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1 Executive Summary 
This report summarises the results of the preliminary evaluation of the components developed for the Maritime Use 
Case that will be integrated and tested in a final experimentation at sea toward the end of the Project INFORE. 

The Maritime Use Case consists in developing and deploying a hybrid sensor network for ship target detection, 
localization and classification. Sensor data for the global scale and the local scale surveillance scenario, resulting in 
an extreme scale data stream, will be integrated in a maritime situation awareness platform to perform high level 
fusion tasks and target behavioural analysis in order to detect behavioural anomalies of vessels with respect to the 
normal traffic in the area of interest. The developed platform will be integrated/using the INFORE architecture, 
utilizing its capabilities to analyse extreme scale streamed data. 

The evaluation is performed using a set of key performance indices (KPIs) defined for the single components of the 
system and for the system as a whole, including human factors. The data used in the evaluation process are historical 
data available at the beginning of the Project INFORE or generated by simulating surveillance scenarios. 

The tested components include i) the CMRE coordinated sea surface robotic sensor network for target detection and 
localization by acoustic data, the target detection and classification systems for satellite data and for thermal and RGB 
video camera data, and the MarineTraffic situation awareness platform algorithms for complex event detection.  

The results of the evaluation are in general in line with the expectations. The coordinated robotic sensor network 
outperforms the base network without coordination, the classification from satellite data and camera data performs 
with classification accuracy around or greater than 90% and around 80%, respectively. The complex event classifier 
system has analogous performance with accuracy achieving, in some cases, values greater than 90%. 

The report provides a complete description of each component, including theoretical details, the evaluation of the 
components and finally a preliminary plan of the final experiment at sea to evaluate the Maritime Use Case as a whole. 

Future work before the final experiment includes implementation of the control and cooperation software on board 
the surface robot vehicles and further test of the classification algorithms for satellite and camera data and for complex 
events. Furthermore, the detailed plan, including logistic aspects, of the final experiment at sea will be started soon 
this year and finalized next year. 
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2 Introduction 

2.1 The maritime use case 
The Maritime Situational Awareness (MSA) is the capability of understanding events, circumstances and activities 
impacting the maritime environment. MSA is essential for the preparation, the prevention and the potential required 
reaction to provide a sustainable stable environment. The objectives of this use case are the following: (i) the 
development of workflows for the automatic detection, localisation and classification of targets of interest and their 
behaviour (maritime events), and (ii) the utilisation of a network of heterogeneous mobile sensorised platforms which, 
based on the inferred MSA knowledge, will be able to closely investigate the potential dark targets i.e. targets that are 
temporarily not observable by cooperative target sensors such as the Automatic Identification System (AIS). 

The fusion of heterogeneous streams of data plays a significant role in acquiring a complete picture of the Maritime 
domain. The different sources of data (see Appendix I for a detailed description) that we use in INFORE are the 
following: 

- AIS data 
- Satellite data 
- Acoustic data 
- Thermal/video camera data 

The data from the sensors are processed in order to detect the presence of suspect targets in a given area of interest 
and estimate their position and identity attributes. This information from the field is transmitted to a situational 
awareness platform that performs high level fusion tasks and the analysis of the target behaviour to detect possible 
behavioural anomalies. 

This report is devoted to provide a preliminary evaluation of the single components of the use case and of the 
situational awareness platform using existing data and simulations, in preparation to the final pilot experiment at sea 
where the designed hybrid sensor network will be deployed and linked to the situational awareness platform. The 
experiment will provide final evaluation, using both quantitative metrics and qualitative human factors criteria, and 
new data sets, including ground-truth data that will be used to improve the system in future work. Because the 
performance of single components of the system affect the performance of the system as a whole, the approach 
followed in the Project and by converse in this report, is bottom up, starting from the single component evaluation and 
going to the evaluation of the complete use case system. 

The report is organised as follows: this introduction will provide in the next subsections a brief overview of the 
components which are going to be evaluated and the list of key performance indicators (KPIs) on which the evaluation 
is based. Section 3 describes the field sensors used in the project, the so called local view sensors, the algorithms for 
target detection, localization and classification, and reports the results of the performance evaluation on previous data 
sets and simulations. Analogously, section 4 reports performance evaluation of those sensors providing more 
contextual information at global scale. Section 5 describes the platform for situational awareness and provides 
preliminary performance figures as well. Section 0 shows a preliminary plan of the final pilot experiment at sea and 
section 0 draws conclusions and traces the way ahead. 

 Technological components, short introduction 
The maritime use case is based on the following technological components (see Figure 1 for a schematic summary): 

1) A hybrid network of dynamic and static sensor for the local view that provides real time observations in a 
limited area of interest of cooperative as well as non-cooperative targets.   

2) A set of sensors for the global view to observe a wider area and provide contextual information. 
3) A platform for situational awareness that integrates data and information streams  

from the local and global view sensors and analyses the behaviour of single surface targets as well as of the 
global vessel traffic surrounding them. 

These components will be integrated and tested during the real pilot experiment at sea whose execution plan will be 
detailed in section 0. The single components will be described section 3, 4 and 5 and evaluated in terms of KPIs using 
simulated and available real data. 
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Figure 1: Schematic of the Maritime Use case components. 

2.2 Evaluation 
The evaluation of the Maritime Use Case is based on the definition of a series of KPIs for the single sensor components 
of the use case and for the situation awareness platform that integrates information from the single components and 
performs high levels data fusion and analysis tasks. The KPIs for the situation awareness platform are in turn defined 
for performance and accuracy evaluation, and for human factor evaluation. The KPIs will be evaluated using simulated 
scenarios and available data for both the single sensor components and the situation awareness platform, and during 
a final pilot experiment described in the final part of the document. The KPIs will be described in more details in the 
following paragraphs. 

2.2.1 KPIS for target localization and classification 
The KPIs for target classification from satellite and thermal camera data include the classification accuracy, i.e. the 
percentage of correct classified input samples with respect to the total number of samples of the training and validation 
sets and the receiving operating characteristic curves (ROC) for binary classifiers (e.g. a classifier for detecting ship 
and non-ship objects) that is a graph of the false positive rate vs the true positive rate. The classifier performance is 
the higher as the greater the area under the ROC curve is, ideally approaching the maximum value of 1 which is the 
perfect case of a classifier with 100% accuracy and 0 false alarm rate. 

The robotic cooperative sensor network for target detection and localization will be evaluated using three KPIs. The 
first one is the target acquisition time which is the time needed by the network to confirm that a target, entering the 
surveilled area, is actually acquired. The second parameter taken into account is the time on target that is the total 
amount of time the network is able to observe a confirmed target within the time frame where the target is present. 
This KPI is linked with the third parameter that is the probability of detection i.e. the probability the network is able 
to detect the target in the hypothesis that the target is present. The KPIs are evaluated to compare a base model that is 
the network without cooperative behaviour vs the network with cooperative behaviour. The KPIs will be evaluated 
using simulated data as reported in the next sections and during the final pilot experiment. 

2.2.2 KPIs for situational awareness and event prediction 
In this section we describe the KPIs for the MSA Use Case of INFORE to evaluate the performance of the situational 
awareness platform. We group the KPIs into two categories. The first category includes the KPIs that are quantitative 
and measurable using ground truth datasets and experiments. The second category includes the human factor 
evaluation KPIs. In order to measure these KPIs, experts should be contacted, asked to perform certain scenarios, and 
interviewed for their feedback. These KPIs should be assessed taking into consideration the behaviour of experts 
during the execution of the scenarios (e.g., how many steps did they need to complete a tasks, how many mistakes 
they made, etc.) in comparison to approaches they already use to perform the same tasks in their jobs. The respective 
KPIs are described in Table 1 and Table 2.  
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Table 1-KPIs related to accuracy and performance 

KPIs Validation 
1.1 Above 80% accuracy in target detection (from data fusion). Experiments using ground 

truth datasets 
 

1.2 Above 80% in complex maritime event detection and forecasting. 
1.3 Fusion of at least three different streams of data (2 global, 1 local) 
1.4 Maritime event detection/forecasting in sub-second time 

 
Currently, we have accomplished KPIs 1.1, 1.3 and partially the KPIs 1.2 and 1.4. The reason for this is that the 
integration for the complex event forecasting component of NCSR will be carried out in the following months, when 
we will be able to conduct the respective experimental evaluation. The second set of KPIs are mostly related to the 
evaluation of the final version of the INFORE platform, when all integration tasks are completed. Even though we 
contacted experts, presented our current results to them and received feedback, it is mostly related to the individual 
components that were developed in the project so far. We expect that in D3.3 experts will be able to execute complex 
MSA workflows using the Graphical Editor component of the INFORE Architecture and compare the INFORE 
solutions to the way they execute the same (or similar) workflows in their day-to-day tasks. 

Table 2-KPIs for the human factor evaluation 

KPIs Validation 
2.1 Functionality: the system should have the functionality the user 

expects (see requirements defined in D3.1) 
The user will be asked to 
complete some scenarios 
defined in D3.1 and the 
interviewer will monitor their 
interaction with the system. 
Then, the user will be 
interviewed. He will be asked to 
rate the INFORE solutions 
presented to them comparing 
them to how they perform the 
same workflows in their day-to-
day tasks. The INFORE 
workflows should achieve better 
ratings than existing solutions.  

2.2 Interpretability of results: The user should be able to understand the 
results displayed to them.  

2.3 Overall system usability: The system should be easy to use for the 
user. 

2.4 Trust: The user should trust that the information presented to them is 
accurate.  
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3 Sensor network for the local view 
The hybrid sensor network used for the local area surveillance scenario (local view) includes a dynamic network of 
two wave-gliders autonomous surface robots equipped with passive acoustic sensors for cooperative surface target 
detection and localization, and a land based thermal camera aided by a co-located RGB camera for target detection 
and classification. This section provides details on the algorithms for cooperative target detection and localization by 
the robotic network, a brief description on target classification using multi-modal video camera deep learning 
algorithms and a final part on the options that will be considered in the final piloting experiment for local sensor 
integration including centralized to fully distributed approaches. 

3.1 Passive acoustic cooperative target localization by a network of surface 
robots 

The passive sonar robotic network concept is sketched in Figure 2. Wave-glider surface autonomous vehicles are 
equipped with volumetric passive sonar sensors for surface target detection and localization which are able to provide 
target bearing (direction of arrival) measurements after a beamforming processing of the acquired signal. The 
communication between the vehicles and a remote Command and Control centre (on a mother ship or on land) are 
guaranteed by continuous air/satellite communication and optionally by underwater communication modems. Wave-
gliders have been selected due to their long-endurance and quiet navigation. 

 
Figure 2: Concept of the multi-robot, persistent, passive monitoring network for surface target detection and 
localisation. Adapted from a LiquidRobotics picture [41]. 

The PERSEUS sensor (see Figure 3) will be mounted on board each vehicle. The sensor is a passive volumetric array 
composed of 8 hydrophones that are used to estimate the target bearing. The sensor has been tested recently at sea in 
La Spezia using a rubber boat as a test target performing different trajectories at different speeds. The signal received 
from the target is under analysis. A preliminary evaluation of the sensor performance is reported in the following 
sections. 

      
Figure 3: the PERSEUS sensor 

At a higher level of cooperation, the surface vehicles, each one being a node of the surveillance network, exchange 
information to coordinate the nodes activities. The mission for the node robots can be divided into two phases (Figure 
4): area survey and target cues exploitation. The mission starts with the vehicles operating in the area survey phase. 
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Their objective is to guarantee the monitoring of an area. Some mission objectives have to be guaranteed on the 
assigned region, for instance on the cumulative probability of target detection as proposed in [1], or on the probability 
of target presence given the collected measurements. The problem is intrinsically dynamic, due to the mobility of the 
target. For this reason, the vehicle objectives also include a temporal dimension. The region has to be covered 
periodically, since a target can enter in regions already surveyed. 

When some cues about the target are produced by the on-board signal processing chain, the target cues exploitation 
phase begins. The wave-gliders now control their position to facilitate the target localisation. Fusing the bearing 
measurements allows them to estimate the target position and to adapt their navigation accordingly. This phase ideally 
culminates with the target confirmation and with the communication of its presence and position to the Command and 
Control Centre. If cues are recognised as a false alarm, or the target has moved too far for being detected, the system 
switches back to the area survey phase. 

 
Figure 4: Mission phases for a multi-robot, persistent, passive monitoring network. In the area survey phase, the 
wave-gliders cooperate to achieve some coverage objectives on the area of interest. When some cues about the target 
are produced by the signal processing, they start to control cooperatively their navigation to confirm the target presence 
and to estimate its position. 

In our system, we are pushing the glider autonomy to a higher level. The vehicles do not react with pre-defined 
behaviours, but they use data-driven strategies adapting their navigation as new information is produced. This level 
of autonomy is rare for a glider and can be enabled only by an accurate navigation, uncommon for typical glider 
navigation systems. 

A high-level scheme of the robot cooperative autonomy framework is shown in Figure 5. An Occupancy Grid (OG) 
Mapping framework [1],[2] constitutes the perception layer. It produces maps of the probability of presence of a target 
in an area of interest. The produced maps are the basis for the decision layer that is in charge of cooperative decisions 
for fulfilling the mission objectives. The two layers are described below in more details. The interested reader is 
referred to [1] for further details and extensive simulation results. 
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Figure 5: High-level scheme of the surface autonomous vehicle cooperative autonomy framework. An Occupancy 
Grid Mapping framework constitutes the perception layer, producing maps of the probability of presence of a target 
in an area of interest. The produced maps are the basis for cooperative decision-making. 

3.1.1 The Perception Layer - OG framework 
Occupancy grids were developed in 1980s as a finite-dimensional means of representing uncertainty in a robot’s 
environment [3]. The method requires discretisation of the environment into a collection of small cells, each of which 
is considered as being either completely occupied or completely empty. OG mapping is the process of fusing 
successive noisy and uncertain measurements into estimates of the likelihood of each cell being either occupied or 
empty. The approach has been applied to many robotic applications. It was first used to map indoor environments [4], 
and, more recently, it has been adopted to map outdoor ones, such as urban areas [5]. 

In our application, we apply occupancy grids to map the presence of targets in an area. The binary state of grid cells 
is redefined to denote the probability of target presence or absence. A defining characteristic of our application 
considered within the context of OG mapping is the small number of cells expected to be occupied by targets (or 
detectable objects, such as passing vessels). This implies that the prior probability of occupancy associated with each 
cell is much lower than is typical in OG maps of, for instance, the layout of a building constructed from laser or sonar 
range-finder data [4]. In this situation, the well-known conflicts generated by standard grid mapping algorithm [4] 
appear to be amplified [6]. These conflicts are caused by the sensor cone that sweeps on multiple cells inducing 
dependencies among the cells that cannot be taken into account by the standard OG mapping algorithm [4] that 
estimates independently the state of each cell. A similar scenario from a prior perspective is the mapping and 
localisation of chemical sources [6][7][8]. In these papers the authors propose a map update rule that, in a low prior 
scenario, has been demonstrated to produce better maps than the standard Bayesian update rule. In particular, the 
resulting maps are more consistent with the true number of occupied cells, and less sensitive to the correct choice of 
prior. In our application we use a map update rule adapted from these works. On the other hand, our application is 
different from chemical sources mapping. The big difference is that targets, differently from chemical sources, move. 
Traditional OG mapping techniques rely on the assumption of a static world that is the mapped environment does not 
change over time. For this reason, an extension of OG mapping to dynamic environments will be used by applying 
the transition matrix of a Markov Chain (MC) [4] [10] to rule the dynamics of the probabilities of each grid cell. 

Finally, it is important to underline that the used approach does not make assumptions on the presence of a single 
target in the area, and does not suffer from the difficulties raised by data association, usually present in tracking 
approaches [9]. 

Let C be the number of cells in an OG map. m1:C denotes the collection of all binary cell states and z1:t denotes the 
collection of all measurements. Then, considered as a Bayesian C-dimensional binary estimation problem, all 
information about the state of the map would be contained in the posterior p(m1:C|z1:t). Unfortunately, the number of 
possible maps is 2C, and so it is usually prohibitive to store or compute this full posterior. Consequently, OG mapping 
methods typically seek the marginal posteriors for the occupancy of each cell p(mi|z1:t), with i=1,…C. 

However, it is not possible to compute these marginals exactly without first computing the full posterior and then 
marginalising. To avoid the computational burden implied by this task, traditional OG mapping methods employ map 



 
 
 
 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP3 T3.1-3.3  
Deliverable D3.2 

Doc.nr.: WP3 D3.2 
Rev.: 1.0 
Date: 29/06/2020 
Class.: Public 

  12 of 55 

update rules that attempt to generate the marginal posteriors directly from measurements and the current state of the 
map. The standard Bayesian map update rule produces inexact marginal posteriors, but it is simple to implement and 
popular [4]. For numerical reasons, the standard algorithm computes the so-called log odds of occupancy for each cell 
at each time step. Log odds for cell i at time t is: 

 
from which it is trivial to recover the associated marginal posterior. At time t = 0, this quantity is initialised to the log 
odds prior for each cell: 

 
Besides the prior probability of occupancy p(mi) for each cell, the only other quantity required is an inverse sensor 
model to provide the probability that the cell being updated is occupied given the current measurement, that is p(mij|zt). 
These quantities can be used by the standard Bayesian map update, a version of the binary Bayes filter [23]. 

A critical assumption required in the derivation of the standard Bayesian map update is: 

 
This equation states that the current measurement is independent of all other measurements predicated on knowledge 
of the cell currently being updated. Because sensors sweep over multiple cells, this assumption is usually incorrect 
and consequently the marginal posteriors computed by the standard algorithm are inexact. However, the assumption 
greatly simplifies the problem of computing the marginal posteriors by enabling the mapping problem to be treated as 
a collection of C independent binary estimation problems [4].  

In order to fully specify the OG algorithm for the perception layer, it remains to define a sensor model suited to our 
scenario and how to handle the dynamic of a target. As mentioned above, the dynamic of the OG is ruled according 
to a MC model by specifying a state transition probability, p(mt,i|mt-1,i), which rules how the occupancy state of a cell 
mi evolves between consecutive time steps. We assume that the modifications in the environment are caused by a 
stationary process i.e. the transition model is independent of time. The sensor model can be specified by assuming a 
model for the probability of detection. A full definition of both the sensor model and the dynamic model of the OG 
algorithm is beyond the scope of this report. The reader can refer to [2] for a detailed mathematical formulation of the 
entire algorithm. 

Finally, the OG-based algorithm to iteratively produce a map of target position probabilities consists of two steps (see 
Figure 6): 

- Time update (propagation). 

- Measurement update. 

The algorithm is activated periodically, for instance every time new measurements are available. First, the map is 
updated according to the MC. In particular, the MC transition model is applied to each cell of the OG map, l{t-1,i}, at 
time t-1, where i is the index of the spatial grid cell. The produced map, l -{t-1,i}, is fed, together with the measurements 
(if any) to the Independence of Posteriors (IP) algorithm [2] to compute the OG map, l{t,i}, at time t. 
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Figure 6: The proposed OG based algorithm to create a map of the target presence probability. The algorithm consists 
of two steps: the time update in which a MC rules the temporal transition of the cell occupancies, and the IP OG 
algorithm, that iteratively integrates bearing measurements produced by sensors on-board the underwater robots. 

3.1.2 Decision Layer – Cooperative autonomy 
The objective of area survey/patrolling is to cover with sensor measurements an area of interest. We have to quantify 
how well regions have been monitored and if some interesting cues likely related to a target have been encountered. 
We have to remark that in our case a dynamic world is considered. Therefore, an area has to be adequately surveyed 
again after some time from the first coverage. The produced OG maps provide a guidance for this process. They show 
regions interesting to be investigated more (higher target presence probability), regions likely empty and areas not 
adequately monitored. Furthermore, the MC dynamic model of the map, described above, provides a way to insert in 
the survey process some temporal constraints. If an area is not monitored for some time, the system will bring back 
the occupancy probability to the prior, showing that region has to be surveyed again. 

