the Validate Model operator to evaluate the 

performance of the trained online SVM. The model is then provided to the Apply Model operator. 

 

Unlabelled Simulation Data (from currently running simulations) is retrieved by the Kafka Source operator and 

provided to the Apply Model operator. This operator uses the model to tag the unlabelled Simulation Date and 

predict the usability of the running simulation. 
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Figure 20: Complex data processing workflow for the Life Science Use Case. The target of this streaming 

analysis is to train an online machine learning model able to predict the usability of running simulations. This 

is then used to abort non useful simulations and visualize the useful ones. 

The Split Stream operator receives the tagged Simulation Data and split it between non useful simulations (top 

branch) and useful simulations (bottom branch). The Simulation Control Topic operator (which is a Kafka Sink 

operator) sends “abort simulation” commands to the Simulation Control Kafka Cluster to abort the running non 

useful simulations. 

 

The useful simulations are filtered by the Filter Stream operator, so that only to top k simulations are provided to the 

Visualization Topic operator (which is a Kafka Sink) operator. This top k simulations are written to the output Kafka 

topic which is used to visualize the data. 

5.3.2 Complex Data Processing Workflow for the Financial Use Case 

Figure 21 shows an example workflow for the Life Science Use Case. It is only a demonstration of a how a 

streaming analysis workflow could look like for this use case. 
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Like the example workflow for the Life Science Use Case (see Figure 20), the streaming analysis workflow is 

designed in the subprocess of the Streaming Optimization operator, so that the execution of the workflow is 

optimized. The corresponding connection objects needed by the Streaming Optimization operator are provided to the 

input ports of the operator (see Section 5.3.1 for a description). 

 

The Input Source (which is a Kafka Source operator) retrieves the financial input data. The Split Stream operator 

splits the input data into Level 1 (transactions, top branch) and Level 2 (offers, bottom branch) data streams. See 

deliverable D2.1 for a more detailed description of the use case scenario definition and the meaning of Level 1 and 

Level 2 data. 

 

Both streams are filtered with corresponding Filter Stream operators to filter on subsets of individual stocks. The 

SDE operator holds a count min synopsis of the Level 2 data, while the Project Data operator projects the Level 1 

data to only contain the actual transaction timestamp. The Join operator joins the two streams together, so that the 

output stream has a count min of the Level 2 data (hence the count min of the offers) for each transaction in the 

Level 1 data. This count min is a good approximation of the “activity” for the corresponding stock. 
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Figure 21: Complex data processing workflow for the financial use case. The target of this use case is to 

create an approximation of the “activity” in stocks, which is used to identify correlations and clusters in the 

stock market activities. 

This output data is further processed by the Duplicate & Window Stream operator which provides the original 

stream to the top branch and a windowed stream to the bottom branch. The SDE (2) operator computes the 

correlations on the original input stream using Discrete Fourier Transformation. The windowed stream is used to 

train a cluster model by the StreamKM operator (which is an Online Machine Learning operator). The results of the 

cluster model are provided to the Visualization Topic operator (which is a Kafka Sink operator), which is used to 

provide the output data for visualization. 
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6 Conclusion 

The developed software stack presented in this deliverable is a functional prototype for the INFORE Architecture 

designed and presented in the deliverable D4.1. The interaction and integrations of the different components and the 

developed implementations allow us to accomplish the main objectives of the INFORE project. It supports the non-

programmatic approach for designing and deploying streaming analysis workflow. The platform independent 

abstraction layer allows that the user of the INFORE Architecture does not need to bother about technological 

details of streaming analysis functionality and allows as well for the integration of the optimization of the designed 

analysis workflow, thus, leveraging the possibility to tackle extreme-scale analytic use cases in an optimized 

fashion. The integration of the Synopsis Data Engine and the Online Machine Learning components allows for 

leveraging the functionality of real-time, interactive machine learning and data mining, data summarization and 

approximate query processing techniques in these use cases. 

 

The prototype is developed in a holistic, pluggable, extensible approach, to enables further improvements of its 

functionality. The development of the next months will focus on improving existing functionality and evaluating the 

usage of the INFORE Architecture, by implementing workflows of the Use Case partners in the INFORE research 

project. By collecting feedback for testing and usability from the different stakeholders we can enhance this initial 

prototype of the INFORE Architecture to a complete prototype of the designed Architecture, able to fully support all 

targets of the INFORE project. The final system prototype is planned to be completed in Month 32 of the project 

and will be documented in the Deliverable D4.3.  
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8 Appendix 

8.1 Section 4 of Deliverable D4.1: Definition of the INFORE Architecture 

This section is from the deliverable D4.1 and describes the definition of the INFORE Architecture, as defined in the 

D4.1 deliverable. As the initial prototype, described in this deliverable D4.2, is the implementation of the 

Architecture, this section is added for convenience.  

This section describes the structure and concepts defined for the architecture and how the different components 

interact with each other. 

8.1.1 User Requirement Analysis 

While the initial concept and requirements of the architecture were already envisioned during the project proposal 

phase, some refinements are always required during the starting phase of the project and while the system prototype 

takes shape. To ensure that all necessary requirements of the use case partners are met, an initial phase of 

requirement engineering was initiated in parallel with the requirements expressed in deliverables D1.1, D2.1 and 

D3.1. 

  

Here, the concept of a target persona and user stories were applied. These concepts are typically used by software 

development projects and designers. A persona represents the archetypical users of a tool and helps us as developers 

to better identify them. It consists of a sketch about the daily work of that person, her educational background, often 

used tools and some common personality traits to flesh out the characterization. The user story is another element 

that helps to refine the needs of the user. It is a simple sentence that states the role of the user, her desired action and 

the goal that she wants to achieve. Each user story represents one task that is crucial for the work routine of a 

persona. 

 

We asked the three use case partners from WP1, WP2 and WP3 to create sample personas of the latter users of the 

developed tools and the typical tasks they want to perform. 

 

From all partners, we have collected in total seven different target personas that represent typical users of the final 

system. Additionally, six user stories where formulated that help to define the tasks these users would later like to 

perform. While these requirements focus more on the end users and their experience with the final tool, they already 

helped to formulate requirements, especially on the user interface and the graphical editor. 

It became clear that the requirements are not perfectly aligned for all partners. For some user types the multi-

platform approach is crucial, as they need a system that eases the integration of different data streams and analysis 

platforms. For others (e.g., in the financial use case), the high level of interactivity and easy representation of data 

streams is more important. These findings again stressed out the importance of a flexible architecture that can handle 

the heterogeneous requirements for streaming applications.  

8.1.2 Architecture Overview 

The INFORE Architecture is designed to tackle the project objectives described in section 3.1 (of deliverable D4.1). 

Conceptual pillars are used to create a component-based modular design. Figure 22 gives an overview of the 

conceptual design of INFORE Architecture. The integration concept is described in the next subsection, while the 

different components are explained in detail in the following subsections. 
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Figure 22: Overview of the conceptual design of the INFORE Architecture. 

8.1.3 Integration 

The INFORE Architecture will achieve design time and execution time reduction goals through a holistic integration 

approach based on Conceptual Pillars. These pillars are concretely realized as components which are the following: 

 

1. Connection Component 

2. Graphical Editor Component 

3. Manager Component 

4. Optimizer Component 

5. Synopsis Data Engine Component 

6. Complex Event Forecasting Component 

7. Interactive Online Machine Learning Component 

 

The central component is the Manager Component providing the interaction point between most of the other 

components. The Manager Component handles the actual execution and monitoring of the designed streaming 

analysis process. 

 

All components will be developed in a modular way, with clear interaction-interfaces between them. This enables an 

easy exchange between the modules and provides the necessary pluggability of the INFORE Architecture. 

8.1.3.1 Connection Component 

The Connection Component enables access and preliminary management of the selected streaming backends 

(stream sources and sinks, Big Data platforms and respective computer clusters) that are utilized by the INFORE use 

cases and broader application scenarios. The Graphical Editor Component will be a streaming extension of the 

RapidMiner Studio (which is currently focused on offline, batch processing) to provide specific functions (as 

operators) that are developed in the selected streaming technologies. 

