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1 Executive Summary 

This deliverable defines the building blocks of the INFORE Architecture, their functionality and their interconnections 

in the scope of a holistic, pluggable, extensible INFORE framework that will evolve to an omnibus solution for 

extreme-scale streaming analytics.  

 

Aligned with the objectives stated in the project proposal, INFORE aims at: 

(i) supporting the non-programmer data analyst in rapid setup of streaming workflows tailored for her 

application scenario needs by providing graphical workflow design facilities,  

(ii) automating the tuning of the underlying Big Data platform infrastructure that materializes the visually 

designed workflow as well as the provisioned physical resources in a way that optimizes specific 

performance measures, 

(iii) providing real-time, interactive machine learning and data mining tools that can be leveraged by the designed 

workflows, 

(iv) enhanced interactivity via data summarization and approximate query processing techniques, 

(v) distributed complex event processing and forecasting techniques to not only detect business events of interest 

as soon as they occur, but also forecast their occurrence well in advance.  

 

To achieve these goals, the definition of the INFORE Architecture includes the following loosely coupled, modular 

components: (i) Graphical Editor Component, (ii) Connection Component, (iii) Manager Component, (iv) Optimizer 

Component, (v) Synopsis Data Engine Component, (vi) Interactive Online Machine Learning Component, (vii) 

Complex Event Forecasting Component. 

 

The Graphical Editor Component is an extension of the RapidMiner Studio developed in the scope of the project. An 

elaborate Streaming Nest operator is being developed within the Studio. The Streaming Nest operator is essentially 

an umbrella encompassing a family of streaming, logical (i.e., abstract, not tied to a particular implementation on a 

Big Data platform) operators developed in the scope of the project. This family of operators includes both data 

management operators such as filtering, join, projection, map, reduce, aggregations etc operators as well as logical 

operators for online machine learning, complex event forecasting and data approximation. Having designed the 

desired workflow using drag and drop functionality of the Graphical Editor Component, the user proceeds with 

visually creating connection objects for input, output streams and streaming backends (available Big Data platforms 

and respective clusters hosting them) in the Graphical Editor Component. These visually defined connection details 

are internally handled by the Connection Component. Upon submitting the workflow, the Manager Component takes 

over to convey the submitted workflow to the Optimizer Component. The Optimizer Component returns to the 

Manager Component a modified, optimized workflow where it has attached execution plan information related to (a) 

the Big Data platform on which each operator of the workflow will be executed, (b) the cluster resources that will be 

provisioned, (c) the cluster in which each operator will be deployed in case of multiple geo-dispersed clusters, (d) 

replacements of exact workflow operators with approximate ones provided by the Synopses Data Engine Component 

should the user have defined that some predefined inaccuracy guarantees can be tolerated by the application for 

reducing workflow execution time. The Manager Component may visualize the modified workflow and ask for user 

approval or execute the actual plan provided by the optimizer. To do so, all logical operators in the execution plan 

provided by the Optimizer are instantiated by their physical implementations. A dispatcher module as part of the 

Manager Component submits separate jobs for each Big Data platform and respective cluster, while output streams 

are provided to the desired applications.  In that scope, the physical implementation of approximate query processing 

operators is included in the Synopses Data Engine Component. The physical implementation of machine learning 

operators resides in the Interactive Online Machine Learning Component and similarly for the Complex Event 

Forecasting Component.  

 

This deliverable is in direct relation to deliverables of WP1, WP2, WP3 (up to date, use case requirements have been 

expressed in Deliverables D1.2, D2.1, D3.1) which aid in realizing the INFORE framework to specific application 

scenarios. WP5 specifies the internal details of the Optimizer Component starting in Deliverable D5.1 to be submitted 

in Month 16 of the project. WP6 develops the Synopses Data Engine Component (Deliverable D6.1 on Month 12 

together with the current one, which is later enhanced in D6.3), the Interactive Online Machine Learning Component 

and the Complex Event Forecasting Component described in Deliverables described in Deliverables D6.2 (Month 16), 

D6.4, D6.5. The first, complete prototype of the INFORE Architecture is presented in the follow up Deliverable D4.2 

on Month 16.  



 
 
 
 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP4 T4.1  
Deliverable D4.1 

Doc.nr.: WP4 DOCID 

Rev.: 1.0 

Date: 29/12/2019 

Class.: Public 
  5 of 38 

2 Introduction 

INFORE’s project objectives target the processing of large-scale data that is increasingly being produced as streams 

by a variety of industrial and scientific applications. To handle these massive data streams, transforming them, training 

and applying analytics functions on them, a flexible, extensible and customizable approach is needed that allows end 

users to easily model and manage streaming analysis workflows. Considering the evolution of streaming technologies, 

the subtle differences in their capabilities, as well as the complexity of streaming use cases,  INFORE envisions 

a cross-platform framework approach to create (i.e., design) streaming processes, optimize these at different levels 

(i.e., functional blocks and process level), execute (i.e., deploy on the most suitable streaming Big Data 

platform and/or computer cluster) and analyse results in an interactive manner. 

 

In order to effectively realize these design goals, INFORE considers the varying levels of data mining skills among 

its end-users and target personas. Therefore, the proposed approach takes into account ease of adoption and long-term 

maintainability as general guidelines. In short, the INFORE framework delivers:  

 

a) A robust visual design approach, which integrates and abstracts various streaming stacks in a flexible, 

pluggable and extensible manner. This eases adoption by reducing pipeline creation to simple drag and drop 

composition of functionality blocks, while letting the user utilize the functionality of the underlying stacks 

to the maximum extent.  

b) An optimal configuration management (consumption and setup) of these processes. The INFORE notion of 

optimality is quite holistic in that it aims at maximizing performance objectives by considering functional 

alternatives across different Big Data platforms and HPC cluster(s). Optimality also considers non-functional 

aspects such as results from similar historic executions, scalability requirements, and the technical limitations 

of available platforms. 

 

The architecture addresses requirements that are derived from various industrial and scientific use cases in the project. 

These use cases help to materialize the scientific and technological objectives of the project. We describe these 

objectives in the following, refining the descriptions given in the project proposal, based on the deeper insights gained 

from the work conducted to date. 

  

I. Real-time, interactive machine learning and data mining tools 

 

A variety of stakeholders needs to consume large-scale streaming data. These include analysts, domain experts and 

data engineers. These and many other roles highly vary in their data mining skills. A vital objective of the INFORE 

architecture is to build interactive tooling to ease design and management of general as well as machine learning based 

streaming processes. Further, this tooling should allow interactive queries to be performed, leveraging the use of data 

synopses, when possible. This is critical to allow the user to interactively test different parameters and to gain insights 

on the data. This is typical in the INFORE use cases. For example, in the INFORE Financial use case, evaluating 

whether there is systemic risk often involves discovering correlations of different strength over different time periods, 

which the user can dynamically determine, without the need to continuously process thousands of financial data 

streams in their entirety. These features extend the traditional approach of other tools, which as of today provide very 

limited interactivity and tooling e.g., for machine learning on streaming data. 

 

II. Distributed complex event processing and forecasting of future occurrences 

 

A certain set of streaming applications require a sophisticated capability to process high-frequency real-time data for 

the identification of complex events with very low latencies. Classifying these events and forecasting the likelihood 

of their occurrence in future time window(s) requires the acquisition and preparation of context data (streams), 

handling noise, training and applying models at very fast rates since event patterns may indicate sensitive or critical 

incidents. The INFORE architecture meets this objective by targeting state-of-the-art streaming techniques from the 

field of Complex Event Processing and Forecasting, blending the use of rule-based deductive learning with more 

general predictive modelling. 
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III. A flexible, pluggable and extendable architecture 

 

The INFORE Architecture recognizes the diverse feature set of different software stacks and the rapid evolution of 

the technology spectrum. Considering this fact, a fundamental objective for the INFORE architecture is to approach 

maximum flexibility, pluggability, and extensibility without compromising the ease of adoption. This multi-prong 

objective is achieved by following a component-based (visually usable) design, which provides conceptual pillars 

(explained in Section 4.3 in more detail) to achieve these design principles. 

  

Flexibility is afforded by means of cross-stack feature integration and real-time (re-)configurability of INFORE 

process parameters, by means of an intelligent Optimizer Component. A meta-model is being developed that 

transforms the operator-based visual representation of streaming workflows into a machine-readable representation of 

process, that is consumed by the Optimizer to perform optimizations on the functional and non-functional aspects of 

the process. This representation can be further analysed and optimized by considering the existing implementations 

over different available Big Data platforms and/or HPC infrastructure, the current resource utilization levels, the 

availability of resources over time, the key performance requirements of the process, and business as well as technical 

constraints of the backend infrastructures. 

 

In addition to the Optimizer, INFORE’s modular design can integrate external components that may be developed by 

project partners and exposed for consumption as REST1 API instances. These could be very helpful if certain use case 

workflows require to make queries to additional components. For example, queries to the Synopses Data Engine, the 

Complex Event Forecasting Component, or systems based on the Akka streaming platform that are interfaced by a 

REST API, can be simply added to the workflow. 

  

Pluggability and extensibility are achieved by integrating selected technology stacks, libraries and external systems 

by loosely coupling them in graphical components called operators. These not just provide a layer of abstraction and 

hence a common approach to use distinct features of heterogenous underlying technology stacks, but also a convenient 

method to compose complex analytics functions as reusable pipelines (or processes). 

 

IV. Construction of a framework for supporting non-programmer data analysts to specify processing 

workflows and data analytics tasks 

 

The INFORE architecture occupies a central focus in the broader INFORE framework. The INFORE framework 

consists of: 

 

A. A visual design approach to create streaming analysis workflows using a graphical (virtually code-free), 

drag and drop mechanism. As hinted to already, this is achieved by connecting graphical objects called 

operators, i.e. functional modules that allow data retrieval, data pre-processing, data transformations, and 

analytics functions. This approach provides a comprehensive and thoroughly documented guideline to 

structure any complex data analysis process by means of: 

a) Building blocks, which are a set of commonly used operators. These promote reusability. 

b) Sub-processes, which help organize a data analysis process into modules or sub-processes. This 

promotes maintainability, especially when multiple stakeholders jointly design complex processes, 

and re-usability. 

c) Parameter configurations, which allows to pass or reset values at the process level and at the operator 

level, respectively, during process design time and process execution time. This promotes 

customization. 

B. A concrete implementation of all the necessary tooling (including operators, but also related components 

such as for connection management, deployment, resource monitoring, querying of ongoing execution / log 

outputs, synopses data engine, optimizer for intelligent (re)configurations, etc.). 

 

 
1 REST stands for Representational state transfer (webservices) 
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In this regard, INFORE is aiming for a full-fledged framework solution that can evolve as a de-facto standard to 

perform extreme-scale analytics for a variety of streaming use cases. This ideation stems from the scope of INFORE, 

which allows it to arguably deal with the complete life cycle including design and realization of streaming analysis 

workflows to deployment, management and evaluation of results. 

 

V.      Data summarization and approximate query processing techniques 

 

INFORE deals with a diverse set of use cases from financial, life sciences, and maritime domains. Despite their unique 

specialities, these use cases have a common requirement in that they all need to deal with massive data streams in 

real-time. One of the major requirements (and hence, an important objective) is to provide implementation of 

approximate query processing algorithms that can generate representative summaries on top of streamed data - also 

termed as Synopses. The Data Synopses Engine is a crucial component in the INFORE architecture, that delivers this 

capability. INFORE is researching a range of techniques for synopses generation that may range from one-pass 

synopses over single-source data to more elaborate techniques that monitor cross-source correlations. A well-

characterised synopsis may serve as a live view of an ongoing experiment at an intermediate or advanced stage. This 

plays a decisive role in certain use cases. Hence, this objective is considered a novel contribution in the overall set of 

INFORE capabilities. 