One objective to drive the robot survey is the reduction of uncertainty in the produced maps. Given an occupancy 
grid, the entropy of each cell can be used to quantify its uncertainty. Let us denote the i-th cell by mi, and its occupancy 
probability pi = p(mi). Then the entropy of the binary occupancy variable is given by: 

 
Hp(mi) is maximum when the occupancy is 0.5, while becomes 0 when pi = 0 or pi = 1, that is the cell occupancy is 
certain. The total entropy of the map is therefore: 

 
The computed entropy can be the guidance for the robot navigation (see [11]). The robots survey an area moving on 
pre-fixed rectangular paths (called racetracks). The area survey proceeds until some cells of the map reach entropy 
values higher than a pre-fixed threshold. The robots then enter the target cues exploitation phase and cooperate for 
localising the target. 

In the following, we will consider two robots that produce bearing-only measurements and move at constant speed. 
The cooperative target localisation behaviour controls the robot heading angles with the objective of optimising the 
estimate of the target x-y position through data fusion between maps produced by different assets. The behaviour has 
a distributed nature. Each robot makes a decision evaluating the current navigation decision and map of the 
collaborator. The cooperative robot decisions drive the sensors towards spatial configurations favourable for achieving 
target localisation. The achieved configurations are beneficial not only from a geometric perspective, but also from 
the point of view of sensor probability of detection. A trade-off is found between these two objectives that may be 
conflicting. Data fusion between the measurements produced by different assets is central. For these reasons, 
communication has to be guaranteed and constraints in the robot navigation has to be inserted, together with 
redundancy communication policies to tackle the unavoidable packet loss. 

Looking at the literature, several approaches for bearing-only measurements such as Target Motion Analysis have 
been proposed for target localisation [12]. However, most for them rely on the hypothesis of straight and constant-
speed motion of the target. Furthermore, a single robot would need speed higher or comparable with that of the target. 
This would allow it to manoeuvre for detecting the target at diverse bearing angles. In order to relax these constraints, 
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the most robust approach is to fuse the Direction Of Arrival (DOA) results from at least two platforms in the network, 
using for instance information-theoretic distributed control strategies [13][14][15]. 

The OG perception layer can support this approach, and data fusion from different sensors can compensate for robot 
limited speed. 

Maps produced by robots can be used to estimate the target position and offer a way to plan cooperative actions. Let 
us define the map produced by the robot 1 at time t as p1(m), and the map produced by the robot 2 as p2(m), where 
m=[m1,,mC]. We assume that the robots exchange measurements and their position/heading, so each vehicle has access 
to the information necessary to compute both maps. The fused map can be computed multiplying the occupancy of 
each corresponding cell, that is for cell i, pf(mi) = p1(mi)p2(mi). 

We have now to identify one effective metric to quantify the target localisation. For accurate target localisation, we 
aim at having one cell with high occupancy probability, surrounded by cells with low occupancy probability. One 
possible solution to quantify this is to compute the Laplacian of the fused occupancy map, pf(m), that is 
LPf(m)=∇2[pf(m)]. For each cell i a value of the Laplacian is therefore produced, LPf(mi). In mathematics, the Laplace 
operator or Laplacian is a differential operator given by the divergence of the gradient of a function on an Euclidean 
space. If we consider pf(m) as a scalar field, cells with large negative values of LPf(mi) are characterised both by high 
occupancy probability and are surrounded by low occupancy probability cells. These cells are peaks in the probability 
map. This is exactly what we are searching for. The map LPf(m) is therefore used as a good indicator of the target 
position. 

 
Figure 7: Cooperative and distributed selection of heading decision for target localisation - actions performed by 
robot 1. The robot 1 computes the local OG map and the remote one using the data received from robot 2. Then it 
predicts at a future time the state of the local OG map following M heading hypothetical decisions. Robot 1 also 
predicts at a future time the remote OG map resulting from the collaborator’s decision. Then, it creates M predicted 
fused maps and for each map computes the Laplacian of the cells. The map containing the cell in the AOI with the 
lowest Laplacian value is selected. The relative heading decision, ψ1d, is selected as command until the next decision 
time and transmitted to the collaborator. 
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The robot control algorithm seeks for wave-glider heading angles that create favourable LPf(m) maps. The algorithm 
steps are shown in Figure 7. The figure reports for simplicity the actions that robot 1 executes to produce its desired 
heading, ψ1d, at a certain decision time. 

The robots exchange their position/heading, the produced bearing measurements and their current heading decision 
ψ1d (for robot i). At a certain decision time, one robot, let us say robot 1 for simplicity, performs the following steps: 

- Compute an Area of Interest (AOI) W around the cell that contains the current estimate of the target position. 

- For the remote robot, robot 1 predicts the following map: 

 
with E’z being the expectation operator with respect to measurements z. The superscript indicates that the 
map is predicted in the future following an action of the robot. The robot computes a prediction map at a 
future time averaging over the possible measurements z that robot 2 could collect at its predicted future 
position/heading given its action, u2. In this case, u2 is the action (movement and rotation) caused by the 
current robot 2 heading decision, ψ2d, for a certain prediction time. 

- For robot 1, M possible heading decisions {ψ11, ψ12,, ψ1M} are selected around the current heading angle. 
For each of these movement hypotheses, ψ1i, a predicted map at a future time is computed as described in 
the previous step. Specifically, for the action ψ1i: 

 

The map E’z1i is created from the local OG map and the possible measurements collected by robot 1 at the 
predicted future position/heading given the action u1i. A total of M maps is computed in this way, one for 
each possible heading decision. 

- Then, for each of the heading action of robot 1, we compute: 

 

Where the operator ⋅ is intended as a multiplication cell by cell of the two resulting maps. The Laplacian 
operator is applied to the resulting expected fused map, following the vehicle actions. 

- Finally, we select the action u1d that produces the map that, inside its AOI, contains the cell with the lowest 
Laplacian value. That is: 

 

The computation of the quantities E’z=Ez[p(m|z,u)] is in general not trivial, since all possible measurements following 
an action u should be evaluated. One way to approximate the computation is via the so-called “hallucinated” 
measurements that are usually computed via approximate ray-casting techniques in conjunction with a plausible sensor 
model. The reader can refer to [16] for a detailed introduction to the method. 

During target localisation, the robots need to satisfy some cooperative navigation constraints. It is necessary to 
guarantee communication connectivity (maximum inter-vehicle distances), as well as avoid collisions between robots 
(minimum inter-vehicle distances). A task priority (TP) framework has been developed for introducing this kind of 
geometrical constraints in the team control laws. If we assume to have tasks with different degrees of priority, TP 
control allows the execution of the lower priority tasks without affecting the execution of the higher priority ones. In 
our case, we identify three different prioritised tasks: collision-avoidance, reach a location and keep the connectivity. 
We build the desired team behaviour dynamically modifying the priorities of the mission tasks. The robots 
cooperatively reach a desired geometric localisation, at the same time guaranteeing a limited inter-node distance and 
avoiding possible collisions. 

3.1.3 Preliminary evaluation of component KPIs 
A sea trial has been organized and executed in the Ligurian Sea to test the PERSEUS sensor array. During the test 
trial, a rubber boat has been used as test target with a GPS on board to acquire position and angle of arrival ground 
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truth data. The target performed a series of test trajectories at constant speed and constant range as depicted in Figure 
8 on the left. 

       
Figure 8: The experiment setup to test the PERSEUS array. On the left, in red the constant speed test target 

trajectories while in yellow the constant range ones. On the right, the deployment of the PERSEUS array 

The test consists in acquiring data to check the capability of the sensor to detect surface targets and to understand the 
extent of the error on the target direction of arrival estimation which impacts the cooperative localization algorithm 
detailed above. Figure 9 shows an example of the signals acquired by the 8 hydrophones of the PERSEUS array while 
Figure 10 shows an example of the spectrogram of the signal from one of the hydrophones. 

 
Figure 9: Example of signals acquired by the 8 hydrophones forming the PERSEUS array. 

 
Figure 10: Example of time-frequency spectrogram analysis of the signal from one of the hydrophones of the 

PERSEUS array. 

The 8 signals have been processed and beam-formed to automatically detect the test target and estimate the target 
direction of arrival. Figure 11 shows, in red, the estimates of the direction of arrival of the detected contacts in a time 
window of about 200 sec. The agreement with the ground-truth from the GPS in blue is quite good. Residual errors 
will be reduced by fusing angle measurements from different sensors using the cooperative localization approach 
detailed above. The data acquired during the test trial will be further processed to provide quantitative error estimates 
under different target trajectories.  
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Figure 11: Target direction of arrival estimation (in red) compared with ground-truth target direction data from the 

on-board GPS. 

The target localization algorithm was investigated through Matlab (©MathWorks) simulations. The aim was to assess 
the utility of the data-driven approach with respect to traditional pre-fixed paths. Furthermore, the data-driven 
algorithm performance was evaluated considering different target motions and different measurement qualities 
(perfect vs. realistic bearing measurements). 

We use an area of 5 x 2 km in all the described simulation results. Two robots are used, robot 1 and robot 2. The robots 
move with a constant speed of 1.5 m/s. The robots exchange every 5s (at each Update Time, UT) their 
position/heading, heading decision, other data relative to the cooperative behaviour (state and next UT of activation) 
and bearing measurements. Perfect communications are assumed. 

We consider the figure (a) of Figure 12 as an example of all the presented pictures. Robot 1 position is described with 
a black circle and the current heading with a segment originating from the robot location. The sensor footprint is 
shown as two black lines that delimit the sensor footprint. The sensor endfire is located at front/back of the robot. The 
black circles of different size in front of the robot are the decisions evaluated in the target localization behaviour. The 
size is relative to the value of the minimum Laplacian of the expected fused map. The selected decision is marked 
with a larger black hollow circle. Bearing measurements of the real target are indicated by a black cross, while triangles 
indicate bearing measurements due to false alarms. The same quantities are indicated in red for robot 2. The number 
between the robot is their distance in meters. A green diamond indicates the target, while a green asterisk shows the 
estimated target position (at the current UT) for robot 1. The black asterisk shows the estimated target position used 
during the previous step of the decision making. The black and green asterisk positions may or may not coincide. 

In the scenario of Figure 12 the target starts at location (2550;550) and then moves at a speed of 2 m/s along a rotated 
square with a side length of 400 m and with the first waypoint position at (2450;650) (as shown in (a) of Fig. 23). In 
Figure 12 we report the Laplacian LP of the map produced by the fusion of single robot maps in the case of two robots 
moving along horizontal rectangular patterns (named racetracks) 550 m long, with robot 1 moving westwards and 
robot 2 eastwards at different. We show the situation at different UTs: 20, 40, 50, 110. The initial inter-robot distance 
is 450 m. Realistic measurements are used. As can be seen in the figures, the robots are able to localise the target at 
the beginning of the run. Then, the target moves north-west making the detections by robot 2 that is navigating 
eastwards more complex. The target following movement along the north-east leg makes it hardly detectable since 
the range from the robots increases. 
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Figure 12: Target moving, robots covering horizontal racetracks, realistic measurements. UT =20 (a), UT=40 (b), UT 
=50 (c), UT =110 (d): Laplacian LP of the map produced by fusing the single robot maps. 

 
The same quantity is shown in Figure 13 for simulations with the data-driven target localisation that control the robots 
and realistic measurements. At UT = 40 the target enters the sensor end-fire of robot 1 (see (b)). Robot 1 avoids this 
situation deciding to turn north-west (see (c)). Then, similarly to the perfect measurements case, turns eastwards to 
get closer to the target. Robot 2 in both cases behaves similarly. Overall, it moves northwards and supports the actions 
of robot 1 for producing favourable geometries for target localisation. 
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Figure 13: Target moving, robots controlled by the data-driven algorithm, realistic measurements. UT = 20 (a), UT = 
40 (b), UT = 50 (c), UT = 110 (d): Laplacian LP of the map produced by fusing the single robot maps. 

In Fig. 26 we report the target position estimate error and the Pd of simulations with the robots following the horizontal 
racetracks and controlled by the data-driven algorithm, both with realistic measurements. From the figure, it is clear 
how the cooperative behaviour is crucial for achieving target localisation with a target following a complex path. After 
time t = 300 both the robots in the racetrack case are no more capable of detecting the target. Only the robot autonomy 
allows them to follow and localise the target. 
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Figure 14: Realistic measurements. Target position estimate error (a), Pd at target location (b) for robots covering 
horizontal racetracks and controlled by the cooperative target localisation behaviour. 

3.2 Target detection and classification from thermal/video camera data 
In this section we describe a preliminary version of the object detection algorithms in photos and videos of vessels. 
Due to the COVID-19 situation, the thermal camera has not been accessible to the time of writing this document, so 
we decided to use simulated data in order to test approaches for performing object detection in camera data. Due to 
the fact that camera data are very different (in terms of format, resolution and information stored) from satellite and 
acoustic data, different approach should be followed for object detection in each approach.  

The data that we used instead of thermal camera data were vessel photos acquired from the MarineTraffic website1. 
MarineTraffic has a large repository of photos uploaded by enthusiasts and professionals of in the Maritime domain 
and this repository is one of the most popular features of the MarineTraffic website.  

3.2.1 Goal 
The goal is to be able to identify and locate vessels (and possibly other objects as well) in photos/videos2. In other 
words, the goal is to perform object detection and segmentation.  

Another motivation for this work is the fact that in this way, we will be able to identify photos that are erroneously 
annotated as vessel photos in the MarineTraffic website.  

                                                             
1 https://www.marinetraffic.com/en/photos/of/ships 
 
2 Since videos are composed of frames, we handle videos and photos uniformly.  
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3.2.2 Solution  
Core part of the solution is to use Convolutional Neural Networks (CNN). But unlike the task of vessel detection in 
satellite imagery, where the resolution is low, the vessels appear as small objects, and the number of different objects 
located in each tile is very low, the case in data coming from cameras is different. The fact that the resolution in this 
case is higher, combined with the fact that cameras are usually located in places where other activities also take place 
(e.g., ports, terminals, beaches, etc.) introduces more challenges: The vessels appear bigger with the vessel shape and 
portrayed dimensions varying according to the height and angle of the camera the photo is taken, while many other 
objects (e.g., people, port/terminal facilities, buildings, etc.) might also appear in the same photo or even tile. To make 
things worse, the MarineTraffic photos were taken using different cameras and of course, different angles for each 
vessel.  So, given these differences, the CNN architectures employed for the vessel classification tasks for satellite 
data, another CNN architecture should be employed for this dataset. 

 
Figure 15: Darknet-53 layered architecture. The table provides, for each layer, the type of layer, the number of 

convolutional filters, the size of the filter window in pixels and the size of the output grid. 

We used the You Only Look Once (YOLOv3) framework that relies on Darknet, an open-source c-based Neural 
Network framework3. YOLO [35] is a state-of-the-art framework that employs CNNs for object detection and 
segmentation. We used its latest version (v3) that is able to outperform well-known CNNs both in terms of accuracy 
and performance4. For example, it outperforms older variations of Darknet (Darknet-19) and ResNet [47]. YOLO 
extends the Darknet-19 architecture with additional layers. The new neural network architecture is called Darknet-53 
due to its 53 layers, shown in Figure 15. 

For training, we used the well-known COCO dataset5 [36] for the following reasons:  

(a) It is a large, well-known, well-maintained dataset produced by Microsoft, with contributions from Google 
and Facebook.  

                                                             
3 https://pjreddie.com/darknet/ 
 
4 https://pjreddie.com/darknet/yolo/ 
 
5 T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft coco: 
Com- ´ mon objects in context. In European conference on computer vision, pages 740–755. Springer, 2014. 
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(b) It includes more than 80 classes, with more than 3000 images from vessels that are very similar to 
MarineTraffic vessel photos.  

(c) It is suitable for image segmentation, as images are annotated with the bounding boxes of the identified 
objects.  

(d) Due to the fact that the COCO dataset includes a lot of instances of over 80 classes, it will help as identify 
additional objects in photos apart from vessels. 

3.2.3 Preliminary evaluation  
We performed preliminary evaluation using a Python-based implementation of the YOLO v3 framework trained on 
the COCO dataset (we used pre-trained weights) and 1000 completely unseen MarineTraffic images, with and without 
vessels.  

The accuracy achieved was 79%. In the next round of experiments this accuracy is expected to be increased by 
annotating MarineTraffic photos that were false positives in the first round of experiments, and including them in the 
training set, while testing against new, unseen MarineTraffic photos. The new round of experiments will be executed 
in the BSC cluster in order to exploit the GPU capabilities. 

 
Figure 16: Output of the first round of experiments on MarineTraffic unseen imagery performing multi-class 

identification (e.g., instances of classes “person” and “boat”). 

 

 
Figure 17: Another MarineTraffic image annotated with the output of the classification task, i.e.,  identifying and 

locating vessels (e.g., instances of the class “boat”).  

4 Global view sensors  
This work makes use of data from two sources: the AIS and the Sentinel 2 Multi-spectral instrument (MSI) sensor. 
Data from the two systems are fused to automatically extract training data sets by using the procedure detailed below. 
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4.1 The AIS 
 
The Automatic Identification System (AIS) [31] is an automated, autonomous tracking system which is extensively 
used in the maritime world for the exchange of navigational information between AIS-equipped terminals. Thanks to 
it, static and dynamic vessel information can be electronically exchanged between AIS-receiving stations (onboard, 
ashore or satellite). 
 
Since December 2004, the International Maritime Organisation (IMO) requires all passengers' vessels, as well as, all 
commercial vessels over 299 Gross Tonnage (GT)  that travel internationally to carry a Class A AIS transponder 
(which transmits and receives AIS data) aboard (smaller vessels can also be equipped with a Class B AIS transponder). 
This decision came as a result of the 2002 SOLAS (Safety of Life at Sea) agreement's relative mandate. 
 
AIS transponders (on vessel stations) include a GPS (Global Positioning System) receiver which collects the subject 
vessel's position and movement details. Such (dynamic) details along with other static information provided by the 
vessel's crew are automatically broadcasted at regular intervals via a built-in VHF transmitter using 2 specific VHF 
channels (161.975 Mhz and 162.025 Mhz - 87 & 88 old VHF channels).  
 
The periodic AIS-data information can be received by other vessel or base stations (provided they are within range). 
Then, with the use of special software, it can be processed and depicted on chart plotters or on computers (for example, 
on the MarineTraffic Live Map). AIS-data can also be received by satellites - in this case, the term Sat-AIS is used 
(Satellite AIS or S-AIS).  
 
The availability of the AIS information to the public domain quickly led to a drastic change regarding the initial 
perception of its use. AIS was originally developed by IMO (International Maritime Organisation) as a standard which 
would help vessels to avoid collisions while assisting port authorities to control marine traffic with more efficiency.  

4.1.1 AIS Issues 
Despite the widespread  use of AIS and its contribution in raising the maritime awareness and safety of 
navigation, it comes with the following issues:  
1. Ship identification is challenging sometimes. The most secure way to uniquely identify a vessel is 

each IMO number, which is unique and mandatory for all cargo vessels that are at least 300 Gross 
Tons (GT) and passenger vessels of at least 100 GT according to SOLAS regulation XI/3. However, 
not all vessels fall into these categories, thus, they do not have an IMO number. Another 
characteristic that can be used to identify vessels is the MMSI, which is a number that consists of 9 
digits and it is mandatory for all vessels. As this number can be modified under certain conditions, 
although is it not very usual for multiple vessels to have the same MMSI, it cannot be considered as a 
unique identifier.  

2. Part of the information transmitted in AIS messages is completed manually by the vessel’s crew. This 
means that the AIS data might occasionally be prone to errors, noisy, inconsistent, and fields might be 
inaccurate or completely missing because of human error.  