  

Some aspects of streaming technologies being considered at this stage are explained in Section 8.1.2. Here, we 

briefly mention the mechanics of the Connection Component. The Connection Component functionality is realized 

as Connection objects in the Graphical Editor Component. The user of the INFORE Architecture only needs to 

provide the essential information for connecting to the backends without any coding needed. Then, the Connection 

objects can be utilized in the streaming analysis process, which itself is designed using the Graphical Editor 

Component. 

  

For the scope of the INFORE project, we identified three functional concepts that include input streams, output 

streams and stream processing backends, where a streaming analysis process may be executed. A typical streaming 

analysis process will consume one or more input streams, perform transformations and may result in output 

stream(s). Input streams provide the input data, for which the streaming analysis process is designed. The streaming 
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analysis process is application specific. Output data streams (which are not a necessity) mark the endpoint of a 

streaming analysis process. The nature of the application scenario can impose restrictions on their type, but the 

approach provides the required flexibility. Output streams can serve as Input streams for downstream analysis 

processes. Streaming processing backends are the computer clusters typically hosting some Big Data platform(s), 

which provide the physical infrastructure resources needed to execute the streaming analysis process. These are 

limited by the hardware and technology stacks the user has access to. 

  

Keeping the above description as a pretext, the connectivity requirements become very important. The Connection 

Objects are thus configured for each supported compute backend e.g., to connect with Flink or Kafka backends. The 

Connection Object(s) are then used together with the Manager Component to establish connection for input stream, 

output stream, or to place a streaming analysis process on a compute backend and/or to configure environmental 

settings. The Connection Component can be extended with additional Connection objects to reflect the execution 

requirements of the streaming analysis process. For instance, if a streaming backend technology provides a set of 

desired connectors, which are installed in the Architecture implementation, then, these may be reused by the 

streaming analysis processes. As an example, a Flink-based streaming analysis process may output its results into a 

Kafka topic. In such a case, INFORE’s Flink Connection object can encapsulate the Flink connectors for required 

sources (for input streams) and sinks (for output streams) to provide access in real time. A user can graphically 

define and internally create multiple Connection objects based on the available backends. 

  

The concepts of input streams, output streams and stream processing backends capture the general constituents of a 

typical streaming analysis process. With some exceptions, all streaming technologies described in Section 8.1.2 can 

provide the actual functionality for these constituents, which are addressed in Section 3. For flexibility, the INFORE 

Architecture aims at combining different streaming technologies in one streaming analysis process. If more than one 

stream processing backends are provided to the INFORE Architecture, the architecture by virtue of the Optimizer 

Component can automatically decide on the optimal placement of different parts of the analysis process to different 

backends (Big Data platforms and/or cluster/HPC infrastructures). 

8.1.3.2 Graphical Editor Component 

The Graphical Editor Component enables users of the INFORE Architecture to easily design a streaming analysis 

workflow without any coding needed. This is achieved by encapsulating streaming analysis functionality into so 

called operators. The operators can be placed inside the graphical user interface via drag and drop actions and can be 

connected by drawing arrows to define the data flow in the streaming analysis workflow.  

 

To ensure flexibility, the streaming analysis operators of the Graphical Editor Component, called “Logical 

Operators”, are designed as an abstraction layer, without defining the actual streaming technology used. Thus, the 

user can focus on the analytic setup of the process, without handling the technology specific aspects. 

 

The Manager Component can automatically perform the desired functionality by utilizing the physical 

implementation(s) of the Logical Operators for the specific streaming processing backend used. If physical 

implementations for a particular Logical Operator in more than one streaming processing backends, the Optimizer 

Component can devise the selection of the physical implementation to optimize the processing of the workflow. 

This is of course only possible for functionality (operators) for which multiple implementations over different Big 

Data platforms exist. See Section 3.1 (of deliverable D4.1) for an overview of the common streaming technologies. 

 

The functionality of the Data Synopsis Engine Component, the Complex Event Forecast Component and the 

Interactive Online Machine Learning Component are represented as Logical Operators as well and can be placed 

(dragged and dropped) in the streaming analysis workflow and get graphically parameterized. The physical 

implementation of these operators on top of specific Big Data platforms (run on respective clusters) is developed 

within the scope of WP6. 

 

These “INFORE Component” operators contain all information to execute the specific algorithms and methods, 

which are provided by external (external from the Graphical Editor Component’s perspective) libraries. They 

provide loose coupling between the Graphical Editor Component and the specific INFORE Component. The 

libraries can be developed independent of the Graphical Editor Component. An adaption is only needed if the 
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interface changes. In addition, further components can be added in the future by just adding operators to the 

Graphical Editor Components. These aspects ensure the extensibility and pluggability of the INFORE Architecture. 

The workflow is to be fed to the Manager Component, which also handles the deployment and execution aspects on 

the streaming cluster. 

 

Figure 23 shows a demonstration of a streaming analysis workflow, designed with the Graphical Editor Component. 

 

 

Figure 23: Demonstration of a streaming analysis workflow designed with the Graphical Editor Component. 

8.1.3.3 Manager Component 

The Manager Component plays a central role in the INFORE architecture. The Manager Component is realized as a 

library, which allows extensibility and flexibility to integrate with potentially multiple systems or front ends. This 

arguably sustains the work done in INFORE beyond the scope of the project. On one hand, the Manager Component 

wraps the data retrieval, preparation, transformation and modelling methods that are interfaced with the Graphical 

Editor Component in a loosely coupled fashion. On the other hand, it utilizes the Connection Component to handle 

connectivity with the streaming backend(s), provides a tool-agnostic representation of the streaming analysis 

workflow (as required by the Optimizer Component to optimize the workflow), and handles the deployment aspects. 

The Manager Component is also intended to retrieve real time information from stream processing backends on the 

available capacity, usage of resources, workload status, and stream processing meta data. 

 

There are three functional modalities which lie in the domain of the Manager Component. These are briefly 

explained below. 

 

Workflow and Plan related functions: 

 

The Manager Component receives the workflow from the Graphical Editor Component. Besides the actual 

streaming analysis process, the workflow also contains the connection objects for the input and output streams and 

the computing backends, on which the workflow shall be deployed and executed. The Manager Component converts 

the workflow, the resource and execution information into a JSON representation. This representation acts as a tool-

agnostic workflow representation, which the Optimizer Component can optimize in a domain and technology 

independent fashion. 
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After performing the optimization of the workflow, the Optimizer Component passes it back to the Manager 

Component. The next steps involve the deployment of the optimized workflow or parts of this workflow on the 

desired backend(s) (Big Data platforms and available clusters). The basic idea is that the Manager Component can 

deploy an optimized workflow, or even an unoptimized (default) workflow. The latter may be the case if 

optimization is not possible, for instance, due to lack of operator physical implementations in more than one Big 

Data platforms. 

 

Deployment related functions: 

 

The Manager Component also implements the functionality to create a deployable artefact from the optimized 

workflow and dispatch it. Recall that the workflow or parts of the workflow may need to be deployed at different 

backends. The deployable artefacts are simply referred here as a plan to differentiate the streaming analysis 

workflow from its deployable unit(s) e.g. a Flink job or a Kafka program. The deployment functions provide the fine 

link, where the generic design of INFORE streaming analysis processes meets with the underlying execution 

technology. 

 

Infrastructure related functions: 

 

The Manager Component also provides basic monitoring and control functions. These help to understand and 

manage the infrastructure context. Monitoring is needed on two levels. First, the execution status of the workflow 

may need to be queried at some intervals, and secondly, the usage of resources and current execution workload may 

need to be fetched by the Optimizer to assess whether the desired KPIs are being met.  