 

VI.       Rigorous testing and evaluation of controlled experiments and reviews by domain experts 

 

INFORE partners plan to subject their use case implementations to a rigorous unit-level, integration-level, and end-

to-end level testing, which may require multiple partners (both domain experts and technical experts) to join hands. 

The evaluation of various workflows under the Life Sciences, Maritime, and Financial use cases are being considered 

with the objective to understand the limits or boundaries of the INFORE architecture as well as the added value of the 

INFORE framework, especially in comparison to prior or contemporary art. For this, it is planned to compile a list of 

functional and non-functional aspects, metrics, or Key Performance Indicators (KPIs) to be able to fairly assess project 

contributions in terms of use cases or at least certain workflows that are part of the use cases. 

 

In addition, at this stage, various benchmarking methodologies are also being considered. Given a lack of a singular 

widely adopted standard approach, we are also exploring ideas to formulate a custom approach for testing, evaluation, 

and benchmarking. 

 

The following section on the state-of-the-art presents a short overview of some of the popular data streaming 

frameworks and machine learning libraries for streaming data. 
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3 State of the Art 

This section gives an evaluation of already available frameworks and libraries for analysing streaming data and for 

machine learning on streaming data. Since the goal of the INFORE project is to have a flexible architecture that does 

not rely on a single technology stack, this evaluation is a very important first step to do. The idea is that for a given 

workflow visually designed in the RapidMiner Studio software, properly extended with INFORE functionalities, parts 

of the workflow engaging several operators may be executed in different Big Data platforms, possibly in a distributed 

way and in parallel. This is the case, for instance, when different implementations of operators exist in different such 

platforms or when a particular implementation exhibits higher performance in INFORE optimization-related 

benchmarks. 

 

This section also covers references to related research projects to check for prior work and disseminating features of 

INFORE.  

3.1 Streaming Frameworks 

In recent years, many streaming frameworks were developed and have become popular. Especially with the support 

of big, open source communities and the backing of companies, these frameworks are still rapidly growing. Therefore, 

a complete overview of all tools and framework is out of the scope of this document. While some projects fill a niche 

role for very specific needs and demands, others follow a general approach. In this section, we will give a brief 

overview of some of the more popular and active frameworks. 

3.1.1 Storm 

The conceptual view of data processing in Apache Storm2 is represented by a Storm Topology. A Storm Topology is 

a Directed Acyclic Graph (DAG) that includes Spouts and Bolts. Spouts are data stream sources; each Bolt, in turn, 

is where the actual processing takes place. Bolts can do anything from filtering, aggregations, joins, interacting with 

databases, and more, before emitting tuples to other Bolts or to applications. 

 

For the physical execution viewpoint, there are three kinds of nodes on a Storm cluster. The Master node runs a 

daemon called Nimbus, responsible for assigning tasks to machines and for monitoring for failures. A ZooKeeper 

coordinates various processes and stores all the states associated with them. Finally, each Worker node runs a 

Supervisor daemon, which listens for work assigned to its machine and manages Worker processes. 

 

Upon defining the topology, the developer can explicitly set the number of Worker processes (Java Virtual Machines 

- JVMs). A Worker process belongs to a specific topology and may include one or more Executors. Each Executor is 

devoted to a Spout or Bolt of this topology.  

 

For each Spout or Bolt, the developer can explicitly declare the number of its Executors (threads). A Spout’s/Bolt’s 

definition also allows for setting the number of tasks for the Spout/Bolt. The tasks of a particular Spout/Bolt are 

running instances of the exact same Spout/Bolt that produce/process different data partitions. Moreover, Storm 

supports several grouping strategies that specify how data will be partitioned and exchanged among the tasks of Bolts. 

Custom groupings are possible, while built-in ones are also available. 

3.1.2 Spark Streaming 

The Spark3 framework offers a very flexible execution environment for scalable computation. Initially designed as an 

improvement of the MapReduce paradigm for distributed computation (e.g., in a Hadoop cluster), Spark capsules the 

data in a Resilient Distributed Dataset (RDD), on which a program can be executed. This allows to apply iterative 

algorithms efficiently on a cluster. Spark Streaming extends the functionality of Spark to work on mini batches of 

incoming data. While this offers a lot of possible applications for streaming algorithms, the distribution and 

management of the distributed batches increases the latency of this framework, compared to other dedicated streaming 

solutions. 

 

 
2 https://storm.apache.org/ 
3 https://spark.apache.org/ 

https://storm.apache.org/
https://spark.apache.org/
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The Spark Streaming API4 works on one or more discretized streams, each termed a DStream. DStreams can be 

created either from input data streams stemming from sources such as Kafka, or by transforming other DStreams. Data 

streams arrive at a Receiver process. To create a DStream, discretization takes place based on two types of time 

intervals. The “block interval” organizes incoming data streams into blocks of few tens of milliseconds, with each 

block being a data partition. Concatenating blocks creates micro-batches. These are then forwarded to the core of 

Spark. There, a micro-batch is treated as an immutable collection of data tuples organized into partitions (blocks), 

called an RDD as mentioned above. As time passes, new RDDs are instantiated and may undergo several 

transformations (map, reduceByKey, join, etc), window, or output operations. These operations may either be 

‘narrow’, like map, which operate on a single partition and essentially pipeline the data of that partition to a resulting 

single partition, or ‘wide’ operations like reduceByKey which require to map the data across the partitions in new 

RDDs. A series of such transformations or window operations form a DAG where nodes are RDDs at various 

timestamps and arrows correspond to the desired operations on them. Such a DAG expresses the conceptual view 

describing the flow of data processing.  

 

A Spark Cluster includes a Driver process at a Master (Driver) node and one or more Worker nodes. The Driver node 

is where the Spark application (i.e., the SparkContext) is created. A Worker node includes one or more Executors 

(JVMs) running tasks assigned by the Driver. 

 

Each RDD undergoes a number of processing stages, translating the DAG of the conceptual view. A stage is formed 

as a set of narrow transformations that can be pipelined and executed by a single Worker independently. Having 

divided the execution graph into stages, within each stage a data partition is assigned to a single task. Then tasks are 

assigned by the Driver to Workers. 

 

Parallelism can be tuned in several ways. For instance, one can pre-partition (i.e., before reaching a Receiver process) 

Kafka messages and create a DStream for each partition. Within Spark, the repartition transformation can create more 

or fewer partitions of a DStream. Redistributing streams using wide operations changes the partitioning of the streams 

as well. For example, the keyBy transformation repartitions data by hashing tuples based on key field(s). 

3.1.3 Flink  

In contrast to Spark, Flink5 does not rely on processing micro-batches but has a continuous processing engine. This 

means the framework can handle each streaming tuple individually. Furthermore, Flink offers a rich API for 

manipulating streams and has libraries for machine learning and complex event processing (CEP) (FlinkCEP). 

 

With this API, it is very easy to create new analytical processes, although it requires some experience on writing code. 

The deployment is also relatively simple but encompasses some steps that are not trivial for a non-code inclined user 

(compiling the process as a *.jar file and transferring it to a Flink cluster). But simplifying these steps is one of the 

goals of the INFORE project. The flexibility and scalability of Flink are strong arguments to use it as reference model 

for the first versions of some components of the project architecture. The basic building blocks of a Flink program are 

Data Sources (streams), operators, and data sinks bound together in a directed graph, which is not necessarily acyclic.  

 

From a developer’s viewpoint, Flink operators or data sinks may resemble Spark transformations, window operations, 

or output operations, respectively. However, the implementations of these operators differ significantly. Flink is a true 

streaming engine treating batch processing as special case of streaming with bounded data and not vice versa as it is 

the case with Spark. In Flink, each data source or operator (map, keyBy, filter, etc.) is implemented as a long running 

operator similar to Spouts and Bolts in Storm. Flink also gives low-level control on the exact stream partitioning after 

a transformation, like Storm groupings. 

 

A Flink cluster is composed of (at least one) Master and several Worker nodes. The Master node runs a JobManager 

for distributed execution and coordination purposes, while each Worker node incorporates a TaskManager which 

undertakes the physical execution of tasks. Each Worker which is a Java Virtual Machine (JVM) process, has multiple 

task slots (at least one). Each operator or instance of an operator of the Flink program is assigned to a slot and tasks 

of the same slot have access to isolated memory shared only among tasks of the same slot. The new concept here 

involves task chaining. That is, Flink allows to place two operators (or instances of operators) together into one task 

 
4 https://spark.apache.org/streaming/ 
5 https://flink.apache.org/ 

https://spark.apache.org/streaming/
https://flink.apache.org/


 
 
 
 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP4 T4.1  
Deliverable D4.1 

Doc.nr.: WP4 DOCID 

Rev.: 1.0 

Date: 29/12/2019 

Class.: Public 
  10 of 38 

i.e., thread, for performance reasons. At the level of an operator/data source/data sink, parallelism is configured by 

calling a setParallelism method. Redistributing streams using wide operations (as in Spark) changes the partitioning 

of the streams as well. For instance, keyBy repartitions by hashing key field(s), broadcast replicates the operator 

outcome, and rebalance performs round robin repartitioning. 

3.1.4 Akka 

Akka6 is a toolkit to build reactive systems for streaming. It features a high-performance set-up with a low memory 

footprint and a decentralized and clustered architecture. The guiding design principle is the Reactive Manifesto7 

published in 2014. The Streaming API of Akka offers a diverse collection of operators for manipulating data, which 

covers the typical stream analytics requirements, whereas a dedicated library for machine learning is missing. 

 

Conceptually, Akka employs an actor-based model. The actor model is a model of computation with the following 

properties. Each actor is an independent process with its own encapsulated state and behaviour that communicates 

with other actors via messages. Each actor has an address, an incoming message box, a state, and a behaviour. 

Messages are sent to an address and are kept in the inbox of the designated actor until it is free to process the message. 

Message actions include: 

 

• Send a finite number of messages to other actors. 

• Create new actors. 

• Change an actor’s own behaviour. 

  

An actor can communicate with any other actor it knows of. Actors can form a hierarchy, termed as an Actor System, 

where each actor is related to others with a parent, child, or sibling relation. A parent actor is the one that has created 

child-actors. 

  

Typically, an Akka application is composed of one or more Actor Systems. Parallelism can be implemented either by 

having a parent actor assigning different pieces of work (operators) in a workflow to different child-actors or by having 

a parent actor creating multiple instances of the same child-actor, assigning different data chunks to be processed by 

each. The communication among actors can be established by a router actor which forwards messages in a way similar 

to Storm’s grouping strategies, while custom routing schemes can be implemented as well. 

  

Closer to the physical view, an actor system is executed in a single JVM. The idea is to have a number of threads 

roughly equivalent to the available CPU cores and typically the number of actors is greater than the available cores 

(so that a thread is unlikely to remain idle and pseudo-parallelism can internally be exploited). A Master – worker 

relationship is established among actors in an actor system. Each parent is responsible for the supervision of its child 

actors. In case the child dies, it is the parent’s responsibility to react upon this event. The supervisor is free to choose 

from the following four strategies: 

 

• Resume the subordinate, keeping its accumulated internal state. 

• Restart the subordinate, clearing out its accumulated internal state. 

• Stop the subordinate permanently. 

• Escalate the failure, thereby failing itself. 

  

In addition, to the parental supervision any actor may subscribe to be notified of the death of another actor. 

3.1.5 Kafka Streams 

The typical usage for Kafka is as a message broker between different data producers and consumers. It is designed to 

be high-throughput system, that easily scales to high loads. With Kafka Streams, there is a dedicated stream processing 

library available, that allows to integrate low level operator integration (e.g., including arbitrary Java or Python code). 