3. Equipment Malfunctions. Transponder malfunctions might happen, leading to vessels not being able 
to transmit messages at all, or not in the rate they are obliged to (e.g., more frequently when they are 
under way with high speed). 

4. Intentional switch-off of the AIS transponder. Lately, the phenomenon of intentional switching off 
the AIS transponders by the crew becomes more usual than before (e.g., due to recent sanctions 
applied, etc.). This could happen for example when a vessel is about to engage in illegal activities 
(e.g., smuggling, illegal fishing, entering a protected zone, etc.).  

Due to the issues described above, although AIS is a significant source of information about the Maritime 
Situational Awareness, in order to obtain a complete picture of the maritime domain, it should be 
combined with additional sources of information, such as satellite images, acoustic data, data from 
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thermal cameras, etc. One of the objectives of this use case is to perform fusion of AIS data with 
additional, heterogeneous sources, as described in the following sections. 

4.2 Sentinel 2 multi-spectral instrument sensor and data 
The MSI is a push broom multi-spectral passive imaging sensor on board the European Space Agency (ESA) Sentinel 
2 satellite constellation used for Earth observation [32]. The constellation consists of two polar orbiting satellites, 2A 
and 2B, placed on the same orbit and phased at 180° to each other. The revisit time with two satellites is 10 days at 
the equator and 2 to 3 days at mid-latitude. The latitude coverage is between 56°S and 84°N and the swath width is 
290Km. The MSI sensor acquires the solar radiation from the Earth surface and the atmosphere in 13 spectral bands, 
four bands at spatial resolution ΔR=10m, six bands at ΔR=20m and three bands at ΔR=60m, with a radiometric 
resolution of 12bits. The channels at ΔR=10m are the most interesting ones for ship classification. Table 3 shows the 
characteristics of these channels for the MSI on board Sentinel 2A and 2B [33], including the central wavelength, λ0, 
the spectral resolution, Δλ, the calibration reference radiance, Lref, and the signal to noise ratio at the reference 
radiance, SNR@Lref. The first 3 channels cover the visible spectrum in the blue, green and red bands, respectively, 
while the fourth channel covers a band in the near infrared (NIR) range. The data at 10m resolution are provided as 
image tiles (or granules) on a geo-located uniform grid of 10800 by 10800 samples for each spectral channel and are 
freely available through the Copernicus Science Hub (CSH) web site [34]. 

Table 3: Sentinel 2 MSI sensor characteristics. 

 
Sentinel 2 MSI data are mainly used to identify vessels that might have their AIS transponders switched off or that 
are transmitting false AIS information like a wrong ship type. To this purpose, a set of machine learning classifiers 
are designed to estimate some attributes of a ship target given the target spectral signature acquired by the sensor. The 
information provided by a classifier is then compared with the context information provided by the AIS contacts in 
the area of interest and anomaly are detected if the two information are not coherent. The next sub-sections describe 
the classifiers and provides evaluation of the classification performance. Figure 18 shows an example of ship target 
spectral signatures for a Moss-spherical liquid natural gas (LNG) tanker from which is possible to see several features 
characterizing the target. 

 
Figure 18: Example of an MSI spectral ship target signature for a LNG Moss-Spherical tanker. 

4.2.1 Convolutional neural network classifiers 
The architecture of the classifiers used in the project is based on deep convolutional neural networks [17]. Figure 19 
shows the neural network used in this work to build the ship target classifiers. In general, the network can process 
input data coming from M different sources, or modalities, and integrate information at the feature level by means of 
a combination layer. Each branch of the system has a multilayer convolutional block followed by a dense layer 
entering the combination layer. Dropout layers can be added to regularize the network. The combination layer is 
followed by a multi-layered fully connected sub-net with K outputs, where K is the number of target classes. These 
outputs provide the scores to the final max-rule layer to choose the target class having the maximum probability. A 
prior probability can be associated to the weights of all the layers of the network, or part of them, and the network can 
be trained by minimising the cross entropy loss function or using a Bayesian variational inference method by 
maximizing the evidence lower bound (ELBO) loss function [18]. 
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The specific network used to classify ship targets from MSI images has two branches, one for each resolution, 
ΔR=10m and ΔR=20m, considered as two different acquisition modalities. The image channels having the same 
resolution are assigned to a branch of the network. The system structure has a high degree of flexibility and can be 
configured as needed by including or excluding branches, depending on the available modalities, and considering 
different channel combinations. In this report, the full multi-modal structure is tested, while in future work, the 
performance of different system configurations will be compared to evaluate the minimum number of branches and 
channels needed to achieve a given level of performance. 

 
Figure 19: Multi-modal classifier based on convolutional neural networks. 

4.2.2 Classifiers and training data sets 
The classifiers considered in this report include a) a binary ship/no-ship low level classifier, b) a binary low-speed 
classifier, c) a 4 class course over ground (COG) quadrant classifier and d) a 4-class ship type classifier. An additional 
ship type classier with broader ship classes {“Cargo”, “Tanker”, “Other”} is also taken into account. 

The ship/no-ship classifier is a low-level classifier that is used to discriminate between ship targets and non-ship 
targets like clouds. The other ones are applied afterward to understand some additional properties of the target, 
acquiring a rough idea of the navigational status (an information that is correlated to the presence of a ship wake) and 
the identity. 

Specific training sets are built for each classifier by using a semi-automatic association procedure between AIS 
contacts and target contacts automatically detected on a set of MSI images. Once an image contact is associated to an 
AIS contact in a certain position and time instant, the AIS attributes of the corresponding AIS message are used to 
label the ship target MSI sub-image. Residual association errors are corrected by visual inspection of the produced 
data set.  

The main training data set obtained by using the procedure above is then used to extract training examples for each of 
the considered classifier. Concerning the low-level classifier, 2000” no-ship” targets and 2000 “ship” targets were 
extracted from the main data set. Then 50% of the samples of each class were assigned to the training set, 25% to the 
validation set and 25% to the test set. Regarding the low speed classifier, a data set of ship targets longer than 200m 
was first extracted. This set was split in two classes of 1100 samples for each class by using a 1Knot threshold on the 
speed over ground (SOG). Finally, 70% of the samples were assigned to the training set, 15% to the validation set and 
the remaining 15% to the test set. For the COG quadrant classification task, 250 ship targets for each quadrant (Q1 = 
Northern-Eastern, Q2 = Northern-Western, Q3 = Southern-Western and Q4 = South-Eastern quadrants) were picked 
at random. Then 60% of the samples were assigned to the training set, 20% to the validation set and the other 20% to 
the test set. The data set for ship type classification was extracted by searching for targets in a given list of vessels. In 
particular, four groups of ships are taken into account: a) a fleet of cargo ships of a given shipping company, b) a 
group of liquid natural gas (LNG) tankers of the spherical Moss type, c) a fleet of roll-on/roll-off (RORO) vehicle 
carrier ships and d) a set of very large crude carriers (VLCC) and ultra large crude carriers (ULCC) oil tankers. Ships 
in each group share similar structural characteristics and spectral signatures. The size of each group is of 75, 33, 99 
and 104 target images, respectively. The 30% of the targets were assigned to the training set, 35% to the validation 
set and the other 35% to the test set. The training set is finally augmented as described in section 4.2.3o reduce the 
effects of small sample over-fitting phenomena. Due to the small size of this data set the results obtained on the ship 
type classifier are not definitive. Further investigations will be conducted in the future by collecting additional 
samples. Finally, the data set for the coarser ship classifier for the classes “Cargo”, “Tanker” and “Other” has a number 
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of samples of 3066, 2071 and 1231, for each class, respectively, for a total of 6368 samples. The data set is split in 
80% training set and 20% validation set. 

4.2.3  Mitigation of over-fitting due to small data sets 
Over-fitting due to small sample is further reduced by augmenting the training sets. The augmentation procedure 
consists in applying random geometric and pixel-wise value transformations to the training images to produce new 
samples. The image transformations include: 

- random translation of a maximum amount of 3 pixels in both spatial directions, 
- random spatial scaling with a scale factor between 0.8 and 1.2 on both directions, 
- random rotations between 0 and 30 deg (not applied in the case of COG classifier) 
- and random scaling of pixel values with a factor between 0.8 and 1.2. 

4.2.4 Classifier KPIs 
Binary classifier performance is evaluated by ROC curves which display the classifier true positive rate (TPR) versus 
the false positive rate (FPR), for several values of the decision threshold applied to the network score of the positive 
class. For multi-class problems the ROC curve is estimated by taking one class as positive while the remaining ones 
are joined in a single negative class. The classification score used to estimate the ROC curve in this case is re-computed 
as mi=pi-maxj≠i(pj), where i, j=1;…,K, i is the index of the chosen positive class, and pi is the score at the output of the 
classifier for the ith class. A bootstrap method is then used to estimate ROC curves and AUC confidence intervals 
allowing testing if the trained classifier statistically outperforms the TPR=FPR classifier with AUC=0.5. 

4.2.5 Performance evaluation 
This section shows the performance of low-level and high-level CNN classifiers, which were trained using the data 
sets described above. Figure 20 shows the scatter plots of the features learned by the vessel speed classifier and 
calculated on the training set. The features are the outputs of the dense layer just before the final layer outputting the 
classification scores and are indicated as Fi, where i is the output index. The degree of separation of the two classes 
in the learned feature space is quite good and they can be easily discriminated by a simple classification law. Figure 
21 shows the same scatter plots for the features learned by the ship type classifier and calculated on the training set. 
Even in this case, the three classes are very well separated allowing to reach a classification accuracy of about 97% 
for both the training and the validation sets. 

Table 4 summarizes the AUC statistics of the four main classifiers introduced above, i.e. the AUC point estimation 
and AUC 95% confidence intervals (CI). Figure 22-a) shows the ROC curves and the associated 95% CIs of the 
ship/no-ship low level classifier estimated for the training, validation and test sets. The estimated 95% CI of the AUC 
is (0:954; 0:986) for the validation set, (0:940; 0:976) for the test set and (0:985; 0:998) for the training set, with AUC 
point estimation of 0.975, 0.962 and 0.995, respectively. Figure 22-b) shows the same curves for the low speed 
classifier. The estimated 95% CI of the AUC is (0:914; 0:969) for the validation set, (0:940; 0:978) for the test set and 
(0:995; 0:999) for the training set, with AUC point estimation of 0.952, 0.962 and 0.998, respectively. The ROC 
curves of the 4-class COG quadrant classifier for the three data sets are displayed in Figure 22-c). The graph is relative 
to the Q1 class taken as positive while the remaining ones are considered as a single negative class as described in 
section III-D. The estimated 95% CI of the AUC in this case is (0:945; 0:996) for the validation set, (0:932; 0:992) 
for the test set and (0:997; 0:999) for the training set, with AUC point estimation of 0.983, 0.974 and 0.998, 
respectively. Similar results were obtained taking the Q2, Q3 and Q4 quadrants as positive classes. Finally, the 
performance of the 4-class ship-type classifier is displayed in Figure 22-d) for the ”fleet of cargo” class taken as 
positive. The estimated 95% CI of the AUC is (0:956; 0:996) for the validation set, (0:984; 1) for the test set and 
(0:994; 0:999) for the training set, with AUC point estimation of 0.986, 0.998 and 0.997, respectively. Similar 
performance is achieved when the other classes are considered as positive. In general, the performance of the proposed 
CNN structure is good with an estimated AUC greater than 0.95 in all the cases taken into account.  
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Table 4: Classifier performance indices. Estimation of mean AUC and confidence levels for the training, validation 
and test sets. Mean AUC and confidence levels are estimated using a bootstrap procedure. 

 
The coarser ship type classifier, not shown in Table 4 and Figure 22 for the sake of brevity, achieves a classification 
accuracy greater than 95% in line with the accuracy of the other four classifiers confirming the validity of the approach 
used to classify ship targets. 

 
Figure 20: Ship speed classifier features. 

 

 
Figure 21: Feature of the ship type classifier for classes equal to {“Cargo”, “Tanker”, “Other”}. 
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Figure 22: ROC curves of the four classifier considered in this work. The mean ROC curves and confidence intervals 
are estimated using a bootstrap procedure for the three data set training, validation and test.  

4.3 Vessel detection in Sentinel-1 SAR imagery 
Optical images (such as the Sentinel-2 images) often come with the issue of weather conditions affecting the quality 
of the information displayed in them (e.g., clouds covering vessels). The Sentinel-1 pair of satellites, on the other 
hand, are equipped with a C-Band synthetic aperture radar (SAR) imaging, enabling them to acquire imagery 
regardless of the weather. In this section, we present the approach to target detection and classification from SAR 
data. 

 

Figure 23: Example of Sentinel-1 image overlayed by AIS 
data (in orange colour) 
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4.3.1 Approach 

 
Figure 24: High level workflow 

Figure 24 describes our workflow, that consists of several processing steps. These steps can be categorized as follows: 
(i) data correlation, (ii) processing and balancing, and (iii) training. 
  
We used the Python package Sentinelsat to directly download the Sentinel-1 SAR  satellite images from the 
Copernicus database. For the data processing tasks that are described below, we used the Geospatial Data Abstraction 
Layer (GDAL) python library, which is commonly used for geospatial operations. The process begins with re-
projecting the satellite image to a standard projection (EPSG:4326). Afterwards, the land masking of the satellite 
image is performed in order to remove the land areas depicted in the image, which are out of interest and might affect 
the accuracy of our framework. As an input to the process, a polygonal shapefile that includes the area of the satellite 
image is required so as to mask out the land. This shapefile should include a polygonal area which represents all of 
the land of the area involved. Then, the shapefile is projected to the same projection system as the satellite image, 
clipped to the corresponding area, and then used to mask the land. 
 
The AIS positions are then processed via linear spatiotemporal interpolation, so that the ships are in the approximate 
positions they were when the satellite image was taken, and subsequently are transformed into geometries. We use 
the AIS data to automatically annotate the images with respect to the presence or absence of a ship in a fragment of 
the image (a tile). We thereby show how a carefully designed data fusion process can be used resolve the problem of 
data labeling - oftentimes the bottleneck in many Machine Learning applications. 
 
The next step is the correlation task, which is performed by splitting the satellite image into tiles. Each tile retains 
metadata about its corner coordinates, and thus after the tile generation, the tile’s area is transformed into a geometry, 
and the intersection of the resulting geometry is calculated for each AIS position. That is to say, each AIS point 
geometry (which can optionally have a larger radius than the point itself, to account for irregularities and azimuthal 
ambiguities), is checked against the geometry that represents the area of each tile, so as to check whether the ship -- 
according to AIS -- is contained within the tile. The tiles are then marked accordingly for consumption by the neural 
network. In this way,  AIS is considered the ground truth for the training of the neural network. This action is 
performed with every resulting tile. One of the parameters as input are the dimensions of the resulting tiles, which can 
be variable. Positions that are outside the bounds of the image post-reprojection and post-interpolation are discarded, 
and a distinction is made between “truly-empty tiles” (which have an average brightness of 0) and tiles that simply do 
not contain vessels (but contain background noise, waves, etc.). The former type of tile exists as due to the re-
projection sections of the resulting image are “blank”. Tiles of the former type are discarded. 
 
Ultimately the task is modeled as a classic binary classification problem on satellite images (we use Sentinel 1 SAR 
images in this paper). The image classification task itself is handled by the CNN algorithm The result of this process 
is a set of ready-marked tiles for consumption by the convolutional neural network. In essence, the goal is for the 
neural network to be able to recognize the presence of a ship within a certain section of the satellite image. Specifically, 
it is a binary classification task of "ship(s) present/ship(s) not present". A convolutional neural network is used, instead 
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of any other type, due to its inherent feature learning ability, i.e. its ability to capture relevant features from an image 
on different levels, similar to the human brain. 

4.3.2 CNN 
In the context of this work, as explained earlier, we used a convolutional neural network built using Keras. It is 
composed of 3 convolutional layers and 2 fully-connected layers, as shown in the figure below. Implicitly between 
each layer of the figure exists a ReLU activation layer. As an optimizer, Nadam was used (Adam optimizer with 
enhanced Nesterov momentum--one of the baked-in optimizers Keras offers), with a standard learning rate and other 
parameters. Dropout layers were used as well. This structure was experimentally found to bring the best results. As 
supervisory metrics, accuracy, binary cross-entropy loss, precision, recall, and F1 score were used. Early stopping was 
utilized to optimize the network's accuracy. 
 

 

4.3.3 Experimental evaluation 
In this section we describe the preliminary experimental evaluation of our approach. Sentinel 1 is equipped with a 
SAR sensor, so the output images have the advantage of being unaffected by weather conditions due to the radar 
nature of the sensor. The images were taken primarily from two areas, south of the Iberian peninsula and the Aegean, 
due to both the fact that it has excellent terrestrial AIS coverage (to ensure that no ships are missing from the AIS 
data) and to the large amount of ship traffic that passes through both these areas, ensuring that the ships-per-image 
ratio was fairly high so as to extract as much value training-wise from each image as possible. The AIS data for each 
area was sourced from MarineTraffic. 

Figure 25: CNN architecture 
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The testing of the neural network was done on an image hand-correlated via QGIS taken from the Aegean sea, and as 
such it is certain that the labelling was done without any correlation errors. To perform this correlation by hand, the 
image was loaded into the QGIS software, and the AIS positions were overlaid on top of the image. The image was 
then split into tiles, and each tile that corresponded to an AIS position was marked at first as a ship tile. At this point, 
the process is the same as that which is done automatically through the methodology. However, the correlation by 
hand involved the further step of correcting the automatic process when the AIS positions did not correspond, due to 
azimuthal ambiguities or imprecise spatiotemporal interpolation, to the underlying position of the ship in the image, 
ensuring 100% accuracy in the correlation, something the automatic process does not guarantee. 
 
The results are fairly promising, as shown in the table of Table 5. Compared to the model loss graph shown in Figure 
26 and the model accuracy graph in Figure 28 the actual loss and accuracy are much higher. This is due to the fact 
that these graphs were generated based on the automatically correlated data, while the testing was done on the 
manually-correlated image which has a 100% guarantee of correct correlation. The threshold value, as shown in the 
table above, is the value above which the prediction of the neural network is considered to belong to the predicted 
class. For example, if the neural network gave an output value of 0.7, if the threshold were 0.5 it would be considered 
a positive result, but if the threshold were 0.8 it would not. In this way, by tuning the threshold value, it is possible to 
adjust whether higher recall or higher precision is given more weight, which is generally selected based on the nature 
of the problem at hand. 
 
When tuning the neural network threshold in this case, higher recall (i.e. lower threshold) was preferred to higher 
precision. This is because in a real-world scenario, it would be more damaging to miss a ship (i.e., identify that no 
ship is in a region where one is, potentially allowing illegal activity to go unnoticed) than to classify as a ship 
something that is not (i.e., identify that a ship is in a region where there is nothing there). This also explains the 
discrepancy that seems to exist between the Area under ROC score  and the accuracy. A higher accuracy could be 
achieved, as well as a higher (near perfect or perfect) precision, if a sacrifice was made with regards to the recall.  

This led to the result of higher testing accuracy vs. the training and validation datasets, as the faults in the automatic 
correlation leads to noise in these datasets. This constitutes the primary challenge for this problem, as both the 
azimuthal ambiguities inherent in the SAR sensor and the occasional incorrect spatiotemporal interpolation lead to 
occasional incorrect correlations between AIS positions and the underlying image. The spatiotemporal interpolation 
is linear, and as such if the ship greatly changed heading or position this could affect whether the correlation is correct 
or not. It should be noted that the approach and methodology is fully generalizable to other types of satellite data, e.g. 
non-radar based/optical types, in which case this noise would not be present and the accuracy would likely be higher. 
More details about the work described above can be found in [46] 

 
Figure 26: Model ROC curve 
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Figure 27: Graph of the model loss function vs epoch 

 

 
Figure 28: Graph of the model accuracy vs epoch 

 

Table 5: Results from the best model 
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5 Local/global view integration platform  
The data streams from the local and global view sensors are integrated into the maritime situational awareness platform 
described in the following subsections. The interface between the single sensor component and the situation awareness 
platform is implemented by means of target contact messages in XML or JSON format that contains information about 
the location and identity of the contact detected by a sensor plus other information that is relative to the sensor platform 
from each the message is originated. An example of such a message is provided in Appendix II and it is relative to the 
interface between the CMRE adaptive robotic sensor network described in section 3.1 and the situational awareness 
platform system (see Figure 29 for an example of system configuration). 