 

This process-level and system-level feedback assists the Optimizer to update its variables related to the execution 

time decisions it makes. This may result in an adaption of the deployment plan. The control functions wrap the basic 

functionality to scale the resources up or down. The idea is to wrap the API or commands provided by the streaming 

technology stacks, to easily fetch or execute basic monitoring or control functions but not over-emphasizing on 

standardization since many of these features are frequently updated and work with specific versions of third-party 

utilities. Hence, these dependencies need to be installed on the compute backends as well. 

  

The Manager Component is also able to update the visual representation of the workflow in the Graphical Editor 

Component according to the optimized workflow, retrieved by the Optimizer Component. 

 

Figure 24 illustrates the functionality of the Manager Component. 
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Figure 24: Overview of the functionality which is provided by the Manager Component. The diagram clearly 

shows the central role which the Manager Component takes in the INFORE Architecture. 

8.1.3.4 Optimizer Component 

The INFORE architecture aims at processing workflows involving large-scale streaming data. These are complex 

workflows, typically spanning multiple execution and storage engines. Identifying an efficient workflow execution 

could involve decisions made on more than one execution engine. For example, consider a stream involving two 

engines, Kafka and Spark. It is possible to optimize the stream on each engine using best practices for Kafka and 

Spark, respectively. Furthermore, engines employing an intrinsic optimizer (e.g., Spark Catalyst) can provide an 

efficient execution plan for the part of the workflow running on the said engine. However, no engine has a complete 

picture of the workflow.  

 

INFORE Optimizer helps with providing a holistic approach covering the entire workflow. Note, that INFORE 

Optimizer does not aim at replacing the engine specific optimizers. Rather, it works complementary by identifying 

optimization opportunities outside an engine and enabling further intra-engine optimizations by actions like function 

shipping (i.e., move a computation closer to the data) and data shipping (i.e., move the data closer to the 

computation). A basic optimization for the example Kafka-Spark workflow would be to push a filter from Spark 

down to Kafka to reduce the amount of data shipped over to Spark.  

 

Workflow optimization in INFORE is based on a multitude of optimization objectives and configuration or system 

parameters such as resource availability, resource efficiency, workload parameters at runtime, efficiency of 

streaming technologies, availability of operator implementation on multiple engine, availability of execution 

engines, and so on. Typical goals considered by the optimizer include increase resource utilization, reduce latency, 

improve quality, satisfy business and technical constraints. The multi-platform approach of the optimizer allows us 

to efficiently handle and select the best suited resource available. For example, a join operation on multiple streams 

is a common implementation on most frameworks and so the optimizer can decide which platform to use, for 

example based on network locality or on available compute resources. 

 

The Optimizer receives a workflow from the Manager Component. Then it optimizes the workflow (if applicable) 

and then sends the optimized workflow back to the Manager which handles workflow execution. This operation can 
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be done either offline or online, during the running execution of a workflow, which allows the INFORE 

Architecture to adaptively react to changing condition of data streams and available resources.  

 

The workflow metadata describe the designed streaming analysis process, the available resource information, the 

involved engines from the connected streaming backends, and user design choices. This information is encoded in a 

JSON format. An informed design choice we made is to decouple the workflow encoding of the Manager 

Component from that of the Optimizer. This is based on two reasons. First, in doing so, both the Manager and the 

Optimizer Components can be replaced by other tools if needed. This allows for increased pluggability and easy 

enhancement of the INFORE Architecture, and of potential future reuse of the code in follow-up applications.  

 

The second reason was to enable an engine-agnostic workflow representation inside the Optimizer. Hence, a 

workflow designed for specific engines (e.g., Spark) is engine specific. For example, consider a workflow getting 

data directly from Kafka and containing a filter operator and a join operator implemented in SparkSQL. When the 

workflow is propagated into the Optimizer, it is converted to an engine-agnostic form that contains a logical filter 

operator and a logical join operator. This enables the Optimizer to look for optimization opportunities in other 

available engines (e.g., Kafka). A possible scenario for the example Kafka-Spark workflow could be as follows: (a) 

first, the workflow is transformed to an engine agnostic form and thus, the Spark filter and join are converted to an 

engine-agnostic filter and join, respectively; (b) then, the workflow is processed by the Optimizer that may identify 

an opportunity to push the filter back to Kafka; (c) next, the Optimizer converts the workflow to an engine specific 

workflow having two parts, one part with a filter to be applied to Kafka and one part with a join to be executed in 

Spark.  

 

Besides workflow parsing, the Optimizer includes a component for statistics collection that keeps a history of 

statistic observations over past workflow execution, at the workflow level, at the operator level, and at the engine 

level. Once a workflow is sent to the Optimizer, the Optimizer enumerates the space of possible and promising 

execution plans for the workflow and estimates plan costs using a dynamic cost model that predicts workflow 

execution runtime based on the historical statistics collected. The navigation of the execution plan space can be done 

exhaustively or in a greedy fashion using heuristics for improved performance.  

 

The optimization methods are described in more detail in the deliverables D5.1, D5.2 and D5.3. 

8.1.3.5 Synopsis Data Engine Component 

The Synopsis Data Engine (SDE) Component provides implementation of approximate query processing algorithms 

that can generate representative summaries on top of streamed data. The component includes a library implementing 

the query processing algorithms and operators, containing the configurations and parameters necessary to perform 

such a query to the SDE. 

 

The usefulness of the SDE within INFORE streaming workflows is as follows. First, it can provide various kinds of 

scalability, including: 

• Horizontal Scalability: although Big Data platforms such as Storm, Flink or Spark are destined by design to 

scale out the computation by parallelizing the processing load to a number of available processing units, the 

SDE can further boost horizontal scalability by working on carefully-crafted summaries of data and finally 

provide estimations of an operator’s result, with accuracy guarantees. In that the processing load is shed due to 

the use of synopses and the computational complexity of the problem at hand is reduced. 

• Vertical Scalability: this type of scalability concerns scaling the computation with the number of processed 

streams. Synopses provided by the SDE along with locality aware hashing techniques can reduce the 

computational load when, for instance, operations requiring pairwise comparisons among streams are engaged 

in each workflow.     

• Federated Scalability: in settings composed of several geographically dispersed computing clusters or clouds, 

utilizing synopses in each of these and communicating synopses instead of full local streams reduces the 

communication cost of global (over the union of streams arriving at the various clusters) operator evaluation. 

 

Second, the SDE and the library of data summarization techniques it includes can serve as tools provided to the 

INFORE Optimizer Component so that the latter can perform synopsis-based optimization on INFORE workflows, 
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i.e., if the application has declared that it can tolerate approximate results to a submitted workflow, the Optimizer 

can replace exact operators engaged in the workflow, with equivalent, approximate ones so as to speed up the 

processing under certain accuracy constraints.    

 

Figure 25 below illustrates the internal architecture of the SDE Component. The details of the architecture and the 

SDE library are included in deliverable D6.1 submitted on M12 of the project as well. We will here elaborate on the 

SDE API, used by other INFORE Components as well as upstream (providing input) or downstream (receiving 

input) operators of a workflow engaging data synopses. The proof-of-concept implementation of the SDE 

Component is developed in Flink and Kafka, while the SDE library is implemented in Java. The SDE is to be 

provided as a continuously running service to different, currently executed/submitted workflows. Therefore, it can 

simultaneously maintain multiple synopses used in a variety of workflows. 

 

 

Figure 25: Illustration of the internal architecture of the SDE Component. 

 

As shown in Figure 25, the whole inbound and outbound communication with the SDE is achieved via Kafka. All 

data tuples updating one or more currently maintained synopses arrive at a single DataTopic in Kafka. Moreover, all 

requests towards the SDE, arrive to it in a single RequestTopic in Kafka. In both cases, data tuples arriving at each 

topic are parsed internally by the SDE to extract information about the synopses they involve. The producers of the 

DataTopic and the RequestTopic are upstream operators of currently running workflows, while the consumers are 

the respective parsers. Finally, the results of queried synopses are streamed through one or more OutputTopics in 

Kafka. The producers of the output topic(s) are internal Flink operators delivering approximate query answers at the 

final stage of the SDE processing pipeline, while the consumers are downstream operators of running workflows. 