Kafka is a very popular choice for orchestrating message queues and inter process communication between different 

 
6 https://akka.io/ 
7 https://www.reactivemanifesto.org  

https://akka.io/
https://www.reactivemanifesto.org/
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systems. One of the appealing things here is the simple architecture and the quick way to set-up a running system. 

Kafka is maintained as a top-level project of the Apache foundation, so it is also available as open source and has 

many and very active contributors. 

 

Because of the wide-spread usage and the easy-to-use approach, Kafka is one of the main platforms considered for 

the INFORE project. The message broker service provided by Kafka will be an essential part of the underlying 

distribution system and a good candidate as an endpoint of the analytics platform. 

 

Besides the listed frameworks, there are many other tools and programming languages that offer streaming capabilities 

of some sorts. But to our best knowledge, these are often very specialized for specific tasks, not very widespread or 

offered by commercial vendors (thus, conflicting the open source scope of generic INFORE components).  

3.2 Machine Learning (ML) on Streaming Data 

The main goal of the INFORE project is not only to have a scalable architecture to handle large streaming data, but 

also to make it pluggable and capable of providing an easy to use, graphically-assisted analytics solution. There are 

numerous analytics or machine learning libraries and tools available. Some of these solutions also provide support for 

or are specialized in handling streaming data. However, their implementations are restricted only on a specific Big 

Data platform. 

 

One of the challenges of the INFORE project is that we aim at supporting many streaming machine learning platforms 

and libraries to leverage their individual strengths and to incorporate any existing or future facilities in the scope of 

an extensible, pluggable architecture. Therefore, in this section we discuss what is available in popular machine 

learning algorithmic suites, all of which are available as open-source. It is important to emphasize that the 

contributions of the toolkits discussed below are orthogonal to INFORE, since as stated above, they are built on a 

single platform each and thus INFORE can accommodate their libraries (wherever they include implementations of 

streaming algorithms) and (i) perform cross-platform optimization in workflows containing machine learning 

operators, with implementations available in various platforms, (ii) account for available HPC infrastructure, and (iii) 

rapidly explore and fine tune machine learning models under different parameterizations, exploiting the power of 

synopses provided by the respective INFORE architectural component. 

 

This section will give a brief overview of existing machine learning stacks for streaming data and how they may fit 

into the INFORE requirements. 

3.2.1 FlinkML 

FlinkML, written in Scala, provides a set of scalable machine learning algorithms over Flink’s distributed framework. 

FlinkML’s library is built using the DataSet API of Flink, thus providing offline algorithms designed for batch, instead 

of stream processing. FlinkML supports the creation of machine learning pipelines i.e., the ability to chain together 

different transformers and predictors. Moreover, it includes a parameter server implementation8 which is a paradigm 

for accomplishing distributed (parallel) machine learning. Additionally, FlinkML is designed for model-parallel 

machine learning but does not include provisions for fault tolerance and allows only asynchronous training. FlinkML 

is not included among the libraries of the latest version 1.9 of Flink, but it has been extended towards online, scalable 

machine learning by the Proteus-SOLMA library discussed below. Finally, it provides a connector to the SAMOA 

library, also detailed shortly. 

3.2.2 Proteus-SOLMA 

In a nutshell, SOLMA is intended to be a streaming version of FlinkML sitting on top of the DataStream, instead of 

the DataSet, Flink API. It provides scalable online machine learning algorithms and real-time interactive visual 

analytics for extremely large data sets and data streams. It is written in Scala and has been integrated into an enhanced 

version of Apache Flink developed within the scope of the Proteus H2020 project discussed below. SOLMA includes 

a limited set of online algorithms for classification (such as Passive Aggressive Classifier), regression (such as 

Competitive Online Iterated Ridge Regression) and few from other machine learning categories such as online 

anomaly detection using incremental Principal Component Analysis (PCA). 

 
8 https://github.com/FlinkML/flink-parameter-server 

https://github.com/FlinkML/flink-parameter-server
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3.2.3 Spark MLLib 

The MLLib library is an essential part of the Spark ecosystem and integrates well with Spark Streaming. Despite the 

fact that, with respect to offline machine learning algorithms, MLLib is, perhaps, the richest such library of its kind, 

there is a limited set of specialized streaming versions of common algorithms included in it. Online machine learning 

algorithms of MLlib are restricted to Linear Regression, Logistic Regression and K-Means. It is also possible to use 

a section of the streaming data as historic training data for a generic machine learning model from MLLib and then 

apply it on the incoming stream of new data. 

3.2.4 Apache SAMOA 

Apache SAMOA is a streaming machine learning library that aims to hide the complexity of the underlying streaming 

system. It allows the development and usage of distributed streaming machine learning algorithms independent of the 

underlying engine and as such can be deployed on many different platforms. For the INFORE project this is somewhat 

appealing concept that covers many of the requirements. Unfortunately, the project is still in a relatively early stage 

(Apache incubator) and the number of supported streaming platforms is limited. 

3.3 Related Projects 

FERARI9  

 

The goal of the FERARI project was to build a framework that allows for efficient and timely processing of Big 

streaming Data. This framework includes a distributed complex event processing (CEP) engine, a query optimizer and 

a distributed online learning framework. The framework is materialized on Apache Storm using IBM Proton on Storm 

as its underlying CEP engine. The focus is on optimizing the execution of CEP operators over a geo-distributed 

network of sites. That is, each site (e.g. data center) in the network is supposed to run an Apache Storm topology and, 

given a workflow which is a graph of CEP operators, decides on which site each operator should get evaluated, i.e., it 

maps the CEP operator graph to the network graph, so that communication is minimized under network latency 

constraints.  

 

This is only a special case of the optimization parameters in INFORE. Apart from choosing the site over the network 

where each query operator should get evaluated, the INFORE Optimizer (a) performs cross-platform optimization. 

That is, it chooses the Big Data platform over which each operator of the workflow should be executed, in case 

multiple implementations of an operator exist in different such platforms, (b) it performs resource provisioning for 

each operator over HPC infrastructures including heterogeneous clusters composed of CPUs and GPUs (c) it performs 

synopses-based optimization by replacing parts of the workflow with equivalent ones composed of approximate, 

instead of exact, operators to speed up the processing and reduce memory utilization under accuracy constraints,  (d) 

it may devise the parallelization degree. 

 

RHEEM10 

 

RHEEM is a system designed to support cross-platform data processing. That is, it enables users to run data analytics 

over multiple data processing platforms. For this, it provides an abstraction on top of existing platforms in order to 

run data analytic tasks on top of any set of platforms. This approach aims at freeing data engineers and software 

developers from the burden of getting familiar with different data processing systems, their APIs, strengths and 

weakness; the intricacies of coordinating and integrating different processing platforms; and the inflexibility when 

tying to a fix set of processing platforms. Rheem has built-in support for the following processing platforms: - Java 8 

Streams - Apache Spark - GraphChi - Postgres - SQLite.  

 

RHEEM, similarly to INFORE, targets cross-platform optimization in the execution of workflows and provides a 

graphical user interface for designing such workflows. However, (a) its focus on streaming data is limited to 

JavaStreams, (b) it does not account for settings composed of dispersed sites, (c) it does not examine HPC 

infrastructures and (d) it lacks support for synopses-based optimization.    

 
9 http://www.ferari-project.eu/ 
10 http://da.qcri.org/rheem/ 

http://www.ferari-project.eu/
http://da.qcri.org/rheem/
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VINEYARD11  

 

VINEYARD built an integrated platform for energy-efficient data centers based on novel programmable hardware 

accelerators (Dataflow engines and FPGA-based servers). It developed a high-level programming framework and Big 

Data infrastructure for allowing end-users to seamlessly utilize these accelerators in heterogeneous computing systems 

by employing typical data center programming frameworks (in particular, Spark). VINEYARD accounts for HPC 

infrastructures and heterogeneous data centers (clusters) as INFORE does. Nonetheless, it leaves to the developer the 

responsibility of choosing whether Spark MLlib or the MLlib_accel API, provided by VINEYARD, will be used for 

the execution of a particular machine learning operator. Moreover, VINEYARD is focused on batch, instead of stream 

processing, it does not account for cross-(Big Data)platform optimizations and it does not provide a graphical user 

interface to assist workflow design. 

 

 

PROTEUS12 

 

PROTEUS aimed at evolving massive online machine learning strategies for predictive analytics and real-time 

interactive visualization methods – in terms of scalability, usability and effectiveness dealing with extremely large 

data sets and data streams – into ready to use solutions, and to integrate them into enhanced version of Apache Flink. 

The focus of the project was to extend Flink with support for hybrid, batch and stream, processing capabilities and to 

develop online machine learning algorithms to be executed over the distributed/parallel processing architecture of 

Flink. Hence, Proteus’s focus was neither on cross-platform optimization nor on graphically assisted workflow design 

tools. Moreover, Proteus developed a synopses library, however, INFORE’s synopses data engine is provided as a 

constantly running service, which (a) simultaneously maintains multiple synopses of different types and (b) synopses 

can be loaded on-the-fly from internal or external libraries. On the contrary, Proteus needs a separate job for each data 

summarization algorithm. The impact of the latter approach is that for monitoring thousands of streams 

simultaneously, it needs to submit and execute thousands of Flink jobs in parallel. 

 

CELAR13 

 

The CELAR platform incorporates intelligent decision-making algorithms to support multi-dimensional and multi-

grained elasticity control over the cloud and its services. CELAR evaluates elasticity at multiple levels of the cloud 

stack (Paas, IaaS) and considers the impact of enforced actions in relation to cost, quality and allocated resources for 

elastic cloud services. To provide this functionality in a vendor-neutral manner, real-time monitoring and elasticity 

behaviour analysis of heterogeneous types of information collected from different and multiple data sources, is 

required. This important role, in the CELAR software stack, is the job of the Cloud Information and Performance 

Monitor Layer. The Cloud Information and Performance Monitor Layer runs alongside all the layers of the cloud 

infrastructure, in order to provide the intelligent decision-making mechanisms of the CELAR System with real-time, 

cost-enriched, monitoring metrics. The CELAR Elasticity Provisioning Platform is the central component of the entire 

platform. Its main goal is to provide the methods and tools to integrate and orchestrate all the submodules of the 

CELAR platform (decision module, monitoring system, application description tool, etc) into one functional elasticity 

middleware that can expose its functionality to the external applications with a unified and user-agnostic manner. 

 

Elastic resource allocation is only one aspect of the work carried out in INFORE to maintain horizontal scalability in 

the long run. In addition, INFORE offers federated scalability, by scaling out the computation to multi-cloud 

platforms, vertical scalability by offering synopses as stated above. Furthermore, INFORE optimizes execution of 

cross-(Big Data) platform workflow and examines heterogeneous cloud environments incorporating hardware 

accelerators. 

 

 

 
11 http://www.vineyard-h2020.eu/ 
12 https://github.com/proteus-h2020/   
13 http://www.celarcloudproject.eu/ 

http://www.vineyard-h2020.eu/
https://github.com/proteus-h2020/
http://www.celarcloudproject.eu/


 
 
 
 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP4 T4.1  
Deliverable D4.1 

Doc.nr.: WP4 DOCID 

Rev.: 1.0 

Date: 29/12/2019 

Class.: Public 
  14 of 38 

Table 1 summarizes the features of INFORE in comparison with related projects. 
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Table 1: Comparison of INFORE with related projects. 
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4 INFORE Architecture 

This section describes the structure and concepts defined for the architecture and how the different components interact 

with each other. 

4.1 User Requirement Analysis 

While the initial concept and requirements of the architecture were already envisioned during the project proposal 

phase, some refinements are always required during the starting phase of the project and while the system prototype 

takes shape. To ensure that all necessary requirements of the use case partners are met, an initial phase of requirement 

engineering was initiated in parallel with the requirements expressed in Deliverables D1.1, D2.1 and D3.1. 