 
Figure 29: Message exchange between the adaptive autonomous CMRE sensor network and the INFORE situation 
awareness system. Here the Topside is a command and control centre that integrates the measurements form the robots 
in the field and transmit the contact measurement file to the INFORE platform for situation awareness. 

5.1 INFORE Maritime Situational Awareness Sensor Network Ontology 
The INFORE Maritime Situational Awareness Sensor Network Ontology is designed to annotate and semantically 
enrich the data generated by the heterogeneous sensor network in support of the INFORE maritime use case. It can be 
extended to other Maritime Situational Awareness scenarios not currently considered in this use case, and the design 
patterns applied in its design are potentially applicable to situational awareness in general.  

In particular, the ontology models sensors, observations, data streams, observations values, and any information that 
can be extracted from them as a result of analysis for supporting decisions. 

As presented in sections 3 and 4, INFORE maritime sensors include AIS, remote sensing, acoustic sensors, thermal 
camera, and radar. Following an established pattern in sensor modelling [19], in the ontology the concept of sensor is 
extended beyond physical sensors to include virtual sensors like software and human sensors (e.g., maritime 
operators). Similarly, other sensors can be included (e.g., news, social media, reports) 

As described in sections 3, 4 and 5.2, information resulting from the analysis of sensor data includes analytics results 
like target detection and classifications, maritime events, anomalies and maritime activities detected from data. All 
these concepts are represented in the ontology. As a consequence of the proposed extension of the concept of sensor, 
the second order information produced by data analytics is modelled as a particular type of observation. This design 
choice, which models seamlessly sensor data and analytic results, allows recursivity and enables a straightforward 
representation of data processing workflows. Data provenance is modelled as well. At any instant in time, the 
underlying knowledge graph is a comprehensive representation of the maritime situation as for the underlying sensor 
network, and awareness can be updated accordingly. 

An important aspect of the proposed ontology is the modelling support for information quality. Uncertainty on sensor 
observations and analytics result is modelled explicitly as a particular type of observation, which is linked to the 
originating data and the originating sensor. Since in situational awareness the concept of quality applies also to sensors, 
and quality assessment may be accomplished by a different sensor than the one generating the data, both observations 
and sensors are modelled as observable features of interest.   The proposed model of sensors, observations and their 
quality enables a complete and effective representation of all the pieces of information contributing to situational 
awareness. 
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Figure 30: Excerpt of the INFORE Maritime Situational Awareness Sensor Network Ontology, describing the top-
level concepts for sensors and observations, data streams, values, and processed data. The INFORE ontology aligns 
with references ontologies and data models in the respective areas, as highlighted with colored background: 
SSN/SOSA [19] and IoT-Stream [20] for sensors, observations and observation streams; OM [21] for measures, units, 
EUCISE [25] and SEM [26] for maritime events and data modelling. 

Figure 30 shows an excerpt of the top-level concepts of the ontology, and highlights the alignment with reference 
ontologies and data models for sensors and observations, data streams, values, and maritime events, as described in 
the following section.  

5.1.1 Background  
The ontology extends existing ontologies defined for sensor networks and maritime data exchange. The modelling of 
the data acquisition from the heterogeneous sensor networks relies and adapts the formalisation proposed in 
SSN/SOSA for sensors, sensor observation and processing [19]. The modelling of observation stream and stream 
analytics is mutated from IoT-Stream [20].  

The ontology aligns and extends the Ontology of Units of Measure and Related Concepts (OM) [21] to represent 
sensor values, quantity kinds and units. Analogies with other ontologies for quantities and units of measures like the 
QUDT CATALOG of Quantities, Units, Dimensions and Data Types Ontologies6 may be also highlighted.  

The OM’s pattern for quantities and measures has been extended to model sensor and processing result values of any 
kind, including quantitative, descriptive, quality assessment, spatial and temporal elements [22]. The annotation of 
values with quality information corresponds to the one defined in [23], and can be extended to include also other types 
of quality measures (e.g., the quality measures defined in ISO 19157:2013(E)).  

                                                             
6 http://www.qudt.org/2.1/catalog/qudt-catalog.html  
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The ontology leverages the specification of maritime events of the Common Information Sharing Environment 
(CISE), as formalised in the EUCISE-OWL ontology [24] to implement the official EUCISE data exchange model7. 
This event model relies on the Simple Event Model Ontology8  [25], which is widely adopted in the literature also for 
the representation of marine data collection and events (see the GeoLink Modular Oceanography Ontology - GMO) 
[26]. 

5.1.2 Ontology Design 
Sensor and sensor observations. As illustrated in the top-left of Figure 30, in the ontology, the concepts 
infore:MSASensor and infore:MSAObservation and the related entities  extend the pattern defined in SSN/SOSA for 
sensors and observations. As such, sensors observe properties (sosa:ObservableProperty)  of entities 
(sosa:FeatureOfInterest).  As for SSN/SOSA, any infore:MSAObservation results from the execution of a 
sosa:Procedure, i.e., a physical sensor plan or algorithm. MSA analytics include in-situ, ex-situ and remote sensing 
processing.  

Any infore:MSAObservation is a structured and annotated representation of an infore:MSAResultValue, defined as 
extension of sosa:Result, representing a measure or an estimate of some entity property.  Differently from SSN/SOSA, 
in the ontology qualitative measures are supported as well.  

Any infore:MSAObservation is associated to an area of interest, modelled as eucise:Location, and its evaluation is 
bounded in space and time (as infore:SpatialValue and infore:TemporalValue, representing sets of spatial values of 
the same type and set of non-contiguous time intervals expressed at the same granularity). Other temporal annotations 
include the execution/observation timestamp (sosa:ResultTime) and its qualitative temporal validity (i.e., whether the 
observation is a nowcast, a forecast, or a re-analysis). Some qualitative information on the nature of the observation  
(e.g., observed, estimated, simulated) may also be represented.   

The concept infore:QualityObservation represents quality information like uncertainty on observations and sensors 
(e.g., credibility, reliability), to include quality evaluation on observations, sensors, analytics or processing. 
Imprecisions and resolution may also be represented. Any MSA observation may be directly associated with all its 
quality evaluations, and the generating sensors and the associated quality evaluations may be retrieved as well, for a 
comprehensive evaluation in the fusion system.  

The support for provenance includes the annotation of observations with the generating sensor and with the originating 
observation, whenever the observation is the result of a workflow execution (i.e., analytics results may be associated 
with raw data from physical sensors, or other pre-processed data).  

Observations may be gathered in a IoTStream:Stream, following the IOT-Stream pattern, which can be further 
analysed. Stream analytics and procedures are extended by the concept infore:MSAProcessing for the use of the 
INFORE use case.  

Quantities and Measures. Each infore:MSAObservationValue is characterised according to its class which gives the 
value representation, but is also annotated according to an infore:MSAQuantityKind, which defines the dimension the 
value measures, associated to a infore:MSAUnitOfMeasure. Both concepts extend the corresponding concepts in OM, 
i.e., om:QuantityKind and om:UnitOfMeasure. These are extended with additional relationships with 
infore:ValueDomain and  infore:Granularity. gum: 

gum:MeasurementUncertaintyInfo can be associated to a value to represent quality annotation (e.g., the type of 
evaluation applied to assess the confidence on the value; the uncertainty function applied).   

Maritime Events. Detected, estimated or forecasted maritime events are modelled in extending and aligning with the 
CISE/EUCISE model and the corresponding ontology. The concept infore:MaritimeEvent  extends eucise:Event and 
groups different types of events, from simple events to complex events and maritime activities. Events defined in 
EUCISE like anomalies, incidents, actions may be represented as specific complex events. Each infore:MaritimeEvent 
links to associated instances of eucise:Location, representing the area of interest of the event (e.g., a port), the platform 
of interest (e.g., a vessel),  the agent and the associated events. These relationships are expressed according to roles 
as for the EUCISE specification. The roles are formalised as descriptive values (infore:RoleValue). Each 
infore:MaritimeEvent is an infore:MSAObservation. As such, each event is valid in a specific time and space.  

                                                             
7 http://www.eucise2020.eu/media/1131/d4\_3-Appendixb.pdf 
8 https://semanticweb.cs.vu.nl/2009/11/sem/ 
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The maritime events of interest for INFORE include simple and complex events as described in section 5. Simple 
events correspond to maritime situational facts as defined in [27] and simple maritime situational indicators as defined 
in [28]. Complex events represent maritime activities, anomalies and complex situational indicators, according to 
[27][28][29][30]. 

5.2 System for situation awareness and event prediction 
In this section we describe the MSA workflows that are being implemented in INFORE. Figure 31 shows the INFORE 
workflow of the MSA use case. The components that take part in the workflow are the described below.  
 

 
Figure 31: Workflow for the MSA use case of INFORE. 

5.2.1 Fusion  
Data fusion takes place so that the positions of vessels coming from heterogeneous sources are merged into 
trajectories. For example, positions of vessels that are not covered by AIS (e.g., because the vessel may have its 
transponder switched off), are complemented by the positions of the same vessels identified in acoustic/imagery/radar 
data. The output of the fusion operator will be the merge trajectories for each vessel, containing positions from 
different sources of data.  

5.2.2 The Synopsis Data Engine (SDE)  
The merged trajectories of the previous step are then forwarded to the SDE component. This component is responsible 
for constructing synopses of the data in order to reduce their volume and decrease the execution time of computations. 
In this case, the positions contained in each merged trajectory are downsampled, creating a synopsis that keeps the 
“highlights”, i.e., the critical points of each trajectory, skipping positions that are spatiotemporally similar to other 
positions of the vessel and/or have the same navigational status (i.e., there are no turns in between), so that there are 
no significant changes in the pattern of the vessel behaviour that is computed from the synopsis compared to the one 
computed from the original data. Thus, the output of this operation is a set of simplified trajectories. 

5.2.3 Simple event detection.  
This component detects maritime events that are simple in the sense that they are not composed of other events and it 
is implemented as a distributed system that is currently deployed in the MarineTraffic Akka cluster. The architecture 
of the system is shown in Figure 32. It follows a version of the Lambda architecture that consists of a batch layer and 
a real-time layer. The batch layer takes as input massive historical AIS data for the global fleet in order to cluster all 
the positions of vessels that have navigated along port-to-port routes. In this way, for each, and given a pair of origin 
and destination ports, we know all the “common” routes that most vessel types follow. The real-time layer takes as 
input streams of real-time AIS data, i.e., the “current” positions of all vessels in the world and detects events that 
deviate from common behaviour in real-time. For example, if a vessel deviates from a common route followed from 
most of the other vessels of its type for the same pair of origin and destination ports, a route-deviation event occurs. 
To increase performance, the Actor model is used, implemented in Akka. Every vessel Actor is assigned to each vessel 
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of the global fleet. Also, space partitioning is used using a grid, with each actor being assigned to each grid cell. In 
this way, each vessel belongs to a grid and there is an actor responsible for storing navigational information about the 
vessel and another actor is responsible for maintaining the most up-to-date state of the grid cell.  

 The simple maritime events that are currently supported are the following:  

• Drifting. A vessel drifts when there is a difference between the course over ground (Cog), which is the 
direction of the path of the vessel, and the heading of the vessel (i.e., the direction of its bow). A vessel may 
drift due to weather and sea conditions (e.g., wind, tides, etc.) and/or due to its navigational status (e.g., 
anchored).  As we describe in the next section, a drifting event is important to identify a fishing event.  

• AIS-off. AIS-off is an event that occurs when a vessel suddenly stops transmitting signals for a period of time.  
This communication gap might occur due to (i) low coverage in the area, (ii) equipment (i.e., transponder) 
malfunctions, and (iii) intentional switch-off of the AIS transponder of the vessel by the crew so that the 
vessel cannot be tracked (e.g., engaging in illegal activities). For this reason, the AIS-off event can lead to 
the detection of more complex events.  

• Proximity. This is an event that occurs when vessels are located in close distance to each other.  This might 
happen due to an imminent collision or due to a narrow passage or due to the fact that the vessels are about 
to “collaborate” (e.g., tugging, piloting, ship-to-ship transfer of cargo, etc.). This is an important event that 
forms the basis of many complex events as we describe in the following section.  

• Route deviation. The route deviation event occurs when a vessel spatiotemporally deviates from common 
routes that most vessels of its type follow for the same voyage (i.e., same pair of origin and destination ports). 
Apart from the spatiotemporal criteria used to determine whether there is a route deviation, other statistics 
are also used, which are related to the overall vessel behaviour. For example, a vessel might have significantly 
lower or higher speed compared to other vessels of its type during the same voyage in the same area (i.e., the 
same convex hull).  

The simple events detector is integrated into the Anomaly Detection tool of MarineTraffic, that also includes a Web 
user interface. A snapshot of the interface is shown in Figure 33, showing simple maritime events occurring 
worldwide. The proximity events are shown in red colour, the AIS-off events are shown in blue colour, and the route 
deviation events are shown in light blue colour. 

 
Figure 32: Distributed architecture for the detection of simple events. 
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Figure 33:Anomaly Detection events at global scale. 

5.2.4 Complex activity classification 
Complex activities (or events) are activities/events composed of simpler ones. For example, a proximity event, i.e., 
an event that is triggered when two or more vessels are close to each other, might happen in a context of a more 
complex event that requires that vessels are close  to each other, such as piloting, ship-to-ship transfer, etc. In the 
following, we provide definitions for some complex vessel activities (events)  that involve some of the simple events 
described in the previous section. 
 

• Tugging: Tugging is an event that occurs when a vessel tugs another vessel. In most cases, a small vessel 
tugs a large vessel (e.g., a tanker) in order to provide navigation assistance in narrow passages and ports with 
traffic where it is difficult/unsafe for large vessels to navigate.  

• Piloting: Piloting is an activity that aims for providing assistance to large vessels in order to enter ports with 
safety by maritime professionals that are experts in navigation inside the specific port. In this case, the boat 
that carries the pilot leaves the port, stops next to the vessel, the pilot boards the vessel and guides the vessel 
to the port. Then, both the boat and the vessel enter the port 

• Ship-to-Ship transfer: This is an event that describes the transhipment of cargo between two vessels. In most 
cases, cargo is transferred in shore-based terminals equipped with the corresponding facilities but 
loading/discharging can also take place between two (or more) vessels at sea.  

• Fishing:. This event denotes that a vessel is engaged in fishing activities. 

5.2.5 Classification of trajectory patterns 
One of the most important vessel activities that we want to be able to detect and forecast, is fishing. In this way, we 
will be able to timely detect and forecast fishing activities in prohibited/protected areas where fishing is not allowed. 
Fishing can be considered as a complex maritime event in the sense that it is composed of a combination of other 
events as we describe in the following sections.  

The first step is to distinguish the different fishing activities, as different fishing activities correspond to different 
trajectory patterns. We consider the following two fishing activities: Trawling and longlining. The differentiation 
between these two fishing activities (and the corresponding patterns) is described below. 

Trawling. Fishing vessels engaged in trawling activity (see Figure 34) use a fishing net located in the stern of the 
boat, called trawl, which is dragged through the water. The net is typically pulled by one or more fishing vessels, 
either on the sea floor (i.e., bottom trawling) or mid-water (i.e., mid-water or pelagic trawling), although single-boat 
trawling is usually the case. In single-boat trawling the spread of the net depends on the trawl doors, also called ”otter 
boards'' and act as wings. To keep the wings steady the vessel must be travelling at a constant speed and for that 
reason, during trawling, vessels usually sail with lower steady speeds.  
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Figure 34: Typical trawling pattern 

Longlining. During this type of activity (see Figure 35) vessels set multiple fishing lines with baited hooks attached 
to them, called snoods. The length of the fishing lines can reach up to a kilometer, while the total length of all the 
fishing lines in the entire activity can reach up to several kilometers. The lines can be deployed either near the surface 
(i.e., pelagic longline) or along the sea floor (i.e., demersal longline). While setting the lines, vessels travel at their 
steaming speed or slightly less and they maintain a constant speed. When all lines are set, they are left in the water for 
several hours and the vessel drifts slowly with them. To retract the lines, vessels follow the same procedure as when 
setting the lines. The process of setting the lines, waiting and retracting the lines can be repeated several times before 
returning to a port. 

 
Figure 35:Fishing pattern that typically corresponds to longliners. 

The patterns that correspond to both types of fishing activity, that are shown in Figure 34 and Figure 35, characterized 
by frequent manoeuvres and turns so that vessels stay close to the fishing area. The main difference of these two types 
of patterns is that trawling patterns consist of more manoeuvres than longlining patterns, which include parts of more 
straight lines followed by sudden turns. To be able to have a better understanding for the different patterns, we 
conducted a statistical analysis against an annotated AIS dataset that we used as ground truth and observed the speed 
and number of turns of vessels while engaged in fishing activities as compared to being underway (e.g., navigating 
into the sea towards a destination). 
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Figure 36: Speed distribution while in trawling, longlining, and underway vessels. 

Figure 36 shows the speed kernel density distribution of vessels while trawling, longlining and navigating towards a 
destination (i.e., under way). Figure 37 shows the distribution of number of turns involved in the trajectories of vessels 
engaged in the aforementioned activities. In both figures, the distributions of trawling vessels appear in blue colour, 
the distributions of longliners are marked in orange colour, and last, the distributions of under way vessels are marked 
in green colour. Reasonably, the speed of vessels that are under way to a destination is higher than in the cases when 
the vessels are engaged in fishing. On the other hand, both trawlers and longliners follow similar speed patterns. Both 
types of fishing activity have two peaks in their speed distribution, the first one being in the range of 1-3 knots and 
the second one being in the range of 7-10 knots. More specifically, it can be observed that the speed of trawlers is 
more likely to fall into the first peak than the speed of longliners. A similar pattern can be observed for the second 
peak as well but with the longliners' speed now having higher probability density. Furthermore, in longlining activity, 
the first peak is slightly shifted to the left and the second peak to the right compared to the trawling activity. This can 
be explained because longliners have higher speeds when setting the lines and the duration of the process takes up a 
large part of the longlining activity. Moreover, they have lower speeds (i.e., 1-3 knots), compared to the trawlers, after 
setting the lines and before retracting them, which indicates that they remain stationary drifting along with the lines.  

 
Figure 37: Number of turns while in trawling, longlining, and underway vessels. 

5.2.6 Feature engineering 
• To build our Machine Learning model, we consider the following features:  



 
 
 
 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP3 T3.1-3.3  
Deliverable D3.2 

Doc.nr.: WP3 D3.2 
Rev.: 1.0 
Date: 29/06/2020 
Class.: Public 

  41 of 55 

• Average speed: The average speed during a vessel’s trajectory.  
• Standard deviation of speed: This feature measures the “steadiness” of the speed along the trajectory of the 

vessel.  
• Average drifting: Drifting is a simple event that can be detected when there is a difference between the course 

over ground (Cog), which is the direction of the path of the vessel, and the heading of the vessel (i.e., the 
direction of its bow). A vessel may drift due to weather and sea conditions (e.g., wind, tides, etc.) and/or due 
to its navigational status (e.g., anchored).   

• Standard deviation of drifting: This indicator shows changes in the drifting status of a vessel.  
• Standard deviation of Course over Ground: This is an indicator that shows to which extent the trajectory of 

a vessel maintains a steady course (i.e., it moves on a straight line). 
• Number of turns: The number of turns of a vessel during a trajectory.  
• Accumulated angle: The sum of degrees of the angles that a vessel turns by the time it starts to the time it 

stops turning during a trajectory.  