 

The SDE API which is essentially implemented by the parsers consuming respective Kafka messages in Figure 25 

provides the following facilities: 

• Build/Stop Synopsis Request: a synopsis can be created or ceased on-the-fly, as the SDE is up and running. 

In that, the execution of other running workflows that utilize synopsis operators is not hindered. A synopsis 

may be (a) a single-stream synopsis, i.e., a synopsis (e.g. sample) maintained on the trades of a single 

stock, or (b) a data source synopsis, i.e., a synopsis maintained on all trades irrespectively of the stock. 

Moreover, the API allows submitting a single request for maintaining a synopsis of the same kind, for each 

out of multiple streams coming from a certain source.  

• Load Synopsis Request: the SDE library incorporates a number of synopsis operators, commonly used in 

practical scenarios. The Load Synopsis facility supports pluggability of the code of additional synopses at 

runtime, their dynamic loading and maintenance at runtime.  

• Ad-hoc Query Request: the SDE accepts one-shot, ad-hoc queries on a certain synopsis and provides 

respective estimations (approximate answers) to downstream operators or application interfaces, based on 

its current status. 
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• Continuous Queries: continuous queries can be defined together with the request for building a synopsis 

and they provide an estimation of the approximated quantities, such as counts, frequency moments or 

correlations, when the synopsis is updated due to reception of a new tuple. 

• SDE Status Report: the API allows querying the SDE about its status, returning information about the 

currently maintained synopses and their parameters. The purpose of this facility is two-fold. First, it is 

useful during the definition of new workflows, since it allows the application to discover whether it can 

utilize already maintained data synopsis. Second, such information is useful to the Optimizer Component 

which, given a workflow and an accuracy budget attempts to speed up the processing and harness memory 

utilization by replacing exact operators (e.g. for cardinality estimation) with equivalent, approximate ones. 

Here we note that this facility does not involve following some of the processing paths shown in Figure 25, 

but instead augmenting the QueryableState part of Flink's DataStream API, so that it provides synopsis-

specific information at runtime. 

 

 

Figure 26: Overview of the SDE library. 

. 

 

As shown in Figure 26, the SDE library leverages subtype polymorphism to ensure the facile pluggability of new 

synopses definitions. In a nutshell (please see deliverable D6.1 for further details), a generic Synopsis class is 

extended by classes implementing algorithms of specific data summarization techniques, and their processing 

methods override those of the parent class. 

8.1.3.6 Complex Event Forecasting Component 

The Complex Event Forecasting Component provides algorithms for complex event processing and complex event 

forecasting. Like the Synopsis Data Engine Component, the Complex Event Forecasting Component consist of a 

library providing the algorithms and methods for complex event processing and forecasting and operators containing 

the configurations and information necessary to execute these algorithms and methods. 
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The physical implementation of operators enables the users of the INFORE Architecture to perform complex event 

processing and forecasting on their streaming data. These physical implementations materialize the respective 

Logical Operators the users include in a designed workflow by simply drag and dropping them using the Graphical 

Editor Component. 

 

 

 

Figure 27: Internal architecture of the Complex Event Processing and Forecasting (CEP/F) Component. 

 

The internal architecture of the Complex Event Processing and Forecasting (CEP/F) Component is shown in Figure 

27. The various modules of the CEP/F Component will be described in more detail in deliverable D6.3. Here we 

provide an overview at a higher level of abstraction. 

 

Before the CEP/F Component can start consuming streaming data (a “test dataset”) and produce forecasts in an 

online manner, it must first go through several offline steps. These offline steps require two input types: a) First, a 

set of patterns/queries with which a user needs to monitor streams of input events. These patterns are expressed in 

the form of symbolic regular expressions, i.e., regular expressions whose terminal symbols are not simple characters 

but Boolean expressions. For simplicity, we assume that a single pattern is provided. If multiple patterns are 

provided, the same steps must be repeated for each pattern. b) Second, a training dataset, representative of the 

streaming dataset to be encountered in runtime. This training dataset is used in order to build a probabilistic model 

for the pattern. Based on this model, the actual forecasts will be built. 

 

The first step (1. Determinize) is to use the symbolic regular expression of the pattern in order to construct an 

automaton that will act as a computational model for it. If we are interested only in CEP (and not forecasting), then 

the rest of the offline steps may be skipped. The automaton can be used to detect complex events by directly 
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consuming a stream of input events. From an architectural point of view, it is important to note that the automaton 

itself acts as a prototype/template for continuously spawning multiple automaton runs that actually consume the 

input events. For example, in the maritime use case, a pattern may need to be applied on a per vessel basis. In this 

case, for each new vessel, a new automaton run is created that will be responsible for this vessel. 

 

 

If the goal is to perform forecasting, then there are two paths that can be followed in order to build the required 

probabilistic model (path 2.1-3.1 and path 2.2-3.2). In both cases, the goal is to derive a description of a pattern’s 

automaton in the form of a k-order Markov chain. The right-hand path in Figure 27 (2.1-3.1) corresponds to a 

straightforward method for deriving such a Markov chain, whereas the left-hand path (2.2-3.2) to an optimized 

method that allows k to reach higher values. This Markov chain essentially describes how the automaton can move 

among its various states. For each such state, we can use the Markov chain to predict how the automaton will behave 

(which states it will visit) and when it is expected to reach a final state and thus detect a complex event (step 4). We 

currently assume stationarity. As a result, for the automaton to function as a forecaster in an online fashion, all we 

need to do is to enrich each of its states with a forecast (the Markov chain itself may be dropped after the forecasts 

have been estimated). The engine then works in a manner like that for CEP, with the difference that each automaton 

run, besides a reference to its prototype, also has a reference to a lookup table of forecasts. 

 

The CEF module will communicate with the rest of the architecture via Kafka. For the CEF to function properly, 

two upstream and one downstream Kafka topics are required. As described above, the CEF will function in a two-

phase manner, according to requests coming from the upstream topics: a) an “offline”, training phase that will 

construct the necessary probabilistic models for a set of patterns, and b) an online testing phase, where the 

previously constructed models are used to actually generate forecasts. The three Kafka topics are the following: 

• A ConfigTopic. Through this topic, the CEF module receives requests for training and testing. A training 

request must be accompanied by a set of patterns (along with their orders and partition attributes) and a set of 

declarations. A testing request must be accompanied by values for the parameters of confidence threshold, 

maximum spread and horizon. For an explanation of these parameters and concepts, please consult deliverable 

D6.3. This topic is also used for stopping a running CEF process, as well as for querying the CEF module for its 

status and its various parameters.  

• A DataTopic. Through this topic the CEF module receives both the training and testing datasets, in the form of 

streams of events (tuples). As soon as a training/testing request arrives at the ConfigTopic, the CEF module 

starts consuming data from the DataTopic to either train its models or produce forecasts. 

• A ForecastTopic. This topic is essentially used only in the testing phase. This is where all Complex Events and 

Forecasts detected and generated by the CEF module are written. 

 

The Complex Event Forecasting methods are described in more detail in the deliverables D6.2, D6.4 and D6.5. 

8.1.3.7 Interactive Online Machine Learning Component 

The Interactive Online Machine Learning Component provides tools for interactive online machine learning. Like 

the Synopsis Data Engine Component and the Complex Event Forecasting Component, the Interactive Online 

Machine Learning Component consists of a library providing the algorithms and methods for its purpose and 

operators containing the configurations and information necessary to execute these algorithms and methods. 

 

The operators enable the users of the INFORE Architecture to perform interactive online machine learning on their 

streaming data, by simply drag and dropping them in the streaming analysis process, which is designed by using the 

Graphical Editor Component. 

 

The Online Machine Learning Component learns expressive and interpretable complex event patterns from 

streaming input of time-stamped information. It functions in an online fashion, i.e., it continuously makes 

predictions (detects complex events of interest) on incoming data, using the labelled fragments of the data as 

feedback, from which it updates its current model (event pattern set), thus improving both its predictive performance 

and the quality of the learnt event patterns over time.  