 

Here, the concept of a target persona and user stories were applied. These concepts are typically used by software 

development projects and designers. A persona represents the archetypical users of a tool and helps us as developers 

to better identify them. It consists of a sketch about the daily work of that person, her educational background, often 

used tools and some common personality traits to flesh out the characterization. The user story is another element that 

helps to refine the needs of the user. It is a simple sentence, that states the role of the user, her desired action and the 

goal that she wants to achieve. Each user story represents one task that is crucial for the work routine of a persona. 

 

We asked the three use case partners from WP1, WP2 and WP3 to create sample personas of the latter users of the 

developed tools and the typical tasks they want to perform. 

 

From all partners, we have collected in total seven different target personas that represent typical users of the final 

system. Additionally, six user stories where formulated that help to define the tasks these users would later like to 

perform. While these requirements focus more on the end users and their experience with the final tool, they already 

helped to formulate requirements, especially on the user interface and the graphical editor. 

It became clear that the requirements are not perfectly aligned for all partners. For some user types the multi-platform 

approach is crucial, as they need a system that eases the integration of different data streams and analysis platforms. 

For others (e.g., in the financial use case), the high level of interactivity and easy representation of data streams is 

more important. These findings again stressed out the importance of a flexible architecture that can handle the 

heterogenous requirements for streaming applications.  

4.2 Architecture Overview 

The INFORE Architecture is designed to tackle the project objectives described in Section 3.1. Conceptual pillars are 

used to create a component-based modular design. Figure 1 gives an overview of the conceptual design of INFORE 

Architecture. The integration concept is described in the next subsection, while the different components are explained 

in detail in the following subsections. 

 

 

Figure 1: Overview of the conceptual design of the INFORE Architecture. 
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4.3 Integration 

The INFORE Architecture will achieve design time and execution time reduction goals through a holistic integration 

approach based on Conceptual Pillars. These pillars are concretely realized as components which are the following: 

 

1. Connection Component 

2. Graphical Editor Component 

3. Manager Component 

4. Optimizer Component 

5. Synopsis Data Engine Component 

6. Complex Event Forecasting Component 

7. Interactive Online Machine Learning Component 

 

The central component is the Manager Component providing the interaction point between most of the other 

components. The Manager Component handles the actual execution and monitoring of the designed streaming analysis 

process. 

 

All components will be developed in a modular way, with clear interaction-interfaces between them. This enables an 

easy exchange between the modules and provides the necessary pluggability of the INFORE Architecture. 

4.3.1 Connection Component 

The Connection Component enables access and preliminary management of the selected streaming backends (stream 

sources and sinks, Big Data platforms and respective computer clusters) that are utilized by the INFORE use cases 

and broader application scenarios. The Graphical Editor Component will be a streaming extension of the RapidMiner 

Studio (which is currently focused on offline, batch processing) to provide specific functions (as operators) that are 

developed in the selected streaming technologies. 

  

Some aspects of streaming technologies being considered at this stage are explained in Section 4.2. Here, we briefly 

mention the mechanics of the Connection Component. The Connection Component functionality is realized as 

Connection objects in the Graphical Editor Component. The user of the INFORE Architecture only needs to provide 

the essential information for connecting to the backends without any coding needed. Then, the Connection objects can 

be utilized in the streaming analysis process, which itself is designed using the Graphical Editor Component. 

  

For the scope of the INFORE project, we identified three functional concepts that include input streams, output streams 

and stream processing backends, where a streaming analysis process may be executed. A typical streaming analysis 

process will consume one or more input streams, perform transformations and may result in output stream(s). Input 

streams provide the input data, for which the streaming analysis process is designed. The streaming analysis process 

is application specific. Output data streams (which are not a necessity) mark the endpoint of a streaming analysis 

process. The nature of the application scenario can impose restrictions on their type, but the approach provides the 

required flexibility. Output streams can serve as Input streams for downstream analysis processes. Streaming 

processing backends are the computer clusters typically hosting some Big Data platform(s), which provide the physical 

infrastructure resources needed to execute the streaming analysis process. These are limited by the hardware and 

technology stacks the user has access to. 

  

Keeping the above description as a pretext, the connectivity requirements become very important. The Connection 

Objects are thus configured for each supported compute backend e.g., to connect with Flink or Kafka backends. The 

Connection Object(s) are then used together with the Manager Component to establish connection for input stream, 

output stream, or to place a streaming analysis process on a compute backend and/or to configure environmental 

settings. The Connection Component can be extended with additional Connection objects to reflect the execution 

requirements of the streaming analysis process. For instance, if a streaming backend technology provides a set of 

desired connectors, which are installed in the Architecture implementation, then, these may be reused by the streaming 

analysis processes. As an example, a Flink-based streaming analysis process may output its results into a Kafka topic. 

In such a case, INFORE’s Flink Connection object can encapsulate the Flink connectors for required sources (for 

input streams) and sinks (for output streams) to provide access in real time. A user can graphically define and internally 

create multiple Connection objects based on the available backends. 
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The concepts of input streams, output streams and stream processing backends capture the general constituents of a 

typical streaming analysis process. With some exceptions, all streaming technologies described in Section 4.2. can 

provide the actual functionality for these constituents, which are addressed in Section 4. For flexibility, the INFORE 

Architecture aims at combining different streaming technologies in one streaming analysis process. If more than one 

stream processing backends are provided to the INFORE Architecture, the architecture by virtue of the Optimizer 

Component can automatically decide on the optimal placement of different parts of the analysis process to different 

backends (Big Data platforms and/or cluster/HPC infrastructures). 

4.3.2 Graphical Editor Component 

The Graphical Editor Component enables users of the INFORE Architecture to easily design a streaming analysis 

workflow without any coding needed. This is achieved by encapsulating streaming analysis functionality into so called 

operators. The operators can be placed inside the graphical user interface via drag and drop actions and can be 

connected by drawing arrows to define the data flow in the streaming analysis workflow.  

 

To ensure flexibility, the streaming analysis operators of the Graphical Editor Component, called “Logical Operators”, 

are designed as an abstraction layer, without defining the actual streaming technology used. Thus, the user can focus 

on the analytic setup of the process, without handling the technology specific aspects. 

 

The Manager Component can automatically perform the desired functionality by utilizing the physical 

implementation(s) of the Logical Operators for the specific streaming processing backend used. If physical 

implementations for a particular Logical Operator in more than one streaming processing backends, the Optimizer 

Component can devise the selection of the physical implementation to optimize the processing of the workflow. This 

is of course only possible for functionality (operators) for which multiple implementations over different Big Data 

platforms exist. See Section 3.1 for an overview of the common streaming technologies. 

 

The functionality of the Data Synopsis Engine Component, the Complex Event Forecast Component and the 

Interactive Online Machine Learning Component are represented as Logical Operators as well and can be placed 

(dragged and dropped) in the streaming analysis workflow and get graphically parameterized. The physical 

implementation of these operators on top of specific Big Data platforms (run on respective clusters) are developed 

within the scope of WP6. 

 

These “INFORE Component” operators contain all information to execute the specific algorithms and methods, which 

are provided by external (external from the Graphical Editor Component’s perspective) libraries. They provide loose 

coupling between the Graphical Editor Component and the specific INFORE Component. The libraries can be 

developed independent of the Graphical Editor Component. An adaption is only needed if the interface changes. In 

addition, further components can be added in the future by just adding operators to the Graphical Editor Components. 

These aspects ensure the extensibility and pluggability of the INFORE Architecture. The workflow is to be fed to the 

Manager Component, which also handles the deployment and execution aspects on the streaming cluster. 

 

Figure 2 shows a demonstration of a streaming analysis workflow, designed with the Graphical Editor Component. 
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Figure 2: Demonstration of a streaming analysis workflow, designed with the Graphical Editor Component. 

4.3.3 Manager Component 

The Manager Component plays a central role in the INFORE architecture. The Manager Component is realized as a 

library, which allows extensibility and flexibility to integrate with potentially multiple systems or front ends. This 

arguably sustains the work done in INFORE beyond the scope of the project. On one hand, the Manager Component 

wraps the data retrieval, preparation, transformation and modelling methods that are interfaced with the Graphical 

Editor Component in a loosely coupled fashion. On the other hand, it utilizes the Connection Component to handle 

connectivity with the streaming backend(s), provides a tool-agnostic representation of the streaming analysis 

workflow (as required by the Optimizer Component to optimize the workflow), and handles the deployment aspects. 

The Manager Component is also intended to retrieve real time information from stream processing backends on the 

available capacity, usage of resources, workload status, and stream processing meta data. 

 

There are three functional modalities which lie in the domain of the Manager Component. These are briefly explained 

below. 

 

Workflow and Plan related functions: 

 

The Manager Component receives the workflow from the Graphical Editor Component. Besides the actual streaming 

analysis process, the workflow also contains the connection objects for the input and output streams and the computing 

backends, on which the workflow shall be deployed and executed. The Manager Component converts the workflow, 

the resource and execution information into a JSON representation. This representation acts as a tool-agnostic 

workflow representation, which the Optimizer Component can optimize in a domain and technology independent 

fashion. 

 

After performing the optimization of the workflow, the Optimizer Component passes it back to the Manager 

Component. The next steps involve the deployment of the optimized workflow or parts of this workflow on the desired 

backend(s) (Big Data platforms and available clusters). The basic idea is that the Manager Component can deploy an 

optimized workflow, or even an unoptimized (default) workflow. The latter may be the case if optimization is not 

possible, for instance, due to lack of operator physical implementations in more than one Big Data platforms. 
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Deployment related functions: 

 

The Manager Component also implements the functionality to create a deployable artefact from the optimized 

workflow and dispatch it. Recall that the workflow or parts of the workflow may need to be deployed at different 

backends. The deployable artefacts are simply referred here as a plan to differentiate the streaming analysis workflow 

from its deployable unit(s) e.g. a Flink job or a Kafka program. The deployment functions provide the fine link, where 

the generic design of INFORE streaming analysis processes meet with the underlying execution technology. 

 

Infrastructure related functions: 

 

The Manager Component also provides basic monitoring and control functions. These help to understand and manage 

the infrastructure context. Monitoring is needed on two levels. First, the execution status of the workflow may need 

to be queried at some intervals, and secondly, the usage of resources and current execution workload may need to be 

fetched by the Optimizer to assess whether the desired KPIs are being met.  

 

This process-level and system-level feedback assists the Optimizer to update its variables related to the execution time 

decisions it makes. This may result in an adaption of the deployment plan. The control functions wrap the basic 

functionality to scale the resources up or down. The idea is to wrap the API or commands provided by the streaming 

technology stacks, to easily fetch or execute basic monitoring or control functions but not over-emphasizing on 

standardization since many of these features are frequently updated and work with specific versions of third-party 

utilities. Hence, these dependencies need to be installed on the compute backends as well. 

  

The Manager Component is also able to update the visual representation of the workflow in the Graphical Editor 

Component according to the optimized workflow, retrieved by the Optimizer Component. 

 

Figure 3 illustrates the functionality of the Manager Component. 

 

Figure 3: Overview of the functionality which is provided by the Manager Component. The diagram clearly 

shows the central role which the Manager Component takes in the INFORE Architecture. 



 
 
 
 

 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP4 T4.1  
Deliverable D4.1 

Doc.nr.: WP4 DOCID 

Rev.: 1.0 

Date: 29/12/2019 

Class.: Public 
  20 of 38 

4.3.4 Optimizer Component 

The INFORE architecture aims at processing workflows involving large-scale streaming data. These are complex 

workflows, typically spanning multiple execution and storage engines. Identifying an efficient workflow execution 

could involve decisions made on more than one execution engine. For example, consider a stream involving two 

engines, Kafka and Spark. It is possible to optimize the stream on each engine using best practices for Kafka and 

Spark, respectively. Furthermore, engines employing an intrinsic optimizer (e.g., Spark Catalyst) can provide an 

efficient execution plan for the part of the workflow running on the said engine. However, no engine has a complete 

picture of the workflow.  