5.2.7 Classification model 
The algorithm that we chose in order to train our model using the features described in the previous section to this end 
is the Random Forest (RF) classification algorithm due to its high performance results in the maritime domain [37][38] 
and because RFs combine the predictions of many Decision Trees into one model, thus they are less prone to 
overfitting [48]. Furthermore, a Random Forest classifier is less computationally expensive than Decision Trees,  
creating a good basis for online predictions or online re-training. Finally, Random Forests require far less data than 
other state of the art algorithms such as Neural Networks and it is easier to interpret their predictions based on the 
features [39] which in an industry setting, such an interpretation gives meaning to interested stakeholders. 

5.2.8 Classification of vessel events against real-time streams of maritime data 
Figure 38 illustrates a high-level overview of the system architecture that performs real-time vessel activity 
classification against streams of AIS data from MarineTraffic. 

 
Figure 38: High level overview of vessel activity classification. 

The system architecture illustrated above consists of the following layers: the batch-processing layer and the stream-
processing layer.  

The batch-processing layer extracts features from the historical AIS data and trains a classifier. The stream-processing 
layer consumes AIS messages from the receivers and makes a prediction by using the pre-trained classifier generated 
from the batch-processing layer. The workflows performed in each layer are described below.  
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In the batch-processing layer, the model is trained using the Random Forest algorithm as described above. To achieve 
this, we used an AIS annotated dataset provided by MarineTraffic. This dataset contains trajectories of vessels that 
are either engaged in a fishing activity (i.e., trawling or longlining) or they are under way to a destination.  

This layer is responsible for the construction of the Random Forest classification model. For the training of the model, 
ground truth trajectories are required. The features described in the previous section are extracted, and the output is 
used to train the RF classifier. The implementation is written in Scala and it is based on the Statistical Machine 
Intelligence and Learning Engine (SMILE) library9, which is known  for its performance and optimized utilization of 
resources (e.g., memory consumption), as well as its compatibility with our existing architecture which is implemented 
in Scala. According to a third-party benchmark10, SMILE outperforms R, Python, Spark, H2O and xgboost 
significantly. 

Stream-processing layer. In order to achieve high-throughput, low-latency performance, the stream-processing layer 
is implemented in the Akka11 framework which takes advantage of the Actor model [40]. Actors in the Akka 
framework exploit the concurrency capabilities of threads, they are lightweight, and millions of actor instances can be 
deployed in a single machine since they have a small memory footprint (i.e., 2.5 million actors per GB of heap). To 
assist the implementation of the classification of fishing activity, one type of actor from the architecture is used, 
namely the Vessel Actor. 

The Vessel Actor is responsible for consuming AIS messages originating from a single vessel and classifying parts of 
its trajectory based on the model created from the batch-processing layer. Thus, each vessel has a dedicated actor 
which is created after the first AIS message has been received. The actor remains idle and acts only when a new 
message is received. To classify parts of a trajectory of a vessel, each actor takes into account features extracted from 
an event-based window of user-defined length. To reduce memory consumption, features are extracted online, thus 
the need of storing a batch of AIS messages is eliminated.  

When a window is complete, all indicators have to be computed again for the next window. After all features have 
been extracted, they are fed to the RF model which outputs a decision along with its probability, indicating the activity 
the vessel performs at the current window. Figure 39 illustrates the online calculation of the average speed. At each 
incoming AIS message a new average is calculated. The new average speed calculated based on the last AIS message, 
represents the average speed of the entire window. When the last AIS message of the window is received, the 
classification is triggered.  

 
Figure 39: Online calculation of average speed. 

5.2.9 Experimental evaluation 
In this section we present the set up and the results of our experimental evaluation.  
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9 https://haifengl.github.io/ 
10 https://github.com/szilard/benchm-ml 
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For the experiments we used a MarineTraffic dataset that contains AIS messages during a two-month period (1/1/18- 
28/02/18) that covers the seas of Northern Europe. The AIS messages used for our ground truth dataset contain fishing 
activities that have been extracted from vessels which have set their navigational status to $7$, which indicates 
``fishing activity'', and by vessels which have set their destination to Trawling or Longlining for the corresponding 
activity. These fishing trajectories are then segmented to fishing or non-fishing segments. The total number of AIS 
messages sums up to 61,050, 16,110 of which related to vessels engaged in trawling activities, 8,484 related to 
longlining activities, and 36,45 messages of vessels that were under way. Although, the number of messages per 
activity varies, the number of events per activity remains the same. This is due to the transmission rate of the AIS 
protocol. When vessels travel at high speeds, the frequency can get as high as one message every two seconds, while 
the lowest frequency can get as low as one message every 3 minutes when the vessels are not moving. Since the 
underway vessels travel at much higher speeds, the number of AIS messages is also increased. Another factor affecting 
the AIS transmission rate is the vessel's turn frequency. Since trawling activity is characterised by frequent turns, the 
number of AIS messages will be higher compared to the longlining activity but not higher than the messages of the 
underway activity since the speed during trawling is much lower. 

Experimental set up and results 
We evaluated our implementation using three different experimental set-ups: 

1. RF parametrization. We conducted experiments using with different configurations of the RF algorithm 
and evaluated its performance and accuracy with respect to well-known metrics (e.g., f1-score, accuracy etc.) 
in order to assess the influence of the performance of the model using different combinations of 
hyperparameters. More specifically, the first hyperparameter selected is the number of trees of the forest. We 
used three distinct configurations for the number of trees (10,50,100} and run 5-fold cross validation per 
setting. The idea behind the Random Forest algorithm is to optimise the prediction of an instance by 
averaging the predictions of multiple decision trees. Moreover, for each configuration, we tested three distinct 
configurations of another hyperparameter of Random Forest, the maximum depth, setting its value to 2, 5 
and 10 respectively. This parameter controls the size of the trees, specifically defining the maximum number 
of levels each tree in the forest can have. Figure 40 shows the results of each experimental setting. From the 
results, we observe that the configuration with the highest classification performance is 100 number of trees 
and 10 as maximum depth that achieves f1-score of 93.52 and accuracy of 95.33. Therefore, for the rest of 
the experiments we use this configuration of RF parameters.  
 

 

Figure 40: Results of the first round of experiments. 

2. Varying temporal windows. We evaluated the robustness of the classifier when we change the length of the 
temporal windows. More specifically, we segmented each trajectory into temporal segments of 1, 2, 4, 8, 12 
and 24 hours. This means that a fishing activity, e.g. trawling is now segmented into more parts, according 
to the temporal size. For each temporal size we performed 5-fold cross validation, keeping 80% of the 
trajectories as a training set and the rest 20% as a test set. The results of this round of experiments are shown 
in Figure 41. We can observe that the accuracy is increased as the time window length is increased. 
Furthermore, it can be seen that from the one-hour window length to the four-hour, the accuracy does not 
show any significant change, while from the four-hour window length to the twenty-four-hour, the accuracy 
increases abruptly, from 82.53% to 89.54%. This can be explained due to the fact that a fishing pattern may 
take hours to form. The features of each trajectory start to become distinguishable from one another after 
several hours have passed. Our findings show that that the time threshold with which a pattern in the fishing 
trajectory is formed needs to be at least four hours which explains the increase in the accuracy. 
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Figure 41: Experiment results for the second round of experiments. 

3. Comparison with related approaches. Finally, we compare the classification performance of Random 
Forests against other well-known classifiers, such as the Gradient Boosted Trees (GBT), the Linear 
Discriminant Analysis (LDA), and Logistic Regression, using the same set of features. For the Gradient 
Boosted Trees we used the same hyperparameters to the Random Forests, since both of these classifiers use 
multiple decision trees to make a prediction, thus making a more fair comparison between the two. For the 
rest of the classifiers, we used the default hyperparameters that are provided by the SMILE library. The 
results of this round of experiments are shown in Table 6. We can observe that Gradient Boosted Trees 
slightly outperform the Random Forests, yielding the best classification performance (a F1-score of 87.29%), 
while both the LDA and the Logistic Regression perform weakly. A more in-depth comparison between the 
classifiers by fine-tuning the classifiers' hyperparameters will be conducted in the future for a more thorough 
evaluation. More details about this work can be found in 

Table 6: Average results per classifier. 

Classifier Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Random Forests 89.54 85.06 87.38 86.2 
Gradient Boosted Trees 90.98 86.77 87.83 87.29 
Linear Discriminant 
Analysis 

81.4 69.13 77.71 73.17 

Logistic Regression 79.71 76.19 75.59 75.89 
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5.3 Designing workflows for maritime data processing using RapidMiner 
One of the objectives of this use case is to enable the integration of the components described above into workflows 
using a user-friendly and interactive graphical interface, such as the RapidMiner environment. Below we provide 
screenshots of two example workflows.  

Workflow 1, shown in Figure 42, retrieves streams of maritime data via the local Kafka sub-cluster of MarineTraffic. 
Then, the Maritime Event Detection component identifies events on these streams, and then filters are used in order 
to keep only the events of interest (as for example the events “proximity_start” and “proximity_end”). Last, the Sink 
operator is used to  write the corresponding types of events into the respective output Kafka topics. Workflow 2, which 
is shown in Figure 43, differs from Workflow 1 in that it includes also the Synopsis Data Engine operator, which takes 
the input AIS streams of data as input and outputs data synopses that  are fed to the Maritime Event Detection operator. 
The SDE, as we explained earlier, is very useful in order to downsize the input streams of data and  keep the important 
information which is forwarded to the next step, improving performance. It is noted that in the time of writing this 
document, Workflow 2 is not fully functional with respect to the UI, but the technical issues have occurred are 
expected to be resolved in the following weeks, however it works in the back-end level (i.e., the components are 
integrated and able to communicate with each other and execute the workflow without the UI ).   

 

 
Figure 42: Workflow 1 

 

 
Figure 43: Workflow 2 
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6 Next phase: the pilot experiment at sea 
In this section we report the initial planning of the pilot experiment in which the single use case components, for local 
and global view, will be integrated into the maritime situational awareness platform and demonstrated at sea.  

In general, the pilot experiment will be tailored for an application of border and harbour protection and littoral area 
surveillance for which a hybrid sensor network will be deployed for the detection, localization and classification of 
suspect maritime targets. Specific goals of the experiment are the comparison of cooperative vs non-cooperative sensor 
network and the improvement in situational awareness KPIs (see section 2.2) by integrating global view provided by 
AIS and satellite with local view from the hybrid sensor network. 

The main reasons for having an experiment at sea is to test a cooperative sensor network on site to push the roadmap 
for highly innovative robotic maritime surveillance systems, demonstrate how the INFORE architecture can handle 
distributed sensor nodes, acquire real data to refine coordination and classification algorithms and improve the use 
case component performance and hence that of the whole system, and finally to cope with issues that can be 
experienced only in a true at sea experiment rather than in a simulated one, like imperfect communication between 
the network nodes and non-ideal robot dynamic coupled with environmental conditions. 

This section will describe the pilot experiment including possible location, involved assets, the data that will be 
acquired and the scenario to test. 

The possible location of the pilot is depicted in Figure 44. The area is positioned in the Ligurian Sea close to the 
Palmaria Island, Italy. The autonomous wave gliders will be deployed in the rectangular area depicted on the right in 
blue while a thermal camera and a RGB camera will observe the area of interest from a site on the island. A Command 
and Control (depicted in red) centre is positioned on Palmaria Island, as well, to receive and fuse the data from the 
wave gliders and the cameras, and send target contact positions, vehicle data and target classification labels to the 
remote situational awareness platform that integrates the global and local views and performs high level target 
behavioural analysis. 

 
Figure 44: Possible area of the pilot experiment. 

The experiment assets will include a coordinated sensor network of two autonomous wave-gliders with acoustic 
passive sensors on board for surface target detection and localization, one on shore thermal camera and a co-located 
RGB video camera, and, possibly, one reactive and rapid vehicle (a rubber boat) with optical camera for suspect target 
inspection. The target is simulated by using a second rubber boat equipped with an AIS transmitter and a GPS for 
position and speed ground truth. 

The experiment operations can be summarised as follows (see Figure 45): the test target, in red, enters the pilot area 
and performs a scenario. Surveillance assets cooperate to monitor the pilot area and acquire data that will be fused to 
detect, localize and classify the target. The target information is transmitted to the remote situational awareness 
platform where the target behaviour is analysed and an alert is generated in case an anomalous behaviour is detected. 
The alarm is feed backed to the field to trigger the fast reactive boat which navigates to intercept and inspect the target. 
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Figure 45: Operations during the pilot experiment. 

During the experiment, five scenarios will be tested (see Figure 46). The first one consists in detecting a dark target 
that switched off the AIS transponder to hide its position. In the second scenario, a denied area is monitored and an 
alert is generated every time a target is detected while entering the area. The third scenario consists in simulating a 
vessel trajectory spoofing, i.e. a vessel declare a different position with respect to the actual one. The fourth test will 
be conducted by simulating a vessel which exhibits an irregular behaviour with respect to the normal one which is 
expected in the area. In the final scenario, the interaction between two vessels engaged in an illegal transfer will be 
simulated. 

 
Figure 46: Use case scenario to test during the pilot experiment. 

The local view data that will be acquired during the experiment include: 

- Target position, ground truth and estimated 
- Acoustic raw data 
- Target bearing angle measurements 
- Wave-gliders positions & attitude 
- Target presence probability map 
- Target classification scores and labels 
- Thermal camera and RGB camera raw data	

The data sets will be made available to the Project INFORE partners. 

Figure 47 shows a preliminary plan of the pilot experiment. In consists of two phases. The first one is preliminary to 
the actual test trial and includes one day to bring the material from CMRE on site and start the installation of the 
experiment setup, a second day in which the setup is finalized and the vehicles, sensors and communication are tested, 
and a third day in which to finalize the component tests and start to test some scenario execution. In the second part 
of the pilot, three days long, the scenarios from 1 to 5 are executed and the data are acquired. In the final day, the 
experiment setup is dismantled and the material brought back to CMRE. 
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Figure 47: Pilot experiment plan. The preliminary phase includes logistic, first setup and testing of assets and 
scenarios. In the second phase the scenario from 1 to 5 will be executed. The trail will end with setup dismantle and 
transport back of the material to CMRE 

7 Expert evaluation 
Four Experts from MarineTraffic were interviewed in order to evaluate the  results described in this deliverable. Due 
to the COVID-19 situation, the evaluation was performed remotely and the experts completed a questionnaire via the 
EU-Survey platform. The anonymized results of the questionnaires are provided in Appendix-III. 
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8 Conclusions 
This work reports the result of the preliminary evaluation of the Maritime Use Case hybrid sensor network and 
situational awareness system that will be deployed and evaluated during the final Project pilot experiment at sea.  

In particular, the algorithms for target detection, localization and classification that will process the single sensor data 
streams perform in line with the expectations, although some space for further improvement is expected. The robotic 
adaptive sensor network, when tested on simulated scenarios, outperforms the base model system having no 
coordination algorithm. Classification algorithms for satellite data and camera data performs well with classification 
accuracy in general greater than 90% on train, validation and test data sets. The first implementation of the 
classification of vessel activities as complex events using machine learning techniques is currently deployed in the 
MarineTraffic infrastructure and is constantly tested and evaluated. 

The report also provides a preliminary plan for the experimentation at sea in which we selected involved assets, we 
proposed a possible location of the experiment and the configuration of the field command and control centre that will 
be interfaced with the high-level data fusion situational awareness system. Moreover, we chose 5 scenarios to be 
simulated during the experiment to evaluate the Maritime Use Case which are representative of a harbour/border 
protection and denied area surveillance application. 

Future work on the robotic coordinated sensor network includes the implementation of the target detection and 
localization algorithm on board the wave-glider vehicles and of the coordination and control software.  

Further tests will be conducted on the target classification algorithms for satellite and camera data including 
experiments on new data sets and new deep learning architectures.  

In the future, we plan to make use of the whole INFORE Architecture to tackle the maritime situational awareness use 
case. Thereby the Graphical Editor component is used to easily design analysis workflows, which are executed on the 
large-scale data stream of the hybrid sensor network. Specific operators are designed in cooperation with RapidMiner 
to include the event detection functionality in the designed workflows. In addition the Online Machine Learning 
component is extended in collaboration with ATHENA in order to implement online versions of the RF algorithm, 
enabling us to automatically label new, detected maritime events on real-time streams and at the same time update our 
model, increasing the overall accuracy incrementally.  

Finally, a simulated test on the integrated use case system will be conducted before the experiment at sea for which 
the design of a detailed plan, including logistic aspects, will start soon this year. 
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Appendix I- Detailed description of data sources 
AIS data. AIS messages are distinguished on the following two categories: 
(i) dynamic, and (ii) static. Dynamic messages contain positional data about voyages. Static messages contain 
information related to vessel characteristics. The information (e.g., flag)  
changes less frequently than the respective information included in static messages.  
The fields of dynamic AIS messages is described as follows:  

• The Maritime Mobile Service Identity Number (MMSI)}. The MMSI is an identification number for each 
vessel station. 

• Rate of Turn. This field contains data regarding the angle that the vessel turns right or left per minute. The 
values of this field range from 0 to 720 degrees.  

• Speed over Ground. Speed over ground is the speed of the ship with respect to the ground. The value range 
of this attribute is from 0 to 102 knots (0.1-knot resolution).  

• Position Coordinates. This field contains the latitude and the longitude of the position of the vessel. 
• Course over Ground (COG). COG describes the direction of motion with respect to the ground that a vessel 

has moved relative to the magnetic north pole or geographic north pole. The values are degrees up to 0.1 
degrees relative to true north.  

• Heading. Heading describes the direction that a vessel is pointed at any time relative to the magnetic north 
pole or geographic north pole. Heading takes values from 0 to 359 degrees. 

• UTC seconds. This is the second part of the timestamp when the subject data-packet was generated (in 
UTC time). 

• AIS Navigational status. This field represents the navigational status of the vessel and it is completed 
manually by the crew. The different types of navigational status that can be reported in an AIS message are 
the following: 

o Under way using engine: the vessel is travelling using its engine.  
o Anchored: The vessel is not travelling and has dropped an anchor. 
o Not under command: The vessel is un-commanded.  This can be either due to a hardware 

malfunction or a problem of the crew (e.g., the commander is injured).   
o Restricted maneuverability: There are constraints regarding the motion of the vessel (e.g., tugging 

heavy load).  
o Constrained by her draught: The draught (or draft) of a vessel is the vertical distance between the 

waterline and the bottom of the hull (keel). The draught is an indicator that shows how much a 
vessel is loaded. So, a vessel carrying heavy load might have maneuverability restrictions (e.g., 
navigating in shallow waters).  

o Moored: The vessel is moored at a fixed point (e.g., dock). 
o Aground: The vessel is touching the ground, after navigating in shallow water. 
o Engaged in fishing activity: The vessel is currently fishing. 
o Underway sailing: The vessel is travelling using sails instead of engine (it applies to sailing 

vessels).   
 
The static AIS messages contain the following fields:  

• The International Maritime Organisation number (IMO)}. This is a 9-digit number that uniquely identifies 
the vessel. Please note that this is not the same as the MMSI. The IMO number is assigned by IHS 
Maritime (Information Handling Services) when the vessel was constructed12}. The MMSI can change, for 
example when the owner changes. Only propelled, seagoing vessels of 100 gross tons and above are 
assigned an IMO number.  

• Call Sign. The international radio call sign assigned to the vessel by her country of registry.  
• Name. The name of the vessel.  
• Type. The type of the vessel (e.g., Tanker).  
• Dimensions. Dimensions of ship in meters. More specifically, this field refers to:  
(a) dimension to bow, (b) dimension to stern, (c) dimension to port (left side of the vessel when facing the bow), 
and (d) dimension to starboard (i.e., right side of the vessel when facing the bow).  
• Location of the positioning system's antenna on-board the vessel.  
• Type of positioning system (GPS, DGPS, Loran-C. 