 

The learnt patterns have the form of weighted logical rules, and the learning algorithm is capable of both inducing 

their structure (the actual rules) and optimizing their weights. Together, the rules and their weights define a 

probabilistic predictive model that is resilient to noise and uncertainty. The learnt patterns may subsequently be used 
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for complex event recognition & forecasting, while, thanks to their interpretability, they may also be used by human 

experts for acquiring novel insights about the application domain via simple inspection. In addition to learning event 

pattern sets from scratch, the Online Machine Learning Component is also capable of revising existing pattern sets 

(e.g. an initial, potentially crude set of patterns provided by domain experts) from new data that stream-in.    

 

The Online Machine Learning Component will communicate with the rest of the architecture components via Kafka. 

For this, two upstream and one downstream Kafka topics are required. These Kafka topics are as follows: 

 

• A ConfigTopic (upstream): Through this topic, the Online Machine Learning Component receives a 

configuration of its learning algorithm’s hyperparameters: a learning rate (Double), a regularization rate 

(Double), a Hoeffding test statistical confidence threshold (Double), a pruning threshold (Double) and a loss 

function name (String). A detailed description of these hyperparameters will be included in deliverable D6.2. 

Also, via the ConfigTopic, the learning algorithm receives a set of declarative syntactic specifications for 

synthesizing rules from the encountered data, an application-specific form of domain knowledge, which will 

also be detailed in deliverable D6.2. An initial event pattern set, potentially provided by domain experts, and 

constantly under revision from that point on, may also be provided through the ConfigTopic. 

• A DataTopic (upstream): Through this topic the Online Machine Learning Component receives its input data in 

the form of a stream of event tuples. The Learner continuously listens to this topic and consumes data that 

arrive there, to first make predictions with its current event pattern and then use any potential labels in the data 

to update the event pattern set.  

• A LearningResultsTopic (downstream): The Online Machine Learning Component outputs its results to this 

topic. There are three types of information that are output here: (i) the actual predictions of the learner, i.e., the 

complex events it detects from its input stream; (ii) online learning statistics, such as the learner’s evolving 

online error rate and prequential F1-score on the input data and mean CPU processing time per input data point 

over time; (iii) the learner’s evolving model (event pattern set) over time.      

 

The Interactive Online Machine Learning methods are described in more detail in the deliverables D6.2, D6.4 and 

D6.5. 

 

8.2 Section 5 of Deliverable D4.1: Technical Constituents of Streaming Analysis 

Workflows 

This section is from the deliverable D4.1 and describes the technical constituents of streaming analysis workflows, 

as defined in the D4.1 deliverable. As the initial prototype, described in this deliverable D4.2, is the implementation 

of the Architecture, this section is added for convenience.  

The next sections cover the actual implementation details of the architecture components and the definition of the 

interfaces between them. 

8.2.1 Realization of the INFORE Architecture 

The conceptual design of the INFORE Architecture has been described in Section 4 (of Deliverable D4.1). In this 

section, we describe the concrete realization of its components. 

 

The project partner RapidMiner provides RapidMiner Studio, an open-source software solution for the Connection 

Component and the Graphical Editor Component. The existing user interface is enhanced to implement the 

connections to the other components of the architecture. RapidMiner Studio offers already a graphical representation 

of an analysis process, by providing operators which can be placed and connected with Drag & Drop into a process 

design GUI. This allows us to hide the complexity interacting with different technology stacks from the user, by 

providing a common usage concept. At its current state, the Studio does not provide support for the functionality 

envisioned by INFORE and, thus, will be significantly extended in the scope of the project. 

 

In particular, INFORE adds a so-called Streaming Nest operator to RapidMiner Studio. The Streaming Nest 

operator is a subprocess operator, which means that a family of operators can be placed inside of it. Streaming 

operators are placed inside the Streaming Nest operator and are connected during workflow design time to define 

the data flow of the streaming analysis process. Hence the subprocess of the Streaming Nest operator is the 
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implementation of the Graphical Editor Component. Synopses Data Engine, Complex Event Forecasting and 

Interactive Online Machine Learning Logical Operators are added by INFORE, which are implementing the 

operator part of the corresponding components (see Sections 8.1.3.2, 8.1.3.5, 8.1.3.6 and 8.1.3.7). These "INFORE 

Component” operators contain all information to execute the specific algorithm and methods, which are provided by 

corresponding libraries. Figure 23 shows RapidMiner Studio, illustrating the drag and drop approach of the process 

design. The Streaming Nest operator and its subprocess are also demonstrated, as well as some example streaming 

and “INFORE Component” operator. Again, the front end allows us to present an interactive workflow design to the 

users, while the underlying complexity is hidden from them. In the case of multiple available platforms, either the 

user can simply manually choose which platform to use, or call the Optimizer Component for an optimized 

workplan (see Section 8.1.3.4). 

 

RapidMiner Studio also provides the concept of Connection objects. Thereby all information to connect to a specific 

system (for example a database) are packaged in an object inside RapidMiner Studio. This object can be stored in 

the RapidMiner Repository (the data and process storage system of RapidMiner Studio) and can be utilized in an 

analysis process by dragging and dropping it in the process design GUI. RapidMiner Studio also offers the 

possibility to easily create and configure these Connection objects. User management handling and the secure 

injection of critical information (e.g. passwords) are also provided by RapidMiner Studio. More information about 

the Connection Management concept3 of RapidMiner Studio is available. INFORE adds Connection object classes 

for all supported streaming backends (see Section 8.2.2), thereby implementing the described Connection 

Component (see Section 8.1.3.1). This is essential to support the cross-platform optimization of data stream analysis 

in INFORE. 

 

Moreover, NFORE adds a Java library, implementing the functionality needed for the Manager Component (see 

Section 8.1.3.3). This Manager Component library provides capabilities to connect and receive resource information 

from a streaming computing cluster, to connect and consume data streams, to execute and deploy streaming analysis 

process and to produce data streams as an output. These capabilities are explained in more details in the following 

sections. 

 

As an interface to the other INFORE Components, especially for the interface between Manager Component and 

Optimizer Component, a JSON representation of the streaming analysis process is added by the INFORE project. A 

ProcessToJSON converter class is implemented in the Streaming Nest operator. The inputs of this ProcessToJSON 

converter are the designed streaming analysis workflow and the resource information of the streaming processing 

backend. The first is provided by the Streaming Nest operator, the second is retrieved by utilizing the Connection 

object to connect to the streaming processing backend(s) and retrieving the corresponding information. The 

ProcessToJSON converter combines these two information sets and converts them to a JSON representation, which 

is provided to the Optimizer Component as an engine-agnostic workflow. 

 

Engine-agnostic workflows are encoded into an AgnosticWorkflow class that consists of three core variables: 

Operators, OperatorConnections, and Resources. These represent the operators of the workflow, the connections 

among them, and the resources allocated to the workflow, respectively. An example JSON representation of a 

simplistic workflow is depicted in Figure 28. This example shows an operator named “Logical Decision Tree” that 

gets its input from port “output 1” and propagates its result to the port “training set”. In this JSON description, the 

operator is a logical operator (isLogicalOperator=true). The operator description also specifies implementation 

details such as the class that implements this operator.  

 

 
3 https://docs.rapidminer.com/latest/studio/connect/#connection-objects/    

https://docs.rapidminer.com/latest/studio/connect/#connection-objects/
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Figure 28: Example JSON representation of a streaming analysis workflow.  
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Table 2 gives an overview of the different fields and their meaning in the engine-agnostic workflow representation. 