 

INFORE Optimizer helps with providing a holistic approach covering the entire workflow. Note, that INFORE 

Optimizer does not aim at replacing the engine specific optimizers. Rather, it works complementary by identifying 

optimization opportunities outside an engine and enabling further intra-engine optimizations by actions like function 

shipping (i.e., move a computation closer to the data) and data shipping (i.e., move the data closer to the computation). 

A basic optimization for the example Kafka-Spark workflow would be to push a filter from Spark down to Kafka to 

reduce the amount of data shipped over to Spark.  

 

Workflow optimization in INFORE is based on a multitude of optimization objectives and configuration or system 

parameters such as resource availability, resource efficiency, workload parameters at runtime, efficiency of streaming 

technologies, availability of operator implementation on multiple engine, availability of execution engines, and so on. 

Typical goals considered by the optimizer include increase resource utilization, reduce latency, improve quality, 

satisfy business and technical constraints. The multi-platform approach of the optimizer allows to efficiently handle 

and select the best suited resource available. For example, a join operation on multiple streams is a common 

implementation on most frameworks and so the optimizer can decide which platform to use, for example based on 

network locality or on available compute resources. 

 

The Optimizer receives a workflow from the Manager Component. Then it optimizes the workflow (if applicable) and 

then sends the optimized workflow back to the Manager which handles workflow execution. This operation can be 

done either offline or online, during the running execution of a workflow, which allows the INFORE Architecture to 

adaptively react to changing condition of data streams and available resources.  

 

The workflow metadata describe the designed streaming analysis process, the available resource information, the 

involved engines from the connected streaming backends, and user design choices. This information is encoded in a 

JSON format. An informed design choice we made is to decouple the workflow encoding of the Manager Component 

from that of the Optimizer. This is based on two reasons. First, in doing so, both the Manager and the Optimizer 

Components can be replaced by other tools if needed. This allows for increased pluggability and easy enhancement 

of the INFORE Architecture, and of potential future reuse of the code in follow-up applications.  

 

The second reason was to enable an engine-agnostic workflow representation inside the Optimizer. Hence, a workflow 

designed for specific engines (e.g., Spark) is engine specific. For example, consider a workflow getting data directly 

from Kafka and containing a filter operator and a join operator implemented in SparkSQL. When the workflow is 

propagated into the Optimizer, it is converted to an engine-agnostic form that contains a logical filter operator and a 

logical join operator. This enables the Optimizer to look for optimization opportunities in other available engines (e.g., 

Kafka). A possible scenario for the example Kafka-Spark workflow could be as follows: (a) first, the workflow is 

transformed to an engine agnostic form and thus, the Spark filter and join are converted to an engine-agnostic filter 

and join, respectively; (b) then, the workflow is processed by the Optimizer that may identify an opportunity to push 

the filter back to Kafka; (c) next, the Optimizer converts the workflow to an engine specific workflow having two 

parts, one part with a filter to be applied to Kafka and one part with a join to be executed in Spark.  

 

Besides workflow parsing, the Optimizer includes a component for statistics collection that keeps a history of statistic 

observations over past workflow execution, at the workflow level, at the operator level, and at the engine level. Once 

a workflow is sent to the Optimizer, the Optimizer enumerates the space of possible and promising execution plans 

for the workflow and estimates plan costs using a dynamic cost model that predicts workflow execution runtime based 
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on the historical statistics collected. The navigation of the execution plan space can be done exhaustively or in a greedy 

fashion using heuristics for improved performance.  

 

The optimization methods are described in more detail in the Deliverables D5.1, D5.2 and D5.3. 

4.3.5 Synopsis Data Engine Component 

The Synopsis Data Engine (SDE) Component provides implementation of approximate query processing algorithms 

that can generate representative summaries on top of streamed data. The component includes a library implementing 

the query processing algorithms and operators, containing the configurations and parameters necessary to perform 

such a query to the SDE. 

 

The usefulness of the SDE within INFORE streaming workflows is as follows. First, it can provide various kinds of 

scalability, including: 

• Horizontal Scalability: although Big Data platforms such as Storm, Flink or Spark are destined by design to scale 

out the computation by parallelizing the processing load to a number of available processing units, the SDE can 

further boost horizontal scalability by working on carefully-crafted summaries of data and finally provide 

estimations of an operator’s result, with accuracy guarantees. In that the processing load is shed due to the use of 

synopses and the computational complexity of the problem at hand is reduced. 

• Vertical Scalability: this type of scalability concerns scaling the computation with the number of processed 

streams. Synopses provided by the SDE along with locality aware hashing techniques can reduce the 

computational load when, for instance, operations requiring pairwise comparisons among streams are engaged in 

each workflow.     

• Federated Scalability: in settings composed of several geographically dispersed computing clusters or clouds, 

utilizing synopses in each of these and communicating synopses instead of full local streams reduces the 

communication cost of global (over the union of streams arriving at the various clusters) operator evaluation. 

 

Second, the SDE and the library of data summarization techniques it includes can serve as tools provided to the 

INFORE Optimizer Component so that the latter can perform synopsis-based optimization on INFORE workflows, 

i.e., if the application has declared that it can tolerate approximate results to a submitted workflow, the Optimizer can 

replace exact operators engaged in the workflow, with equivalent, approximate ones so as to speed up the processing 

under certain accuracy constraints.    

 

Figure 4 below illustrates the internal architecture of the SDE Component. The details of the architecture and the SDE 

library are included in Deliverable D6.1 submitted on M12 of the project as well. We will here elaborate on the SDE 

API, used by other INFORE Components as well as upstream (providing input) or downstream (receiving input) 

operators of a workflow engaging data synopses. The proof-of-concept implementation of the SDE Component is 

developed in Flink and Kafka, while the SDE library is implemented in Java. The SDE is to be provided as a 

continuously running service to different, currently executed/submitted workflows. Therefore, it can simultaneously 

maintain multiple synopses used in a variety of workflows. 
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Figure 4: Illustration of the internal architecture of the SDE Component. 

 

As shown in Figure 4, the whole inbound and outbound communication with the SDE is achieved via Kafka. All data 

tuples updating one or more currently maintained synopses arrive at a single DataTopic in Kafka. Moreover, all 

requests towards the SDE, arrive to it in a single RequestTopic in Kafka. In both cases, data tuples arriving at each 

topic are parsed internally by the SDE to extract information about the synopses they involve. The producers of the 

DataTopic and the RequestTopic are upstream operators of currently running workflows, while the consumers are the 

respective parsers. Finally, the results of queried synopses are streamed through one or more OutputTopics in Kafka. 

The producers of the output topic(s) are internal Flink operators delivering approximate query answers at the final 

stage of the SDE processing pipeline, while the consumers are downstream operators of running workflows. 

 

The SDE API which is essentially implemented by the parsers consuming respective Kafka messages in Figure 4, 

provides the following facilities: 

• Build/Stop Synopsis Request: a synopsis can be created or ceased on-the-fly, as the SDE is up and running. 

In that, the execution of other running workflows that utilize synopsis operators, is not hindered. A synopsis 

may be (a) a single-stream synopsis, i.e., a synopsis (e.g. sample) maintained on the trades of a single stock, 

or (b) a data source synopsis, i.e., a synopsis maintained on all trades irrespectively of the stock. Moreover, 

the API allows submitting a single request for maintaining a synopsis of the same kind, for each out of 

multiple streams coming from a certain source.  

• Load Synopsis Request: the SDE library incorporates a number of synopsis operators, commonly used in 

practical scenarios. The Load Synopsis facility supports pluggability of the code of additional synopses at 

runtime, their dynamic loading and maintenance at runtime.  

• Ad-hoc Query Request: the SDE accepts one-shot, ad-hoc queries on a certain synopsis and provides 

respective estimations (approximate answers) to downstream operators or application interfaces, based on its 

current status. 

• Continuous Queries: continuous queries can be defined together with the request for building a synopsis and 

they provide an estimation of the approximated quantities, such as counts, frequency moments or 

correlations, when the synopsis is updated due to reception of a new tuple. 

• SDE Status Report: the API allows querying the SDE about its status, returning information about the 

currently maintained synopses and their parameters. The purpose of this facility is two-fold. First, it is useful 

during the definition of new workflows, since it allows the application to discover whether it can utilize 

already maintained data synopsis. Second, such information is useful to the Optimizer Component which, 

given a workflow and an accuracy budget attempts to speed up the processing and harness memory utilization 

by replacing exact operators (e.g. for cardinality estimation) with equivalent, approximate ones. Here we 

note that this facility does not involve following some of the processing paths shown in Figure 4, but instead 

augmenting the QueryableState part of Flink's DataStream API, so that it provides synopsis-specific 

information at runtime. 
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Figure 5: Overview of the SDE library. 

. 

 

As shown in Figure 5, the SDE library leverages subtype polymorphism to ensure the facile pluggability of new 

synopses definitions. In a nutshell (please see Deliverable D6.1 for further details), a generic Synopsis class is 

extended by classes implementing algorithms of specific data summarization techniques, and their processing methods 

override those of the parent class. 

4.3.6 Complex Event Forecasting Component 

The Complex Event Forecasting Component provides algorithms for complex event processing and complex event 

forecasting. Like the Synopsis Data Engine Component, the Complex Event Forecasting Component consist of a 

library providing the algorithms and methods for complex event processing and forecasting and operators containing 

the configurations and information necessary to execute these algorithms and methods. 

 

The physical implementation of operators enables the users of the INFORE Architecture to perform complex event 

processing and forecasting on their streaming data. These physical implementations materialize the respective Logical 

Operators the users include in a designed workflow by simply drag and dropping them using the Graphical Editor 

Component. 
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Figure 6: Internal architecture of the Complex Event Processing and Forecasting (CEP/F) Component. 

 

The internal architecture of the Complex Event Processing and Forecasting (CEP/F) Component is shown in Figure 

6. The various modules of the CEP/F Component will be described in more detail in Deliverable D6.3. Here we 

provide an overview at a higher level of abstraction. 

 

Before the CEP/F Component can start consuming streaming data (a “test dataset”) and produce forecasts in an online 

manner, it must first go through several offline steps. These offline steps require two input types: a) First, a set of 

patterns/queries with which a user needs to monitor streams of input events. These patterns are expressed in the form 

of symbolic regular expressions, i.e., regular expressions whose terminal symbols are not simple characters but 

Boolean expressions. For simplicity, we assume that a single pattern is provided. If multiple patterns are provided, the 

same steps must be repeated for each pattern. b) Second, a training dataset, representative of the streaming dataset to 

be encountered in runtime. This training dataset is used in order to build a probabilistic model for the pattern. Based 

on this model, the actual forecasts will be built. 

 

The first step (1. Determinize) is to use the symbolic regular expression of the pattern in order to construct an 

automaton that will act as a computational model for it. If we are interested only in CEP (and not forecasting), then 

the rest of the offline steps may be skipped. The automaton can be used to detect complex events by directly consuming 

a stream of input events. From an architectural point of view, it is important to note that the automaton itself acts as a 

prototype/template for continuously spawning multiple automaton runs that actually consume the input events. For 

example, in the maritime use case, a pattern may need to be applied on a per vessel basis. In this case, for each new 

vessel, a new automaton run is created that will be responsible for this vessel. 
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If the goal is to perform forecasting, then there are two paths that can be followed in order to build the required 

probabilistic model (path 2.1-3.1 and path 2.2-3.2). In both cases, the goal is to derive a description of a pattern’s 

automaton in the form of a k-order Markov chain. The right-hand path in Figure 6 (2.1-3.1) corresponds to a 

straightforward method for deriving such a Markov chain, whereas the left-hand path (2.2-3.2) to an optimized method 

that allows k to reach higher values. This Markov chain essentially describes how the automaton can move among its 

various states. For each such state, we can use the Markov chain to predict how the automaton will behave (which 

states it will visit) and when it is expected to reach a final state and thus detect a complex event (step 4). We currently 

assume stationarity. As a result, for the automaton to function as a forecaster in an online fashion, all we need to do is 

to enrich each of its states with a forecast (the Markov chain itself may be dropped after the forecasts have been 

estimated). The engine then works in a manner like that for CEP, with the difference that each automaton run, besides 

a reference to its prototype, also has a reference to a lookup table of forecasts. 