                                                             
12 https://ihsmarkit.com/products/imo-ship-company.html} 



 
 
 
 

 

Project supported by the 
European Commission 
Contract no. 825070 

WP3 T3.1-3.3  
Deliverable D3.2 

Doc.nr.: WP3 D3.2 
Rev.: 1.0 
Date: 29/06/2020 
Class.: Public 

  53 of 55 

• Draught. The term draught (or draft) refers to the vertical distance between the waterline and the bottom of 
the hull (keel), with the thickness of the hull included. The value of this field is measured in meters. 

• Destination. The destination as completed manually by the crew of the subject vessel (free text).   
• Estimated time of arrival (ETA). This is a UTC timestamp completed manually by the crew indicating the 

estimated time of arrival at destination.	
 
A sample of this dataset is also published in Zenodo13. 
 
Satellite data. We use satellite images provided by the European Space Agency (ESA) Copernicus data Hub14 
acquired from the Sentinel-1 and Sentinel-2 satellites. Sentinel-1 provides radar images, as it is equipped with a C 
band multi-polarized SAR sensor operating at four different modes: strip map, interferometric wide swath, extra wide 
swath and wave mode. Each operational mode is characterized by its own viewing geometry resolution and 
polarization channels (named HH, VV, VH and HV channels). The Ground Range Detected (GRD) Level 1 data 
product is one of the possible formats that will be utilized in the maritime use case. The product is provided for the 
channels VH and VV. For each channel the data are stored in a GeoTIFF format file on a grid with a pixel spacing of 
10x10m. The size of the grid is variable depending on the acquisition and of the order of ten thousands of pixels in 
each direction. Metadata files in XML format are associated to each grid to provide, so that it can be used for 
georeferencing. 
 
The Sentinel-2 pair of satellites are equipped with a multi-spectral instrument (MSI) for acquiring the solar radiation 
from the Earth surface and the atmosphere in 13 spectral bands (or channels) at three different resolutions: four bands 
have a resolution of  10 meters/pixel, six bands at 20 meters/pixel and three bands at 60 meters/pixel spatial resolution. 
For the L1C product level, the image data of each band is provided as a geo-located regular grid (in UTM coordinates) 
in JP2000 uncompressed format on 16 bits, with auxiliary XML metadata files which include information such as the 
geo-localization grid parameters, the satellite ephemerides, the acquisition time, applied post-processing procedures 
if any, calibration coefficients and quality check The image grid size depends on the channel resolution; at 10m of 
resolution, for instance, the image size is 10800x10800 samples. Using the GDAL library, we convert the JP2000 
format of Sentinel-2 images into GeoTIFF.  
 
Acoustic data.  
The acoustic data are acquired by arrays of passive hydrophones towed by autonomous surface vehicles to detect, 
localize and classify targets of interest. The acoustic data are processed on board the vehicles to extract target bearing 
and associated uncertainty data. The bearing and the bearing uncertainty for each detected target, together with the 
position of the vehicles, are continuously exchanged between vehicles and a fusion centre for further processing. The 
vehicles also exchange some results from a first target classification based on the acoustic data. The produced bearing 
measurements are the input on one side to cooperative target localization behaviours running on the vehicles, on the 
other are used at a fusion centre to compute the probabilities of the presence of targets in the monitored area. This 
processed information can provide hints to the thermal camera data on specific areas of interest to be further imaged. 
Furthermore, this information can be fused with the output of the thermal camera data for target confirmation and 
classification.  
 
Thermal camera data.  
Thermal video camera data will be acquired for target detection and classification in a spectral range between 3.6 and 
4.9 µm using a 640x480 pixel Indium Antimonide (InSb) Focal Plane Array (FPA) detector. The camera is able to 
provide a continuous composite video PAL or NTSC stream which can be converted in a digital stream (e.g. MPEG4 
or AVI) for further processing including automatic target detection and classification.
 
 
 
 
 
 
 
                                                             
13 https://zenodo.org/record/3754481#.XtqGaJ4zYkg 
 
14 https://scihub.copernicus.eu/ 
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Appendix II-Target detection and localization message format.  
This Appendix describes measurement xml that is transmitted by the Topside to the INFORE system. The message is 
composed by assembling robot positions and measurements running the target estimation algorithm and producing a 
target position estimate to be sent to the INFORE system. 

The message is an XML one and is produced every Updated Time (that can be selected, indicatively every 1 minute), 
with the latest produced information. 

In the following a detailed description of the format with comments inline to describe the relative field. Robot_info 
and alarm_elements are repeated for each vehicle of the network. 

<time>xxx</time>  /*epoch in ms. It is the last 
used data for estimating the 
target used by the Topside 

<robot_info>  /* information regarding the 
vehicles / we can have 
multiple tag  

 <id>xxx</id> /*unique ID of the vehicle 
 <type>xxx</type> /*vehicle type (e.g. 

waveglider) 
 <sensor_model>xxx</sensor_model> /*sensor model (e.g. 

PERSEUS MOD1) 
 <robot_position>  
 <time>xxx</time> /*epoch in ms. Time of the 

last received robot position 
update 

 <lat>yyy</lat> /*double – WGS84 
 <lon>xxx</lon> /*double – WGS84 
 <heading>hhh</heading> /*[0-360] degree – compass 

convention 
 <speed>sss</speed> /*[m/s] 
 </robot_position>  
</robot_info>   
<target_position> 
 

 /*estimated target position 
using data fusion 

 <lat>yyy</lat> /*double – WGS84 
 <lon>xxx</lon> /*double – WGS84 
 <quality_index>pppp</quality_index>  /* quality of the detection 

(fused map occupancy 
probability) [0-1] 
 

 <uncertainty_measure>uuuu</uncertainty_measure> /* a measure of the target 
localization accuracy [m]  
 

</target_position>   
<alarm>  /*Each alarm refers to 1 

veichle identified by the id; 
all the alarms encountered 
during the update period are 
reported 

 <id>xxx</id> /*unique ID of the vehicle 
 <alarm_code1>aaa</alarm_code1> /*integer>0 see the alarm 

code table 
 <alarm_code2>bbb</alarm_code2> /*integer>0 see the alarm 

code table 
</alarm>   
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Appendix III-Expert questionnaires 
This appendix provides the anonymized questionnaires of the 4 experts interviewed by MarineTraffic. 
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2WKHU

2WKHU�HYHQWV"
3OHDVH�FRPSOHWH�DQ\�RWKHU�HYHQWV�WKDW�DUH�QRW�PHQWLRQHG�DERYH�DQG�\RX�ZRXOG�OLNH�WR�GHWHFW�IRUHFDVW�

$,6�RII

5DWH�\RXU�VDWLVIDFWLRQ�RQ�WKH�YDULHW\�RI�PDULWLPH�FRPSOH[�HYHQWV�WKDW�,1)25(�LV�DEOH�WR�IRUHFDVW��DFFXUDF\�
DQG�LQWHUSUHWDELOLW\�RI�UHVXOWV�
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���
1RW�
DW�DOO

���
9HU\�
OLWWOH

���
1HXWUDO

���
3UHWW\�
PXFK

���
9HU\�
PXFK

+RZ�PXFK�DUH�\RX�VDWLVILHG�E\�WKH�YDULHW\�RI�FRPSOH[�
HYHQWV�WKDW�FDQ�EH�IRUHFDVWHG"

+RZ�PXFK�ZRXOG�\RX�WUXVW�WKH�RXWSXW�RI�WKH�,1)25(�
SODWIRUP�ZLWK�UHVSHFW�WR�DFFXUDF\"

7R�ZKDW�H[WHQW�GR�\RX�XQGHUVWDQG�WKH�UHVXOWV�
SUHVHQWHG�WR�\RX"

$UH�WKHUH�VSHFLILF�HYHQWV�WKDW�\RX�ZRXOG�OLNH�WR�IRUHFDVW�LQ�UHDO�WLPH��ZKLFK�ZH�FXUUHQWO\�FDQQRW�IRUHFDVW"�,I�
VR��SOHDVH�H[SODLQ�
,I�WKH�DQVZHU�LV��1R���\RX�FDQ�OHDYH�WKLV�ILHOG�EODQN�

5DWH�WKH�IROORZLQJ�REMHFWLYHV�RI�,1)25(��EDVHG�RQ�KRZ�XVHIXO�WKH\�DUH�DW�<285�GDWD�DQDO\VLV�

���
1RW�
XVHIXO

���
/LWWOH�
8VH

���
$YHUDJH�
8VH

���
4XLWH�
XVHIXO

���
9HU\�
XVHIXO

$ELOLW\�WR�GHVLJQ�GDWD�SURFHVVLQJ�ZRUNIORZV�ZLWK�QR�
FRGH�UHTXLUHG

$ELOLW\�WR�FKDQJH�DOJRULWKP�SDUDPHWHUV�JUDSKLFDOO\

$ELOLW\�WR�UHFHLYH�TXLFN�DSSUR[LPDWH�DQVZHUV�LQVWHDG�
RI������DFFXUDWH��EXW�ORQJ�UXQQLQJ�TXHULHV

$ELOLW\�WR�LQWHUDFWLYHO\�H[SORUH�WKH�GDWD�LQ�RUGHU�WR�
GHWHFW�SDWWHUQV�IHDWXUHV�RI�LQWHUHVW

$ELOLW\�WR�DFFXUDWHO\�IRUHFDVW�HYHQWV�RI�LQWHUHVW

RYHU�GLIIHUHQW�GDWD�SURFHVVLQJ�SODWIRUPV��+3&��%LJ�
'DWD�3ODWIRUPV��HWF��

:KDW�LV�WKH�H[SHFWHG�DGGHG�YDOXH�IURP�,1)25(�IRU�\RX�DQG�\RXU�FRUSRUDWLRQ��5DWH�IURP����ORZHVW�SULRULW\��
WR����KLJKHVW�SULRULW\��
<RX�FDQ�DVVLJQ�HDFK�QXPEHU�WR�PXOWLSOH�RSWLRQV�

� � � � �

3HUIRUPDQFH

$ELOLW\�WR�KDQGOH�PXOWLSOH�VRXUFHV

7LPHO\�IRUHFDVW�RI�HYHQWV

,QWHUDFWLYH�DQG�HIILFLHQW�RSWLPL]DEOH�ZRUNIORZV�ZLOO�VDYH�WLPH�DQG�
LPSURYH
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$XWRPDWLRQ�RI�SURFHVVHV�ZLOO�UHGXFH�KXPDQ�HUURU

2YHUDOO�HYDOXDWLRQ

+RZ�OLNHO\�ZRXOG�\RXU�RUJDQLVDWLRQ�EH�WR�XVH�WKH�,1)25(�SODWIRUP�RSHUDWLRQDOO\�LQ�
WKH�IXWXUH"

� � � �

+RZ�XVHIXO�LV�WKH�FRPELQDWLRQ�RI�GDWD�VRXUFHV�XVHG�LQ�,1)25(" � � � �

,�KDYH�UHDG�DQG�XQGHUVWRRG�WKH�LQIRUPDWLRQ�VKHHW��RU�LW�KDV�EHHQ�UHDG�WR�PH��,�KDYH�EHHQ�JLYHQ�WKH�
RSSRUWXQLW\�DQG�HQRXJK�WLPH�WR�DVN�TXHVWLRQV�DERXW�WKH�VWXG\�DQG�P\�TXHVWLRQV�KDYH�EHHQ�IXOO\�DQVZHUHG�,
DJUHH�YROXQWDULO\�WR�EH�D�SDUWLFLSDQW�LQ�WKLV�VWXG\�DQG�XQGHUVWDQG�WKDW�,�FDQ�GHFLGH�WR�ZLWKGUDZ�IURP�WKH�
VWXG\�DW�DQ\�WLPH�,�XQGHUVWDQG�WKDW�WDNLQJ�SDUW�LQ�WKH�VWXG\�PD\�LQYROYH�DXGLR�UHFRUGHG�LQWHUYLHZV�DQG�,�DP�
ZLOOLQJ�WR�GHYRWH�HQRXJK�WLPH�WR�UHVSRQG�WR�WKH�TXHVWLRQQDLUH�,�JLYH�SHUPLVVLRQ�IRU�WKH�GDWD�WKDW�,�SURYLGH�WR�
EH�GH�LGHQWLILHG�DQG�GHSRVLWHG�LQ�D�UHSRVLWRU\�VR�LW�FDQ�EH�XVHG�IRU�,1)25(௲V�SXUSRVHV�DV�RXWOLQHG�DERYH�,�
XQGHUVWDQG�WKDW�SHUVRQDO�LQIRUPDWLRQ�FROOHFWHG�DERXW�PH��ZLOO�QRW�EH�VKDUHG�DQG�RQO\�GH�LGHQWLILHG�RU�
DJJUHJDWLYH�LQIRUPDWLRQ�ZLOO�EH�XVHG�IRU�,1)25(�SXUSRVHV�,�XQGHUVWDQG�WKDW�GH�LGHQWLILHG�RU�DJJUHJDWLYH�
LQIRUPDWLRQ�,�SURYLGH�PD\�EH�XVHG�IRU�UHSRUWV�DQG�UHVHDUFK�RXWSXWV��SRVVLEO\�PDGH�DYDLODEOH�WR�ZHEVLWHV�
DQG�VRFLDO�PHGLD�

7HUPV�DQG�SULYDF\�SROLF\b

5HVSRQVHV�\RX�JLYH�LQ�WKH�TXHVWLRQQDLUHV�DQG�LQWHUYLHZV�PD\�EH�UHFRUGHG��<RXU�UHFRUGHG�GDWD�ZLOO�EH�GH�
LGHQWLILHG��KHQFH�LW�ZLOO�QRW�EH�SRVVLEOH�WR�LGHQWLI\�\RXU�LGHQWLW\�DIWHUZDUGV��,QIRUPDWLRQ�ZLOO�EH�SURFHVVHG�
GXULQJ�WKH�SKDVH�RI�UHTXLUHPHQW�DQDO\VLV�DQG�DJJUHJDWLYH�UHVXOWV�PD\�EH�SUHVHQWHG�LQ�SURMHFW�UHSRUWV��,W�ZLOO�
QRW�EH�SRVVLEOH�WR�LGHQWLI\�WKH�LQGLYLGXDO�VRXUFH��WKDW�LV�\RX��RI�WKH�LQIRUPDWLRQ��7KH�DJJUHJDWLYH�UHVXOWV�RI�
WKLV�LQYHVWLJDWLRQ�PD\�EH�SXEOLVKHG�LQ�VFLHQWLILF�MRXUQDOV�RU�FRQIHUHQFHV�DQG�PD\�EH�XVHG�LQ�IXUWKHU�VWXGLHV��
1R�SHUVRQDO�GDWD�ZLOO�EH�KDQGHG�RXW�WR�WKLUG�SDUWLHV�<RX�FDQ�UHTXHVW�\RXU�LQIRUPDWLRQ�EH�GHOHWHG�DW�DQ\�
WLPH��ZLWKRXW�JLYLQJ�D�UHDVRQ��,I�\RX�VKRXOG�GHFLGH�WR�GHQ\�\RXU�FRQVHQW��SOHDVH�FRQWDFW�WKH�3URMHFW�
&RRUGLQDWRU��3URI��$QWRQLRV�'HOLJLDQQDNLV��DGHOL>DW@LPLQ�DWKHQD�LQQRYDWLRQ�JU�bDQG�OHW�KLP�NQRZ�RI�\RXU�
LQWHQWLRQ�RI�OHDYLQJ�WKH�VWXG\�<RXU�SDUWLFLSDWLRQ�LQ�WKLV�VWXG\�LV�RQO\�SRVVLEOH�LI�\RX�IUHHO\�DQG�LQGHSHQGHQWO\�
DJUHH�WR�DXWKRUL]H�WKH�,1)25(�FRQVRUWLXP�WR�XVH�WKH�GDWD�\RX�SURYLGH��:LWK�\RXU�FRQVHQW��WKH�GDWD�ZLOO�EH�
VWRUHG�IRU�WKH�SXUSRVHV�GHVFULEHG�DERYH�XQWLO�WKH�HQG�RI�WKH�SURMHFW���������������ZKHQ�DOO�GDWD�bZLOO�EH�
SHUPDQHQWO\�GHOHWHG��

,�DFFHSW�WKH�WHUPV�DQG�SULYDF\�SROLF\�GHVFULEHG�DERYH�

&RQWDFW
NRQVWDQWLQD�EHUHWD#PDULQHWUDIILF�FRP
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2

([LVWLQJ�06$�ZRUNIORZV

3OHDVH�GHVFULEH�WKH�GLIIHUHQW�NLQGV�RI�GDWD�VRXUFHV�WKDW�\RX�XVH�LQ�\RXU�GD\�WR�GD\�WDVNV�DQG�WKH�WRROV�WKDW�
\RX�XVH�WR�SURFHVV�WKHP

PDLQO\�0DULQH7UDIILF�$,6�GDWD��PDLQO\�S\WKRQ�DQG�SRVWJUHVTO

+RZ�PDQ\�WRROV�GR�\RX�W\SLFDOO\�XVH�WR�LQWHJUDWH�RU�KDQGOH�WKH�GLIIHUHQW�VRXUFHV�RI�GDWD�PHQWLRQHG�DERYH

���

:KDW�DUH�WKH�HYHQWV�\RX�DUH�WU\LQJ�WR�LGHQWLI\"
ILVKLQJ
SLORWLQJ
VPXJJOLQJ
WUDIILFNLQJ
WUDQVVKLSPHQWV
WXJJLQJ

$Q\�DGGLWLRQDO�HYHQWV�\RX�ZRXOG�OLNH�WR�LGHQWLI\"

UXQ�DJURXQG�YHVVHOV��ODLG�XS�YHVVHOV��GLVWUHVV�GXH�WR�ZHDWKHU�FRQGLWLRQV��SLUDF\�HYHQWV

:KDW�GDWD�SURFHVVLQJ�FKDOOHQJHV�GR�\RX�H[SHULHQFH�LQ�\RXU�GD\�WR�GD\�WDVNV��H�J���IXVLRQ�RI�
KHWHURJHQHRXV�VRXUFHV��SHUIRUPDQFH��DQDO\WLFV�"�5DWH�WKHP�VWDUWLQJ�IURP�����ORZHVW�SULRULW\��WR����KLJKHVW�
SULRULW\��
3OHDVH�XVH�HDFK�SULRULW\�QXPEHU�RQO\�RQFH

� � � � �

6WUHDPLQJ�QDWXUH�RI�GDWD

7RR�PXFK�GDWD

'LIIHUHQW�GDWD�IRUPDWV

0DQXDO�ZRUNIORZV

$Q\�DGGLWLRQDO�FKDOOHQJHV"
3OHDVH�FRPSOHWH�FKDOOHQJHV�WKDW�DUH�QRW�PHQWLRQHG�DERYH��RSWLRQDO��

'R�\RX�ZULWH�FRGH�WR�DXWRPDWH�WKH�GDWD�DQDO\VLV�SURFHVV"
<HV
1R

'R�\RX�SURJUDP�VHW�XS�D�QHZ�FXVWRP�GDWD�SURFHVVLQJ�ZRUNIORZV"
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<HV
1R

+RZ�ORQJ�GRHV�LW�WDNH�WR�VHW�XS�VXFK�D�SURFHVV"

D�IHZ�PRQWKV

&DQ�\RX�RSWLPLVH�\RXU�GDWD�DQDO\VLV�RSHUDWLRQV"

\HV

2Q�ZKDW�NLQG�RI�LQIUDVWUXFWXUH�V��GR�\RX�XVXDOO\�UXQ�WKH�DQDO\VLV�
FOXVWHU
KLJK�VSHF�ZRUNVWDWLRQ
+3&
SHUVRQDO�ODSWRS
VHUYHU