 

Key Description Key Description 

Operator Connections isInputPort 
Indicator if this is an input 

port 

fromOperator Name of the source operator isConnected Indicator if port is connected 

fromPort Name of the source port schema 
If object is a data set, schema 

of this data set 

toOperator Name of the sink operator Schema 

toPort Name of the sink port fromMetaData 
Indicator if schema is 

retrieved from meta data 

Operator size Size of the data set at the port 

 name 
(unique) name of the 

operator 
attributes List of Attributes  

classKey 
RM specific key for the 

operator class 
Attribute 

operatorClass 
Name of the java operator 

class 
name Name of Attribute 

isLogicalOperator 
Indicator if the operator is a 

logical one 
type Value type 

parameters 
List of Parameters (see 

below) 
specialRole Special role 

inputPortsAndSchemas 
List of input ports and their 

schema (see below) 
Resources 

outputPortsAndSchemas 
List of output ports and their 

schema (see below) 
allocatedMemory 

Allocated memory for the 

process 

Parameter maxCPU 
Maximum number of CPU 

for the process 

key Key of the parameter numberOfContainers Number of containers used 

value 
Current parameter value (as 

String) 
inputSize Size of the input data 

defaultValue Default value (as String) networkBandwidth Available network bandwidth 

range 
String representation of the 

range  
selectivity Indicator of the selectivity 

typeClass 
Name of the Java parameter 

class 
throughput Current throughput 

PortAndSchema latency 
Current latency of the 

network 

name 
Name of the in- or 

outputport 
  

objectClass 

Name of java class of the 

object delivered or received 

at this port 
  

Table 2: Overview of the different fields and their meaning in the engine-agnostic workflow representation. 

One of the facilities of the Manager Component is to convert or package one or more sub-sets of operations of the 

streaming analysis workflow (or the whole workflow) into a deployable artefact, which can then be deployed on one 

or more compute backends. The implementation of this feature is provided as part of the Manager Component’s 

deployment functions (see Section 8.1.3.3). From the graphical modelling point of view, this can be achieved in a 

couple of ways. In the first scheme, the Optimizer may decide (during optimization of workflow) to place a certain 

group of operators as single or multiple deployable artefact(s) on a certain backend, and actuate on this decision, by 

invoking the relevant functions of the Manager Component. 

 

In the other scheme, the human designer who creates the graphical workflow may indicate a set of operations as a 

single deployable artefact by grouping them. For example, this may be the case when one compute backend (say a 

Flink cluster) is available (or preferred). In this case, the logical operators can be configured to use Flink-based 

concrete implementations for data preparation, transformation, modelling and other operations. With this 

knowledge, the human designer may configure the NEST operator to: i) not rely on Optimizer for placement 

decisions or ii) indicate to Optimizer to respect the indicated grouping, or even iii) let the Optimizer overrule these 
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groupings (placement indicators) if it deems fit. This concept will be further refined as the prototyping work 

progresses, but the idea is to aim at maximum flexibility for the end users. 

 

In the following section, we briefly describe the technical constituents of an INFORE streaming analysis workflow, 

and how INFORE processes abstract over the various streaming Big Data platforms. 

8.2.2 Producers, Consumers and Compute Clusters  

As explained in Section 8.1.3, the INFORE streaming analysis workflow is composed of input stream(s), the 

streaming analysis workflow and potentially output stream(s). The input operators of the analysis workflow are 

sometimes referred to as downstream or input receiving operators. The output operators are sometimes referred to as 

upstream or input providing operators. Entities which generate the stream and consume it are referred to as 

Producers and Consumers, respectively. Computer clusters refer to the stream processing backend, which are often 

used to deploy the stream processing workflow so complex computation is performed in a scalable manner on 

dedicated resources.  

8.2.2.1 Establishing a reliable, robust, generic and flexible interface between disparate Components 

The added value of INFORE is that its streaming analysis workflows follow an abstraction approach that allows 

them to span multiple streaming Big Data platforms for producers, consumers and compute clusters for execution. 

INFORE delivers this flexibility by performing the heavy lifting needed to integrate with different backends as part 

of its components may run on different Big Data platforms. Some of the biggest technical challenges faced here are 

listed below in terms of feature requirements: 

• Interfacing heterogenous or disparate components: Providing a high level of abstraction is a huge 

challenge because a mechanism needs to be devised that would allow INFORE Components to 

communicate in a reliable and robust manner with possibilities to incorporate future components, which 

are themselves expected to be disparate and available on heterogenous backends. An acceptable solution 

should allow to provide a generic interface, which is easy to adopt across the different tiers of the platform. 

• Interfacing stream sources and sinks: Another hard requirement is to let a variety of producer and 

consumer streams to be integrated. The schema of the data tuples is not always pre-defined or known but 

can be analysed at design time. Hence, it is highly desirable to use a generic communication middleware 

with support for simple and complex data structures. A feasible solution would not just make the sources 

and sinks (implemented in any language) available over a standard interface, but also the flexibility to deal 

with different data (tuple) types, a criteria to slice and dice different windowing of streams and ideally also 

support some degree of persistence and querying. 

• Dispatching and deploying streaming analysis workflows: Dispatching (deploying) streaming analysis 

workflows to available compute cluster or a compute cluster of choice is a task which often requires to 

communicate with a specific Big Data platform using its custom APIs or client utilities, but here again 

INFORE provides a generic layer within the Manager Component (in principle, similar to Apache jClouds4 

library that allows to create applications that are cross-cloud portable). 

 

Keeping these requirements in sight, it becomes vital to adopt a state-of-the-art communication middleware for 

INFORE. This middleware is expected to deliver above requirements and would serve at different tiers of the 

INFORE architecture to communicate with internal components (Synopses Data Engine, Complex Event 

Forecasting), various sources and sinks as well as assist in fetching results from ongoing experiments on the HPC 

(e.g. in the Life Sciences use case). Overall, this messaging and communication middleware must allow INFORE 

system to function seamlessly and detach the sender and receiver and receiver sides through a messaging queue, 

which serves to pass data as topics or digests. Thus, the choice of this middleware required a comparative analysis 

of the leading related technologies including RabbitMQ, ActiveMQ, Flume and Kafka to name the top candidates. A 

short overview of this comparative analysis is presented next. 

 

 

8.2.2.1.1 Comparison of leading communication middleware technologies 

 
4 https://jclouds.apache.org/ 

https://jclouds.apache.org/
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ActiveMQ 

Apache ActiveMQ5 is a Java-based multi-protocol messaging server, which allows to integrate multi-platform 

applications using the Advanced Message Queue Protocol (AMQP). In addition, it also supports other open wire 

protocols like OpenWire, Stomp and MQTT. It is more suited for transmitting data in binary rather than text-based 

format. Its server side consists of Master broker nodes and a set of slave nodes, which can be paired together so that 

data can be provided efficiently to consumer processes, address fault-tolerance and move data between nodes. 

ActiveMQ can be setup as an embedded application with a small footprint, which then serves as a messaging 

endpoint for inter-application communication. 

  

Although ActiveMQ allows for applications written in different languages to pass messages asynchronously, in its 

current implementation, its feasibility in high-throughput and transmission of large data streams is not the best. 

There is no easy way to batch messages together and it is assumed that it uses a batch size of 1. Experiments 

conducted on streams of logging data [2] revealed that the persistence mechanism in ActiveMQ consumed 70% 

more disk space than Kafka to store the same set of 10 million messages. The lag in performance at the persistence 

tier is attributed to the usage of JMS (Java Messaging System) specification which requires a thorough message 

header. The server processes seem to get hogged into maintaining the persistence indexes, that require B-Tree 

instance(s) to maintain metadata and state of each message. On the functional side, ActiveMQ is not intended for 

performing stream processing operations like windowing, aggregations or groupings on messages. Hence, its 

adoption would not satisfy most requirements of INFORE architecture and use cases. 

 

RabbitMQ 

RabbitMQ6 is a lightweight and widely deployed message brokering system implemented in Erlang. Like 

ActiveMQ, it also supports several messaging protocols including AMQP, Stomp and MQTT. The server side of 

RabbitMQ supports consists of a cluster of nodes, which provide high availability and data replication at the 

persistence tier, for messages exchanged between producers and consumers. Connections from clients, the channels 

and queues used to pass data, are distributed across the nodes, to offer an efficient and scalable handling of data. In 

this aspect, RabbitMQ make up a formidable candidate technology for INFORE’s communication middleware. 