 

The CEF module will communicate with the rest of the architecture via Kafka. For the CEF to function properly, two 

upstream and one downstream Kafka topics are required. As described above, the CEF will function in a two-phase 

manner, according to requests coming from the upstream topics: a) an “offline”, training phase that will construct the 

necessary probabilistic models for a set of patterns, and b) an online testing phase, where the previously constructed 

models are used to actually generate forecasts. The three Kafka topics are the following: 

• A ConfigTopic. Through this topic, the CEF module receives requests for training and testing. A training request 

must be accompanied by a set of patterns (along with their orders and partition attributes) and a set of declarations. 

A testing request must be accompanied by values for the parameters of confidence threshold, maximum spread 

and horizon. For an explanation of these parameters and concepts, please consult Deliverable D6.3. This topic is 

also used for stopping a running CEF process, as well as for querying the CEF module for its status and its various 

parameters.  

• A DataTopic. Through this topic the CEF module receives both the training and testing datasets, in the form of 

streams of events (tuples). As soon as a training/testing request arrives at the ConfigTopic, the CEF module starts 

consuming data from the DataTopic to either train its models or produce forecasts. 

• A ForecastTopic. This topic is essentially used only in the testing phase. This is where all Complex Events and 

Forecasts detected and generated by the CEF module are written. 

 

The Complex Event Forecasting methods are described in more detail in the Deliverables D6.2, D6.4 and D6.5. 

4.3.7 Interactive Online Machine Learning Component 

The Interactive Online Machine Learning Component provides tools for interactive online machine learning. Like the 

Synopsis Data Engine Component and the Complex Event Forecasting Component, the Interactive Online Machine 

Learning Component consists of a library providing the algorithms and methods for its purpose and operators 

containing the configurations and information necessary to execute these algorithms and methods. 

 

The operators enable the users of the INFORE Architecture to perform interactive online machine learning on their 

streaming data, by simply drag and dropping them in the streaming analysis process, which is designed by using the 

Graphical Editor Component. 

 

The Online Machine Learning Component learns expressive and interpretable complex event patterns from streaming 

input of time-stamped information. It functions in an online fashion, i.e., it continuously makes predictions (detects 

complex events of interest) on incoming data, using the labelled fragments of the data as feedback, from which it 

updates its current model (event pattern set), thus improving both its predictive performance and the quality of the 

learnt event patterns over time.  

 

The learnt patterns have the form of weighted logical rules, and the learning algorithm is capable of both inducing 

their structure (the actual rules) and optimizing their weights. Together, the rules and their weights define a 

probabilistic predictive model that is resilient to noise and uncertainty. The learnt patterns may subsequently be used 

for complex event recognition & forecasting, while, thanks to their interpretability, they may also be used by human 

experts for acquiring novel insights about the application domain via simple inspection. In addition to learning event 

pattern sets from scratch, the Online Machine Learning Component is also capable of revising existing pattern sets 

(e.g. an initial, potentially crude set of patterns provided by domain experts) from new data that stream-in.    
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The Online Machine Learning Component will communicate with the rest of the architecture components via Kafka. 

For this, two upstream and one downstream Kafka topics are required. These Kafka topics are as follows: 

 

• A ConfigTopic (upstream): Through this topic, the Online Machine Learning Component receives a configuration 

of its learning algorithm’s hyperparameters: a learning rate (Double), a regularization rate (Double), a Hoeffding 

test statistical confidence threshold (Double), a pruning threshold (Double) and a loss function name (String). A 

detailed description of these hyperparameters will be included in Deliverable D6.2. Also, via the ConfigTopic, 

the learning algorithm receives a set of declarative syntactic specifications for synthesizing rules from the 

encountered data, an application-specific form of domain knowledge, which will also be detailed in Deliverable 

D6.2. An initial event pattern set, potentially provided by domain experts, and constantly under revision from that 

point on, may also be provided through the ConfigTopic. 

• A DataTopic (upstream): Through this topic the Online Machine Learning Component receives its input data in 

the form of a stream of event tuples. The Learner continuously listens to this topic and consumes data that arrive 

there, to first make predictions with its current event pattern and then use any potential labels in the data to update 

the event pattern set.  

• A LearningResultsTopic (downstream): The Online Machine Learning Component outputs its results to this topic. 

There are three types of information that are output here: (i) the actual predictions of the learner, i.e., the complex 

events it detects from its input stream; (ii) online learning statistics, such as the learner’s evolving online error 

rate and prequential F1-score on the input data and mean CPU processing time per input data point over time; 

(iii) the learner’s evolving model (event pattern set) over time.      

 

The Interactive Online Machine Learning methods are described in more detail in the Deliverables D6.2, D6.4 and 

D6.5. 
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5 Technical Constituents of Streaming Analysis Workflows 

The next sections cover the actual implementation details of the architecture components and the definition of the 

interfaces between them. 

5.1 Realization of the INFORE Architecture 

The conceptual design of the INFORE Architecture has been described in Section 4. In this section, we describe the 

concrete realization of its components. 

 

The project partner RapidMiner provides RapidMiner Studio, an open-source software solution for the Connection 

Component and the Graphical Editor Component. The existing user interface is enhanced to implement the 

connections to the other components of the architecture. RapidMiner Studio offers already a graphical representation 

of an analysis process, by providing operators which can be placed and connected with Drag & Drop into a process 

design GUI. This allows to hide the complexity interacting with different technology stacks from the user, by 

providing a common usage concept. At its current state, the Studio does not provide support for the functionality 

envisioned by INFORE and, thus, will be significantly extended in the scope of the project. 

 

In particular, INFORE adds a so-called Streaming Nest operator to RapidMiner Studio. The Streaming Nest operator 

is a subprocess operator, which means that a family of operators can be placed inside of it. Streaming operators are 

placed inside the Streaming Nest operator and are connected during workflow design time to define the data flow of 

the streaming analysis process. Hence the subprocess of the Streaming Nest operator is the implementation of the 

Graphical Editor Component. Synopses Data Engine, Complex Event Forecasting and Interactive Online Machine 

Learning Logical Operators are added by INFORE, which are implementing the operator part of the corresponding 

components (see Sections 4.3.2, 4.3.5, 4.3.6 and 4.3.7). These "INFORE Component” operators contain all 

information to execute the specific algorithm and methods, which are provided by corresponding libraries. Figure 2 

shows RapidMiner Studio, illustrating the drag and drop approach of the process design. The Streaming Nest operator 

and its subprocess is also demonstrated, as well as some example streaming and “INFORE Component” operator. 

Again, the front end allows to present an interactive workflow design to the users, while the underlying complexity is 

hidden from them. In the case of multiple available platforms, either the user can simply manually choose which 

platform to use, or call the Optimizer Component for an optimized workplan (see Section 4.3.4). 

 

RapidMiner Studio also provides the concept of Connection objects. Thereby all information to connect to a specific 

system (for example a database) are packaged in an object inside RapidMiner Studio. This object can be stored in the 

RapidMiner Repository (the data and process storage system of RapidMiner Studio) and can be utilized in an analysis 

process by dragging and dropping it in the process design GUI. RapidMiner Studio also offers the possibility to easily 

create and configure these Connection objects. User management handling and the secure injection of critical 

information (e.g. passwords) are also provided by RapidMiner Studio. For more information about the Connection 

Management concept14 of RapidMiner Studio. INFORE adds Connection object classes for all supported streaming 

backends (see Section 5.2), thereby implementing the described Connection Component (see Section 4.3.1). This is 

essential to support the cross-platform optimization of data stream analysis in INFORE. 

 

Moreover, NFORE adds a Java library, implementing the functionality needed for the Manager Component (see 

Section 4.3.3). This Manager Component library provides capabilities to connect and receive resource information 

from a streaming computing cluster, to connect and consume data streams, to execute and deploy streaming analysis 

process and to produce data streams as an output. These capabilities are explained in more details in the following 

sections. 

 

As an interface to the other INFORE Components, especially for the interface between Manager Component and 

Optimizer Component, a JSON representation of the streaming analysis process is added by the INFORE project. A 

ProcessToJSON converter class is implemented in the Streaming Nest operator. The inputs of this ProcessToJSON 

converter are the designed streaming analysis workflow and the resource information of the streaming processing 

backend. The first is provided by the Streaming Nest operator, the second is retrieved by utilizing the Connection 

object to connect to the streaming processing backend(s) and retrieving the corresponding information. The 

 
14 https://docs.rapidminer.com/latest/studio/connect/#connection-objects/    

https://docs.rapidminer.com/latest/studio/connect/#connection-objects/
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ProcessToJSON converter combines these two information sets and converts them to a JSON representation, which 

is provided to the Optimizer Component as an engine-agnostic workflow. 

 

Engine-agnostic workflows are encoded into an AgnosticWorkflow class that consists of three core variables: 

Operators, OperatorConnections, Resources. These represent the operators of the workflow, the connections among 

them, and the resources allocated to the workflow, respectively. An example JSON representation of a simplistic 

workflow is depicted in Figure 7. This example shows an operator named “Logical Decision Tree” that gets its input 

from port “output 1” and propagates its result to the port “training set”. In this JSON description, the operator is a 

logical operator (isLogicalOperator=true). The operator description also specifies implementation details such as the 

class that implements this operator.  

 

 

Figure 7: Example JSON representation of a streaming analysis workflow.  
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Table 2 gives an overview of the different fields and their meaning in the engine-agnostic workflow representation. 

 

Key Description Key Description 

Operator Connections isInputPort 
Indicator if this is an input 

port 

fromOperator Name of the source operator isConnected Indicator if port is connected 

fromPort Name of the source port schema 
If object is a data set, schema 

of this data set 

toOperator Name of the sink operator Schema 

toPort Name of the sink port fromMetaData 
Indicator if schema is 

retrieved from meta data 

Operator size Size of the data set at the port 

 name 
(unique) name of the 

operator 
attributes List of Attributes  

classKey 
RM specific key for the 

operator class 
Attribute 

operatorClass 
Name of the java operator 

class 
name Name of Attribute 

isLogicalOperator 
Indicator if the operator is a 

logical one 
type Value type 

parameters 
List of Parameters (see 

below) 
specialRole Special role 

inputPortsAndSchemas 
List of input ports and their 

schema (see below) 
Resources 

outputPortsAndSchemas 
List of output ports and their 

schema (see below) 
allocatedMemory 

Allocated memory for the 

process 

Parameter maxCPU 
Maximum number of CPU 

for the process 

key Key of the parameter numberOfContainers Number of containers used 

value 
Current parameter value (as 

String) 
inputSize Size of the input data 

defaultValue Default value (as String) networkBandwidth Available network bandwidth 

range 
String representation of the 

range  
selectivity Indicator of the selectivity 

typeClass 
Name of the Java parameter 

class 
throughput Current throughput 

PortAndSchema latency 
Current latency of the 

network 

name 
Name of the in- or 

outputport 
  

objectClass 

Name of java class of the 

object delivered or received 

at this port 
  

Table 2: Overview of the different fields and their meaning in the engine-agnostic workflow representation. 