,1)25(�VROXWLRQV

:KLFK�,1)25(�GDWD�VRXUFHV�ZRXOG�EH�XVHIXO�IRU�\RX�IRU�WKH�06$�8VH�&DVH�DQG�ZRXOG�EH�XVHIXO�IRU�\RX�
$FRXVWLF�GDWD
$,6�GDWD
6DWHOOLWH�LPDJHU\
7KHUPDO�&DPHUD�GDWD

2WKHU�GDWD�VRXUFHV"

EDWK\PHWU\�GDWD��VKLSSLQJ�ODQHV�GDWD

:KLFK�HYHQWV�ZRXOG�\RX�OLNH�WR�H[WUDFW�IURP�WKHVH�GDWD�VRXUFHV"
1RUPDO�YHVVHO�DFWLYLWLHV��ILVKLQJ��WUDQVVKLSPHQWV��WXJJLQJ��SLORWLQJ��HWF��
,OOHJDO�YHVVHO�bDFWLYLWLHV��VPXJJOLQJ��LOOHJDO�ILVKLQJ��HQWHULQJ�SURWHFWHG�SURKLELWHG�DUHDV��HWF��
2WKHU

5DWH�\RXU�VDWLVIDFWLRQ�RQ�WKH�YDULHW\�RI�PDULWLPH�FRPSOH[�HYHQWV�WKDW�,1)25(�LV�DEOH�WR�IRUHFDVW��DFFXUDF\�
DQG�LQWHUSUHWDELOLW\�RI�UHVXOWV�

���
1RW�
DW�DOO

���
9HU\�
OLWWOH

���
1HXWUDO

���
3UHWW\�
PXFK

���
9HU\�
PXFK

+RZ�PXFK�DUH�\RX�VDWLVILHG�E\�WKH�YDULHW\�RI�FRPSOH[�
HYHQWV�WKDW�FDQ�EH�IRUHFDVWHG"

+RZ�PXFK�ZRXOG�\RX�WUXVW�WKH�RXWSXW�RI�WKH�,1)25(�
SODWIRUP�ZLWK�UHVSHFW�WR�DFFXUDF\"
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7R�ZKDW�H[WHQW�GR�\RX�XQGHUVWDQG�WKH�UHVXOWV�
SUHVHQWHG�WR�\RX"

$UH�WKHUH�VSHFLILF�HYHQWV�WKDW�\RX�ZRXOG�OLNH�WR�IRUHFDVW�LQ�UHDO�WLPH��ZKLFK�ZH�FXUUHQWO\�FDQQRW�IRUHFDVW"�,I�
VR��SOHDVH�H[SODLQ�
,I�WKH�DQVZHU�LV��1R���\RX�FDQ�OHDYH�WKLV�ILHOG�EODQN�

UXQ�DJURXQG�YHVVHOV��ODLG�XS�YHVVHOV��GLVWUHVV�GXH�WR�ZHDWKHU�FRQGLWLRQV��SLUDF\�HYHQWV

5DWH�WKH�IROORZLQJ�REMHFWLYHV�RI�,1)25(��EDVHG�RQ�KRZ�XVHIXO�WKH\�DUH�DW�<285�GDWD�DQDO\VLV�

���
1RW�
XVHIXO

���
/LWWOH�
8VH

���
$YHUDJH�
8VH

���
4XLWH�
XVHIXO

���
9HU\�
XVHIXO

$ELOLW\�WR�GHVLJQ�GDWD�SURFHVVLQJ�ZRUNIORZV�ZLWK�QR�
FRGH�UHTXLUHG

$ELOLW\�WR�FKDQJH�DOJRULWKP�SDUDPHWHUV�JUDSKLFDOO\

$ELOLW\�WR�UHFHLYH�TXLFN�DSSUR[LPDWH�DQVZHUV�LQVWHDG�
RI������DFFXUDWH��EXW�ORQJ�UXQQLQJ�TXHULHV

$ELOLW\�WR�LQWHUDFWLYHO\�H[SORUH�WKH�GDWD�LQ�RUGHU�WR�
GHWHFW�SDWWHUQV�IHDWXUHV�RI�LQWHUHVW

$ELOLW\�WR�DFFXUDWHO\�IRUHFDVW�HYHQWV�RI�LQWHUHVW

RYHU�GLIIHUHQW�GDWD�SURFHVVLQJ�SODWIRUPV��+3&��%LJ�
'DWD�3ODWIRUPV��HWF��

:KDW�LV�WKH�H[SHFWHG�DGGHG�YDOXH�IURP�,1)25(�IRU�\RX�DQG�\RXU�FRUSRUDWLRQ��5DWH�IURP����ORZHVW�SULRULW\��
WR����KLJKHVW�SULRULW\��
<RX�FDQ�DVVLJQ�HDFK�QXPEHU�WR�PXOWLSOH�RSWLRQV�

� � � � �

3HUIRUPDQFH

$ELOLW\�WR�KDQGOH�PXOWLSOH�VRXUFHV

7LPHO\�IRUHFDVW�RI�HYHQWV

,QWHUDFWLYH�DQG�HIILFLHQW�RSWLPL]DEOH�ZRUNIORZV�ZLOO�VDYH�WLPH�DQG�
LPSURYH

$XWRPDWLRQ�RI�SURFHVVHV�ZLOO�UHGXFH�KXPDQ�HUURU

2YHUDOO�HYDOXDWLRQ

+RZ�OLNHO\�ZRXOG�\RXU�RUJDQLVDWLRQ�EH�WR�XVH�WKH�,1)25(�SODWIRUP�RSHUDWLRQDOO\�LQ�
WKH�IXWXUH"

� � � �
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+RZ�XVHIXO�LV�WKH�FRPELQDWLRQ�RI�GDWD�VRXUFHV�XVHG�LQ�,1)25(" � � � �

,�KDYH�UHDG�DQG�XQGHUVWRRG�WKH�LQIRUPDWLRQ�VKHHW��RU�LW�KDV�EHHQ�UHDG�WR�PH��,�KDYH�EHHQ�JLYHQ�WKH�
RSSRUWXQLW\�DQG�HQRXJK�WLPH�WR�DVN�TXHVWLRQV�DERXW�WKH�VWXG\�DQG�P\�TXHVWLRQV�KDYH�EHHQ�IXOO\�DQVZHUHG�,
DJUHH�YROXQWDULO\�WR�EH�D�SDUWLFLSDQW�LQ�WKLV�VWXG\�DQG�XQGHUVWDQG�WKDW�,�FDQ�GHFLGH�WR�ZLWKGUDZ�IURP�WKH�
VWXG\�DW�DQ\�WLPH�,�XQGHUVWDQG�WKDW�WDNLQJ�SDUW�LQ�WKH�VWXG\�PD\�LQYROYH�DXGLR�UHFRUGHG�LQWHUYLHZV�DQG�,�DP�
ZLOOLQJ�WR�GHYRWH�HQRXJK�WLPH�WR�UHVSRQG�WR�WKH�TXHVWLRQQDLUH�,�JLYH�SHUPLVVLRQ�IRU�WKH�GDWD�WKDW�,�SURYLGH�WR�
EH�GH�LGHQWLILHG�DQG�GHSRVLWHG�LQ�D�UHSRVLWRU\�VR�LW�FDQ�EH�XVHG�IRU�,1)25(௲V�SXUSRVHV�DV�RXWOLQHG�DERYH�,�
XQGHUVWDQG�WKDW�SHUVRQDO�LQIRUPDWLRQ�FROOHFWHG�DERXW�PH��ZLOO�QRW�EH�VKDUHG�DQG�RQO\�GH�LGHQWLILHG�RU�
DJJUHJDWLYH�LQIRUPDWLRQ�ZLOO�EH�XVHG�IRU�,1)25(�SXUSRVHV�,�XQGHUVWDQG�WKDW�GH�LGHQWLILHG�RU�DJJUHJDWLYH�
LQIRUPDWLRQ�,�SURYLGH�PD\�EH�XVHG�IRU�UHSRUWV�DQG�UHVHDUFK�RXWSXWV��SRVVLEO\�PDGH�DYDLODEOH�WR�ZHEVLWHV�
DQG�VRFLDO�PHGLD�

7HUPV�DQG�SULYDF\�SROLF\b

5HVSRQVHV�\RX�JLYH�LQ�WKH�TXHVWLRQQDLUHV�DQG�LQWHUYLHZV�PD\�EH�UHFRUGHG��<RXU�UHFRUGHG�GDWD�ZLOO�EH�GH�
LGHQWLILHG��KHQFH�LW�ZLOO�QRW�EH�SRVVLEOH�WR�LGHQWLI\�\RXU�LGHQWLW\�DIWHUZDUGV��,QIRUPDWLRQ�ZLOO�EH�SURFHVVHG�
GXULQJ�WKH�SKDVH�RI�UHTXLUHPHQW�DQDO\VLV�DQG�DJJUHJDWLYH�UHVXOWV�PD\�EH�SUHVHQWHG�LQ�SURMHFW�UHSRUWV��,W�ZLOO�
QRW�EH�SRVVLEOH�WR�LGHQWLI\�WKH�LQGLYLGXDO�VRXUFH��WKDW�LV�\RX��RI�WKH�LQIRUPDWLRQ��7KH�DJJUHJDWLYH�UHVXOWV�RI�
WKLV�LQYHVWLJDWLRQ�PD\�EH�SXEOLVKHG�LQ�VFLHQWLILF�MRXUQDOV�RU�FRQIHUHQFHV�DQG�PD\�EH�XVHG�LQ�IXUWKHU�VWXGLHV��
1R�SHUVRQDO�GDWD�ZLOO�EH�KDQGHG�RXW�WR�WKLUG�SDUWLHV�<RX�FDQ�UHTXHVW�\RXU�LQIRUPDWLRQ�EH�GHOHWHG�DW�DQ\�
WLPH��ZLWKRXW�JLYLQJ�D�UHDVRQ��,I�\RX�VKRXOG�GHFLGH�WR�GHQ\�\RXU�FRQVHQW��SOHDVH�FRQWDFW�WKH�3URMHFW�
&RRUGLQDWRU��3URI��$QWRQLRV�'HOLJLDQQDNLV��DGHOL>DW@LPLQ�DWKHQD�LQQRYDWLRQ�JU�bDQG�OHW�KLP�NQRZ�RI�\RXU�
LQWHQWLRQ�RI�OHDYLQJ�WKH�VWXG\�<RXU�SDUWLFLSDWLRQ�LQ�WKLV�VWXG\�LV�RQO\�SRVVLEOH�LI�\RX�IUHHO\�DQG�LQGHSHQGHQWO\�
DJUHH�WR�DXWKRUL]H�WKH�,1)25(�FRQVRUWLXP�WR�XVH�WKH�GDWD�\RX�SURYLGH��:LWK�\RXU�FRQVHQW��WKH�GDWD�ZLOO�EH�
VWRUHG�IRU�WKH�SXUSRVHV�GHVFULEHG�DERYH�XQWLO�WKH�HQG�RI�WKH�SURMHFW���������������ZKHQ�DOO�GDWD�bZLOO�EH�
SHUPDQHQWO\�GHOHWHG��

,�DFFHSW�WKH�WHUPV�DQG�SULYDF\�SROLF\�GHVFULEHG�DERYH�

&RQWDFW
NRQVWDQWLQD�EHUHWD#PDULQHWUDIILF�FRP
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2

([LVWLQJ�06$�ZRUNIORZV

3OHDVH�GHVFULEH�WKH�GLIIHUHQW�NLQGV�RI�GDWD�VRXUFHV�WKDW�\RX�XVH�LQ�\RXU�GD\�WR�GD\�WDVNV�DQG�WKH�WRROV�WKDW�
\RX�XVH�WR�SURFHVV�WKHP

06�'%�GDWD��GDWD�IURP�H[WHUQDO�VRXUFHV�OLNH�FVY��S\WKRQ��PVVTO��RUDQJH�

+RZ�PDQ\�WRROV�GR�\RX�W\SLFDOO\�XVH�WR�LQWHJUDWH�RU�KDQGOH�WKH�GLIIHUHQW�VRXUFHV�RI�GDWD�PHQWLRQHG�DERYH

DERXW���WRROV

:KDW�DUH�WKH�HYHQWV�\RX�DUH�WU\LQJ�WR�LGHQWLI\"
ILVKLQJ
SLORWLQJ
VPXJJOLQJ
WUDIILFNLQJ
WUDQVVKLSPHQWV
WXJJLQJ

$Q\�DGGLWLRQDO�HYHQWV�\RX�ZRXOG�OLNH�WR�LGHQWLI\"

:KDW�GDWD�SURFHVVLQJ�FKDOOHQJHV�GR�\RX�H[SHULHQFH�LQ�\RXU�GD\�WR�GD\�WDVNV��H�J���IXVLRQ�RI�
KHWHURJHQHRXV�VRXUFHV��SHUIRUPDQFH��DQDO\WLFV�"�5DWH�WKHP�VWDUWLQJ�IURP�����ORZHVW�SULRULW\��WR����KLJKHVW�
SULRULW\��
3OHDVH�XVH�HDFK�SULRULW\�QXPEHU�RQO\�RQFH

� � � � �

6WUHDPLQJ�QDWXUH�RI�GDWD

7RR�PXFK�GDWD

'LIIHUHQW�GDWD�IRUPDWV

0DQXDO�ZRUNIORZV

$Q\�DGGLWLRQDO�FKDOOHQJHV"
3OHDVH�FRPSOHWH�FKDOOHQJHV�WKDW�DUH�QRW�PHQWLRQHG�DERYH��RSWLRQDO��

'R�\RX�ZULWH�FRGH�WR�DXWRPDWH�WKH�GDWD�DQDO\VLV�SURFHVV"
<HV
1R

'R�\RX�SURJUDP�VHW�XS�D�QHZ�FXVWRP�GDWD�SURFHVVLQJ�ZRUNIORZV"
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<HV
1R

+RZ�ORQJ�GRHV�LW�WDNH�WR�VHW�XS�VXFK�D�SURFHVV"

GHSHQGLQJ�RQ�WKH�GDWD�DQG�SURGXFW�VFRSH��DERXW�����GD\V

&DQ�\RX�RSWLPLVH�\RXU�GDWD�DQDO\VLV�RSHUDWLRQV"

2Q�ZKDW�NLQG�RI�LQIUDVWUXFWXUH�V��GR�\RX�XVXDOO\�UXQ�WKH�DQDO\VLV�
FOXVWHU
KLJK�VSHF�ZRUNVWDWLRQ
+3&
SHUVRQDO�ODSWRS
VHUYHU

,1)25(�VROXWLRQV

:KLFK�,1)25(�GDWD�VRXUFHV�ZRXOG�EH�XVHIXO�IRU�\RX�IRU�WKH�06$�8VH�&DVH�DQG�ZRXOG�EH�XVHIXO�IRU�\RX�
$FRXVWLF�GDWD
$,6�GDWD
6DWHOOLWH�LPDJHU\
7KHUPDO�&DPHUD�GDWD

2WKHU�GDWD�VRXUFHV"

:KLFK�HYHQWV�ZRXOG�\RX�OLNH�WR�H[WUDFW�IURP�WKHVH�GDWD�VRXUFHV"
1RUPDO�YHVVHO�DFWLYLWLHV��ILVKLQJ��WUDQVVKLSPHQWV��WXJJLQJ��SLORWLQJ��HWF��
,OOHJDO�YHVVHO�bDFWLYLWLHV��VPXJJOLQJ��LOOHJDO�ILVKLQJ��HQWHULQJ�SURWHFWHG�SURKLELWHG�DUHDV��HWF��
2WKHU

5DWH�\RXU�VDWLVIDFWLRQ�RQ�WKH�YDULHW\�RI�PDULWLPH�FRPSOH[�HYHQWV�WKDW�,1)25(�LV�DEOH�WR�IRUHFDVW��DFFXUDF\�
DQG�LQWHUSUHWDELOLW\�RI�UHVXOWV�

���
1RW�
DW�DOO

���
9HU\�
OLWWOH

���
1HXWUDO

���
3UHWW\�
PXFK

���
9HU\�
PXFK

+RZ�PXFK�DUH�\RX�VDWLVILHG�E\�WKH�YDULHW\�RI�FRPSOH[�
HYHQWV�WKDW�FDQ�EH�IRUHFDVWHG"

+RZ�PXFK�ZRXOG�\RX�WUXVW�WKH�RXWSXW�RI�WKH�,1)25(�
SODWIRUP�ZLWK�UHVSHFW�WR�DFFXUDF\"
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7R�ZKDW�H[WHQW�GR�\RX�XQGHUVWDQG�WKH�UHVXOWV�
SUHVHQWHG�WR�\RX"

$UH�WKHUH�VSHFLILF�HYHQWV�WKDW�\RX�ZRXOG�OLNH�WR�IRUHFDVW�LQ�UHDO�WLPH��ZKLFK�ZH�FXUUHQWO\�FDQQRW�IRUHFDVW"�,I�
VR��SOHDVH�H[SODLQ�
,I�WKH�DQVZHU�LV��1R���\RX�FDQ�OHDYH�WKLV�ILHOG�EODQN�

5DWH�WKH�IROORZLQJ�REMHFWLYHV�RI�,1)25(��EDVHG�RQ�KRZ�XVHIXO�WKH\�DUH�DW�<285�GDWD�DQDO\VLV�

���
1RW�
XVHIXO

���
/LWWOH�
8VH

���
$YHUDJH�
8VH

���
4XLWH�
XVHIXO

���
9HU\�
XVHIXO

$ELOLW\�WR�GHVLJQ�GDWD�SURFHVVLQJ�ZRUNIORZV�ZLWK�QR�
FRGH�UHTXLUHG

$ELOLW\�WR�FKDQJH�DOJRULWKP�SDUDPHWHUV�JUDSKLFDOO\

$ELOLW\�WR�UHFHLYH�TXLFN�DSSUR[LPDWH�DQVZHUV�LQVWHDG�
RI������DFFXUDWH��EXW�ORQJ�UXQQLQJ�TXHULHV

$ELOLW\�WR�LQWHUDFWLYHO\�H[SORUH�WKH�GDWD�LQ�RUGHU�WR�
GHWHFW�SDWWHUQV�IHDWXUHV�RI�LQWHUHVW

$ELOLW\�WR�DFFXUDWHO\�IRUHFDVW�HYHQWV�RI�LQWHUHVW

RYHU�GLIIHUHQW�GDWD�SURFHVVLQJ�SODWIRUPV��+3&��%LJ�
'DWD�3ODWIRUPV��HWF��

:KDW�LV�WKH�H[SHFWHG�DGGHG�YDOXH�IURP�,1)25(�IRU�\RX�DQG�\RXU�FRUSRUDWLRQ��5DWH�IURP����ORZHVW�SULRULW\��
WR����KLJKHVW�SULRULW\��
<RX�FDQ�DVVLJQ�HDFK�QXPEHU�WR�PXOWLSOH�RSWLRQV�

� � � � �

3HUIRUPDQFH

$ELOLW\�WR�KDQGOH�PXOWLSOH�VRXUFHV

7LPHO\�IRUHFDVW�RI�HYHQWV

,QWHUDFWLYH�DQG�HIILFLHQW�RSWLPL]DEOH�ZRUNIORZV�ZLOO�VDYH�WLPH�DQG�
LPSURYH

$XWRPDWLRQ�RI�SURFHVVHV�ZLOO�UHGXFH�KXPDQ�HUURU

2YHUDOO�HYDOXDWLRQ

+RZ�OLNHO\�ZRXOG�\RXU�RUJDQLVDWLRQ�EH�WR�XVH�WKH�,1)25(�SODWIRUP�RSHUDWLRQDOO\�LQ�
WKH�IXWXUH"

� � � �
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+RZ�XVHIXO�LV�WKH�FRPELQDWLRQ�RI�GDWD�VRXUFHV�XVHG�LQ�,1)25(" � � � �

,�KDYH�UHDG�DQG�XQGHUVWRRG�WKH�LQIRUPDWLRQ�VKHHW��RU�LW�KDV�EHHQ�UHDG�WR�PH��,�KDYH�EHHQ�JLYHQ�WKH�
RSSRUWXQLW\�DQG�HQRXJK�WLPH�WR�DVN�TXHVWLRQV�DERXW�WKH�VWXG\�DQG�P\�TXHVWLRQV�KDYH�EHHQ�IXOO\�DQVZHUHG�,
DJUHH�YROXQWDULO\�WR�EH�D�SDUWLFLSDQW�LQ�WKLV�VWXG\�DQG�XQGHUVWDQG�WKDW�,�FDQ�GHFLGH�WR�ZLWKGUDZ�IURP�WKH�
VWXG\�DW�DQ\�WLPH�,�XQGHUVWDQG�WKDW�WDNLQJ�SDUW�LQ�WKH�VWXG\�PD\�LQYROYH�DXGLR�UHFRUGHG�LQWHUYLHZV�DQG�,�DP�
ZLOOLQJ�WR�GHYRWH�HQRXJK�WLPH�WR�UHVSRQG�WR�WKH�TXHVWLRQQDLUH�,�JLYH�SHUPLVVLRQ�IRU�WKH�GDWD�WKDW�,�SURYLGH�WR�
EH�GH�LGHQWLILHG�DQG�GHSRVLWHG�LQ�D�UHSRVLWRU\�VR�LW�FDQ�EH�XVHG�IRU�,1)25(௲V�SXUSRVHV�DV�RXWOLQHG�DERYH�,�
XQGHUVWDQG�WKDW�SHUVRQDO�LQIRUPDWLRQ�FROOHFWHG�DERXW�PH��ZLOO�QRW�EH�VKDUHG�DQG�RQO\�GH�LGHQWLILHG�RU�
DJJUHJDWLYH�LQIRUPDWLRQ�ZLOO�EH�XVHG�IRU�,1)25(�SXUSRVHV�,�XQGHUVWDQG�WKDW�GH�LGHQWLILHG�RU�DJJUHJDWLYH�
LQIRUPDWLRQ�,�SURYLGH�PD\�EH�XVHG�IRU�UHSRUWV�DQG�UHVHDUFK�RXWSXWV��SRVVLEO\�PDGH�DYDLODEOH�WR�ZHEVLWHV�
DQG�VRFLDO�PHGLD�

7HUPV�DQG�SULYDF\�SROLF\b

5HVSRQVHV�\RX�JLYH�LQ�WKH�TXHVWLRQQDLUHV�DQG�LQWHUYLHZV�PD\�EH�UHFRUGHG��<RXU�UHFRUGHG�GDWD�ZLOO�EH�GH�
LGHQWLILHG��KHQFH�LW�ZLOO�QRW�EH�SRVVLEOH�WR�LGHQWLI\�\RXU�LGHQWLW\�DIWHUZDUGV��,QIRUPDWLRQ�ZLOO�EH�SURFHVVHG�
GXULQJ�WKH�SKDVH�RI�UHTXLUHPHQW�DQDO\VLV�DQG�DJJUHJDWLYH�UHVXOWV�PD\�EH�SUHVHQWHG�LQ�SURMHFW�UHSRUWV��,W�ZLOO�
QRW�EH�SRVVLEOH�WR�LGHQWLI\�WKH�LQGLYLGXDO�VRXUFH��WKDW�LV�\RX��RI�WKH�LQIRUPDWLRQ��7KH�DJJUHJDWLYH�UHVXOWV�RI�
WKLV�LQYHVWLJDWLRQ�PD\�EH�SXEOLVKHG�LQ�VFLHQWLILF�MRXUQDOV�RU�FRQIHUHQFHV�DQG�PD\�EH�XVHG�LQ�IXUWKHU�VWXGLHV��
1R�SHUVRQDO�GDWD�ZLOO�EH�KDQGHG�RXW�WR�WKLUG�SDUWLHV�<RX�FDQ�UHTXHVW�\RXU�LQIRUPDWLRQ�EH�GHOHWHG�DW�DQ\�
WLPH��ZLWKRXW�JLYLQJ�D�UHDVRQ��,I�\RX�VKRXOG�GHFLGH�WR�GHQ\�\RXU�FRQVHQW��SOHDVH�FRQWDFW�WKH�3URMHFW�
&RRUGLQDWRU��3URI��$QWRQLRV�'HOLJLDQQDNLV��DGHOL>DW@LPLQ�DWKHQD�LQQRYDWLRQ�JU�bDQG�OHW�KLP�NQRZ�RI�\RXU�
LQWHQWLRQ�RI�OHDYLQJ�WKH�VWXG\�<RXU�SDUWLFLSDWLRQ�LQ�WKLV�VWXG\�LV�RQO\�SRVVLEOH�LI�\RX�IUHHO\�DQG�LQGHSHQGHQWO\�
DJUHH�WR�DXWKRUL]H�WKH�,1)25(�FRQVRUWLXP�WR�XVH�WKH�GDWD�\RX�SURYLGH��:LWK�\RXU�FRQVHQW��WKH�GDWD�ZLOO�EH�
VWRUHG�IRU�WKH�SXUSRVHV�GHVFULEHG�DERYH�XQWLO�WKH�HQG�RI�WKH�SURMHFW���������������ZKHQ�DOO�GDWD�bZLOO�EH�
SHUPDQHQWO\�GHOHWHG��

,�DFFHSW�WKH�WHUPV�DQG�SULYDF\�SROLF\�GHVFULEHG�DERYH�

&RQWDFW
NRQVWDQWLQD�EHUHWD#PDULQHWUDIILF�FRP
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([LVWLQJ�06$�ZRUNIORZV

3OHDVH�GHVFULEH�WKH�GLIIHUHQW�NLQGV�RI�GDWD�VRXUFHV�WKDW�\RX�XVH�LQ�\RXU�GD\�WR�GD\�WDVNV�DQG�WKH�WRROV�WKDW�
\RX�XVH�WR�SURFHVV�WKHP

0DULQH�7UDIILF�$,6�RU�SUH�SURFHVVHG�GDWD

+RZ�PDQ\�WRROV�GR�\RX�W\SLFDOO\�XVH�WR�LQWHJUDWH�RU�KDQGOH�WKH�GLIIHUHQW�VRXUFHV�RI�GDWD�PHQWLRQHG�DERYH

3\WKRQ��06�64/

:KDW�DUH�WKH�HYHQWV�\RX�DUH�WU\LQJ�WR�LGHQWLI\"
ILVKLQJ
SLORWLQJ
VPXJJOLQJ
WUDIILFNLQJ
WUDQVVKLSPHQWV
WXJJLQJ

$Q\�DGGLWLRQDO�HYHQWV�\RX�ZRXOG�OLNH�WR�LGHQWLI\"

'HOD\V�RQ�UHSRUWHG�GHVWLQDWLRQ�

:KDW�GDWD�SURFHVVLQJ�FKDOOHQJHV�GR�\RX�H[SHULHQFH�LQ�\RXU�GD\�WR�GD\�WDVNV��H�J���IXVLRQ�RI�
KHWHURJHQHRXV�VRXUFHV��SHUIRUPDQFH��DQDO\WLFV�"�5DWH�WKHP�VWDUWLQJ�IURP�����ORZHVW�SULRULW\��WR����KLJKHVW�
SULRULW\��
3OHDVH�XVH�HDFK�SULRULW\�QXPEHU�RQO\�RQFH

� � � � �

6WUHDPLQJ�QDWXUH�RI�GDWD

7RR�PXFK�GDWD

'LIIHUHQW�GDWD�IRUPDWV

0DQXDO�ZRUNIORZV

$Q\�DGGLWLRQDO�FKDOOHQJHV"
3OHDVH�FRPSOHWH�FKDOOHQJHV�WKDW�DUH�QRW�PHQWLRQHG�DERYH��RSWLRQDO��

'R�\RX�ZULWH�FRGH�WR�DXWRPDWH�WKH�GDWD�DQDO\VLV�SURFHVV"
<HV
1R

'R�\RX�SURJUDP�VHW�XS�D�QHZ�FXVWRP�GDWD�SURFHVVLQJ�ZRUNIORZV"
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<HV
1R

+RZ�ORQJ�GRHV�LW�WDNH�WR�VHW�XS�VXFK�D�SURFHVV"

'HSHQGV�RQ�WKH�FDVH��XVXDOO\���RU���ZHHNV

&DQ�\RX�RSWLPLVH�\RXU�GDWD�DQDO\VLV�RSHUDWLRQV"

'HSHQGV�RQ�WKH�FDVH

2Q�ZKDW�NLQG�RI�LQIUDVWUXFWXUH�V��GR�\RX�XVXDOO\�UXQ�WKH�DQDO\VLV�
FOXVWHU
KLJK�VSHF�ZRUNVWDWLRQ
+3&
SHUVRQDO�ODSWRS
VHUYHU

,1)25(�VROXWLRQV

:KLFK�,1)25(�GDWD�VRXUFHV�ZRXOG�EH�XVHIXO�IRU�\RX�IRU�WKH�06$�8VH�&DVH�DQG�ZRXOG�EH�XVHIXO�IRU�\RX�
$FRXVWLF�GDWD
$,6�GDWD
6DWHOOLWH�LPDJHU\
7KHUPDO�&DPHUD�GDWD

2WKHU�GDWD�VRXUFHV"

:KLFK�HYHQWV�ZRXOG�\RX�OLNH�WR�H[WUDFW�IURP�WKHVH�GDWD�VRXUFHV"
1RUPDO�YHVVHO�DFWLYLWLHV��ILVKLQJ��WUDQVVKLSPHQWV��WXJJLQJ��SLORWLQJ��HWF��
,OOHJDO�YHVVHO�bDFWLYLWLHV��VPXJJOLQJ��LOOHJDO�ILVKLQJ��HQWHULQJ�SURWHFWHG�SURKLELWHG�DUHDV��HWF��
2WKHU

5DWH�\RXU�VDWLVIDFWLRQ�RQ�WKH�YDULHW\�RI�PDULWLPH�FRPSOH[�HYHQWV�WKDW�,1)25(�LV�DEOH�WR�IRUHFDVW��DFFXUDF\�
DQG�LQWHUSUHWDELOLW\�RI�UHVXOWV�

���
1RW�
DW�DOO

���
9HU\�
OLWWOH

���
1HXWUDO

���
3UHWW\�
PXFK

���
9HU\�
PXFK

+RZ�PXFK�DUH�\RX�VDWLVILHG�E\�WKH�YDULHW\�RI�FRPSOH[�
HYHQWV�WKDW�FDQ�EH�IRUHFDVWHG"

+RZ�PXFK�ZRXOG�\RX�WUXVW�WKH�RXWSXW�RI�WKH�,1)25(�
SODWIRUP�ZLWK�UHVSHFW�WR�DFFXUDF\"
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7R�ZKDW�H[WHQW�GR�\RX�XQGHUVWDQG�WKH�UHVXOWV�
SUHVHQWHG�WR�\RX"

$UH�WKHUH�VSHFLILF�HYHQWV�WKDW�\RX�ZRXOG�OLNH�WR�IRUHFDVW�LQ�UHDO�WLPH��ZKLFK�ZH�FXUUHQWO\�FDQQRW�IRUHFDVW"�,I�
VR��SOHDVH�H[SODLQ�
,I�WKH�DQVZHU�LV��1R���\RX�FDQ�OHDYH�WKLV�ILHOG�EODQN�

5DWH�WKH�IROORZLQJ�REMHFWLYHV�RI�,1)25(��EDVHG�RQ�KRZ�XVHIXO�WKH\�DUH�DW�<285�GDWD�DQDO\VLV�

���
1RW�
XVHIXO

���
/LWWOH�
8VH

���
$YHUDJH�
8VH

���
4XLWH�
XVHIXO

���
9HU\�
XVHIXO

$ELOLW\�WR�GHVLJQ�GDWD�SURFHVVLQJ�ZRUNIORZV�ZLWK�QR�
FRGH�UHTXLUHG

$ELOLW\�WR�FKDQJH�DOJRULWKP�SDUDPHWHUV�JUDSKLFDOO\

$ELOLW\�WR�UHFHLYH�TXLFN�DSSUR[LPDWH�DQVZHUV�LQVWHDG�
RI������DFFXUDWH��EXW�ORQJ�UXQQLQJ�TXHULHV

$ELOLW\�WR�LQWHUDFWLYHO\�H[SORUH�WKH�GDWD�LQ�RUGHU�WR�
GHWHFW�SDWWHUQV�IHDWXUHV�RI�LQWHUHVW

$ELOLW\�WR�DFFXUDWHO\�IRUHFDVW�HYHQWV�RI�LQWHUHVW

RYHU�GLIIHUHQW�GDWD�SURFHVVLQJ�SODWIRUPV��+3&��%LJ�
'DWD�3ODWIRUPV��HWF��

:KDW�LV�WKH�H[SHFWHG�DGGHG�YDOXH�IURP�,1)25(�IRU�\RX�DQG�\RXU�FRUSRUDWLRQ��5DWH�IURP����ORZHVW�SULRULW\��
WR����KLJKHVW�SULRULW\��
<RX�FDQ�DVVLJQ�HDFK�QXPEHU�WR�PXOWLSOH�RSWLRQV�

� � � � �

3HUIRUPDQFH

$ELOLW\�WR�KDQGOH�PXOWLSOH�VRXUFHV

7LPHO\�IRUHFDVW�RI�HYHQWV

,QWHUDFWLYH�DQG�HIILFLHQW�RSWLPL]DEOH�ZRUNIORZV�ZLOO�VDYH�WLPH�DQG�
LPSURYH

$XWRPDWLRQ�RI�SURFHVVHV�ZLOO�UHGXFH�KXPDQ�HUURU

2YHUDOO�HYDOXDWLRQ

+RZ�OLNHO\�ZRXOG�\RXU�RUJDQLVDWLRQ�EH�WR�XVH�WKH�,1)25(�SODWIRUP�RSHUDWLRQDOO\�LQ�
WKH�IXWXUH"

� � � �
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+RZ�XVHIXO�LV�WKH�FRPELQDWLRQ�RI�GDWD�VRXUFHV�XVHG�LQ�,1)25(" � � � �

,�KDYH�UHDG�DQG�XQGHUVWRRG�WKH�LQIRUPDWLRQ�VKHHW��RU�LW�KDV�EHHQ�UHDG�WR�PH��,�KDYH�EHHQ�JLYHQ�WKH�
RSSRUWXQLW\�DQG�HQRXJK�WLPH�WR�DVN�TXHVWLRQV�DERXW�WKH�VWXG\�DQG�P\�TXHVWLRQV�KDYH�EHHQ�IXOO\�DQVZHUHG�,
DJUHH�YROXQWDULO\�WR�EH�D�SDUWLFLSDQW�LQ�WKLV�VWXG\�DQG�XQGHUVWDQG�WKDW�,�FDQ�GHFLGH�WR�ZLWKGUDZ�IURP�WKH�
VWXG\�DW�DQ\�WLPH�,�XQGHUVWDQG�WKDW�WDNLQJ�SDUW�LQ�WKH�VWXG\�PD\�LQYROYH�DXGLR�UHFRUGHG�LQWHUYLHZV�DQG�,�DP�
ZLOOLQJ�WR�GHYRWH�HQRXJK�WLPH�WR�UHVSRQG�WR�WKH�TXHVWLRQQDLUH�,�JLYH�SHUPLVVLRQ�IRU�WKH�GDWD�WKDW�,�SURYLGH�WR�
EH�GH�LGHQWLILHG�DQG�GHSRVLWHG�LQ�D�UHSRVLWRU\�VR�LW�FDQ�EH�XVHG�IRU�,1)25(௲V�SXUSRVHV�DV�RXWOLQHG�DERYH�,�
XQGHUVWDQG�WKDW�SHUVRQDO�LQIRUPDWLRQ�FROOHFWHG�DERXW�PH��ZLOO�QRW�EH�VKDUHG�DQG�RQO\�GH�LGHQWLILHG�RU�
DJJUHJDWLYH�LQIRUPDWLRQ�ZLOO�EH�XVHG�IRU�,1)25(�SXUSRVHV�,�XQGHUVWDQG�WKDW�GH�LGHQWLILHG�RU�DJJUHJDWLYH�
LQIRUPDWLRQ�,�SURYLGH�PD\�EH�XVHG�IRU�UHSRUWV�DQG�UHVHDUFK�RXWSXWV��SRVVLEO\�PDGH�DYDLODEOH�WR�ZHEVLWHV�
DQG�VRFLDO�PHGLD�

7HUPV�DQG�SULYDF\�SROLF\b

5HVSRQVHV�\RX�JLYH�LQ�WKH�TXHVWLRQQDLUHV�DQG�LQWHUYLHZV�PD\�EH�UHFRUGHG��<RXU�UHFRUGHG�GDWD�ZLOO�EH�GH�
LGHQWLILHG��KHQFH�LW�ZLOO�QRW�EH�SRVVLEOH�WR�LGHQWLI\�\RXU�LGHQWLW\�DIWHUZDUGV��,QIRUPDWLRQ�ZLOO�EH�SURFHVVHG�
GXULQJ�WKH�SKDVH�RI�UHTXLUHPHQW�DQDO\VLV�DQG�DJJUHJDWLYH�UHVXOWV�PD\�EH�SUHVHQWHG�LQ�SURMHFW�UHSRUWV��,W�ZLOO�
QRW�EH�SRVVLEOH�WR�LGHQWLI\�WKH�LQGLYLGXDO�VRXUFH��WKDW�LV�\RX��RI�WKH�LQIRUPDWLRQ��7KH�DJJUHJDWLYH�UHVXOWV�RI�
WKLV�LQYHVWLJDWLRQ�PD\�EH�SXEOLVKHG�LQ�VFLHQWLILF�MRXUQDOV�RU�FRQIHUHQFHV�DQG�PD\�EH�XVHG�LQ�IXUWKHU�VWXGLHV��
1R�SHUVRQDO�GDWD�ZLOO�EH�KDQGHG�RXW�WR�WKLUG�SDUWLHV�<RX�FDQ�UHTXHVW�\RXU�LQIRUPDWLRQ�EH�GHOHWHG�DW�DQ\�
WLPH��ZLWKRXW�JLYLQJ�D�UHDVRQ��,I�\RX�VKRXOG�GHFLGH�WR�GHQ\�\RXU�FRQVHQW��SOHDVH�FRQWDFW�WKH�3URMHFW�
&RRUGLQDWRU��3URI��$QWRQLRV�'HOLJLDQQDNLV��DGHOL>DW@LPLQ�DWKHQD�LQQRYDWLRQ�JU�bDQG�OHW�KLP�NQRZ�RI�\RXU�
LQWHQWLRQ�RI�OHDYLQJ�WKH�VWXG\�<RXU�SDUWLFLSDWLRQ�LQ�WKLV�VWXG\�LV�RQO\�SRVVLEOH�LI�\RX�IUHHO\�DQG�LQGHSHQGHQWO\�
DJUHH�WR�DXWKRUL]H�WKH�,1)25(�FRQVRUWLXP�WR�XVH�WKH�GDWD�\RX�SURYLGH��:LWK�\RXU�FRQVHQW��WKH�GDWD�ZLOO�EH�
VWRUHG�IRU�WKH�SXUSRVHV�GHVFULEHG�DERYH�XQWLO�WKH�HQG�RI�WKH�SURMHFW���������������ZKHQ�DOO�GDWD�bZLOO�EH�
SHUPDQHQWO\�GHOHWHG��

,�DFFHSW�WKH�WHUPV�DQG�SULYDF\�SROLF\�GHVFULEHG�DERYH�

&RQWDFW
NRQVWDQWLQD�EHUHWD#PDULQHWUDIILF�FRP
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