 

However, despite some interesting features, RabbitMQ is not a technology that is targeted for high throughput data 

stream processing as required by various INFORE use cases, intra-component interaction and interfacing between 

operators of INFORE’s streaming analysis workflows and INFORE components. A performance evaluation of 

RabbitMQ regarding the production and consumption of high-throughput messages yielded results similar to 

ActiveMQ and inferior to Kafka. In [2] , Kafka is also compared with RabbitMQ. Kafka could produce up to 50,000 

messages per second for a batch size of 1, which was two times higher than RabbitMQ. Configuring larger batch 

sizes in RabbitMQ is also not obvious. When message consumption is evaluated, Kafka performed four times faster 

than RabbitMQ (and ActiveMQ) by consuming up to 22,000 messages per second. This overhead is associated with 

the fact that RabbitMQ maintains the delivery state of each message, while Kafka does not. Finally, RabbitMQ 

requires the setup of Erlang execution environment on the machines. As Erlang is not so widely available or 

platform independent (unlike Java), the provisioning of Erlang runtime poses an additional requirement. Overall, 

RabbitMQ is not the best fit to be adopted as INFORE’s messaging and communication middleware. 

 

Flume 

Apache Flume7 is a project that provides a simple and flexible architecture based on streaming data flows. A Flume 

system is made up of Flume agents, which are Java processes. A Flume agent acts as a middle-man between the 

producer and consumer of data. The agent internally has a source component, a sink component and a channel in 

which data received by the agent is placed via the source component. The source component receives data from an 

external producer. The sink component reads the message from the channel and passes it out to an external 

consumer. The internal channel is backed up by a data store. A Flume agent can be configured in a multiplexing 

manner, i.e. it can maintain multiple channels which pass on the data to one or more external consumers (such as an 

 
5 https://activemq.apache.org/   
6 https://www.rabbitmq.com/ 
7 https://flume.apache.org/index.html 

https://activemq.apache.org/
https://www.rabbitmq.com/
https://flume.apache.org/index.html
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HDFS cluster or a Kafka topic). Flume can be used for interaction between different applications or components that 

need to exchange or collect data. Flume agents can be horizontally scaled. Flume guarantees reliable delivery of a 

message, which is called as an event in Flume. Although Flume provides an interesting data flow management 

middleware, it is rather intended for scenarios, which need to push high throughput data from many sources into a 

collector sink, via a data-lake system that may perform transformations on passed data. 

 

From the INFORE perspective, Flume has some major shortcomings. Flume does not offer a persistence tier as part 

of its framework. This implies that data in channels is not replicated across the Flume agents. Flume only provides 

weak ordering on transmitted messages, and duplicate messages are often sent due to its emphasis on reliable 

durable delivery, but which need to be cleaned at the consumer side, especially given their ability to induce noise. 

Flume’s capabilities are further undermined due to its more complex management overhead, which can affect its 

throughput handling, scalability and reliability aspects if the data stores backing the channel(s) are not appropriately 

configured for all agents [1] . Due to its rather limited and very data-lake specific features, Flume is not a candidate 

for adoption in INFORE. 

 

We conclude our comparative analysis with Kafka, which we present in the next dedicated section, to highlight how 

it is a clear winner to be adopted as our communication middleware of choice for INFORE. 

8.2.2.1.2 Kafka - Communication middleware of choice 

Kafka is a highly scalable and fault tolerant distributed data stream platform. It provides persistent storage on the 

server side, which is based on a cluster of so-called broker instances. The brokers provide data storage and 

replication by means of partitions in the broker. This leads to high availability of data and acts as a scalable tier that 

can deal with large number of producers and consumers - without causing contention at the network or storage level 

access. Due to these properties, Kafka plays a central role in the INFORE Architecture as its communication 

middleware of choice. It is employed due to its flexible API- based features, a highly performant backend that can 

deliver high throughput, large-scale data streams with reliability, strong ordering guarantees, replication-capable and 

scalable server-side. These features are able to meet data exchange and interfacing requirements of INFORE use 

cases and components. Hence, in the following, we describe how Kafka usage in INFORE Architecture spans across 

the board - from integrating different components and interfacing INFORE’s streaming analysis workflow 

(operators) with different producers and consumers (sources and sinks). 

 

As noted, initial prototyping efforts could leverage Kafka for bridging disparate components, which are distributed 

over different locations. In particular, in Sections 8.1.3.5, 8.1.3.6 and 8.1.3.7 we showcased that the Synopses Data 

Engine, the Complex Event Processing and Forecasting, as well as the Interactive Online Machine Learning 

Components of INFORE are interfaced with upstream and downstream operators via Kafka topics. Thus, treating a 

“topic” as a medium for asynchronous communication, applications written in any language and having complex 

dependencies can be loosely coupled using a clear interface and minimal effort. Kafka topics are at the heart of its 

publish/subscribe mechanism, that can send and receive continuous streams of data. Kafka producers write data or 

data streams to topic(s), which may be persistently stored on the brokers, and the consumers retrieve them via topic-

based access. 

 

Consumer access is also highly scalable and can be parallelized leveraging the same principle of clustered brokers 

and replicated partitions at the server side. A typical Kafka program (represented as a processor topology – see 

description of Stream API below) can use multi-threading to achieve concurrent execution, which improves 

performance. In this way, Kafka provides a technology that can pass data streams efficiently from producers to 

consumers and allows to write stream processing workflows that can be tuned for high performance and scalability. 

 

Kafka provides a set of APIs, which are worth mentioning briefly: 

• Connect API: This API allows to write connectors for bringing data from a source into the Kafka system 

and to bring data out from Kafka into a sink system. 

• Producer API: This API can be used by Kafka applications to create topics and send data streams to topics. 

• Consumer API: This API allows to receive data streams from Kafka topics into a Kafka application. 
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• Stream API: This API allows to process data streams from input topic(s), which transforms them to output 

stream(s), which can be written to other topic(s). A computation step (transformation) is referred as a 

processor node. The configuration of these nodes is called a processor topology. 

• Admin Client API: This API allows to manage topics, brokers, access control lists and other objects on the 

Kafka server side. 

 

To integrate Kafka in the INFORE streaming analysis workflows, the Manager Component functions and the 

Graphical Editor Component (operators) would be implemented to make use of Kafka APIs. Together with the 

Connection Component object, the operators for performing transformations enable the following capabilities: 

• Connecting with the Kafka backend, creating topics, sending and receiving data streams to and from topics. 

• Performing typical transformations on incoming data streams. This includes windowing, joining, 

aggregation and grouping, filtering, computing some statistics, mapping the tuple(s), training or updating 

models, applying models, etc. 

 

These examples illustrate how Kafka plays an important technical role at different levels of the INFORE 

architecture by simplifying the complexity of integrating legacy, heterogenous or niche systems, helps standardize 

several interfaces in INFORE and provides a central communication technology for connecting the different 

components in the INFORE Architecture. 

 

In the following section, we provide a short description of how INFORE deals with the requirement of dispatching 

(deploying or placing) streaming analysis workflows on compute clusters or Big Data processing platforms. The list 

of supported platforms is not fixed. The idea is to extend the support to more platforms in a gradual fashion. 

8.2.2.2 Incorporating Big Data Platforms for Dispatching Streaming Analysis Workflows 

As a reference on how Big Data platforms are incorporated in INFORE after the Optimizer Component selects a 

specific platform for dispatching or deploying a part of a streaming workflow, we take Flink for a more elaborate 

discussion. Besides streaming Big Data platforms, INFORE would also incorporate support for HPC infrastructures 

as the development progresses. 

 

Flink provides a state-of-the-art implementation of streaming analysis functionality. It is also used as the 

implementing technology for components of the INFORE Architecture such as the Synopses Data Engine. Hence it 

is a very good demonstration of integrating a streaming analysis technology into the INFORE Architecture. In the 

following we describe how the Flink is integrated into the INFORE Architecture. 