One of the facilities of the Manager Component is to convert or package one or more sub-sets of operations of the 

streaming analysis workflow (or the whole workflow) into a deployable artefact, which can then be deployed on one 

or more compute backends. The implementation of this feature is provided as part of the Manager Component’s 

deployment functions (see Section 4.3.3). From the graphical modelling point of view, this can be achieved in a couple 

of ways. In the first scheme, the Optimizer may decide (during optimization of workflow) to place a certain group of 

operators as single or multiple deployable artefact(s) on a certain backend, and actuate on this decision, by invoking 

the relevant functions of the Manager Component. 

 

In the other scheme, the human designer who creates the graphical workflow may indicate a set of operations as a 

single deployable artefact by grouping them. For example, this may be the case when one compute backend (say a 

Flink cluster) is available (or preferred). In this case, the logical operators can be configured to use Flink-based 

concrete implementations for data preparation, transformation, modelling and other operations. With this knowledge, 

the human designer may configure the NEST operator to: i) not rely on Optimizer for placement decisions or ii) 

indicate to Optimizer to respect the indicated grouping, or even iii) let the Optimizer overrule these groupings 
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(placement indicators) if it deems fit. This concept will be further refined as the prototyping work progresses, but the 

idea is to aim at maximum flexibility for the end users. 

 

In the following section, we briefly describe the technical constituents of an INFORE streaming analysis workflow, 

and how INFORE processes abstract over the various streaming Big Data platforms. 

5.2 Producers, Consumers and Compute Clusters  

As explained in Section 4.3, the INFORE streaming analysis workflow is composed of input stream(s), the streaming 

analysis workflow and potentially output stream(s). The input operators of the analysis workflow are sometimes 

referred to as downstream or input receiving operators. The output operators are sometimes referred to as upstream or 

input providing operators. Entities which generate the stream and consume it are referred to as Producers and 

Consumers, respectively. Computer clusters refer to the stream processing backend, which are often used to deploy 

the stream processing workflow so complex computation is performed in a scalable manner on dedicated resources.  

5.2.1 Establishing a reliable, robust, generic and flexible interface between disparate 

Components 

The added value of INFORE is that its streaming analysis workflows follow an abstraction approach that allows them 

to span multiple streaming Big Data platforms for producers, consumers and compute clusters for execution. INFORE 

delivers this flexibility by performing the heavy lifting needed to integrate with different backends as part of its 

components may run on different Big Data platforms. Some of the biggest technical challenges faced here are listed 

below in terms of feature requirements: 

• Interfacing heterogenous or disparate components: Providing a high level of abstraction is a huge 

challenge because a mechanism needs to be devised that would allow INFORE Components to communicate 

in a reliable and robust manner with possibilities to incorporate future components, which are themselves 

expected to be disparate and available on heterogenous backends. An acceptable solution should allow to 

provide a generic interface, which is easy to adopt across the different tiers of the platform. 

• Interfacing stream sources and sinks: Another hard requirement is to let a variety of producer and 

consumer streams to be integrated. The schema of the data tuples is not always pre-defined or known but can 

be analysed at design time. Hence, it is highly desirable to use a generic communication middleware with 

support for simple and complex data structures. A feasible solution would not just make the sources and sinks 

(implemented in any language) available over a standard interface, but also the flexibility to deal with 

different data (tuple) types, a criteria to slice and dice different windowing of streams and ideally also support 

some degree of persistence and querying. 

• Dispatching and deploying streaming analysis workflows: Dispatching (deploying) streaming analysis 

workflows to available compute cluster or a compute cluster of choice is a task which often requires to 

communicate with a specific Big Data platform using its custom APIs or client utilities, but here again 

INFORE provides a generic layer within the Manager Component (in principle, similar to Apache jClouds15 

library that allows to create applications that are cross-cloud portable). 

 

Keeping these requirements in sight, it becomes vital to adopt a state-of-the-art communication middleware for 

INFORE. This middleware is expected to deliver above requirements and would serve at different tiers of the INFORE 

architecture to communicate with internal components (Synopses Data Engine, Complex Event Forecasting), various 

sources and sinks as well as assist in fetching results from ongoing experiments on the HPC (e.g. in the Life Sciences 

use case). Overall, this messaging and communication middleware must allow INFORE system to function seamlessly 

and detach the sender and receiver and receiver sides through a messaging queue, which serves to pass data as topics 

or digests. Thus, the choice of this middleware required a comparative analysis of the leading related technologies 

including RabbitMQ, ActiveMQ, Flume and Kafka to name the top candidates. A short overview of this comparative 

analysis is presented next. 

 

 

 
15 https://jclouds.apache.org/ 

https://jclouds.apache.org/
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5.2.1.1 Comparison of leading communication middleware technologies 

ActiveMQ 

Apache ActiveMQ16 is a Java-based multi-protocol messaging server, which allows to integrate multi-platform 

applications using the Advanced Message Queue Protocol (AMQP). In addition, it also supports other open wire 

protocols like OpenWire, Stomp and MQTT. It is more suited for transmitting data in binary rather than text-based 

format. Its server side consists of Master broker nodes and a set of slave nodes, which can be paired together so that 

data can be provided efficiently to consumer processes, address fault-tolerance and move data between nodes. 

ActiveMQ can be setup as an embedded application with a small footprint, which then serves as a messaging endpoint 

for inter-application communication. 

  

Although ActiveMQ allows for applications written in different languages to pass messages asynchronously, in its 

current implementation, its feasibility in high-throughput and transmission of large data streams is not the best. There 

is no easy way to batch messages together and it is assumed that it uses a batch size of 1. Experiments conducted on 

streams of logging data [1] revealed that the persistence mechanism in ActiveMQ consumed 70% more disk space 

than Kafka to store the same set of 10 million messages. The lag in performance at the persistence tier is attributed to 

the usage of JMS (Java Messaging System) specification which requires a thorough message header. The server 

processes seem to get hogged into maintaining the persistence indexes, that require B-Tree instance(s) to maintain 

metadata and state of each message. On the functional side, ActiveMQ is not intended for performing stream 

processing operations like windowing, aggregations or groupings on messages. Hence, its adoption would not satisfy 

most requirements of INFORE architecture and use cases. 

 

RabbitMQ 

RabbitMQ17 is a lightweight and widely deployed message brokering system implemented in Erlang. Like ActiveMQ, 

it also supports several messaging protocols including AMQP, Stomp and MQTT. The server side of RabbitMQ 

supports consists of a cluster of nodes, which provide high availability and data replication at the persistence tier, for 

messages exchanged between producers and consumers. Connections from clients, the channels and queues used to 

pass data, are distributed across the nodes, to offer an efficient and scalable handling of data. In this aspect, RabbitMQ 

make up a formidable candidate technology for INFORE’s communication middleware. 

 

However, despite some interesting features, RabbitMQ is not a technology that is targeted for high throughput data 

stream processing as required by various INFORE use cases, intra-component interaction and interfacing between 

operators of INFORE’s streaming analysis workflows and INFORE components. A performance evaluation of 

RabbitMQ regarding the production and consumption of high-throughput messages yielded results similar to 

ActiveMQ and inferior to Kafka. In [1] , Kafka is also compared with RabbitMQ. Kafka could produce up to 50,000 

messages per second for a batch size of 1, which was two times higher than RabbitMQ. Configuring larger batch sizes 

in RabbitMQ is also not obvious. When message consumption is evaluated, Kafka performed four times faster than 

RabbitMQ (and ActiveMQ) by consuming upto 22,000 messages per second. This overhead is associated with the fact 

that RabbitMQ maintains the delivery state of each message, while Kafka does not. Finally, RabbitMQ requires the 

setup of Erlang execution environment on the machines. As Erlang is not so widely available or platform independent 

(unlike Java), the provisioning of Erlang runtime poses an additional requirement. Overall, RabbitMQ is not the best 

fit to be adopted as INFORE’s messaging and communication middleware. 

 

Flume 

Apache Flume18 is a project that provides a simple and flexible architecture based on streaming data flows. A Flume 

system is made up of Flume agents, which are Java processes. A Flume agent acts as a middle-man between the 

producer and consumer of data. The agent internally has a source component, a sink component and a channel in 

which data received by the agent is placed via the source component. The source component receives data from an 

external producer. The sink component reads the message from the channel and passes it out to an external consumer. 

The internal channel is backed up by a data store. A Flume agent can be configured in a multiplexing manner, i.e. it 

can maintain multiple channels which pass on the data to one or more external consumers (such as an HDFS cluster 

 
16 https://activemq.apache.org/   
17 https://www.rabbitmq.com/ 
18 https://flume.apache.org/index.html 

https://activemq.apache.org/
https://www.rabbitmq.com/
https://flume.apache.org/index.html
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or a Kafka topic). Flume can be used for interaction between different applications or components that need to 

exchange or collect data. Flume agents can be horizontally scaled. Flume guarantees reliable delivery of a message, 

which is called as an event in Flume. Although Flume provides an interesting data flow management middleware, it 

is rather intended for scenarios, which need to push high throughput data from many sources into a collector sink, via 

a data-lake system that may perform transformations on passed data. 

 

From the INFORE perspective, Flume has some major shortcomings. Flume does not offer a persistence tier as part 

of its framework. This implies that data in channels is not replicated across the Flume agents. Flume only provides 

weak ordering on transmitted messages, and duplicate messages are often sent due to its emphasis on reliable durable 

delivery, but which need to be cleaned at the consumer side, especially given their ability to induce noise. Flume’s 

capabilities are further undermined due to its more complex management overhead, which can affect its throughput 

handling, scalability and reliability aspects if the data stores backing the channel(s) are not appropriately configured 

for all agents [2] . Due to its rather limited and very data-lake specific features, Flume is not a candidate for adoption 

in INFORE. 

 

We conclude our comparative analysis with Kafka, which we present in the next dedicated section, to highlight how 

it is a clear winner to be adopted as our communication middleware of choice for INFORE. 

5.2.1.2 Kafka - Communication middleware of choice 

Kafka is a highly scalable and fault tolerant distributed data stream platform. It provides persistent storage on the 

server side, which is based on a cluster of so-called broker instances. The brokers provide data storage and replication 

by means of partitions in the broker. This leads to high availability of data and acts as a scalable tier that can deal with 

large number of producers and consumers - without causing contention at the network or storage level access. Due to 

these properties, Kafka plays a central role in the INFORE Architecture as its communication middleware of choice. 

It is employed due to its flexible API- based features, a highly performant backend that can deliver high throughput, 

large-scale data streams with reliability, strong ordering guarantees, replication-capable and scalable server-side. 

These features are able to meet data exchange and interfacing requirements of INFORE use cases and components. 

Hence, in the following, we describe how Kafka usage in INFORE Architecture spans across the board - from 

integrating different components and interfacing INFORE’s streaming analysis workflow (operators) with different 

producers and consumers (sources and sinks). 

 

As noted, initial prototyping efforts could leverage Kafka for bridging disparate components, which are distributed 

over different locations. In particular, in Sections 4.3.5, 4.3.6 and 4.3.7 we showcased that the Synopses Data Engine, 

the Complex Event Processing and Forecasting, as well as the Interactive Online Machine Learning Components of 

INFORE are interfaced with upstream and downstream operators via Kafka topics. Thus, treating a “topic” as a 

medium for asynchronous communication, applications written in any language and having complex dependencies 

can be loosely coupled using a clear interface and minimal effort. Kafka topics are at the heart of its publish/subscribe 

mechanism, that can send and receive continuous streams of data. Kafka producers write data or data streams to 

topic(s), which may be persistently stored on the brokers, and the consumers retrieve them via topic-based access. 

 

Consumer access is also highly scalable and can be parallelized leveraging the same principle of clustered brokers and 

replicated partitions at the server side. A typical Kafka program (represented as a processor topology – see description 

of Stream API below) can use multi-threading to achieve concurrent execution, which improves performance. In this 

way, Kafka provides a technology that can pass data streams efficiently from producers to consumers and allows to 

write stream processing workflows that can be tuned for high performance and scalability. 