 

Flink consists of several distinct components that interact with each other to provide a functional and scalable 

streaming environment. The server side of Flink comprises mainly of the Job Manager, Resource Manager and Task 

Manager components.  

 

The Job Manager is responsible for the execution of a single application. The manager transforms the application 

data and workflow description into an executable unit and requests the required resources. The Task Managers 

provide the slots for the actual execution. The slots inside each task manager run as threads in the same JVM 

instance, while several task managers can work on the same application, thus sharing data between separated JVMs. 

 

In addition, the Resource Manager distributes requests of the Job Managers to the Task Managers. It can work with 

external resource managers such as YARN, or as a standalone deployment. Depending on the amount of parallelism 

and resources available, a single job can be deployed on multiple Task Managers and Flink can rescale running jobs. 

 

Flink offers two different styles for deployment: framework and library. The framework deployment bundles the 

application into a JAR file and hands it over to a running service, like a resource manager or directly to a Flink Job 

Manager. This way an application can be directly planned for execution (in case of the submission to a Job 

Manager) or scheduled to hand over to a Job Manager (e.g., via YARN or a Flink dispatcher). 

 

The library style uses two independent Docker images: one for bundling the application (including Job- and 

Resource Manager) and one for running the Task Managers. The framework deployment is a way of submitting an 

application via a client to an already running service. For large scale infrastructure deployments, this approach is 
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probably easier to maintain and set-up. While the library style is a bit more flexible and more suited for a 

microservice oriented approach. 

 

In regard of the INFORE architecture both styles can be easily integrated and do not differ too much. The 

framework style is the one that can, in combination with an existing resource manager, be deployed in existing 

cluster settings where additional task managers can spin up on demand and the processes can easily be scaled out. 

The deployment as a library is useful for rapid prototyping and testing out applications in a local setting. 

 

Flink provides two core APIs, namely the DataStream API and the DataSet API. The DataStream API allows us to 

manage bounded or unbounded streams of data and the DataSet API allows to manage bounded data sets. Flink also 

offers a Table API, which is a SQL-like expression language for relational stream and batch processing that can be 

easily embedded in Flink’s DataStream and DataSet APIs. 

 

For integrating Flink capabilities in INFORE, the functions of the Manager Component and the operators of the 

Graphical Editor Component will be implemented to wrap various features of the Flink APIs. Under the hood, this 

would allow to create a Flink program that can be deployed on the Flink cluster. A Flink program can perform 

various transformations on the data stream. These transformation operators are combined into a sophisticated 

topology called a streaming dataflow. 

 

The execution of this dataflow is inherently parallel and supports distribution. Flink performs various execution-

time optimizations on the streaming dataflows. During execution, a stream is divided into one or more stream 

partitions, and each operator is logically divided into one or more subtasks. The operator subtasks are independent 

of one another and can be executed in different threads. For distributed execution, Flink chains operator subtasks 

together into tasks and each task is executed by one thread. Chaining operators together into tasks is a useful 

optimization as it reduces the overhead of thread-to-thread handover, buffering and increases overall throughput 

while decreasing latency. 

 

Due to these capabilities, Flink plays an important role in the INFORE architecture. It is currently used for 

implementing components or incorporating them as a streaming application. These components include the Synopsis 

Data Engine (SDE), a version of the parameter server for machine learning operators (another one is being 

implemented in Akka) and a proof-of-concept for the Complex Event Processing/Forecasting Component. However, 

we emphasize that INFORE Architecture is not limited to Flink as a streaming Big Data platform, in contrast, 

INFORE’s approach is broad-scoped and purpose-built for abstraction i.e., it specifically aims at incorporating 

multiple platforms. 

8.2.3 Creation and Deployment of a streaming analysis workflow using the INFORE Architecture 

In the previous chapters, we described the component-based structure of the INFORE Architecture. The provided 

functionality and the interaction between the components are described in detail. In addition, challenges and 

requirements from integrating and building a cross-platform framework for different streaming technologies are 

discussed.  

 

We now present a step-by-step process on how a streaming analysis workflow is created, optimized and deployed 

using the INFORE Architecture. The different steps and interactions and how the components come into play are 

detailed: 

 

1. Design of the streaming analysis workflow:  

The user of the INFORE Architecture designs a streaming analysis workflow. Therefore, she uses the 

Graphical Editor Component (see Section 8.1.3.2) to define the logic of the streaming analysis, without 

the need to take care of the technology-specific details. 

a. The user can select Logical streaming Operators, which provide an abstraction level of generic 

streaming analysis functionality over the streaming platforms providing this functionality. The 

Optimizer Component (see Section 8.1.3.4) later chooses the streaming backend used, optimal 

for the current workflow. 
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b. Functionality provided by the Synopsis Data Engine Component (see Section 8.1.3.5), Complex 

Event Forecasting Component (see Section 8.1.3.6) and the Interactive Online Machine 

Learning Component (see Section 8.1.3.7) can be leveraged through the corresponding operators 

in the graphical editor. 

c. The user creates Connection objects for input and output streams and streaming backends (for a 

detailed description of the Connection Component and the functional concepts of input and 

output streams and streaming backends, see Section 8.1.3.1) through the graphical editor. The user 

only needs to provide essential information to connect to the streams. The Connection objects are 

used in the design of the streaming workflow in the same drag-and-drop manner as the streaming 

operators. 

2. Handover of streaming analysis workflow to Manager Component:  

When the design process of the workflow is finished (e.g., when the user presses a submit button in the 

extended RapidMiner Studio), the workflow is handed over to the Manager Component (see Section 

8.1.3.3). The Manager Component converts the workflow into its JSON representation (see Section 8.2.1). 

It also uses the Connection objects to connect to the provided input and output streams and streaming 

backends and retrieves information about volume and schema of input data, available resources of the 

streaming engines and output streams. This information is added to the JSON representation as well. The 

JSON is handed over to the Optimizer Component (see Section 8.1.3.4). 

3. Optimization of the streaming analysis workflow by the Optimizer Component:  

The Optimizer Component converts the JSON representation to the tool-agnostic workflow 

representation. An optimization of the workflow is performed. Depending on the user-specified parameters, 

the optimization can include the selection of the concrete implementations of Logical Operators (providing 

cross-streaming-platform optimization of the workflow), the execution order and bundling of operators to 

specific streaming executing jobs, the insertion of synopses and function and data shipping (moving 

execution to the data or vice versa). More details about the optimization will be included in deliverabs 

D5.1, D5.2 and D5.3. 

4. Providing optimized workflow back to Manager Component:  

The Optimizer Component provides the Manager Component with the optimized workflow. This optimized 

workflow is visualized in the Graphical Editor Component to inform the user about the changes of the 

Optimizer Component. 

5. Deployment of the workflow by the Manager Component:  

The Manager Component prepares the execution of the optimized workflow by creating execution jobs 

defined by the bundled operators in the workflow. The streaming execution jobs are deployed on the 

streaming backends by the Manager Component. 

6. Monitoring and management of the deployed workflows:  

The Manager Component can be used to monitor deployed workflows. If specified by the workflow, 

statistics are collected and provided to the Optimizer Component, and used for displaying an overview of 

the running workflows to the user through the Graphical Editor Component. Running workflows can be 

aborted, paused, edited and resumed through the graphical user interface. If conditions change (e.g. 

changing input data volume, changing available resources, etc.), steps 3. - 5. can be repeated to optimize 

running workflows to the changed conditions. 

7. Retrieving and consuming results:  

Depending on the specification of the designed workflow, results of the streaming analysis workflow can 

be provided by different means. Output streams can be created, which can be further consumed by different 

streaming consumers (with or without using the INFORE Architecture). Snapshots of streamed results can 

be stored for further batch processing or inspection. Webservices or monitoring dashboards can deliver the 

results to the target users of the designed streaming analysis workflow. 

 

This step-by-step process is also illustrated in Figure 29. 
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Figure 29: Overview of the step-by-step process for creating and deploying a streaming analysis workflow in 

the INFORE Architecture. 

 
 