 

Kafka provides a set of APIs, which are worth mentioning briefly: 

• Connect API: This API allows to write connectors for bringing data from a source into the Kafka system and 

to bring data out from Kafka into a sink system. 

• Producer API: This API can be used by Kafka applications to create topics and send data streams to topics. 

• Consumer API: This API allows to receive data streams from Kafka topics into a Kafka application. 

• Stream API: This API allows to process data streams from input topic(s), which transforms them to output 

stream(s), which can be written to other topic(s). A computation step (transformation) is referred as a 

processor node. The configuration of these nodes is called a processor topology. 
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• Admin Client API: This API allows to manage topics, brokers, access control lists and other objects on the 

Kafka server side. 

 

To integrate Kafka in the INFORE streaming analysis workflows, the Manager Component functions and the 

Graphical Editor Component (operators) would be implemented to make use of Kafka APIs. Together with the 

Connection Component object, the operators for performing transformations enable the following capabilities: 

• Connecting with the Kafka backend, creating topics, sending and receiving data streams to and from topics. 

• Performing typical transformations on incoming data streams. This includes windowing, joining, aggregation 

and grouping, filtering, computing some statistics, mapping the tuple(s), training or updating models, 

applying models, etc. 

 

These examples illustrate how Kafka plays an important technical role at different levels of the INFORE architecture 

by simplifying the complexity of integrating legacy, heterogenous or niche systems, helps standardize several 

interfaces in INFORE and provides a central communication technology for connecting the different components in 

the INFORE Architecture. 

 

In the following section, we provide a short description of how INFORE deals with the requirement of dispatching 

(deploying or placing) streaming analysis workflows on compute clusters or Big Data processing platforms. The list 

of supported platforms is not fixed. The idea is to extend the support to more platforms in a gradual fashion. 

5.2.2 Incorporating Big Data Platforms for Dispatching Streaming Analysis Workflows 

As a reference on how Big Data platforms are incorporated in INFORE after the Optimizer Component selects a 

specific platform for dispatching or deploying a part of a streaming workflow, we take Flink for a more elaborate 

discussion. Besides streaming Big Data platforms, INFORE would also incorporate support for HPC infrastructures 

as the development progresses. 

 

Flink provides a state-of-the-art implementation of streaming analysis functionality. It is also used as the implementing 

technology for components of the INFORE Architecture such as the Synopses Data Engine. Hence it is a very good 

demonstration of integrating a streaming analysis technology into the INFORE Architecture. In the following we 

describe how the Flink is integrated into the INFORE Architecture. 

 

Flink consists of several distinct components, that interact with each other to provide a functional and scalable 

streaming environment. The server side of Flink comprises mainly of Job Manager, Resource Manager and Task 

Manager components.  

 

The Job Manager is responsible for the execution of a single application. The manager transforms the application data 

and workflow description into an executable unit and requests the required resources. The Task Managers provide the 

slots for the actual execution. The slots inside each task manager run as threads in the same JVM instance, while 

several task managers can work on the same application, thus sharing data between separated JVMs. 

 

In addition, the Resource Manager distributes requests of the Job Managers to the Task Managers. It can work with 

external resource managers such as YARN, or as a standalone deployment. Depending on the amount of parallelism 

and resources available, a single job can be deployed on multiple Task Managers and Flink can rescale running jobs. 

 

Flink offers two different styles for deployment: framework and library. The framework deployment bundles the 

application into a JAR file and hands it over to a running service, like a resource manager or directly to a Flink Job 

Manager. This way an application can be directly planned for execution (in case of the submission to a Job Manager) 

or scheduled to hand over to a Job Manager (e.g., via YARN or a Flink dispatcher). 

 

The library style uses two independent Docker images: one for bundling the application (including Job- and Resource 

Manager) and one for running the Task Managers. The framework deployment is a way of submitting an application 

via a client to an already running service. For large scale infrastructure deployments, this approach is probably easier 

to maintain and set-up. While the library style is a bit more flexible and more suited for a microservice oriented 

approach. 
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In regard of the INFORE architecture both styles can be easily integrated and do not differ too much. The framework 

style is the one that can, in combination with an existing resource manager, be deployed in existing cluster settings 

where additional task managers can spin up on demand and the processes can easily be scaled out. The deployment 

as a library is useful for rapid prototyping and testing out applications in a local setting. 

 

Flink provides two core APIs, namely the DataStream API and the DataSet API. The DataStream API allows to 

manage bounded or unbounded streams of data and the DataSet API allows to manage bounded data sets. Flink also 

offers a Table API, which is a SQL-like expression language for relational stream and batch processing that can be 

easily embedded in Flink’s DataStream and DataSet APIs. 

 

For integrating Flink capabilities in INFORE, the functions of the Manager Component and the operators of the 

Graphical Editor Component will be implemented to wrap various features of the Flink APIs. Under the hood, this 

would allow to create a Flink program that can be deployed on the Flink cluster. A Flink program can perform various 

transformations on the data stream. These transformation operators are combined into a sophisticated topology called 

a streaming dataflow. 

 

The execution of this dataflow is inherently parallel and supports distribution. Flink performs various execution-time 

optimizations on the streaming dataflows. During execution, a stream is divided into one or more stream partitions, 

and each operator is logically divided into one or more subtasks. The operator subtasks are independent of one another 

and can be executed in different threads. For distributed execution, Flink chains operator subtasks together into tasks 

and each task is executed by one thread. Chaining operators together into tasks is a useful optimization as it reduces 

the overhead of thread-to-thread handover, buffering and increases overall throughput while decreasing latency. 

 

Due to these capabilities, Flink plays an important role in the INFORE architecture. It is currently used for 

implementing components or incorporating them as a streaming application. These components include the Synopsis 

Data Engine (SDE), a version of the parameter server for machine learning operators (another one is being 

implemented in Akka) and a proof-of-concept for the Complex Event Processing/Forecasting Component. However, 

we emphasize that INFORE Architecture is not limited to Flink as a streaming Big Data platform, in contrast, 

INFORE’s approach is broad-scoped and purpose-built for abstraction i.e., it specifically aims at incorporating 

multiple platforms. 

5.3 Creation and Deployment of a streaming analysis workflow using the 

INFORE Architecture 

In the previous chapters, we described the component-based structure of the INFORE Architecture. The provided 

functionality and the interaction between the components are described in detail. In addition, challenges and 

requirements from integrating and building a cross-platform framework for different streaming technologies are 

discussed.  

 

We now present a step-by-step process on how a streaming analysis workflow is created, optimized and deployed 

using the INFORE Architecture. The different steps and interactions and how the components come into play are 

detailed: 

 

1. Design of the streaming analysis workflow:  

The user of the INFORE Architecture designs a streaming analysis workflow. Therefore, she uses the 

Graphical Editor Component (see Section 4.3.2) to define the logic of the streaming analysis, without the 

need to take care of the technology-specific details. 

a. The user can select Logical streaming Operators, which provide an abstraction level of generic 

streaming analysis functionality over the streaming platforms providing this functionality. The 

Optimizer Component (see Section 4.3.4) later chooses the streaming backend used, optimal for 

the current workflow. 

b. Functionality provided by the Synopsis Data Engine Component (see Section 4.3.5), Complex 

Event Forecasting Component (see Section 4.3.6) and the Interactive Online Machine Learning 
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Component (see Section 4.3.7) can be leveraged through the corresponding operators in the 

graphical editor. 

c. The user creates Connection objects for input and output streams and streaming backends (for a 

detailed description of the Connection Component and the functional concepts of input and output 

streams and streaming backends, see Section 4.3.1) through the graphical editor. The user only needs 

to provide essential information to connect to the streams. The Connection objects are used in the 

design of the streaming workflow in the same drag-and-drop manner as the streaming operators. 

2. Handover of streaming analysis workflow to Manager Component:  

When the design process of the workflow is finished (e.g., when the user presses a submit button in the 

extended RapidMiner Studio), the workflow is handed over to the Manager Component (see Section 4.3.3). 

The Manager Component converts the workflow into its JSON representation (see Section 5.1). It also uses 

the Connection objects to connect to the provided input and output streams and streaming backends and 

retrieves information about volume and schema of input data, available resources of the streaming engines 

and output streams. This information is added to the JSON representation as well. The JSON is handed over 

to the Optimizer Component (see Section 4.3.4). 

3. Optimization of the streaming analysis workflow by the Optimizer Component:  

The Optimizer Component converts the JSON representation to the tool-agnostic workflow representation. 

An optimization of the workflow is performed. Depending on the user-specified parameters, the optimization 

can include the selection of the concrete implementations of Logical Operators (providing cross-streaming-

platform optimization of the workflow), the execution order and bundling of operators to specific streaming 

executing jobs, the insertion of synopses and function and data shipping (moving execution to the data or 

vice versa). More details about the optimization will be included in Deliverables D5.1, D5.2 and D5.3. 

4. Providing optimized workflow back to Manager Component:  

The Optimizer Component provides the Manager Component with the optimized workflow. This optimized 

workflow is visualized in the Graphical Editor Component to inform the user about the changes of the 

Optimizer Component. 

5. Deployment of the workflow by the Manager Component:  

The Manager Component prepares the execution of the optimized workflow by creating execution jobs 

defined by the bundled operators in the workflow. The streaming execution jobs are deployed on the 

streaming backends by the Manager Component. 

6. Monitoring and management of the deployed workflows:  

The Manager Component can be used to monitor deployed workflows. If specified by the workflow, statistics 

are collected and provided to the Optimizer Component, and used for displaying an overview of the running 

workflows to the user through the Graphical Editor Component. Running workflows can be aborted, paused, 

edited and resumed through the graphical user interface. If conditions change (e.g. changing input data 

volume, changing available resources, etc.), steps 3. - 5. can be repeated to optimize running workflows to 

the changed conditions. 

7. Retrieving and consuming results:  

Depending on the specification of the designed workflow, results of the streaming analysis workflow can be 

provided by different means. Output streams can be created, which can be further consumed by different 

streaming consumers (with or without using the INFORE Architecture). Snapshots of streamed results can 

be stored for further batch processing or inspection. Webservices or monitoring dashboards can deliver the 

results to the target users of the designed streaming analysis workflow. 

 

This step-by-step process is also illustrated in Figure 8. 
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Figure 8: Overview of the step-by-step process for creating and deploying a streaming analysis workflow in 

the INFORE Architecture. 
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6 Conclusion 

The project architecture presented in this report is defined as a result of requirements analysis from use cases, 

discussions among project partners, review of related projects and the state-of-the-art in streaming technologies. In 

this first project year, the focus was on realizing an integrated, extensible and flexible design for creating, optimizing 

and executing streaming analysis workflows. The initial prototyping of the INFORE architecture is in progress and 

the workflows from project use cases are planned for implementation. The layout of various workflows is being 

worked out and would further help in refining the architecture, e.g., in terms of the exact functionality and methods 

needed and which end-to-end execution is used. Based on the joint work achieved so far, the next steps seem to be 

feasible, on-track and expected to accelerate the incorporation of workflows across the use cases into the initial 

prototype. 

  

In the following months, the initial system prototype and software components will be further developed (and 

documented in Deliverable D4.2). The objective remains to ease the specification of complex data processing 

workflows for non-expert programmers, while leveraging heterogeneous technology stacks to the maximum possible 

extent. In the next year, we also aim at collecting feedback for testing and further enhancement of the INFORE 

architecture from different stakeholders (use case and technical partners in the project), who would be involved in 

implementing the workflows. Additionally, we plan to explicitly address the dissemination with respect to the release 

of various software stacks (components) developed in the project, along with their usage documentation, to further 

enlarge the impact of INFORE architecture. 
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