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1 Executive Summary 

This deliverable describes the requirements and scenario definitions of the Life Sciences use case. We introduce the 

requirements of the multiscale model framework, termed PhysiBoSSa, and justify our choice of selection of this 

framework. Later, we detail the framework’s components: the agent-based, the environment, the signalling network 

and the cell cycle components. Additionally, we explain how integrating these in a physics-based cell simulator allows 

us to study different aspects crucial for the development and growth of tumours and how, given the biophysical, 

biochemical, and biomechanical factors present, multiscale model can help identify the factors that drive a given 

treatment to be a success or a failure.  

The Life Sciences scenario includes the study of two drug resistance-related biological models with different cell 

signalling networks: the first one is a study of different drug regimes using TNF and the second is a study of drug 

combinations using the AGS gastric cancer cell line. Using these biological models and our PhysiBoSSa, we replicate 

experimental data of growth profiles of cancer cells treated with different drug regimes. The ultimate goal of this use 

case is to provide a “virtual laboratory” for studying cancer growth and evolution by using multiscale models of 

tumour systems. The development of such a framework facilitates the design, test, and optimisation of cancer 

treatments based on combinations of different drugs and dose scheduling strategies. 

These simulations are being scaled up by several orders of magnitude by parallelising the code in a hybrid OpenMP-

MPI implementation, aiming to scale up simulations of cancer cell 3D spheroids up to a billion cells using high-

performance computing. These scaled-up simulations using the Barcelona Supercomputing Center (BSC) 

MareNostrum4 will incorporate forecasting techniques for various events of interest, as well as techniques to reduce 

uninformative simulations. Moreover, we present a model exploration technique that allows us to study the structure 

and hierarchy of the model’s parameters and to evaluate its sensibility to the parameters’ perturbation.  

All these developments will facilitate the design of different set-ups that tally cancer tumour growth conditions with 

increased number of cells, altered microenvironmental physical properties, different cell types, as well as, study the 

interaction between cancer cells and the immune system. 

Lastly, we present the Initial Evaluation Report from expert users, including the results of INFORE prototype on the 

available data streams.  
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2 Introduction 

Critical to the development of new cancer treatments is understanding the mechanisms underlying the emergence of 

cells resistant to different drug treatments, as well as discovering synergistic combinations of drugs that reduce the 

chance of this event. Disentangling the emergence of drug resistance is challenged by the inherent complexity of 

biological systems, which are characterised by a deep interplay among processes that occur at different scales (Kim 

et al., 2018). Indeed, the emergence of drug resistance is determined by complex molecular mechanisms that 

ultimately lead to a reduction of the effectiveness of a particular drug, as well as various types of dynamic processes 

concerning large populations of cells (Brady et al., 2017) Consequently, multicellular systems’ dynamics such as 

tumour growth and evolution can only be understood by studying how the individual cells grow, divide and die, and 

their interactions at the population level (Anderson et al., 2006). The simulation of tumour growth and evolution 

requires modelling multiscale processes, bridging the gap between different levels of description, and connecting 

events that occur at different scales (An, 2010). These simulations can address the modelling of a monolayer of cells, 

such as the ones observed in in-vitro cell growth in Petri dishes; the modelling of a sphere made up of 3000 cells 

surrounded by matrigel, called spheroid; and the modelling of organoids of cancer cells, such as the ones present in 

xenografts, with their associated array of immune cells, blood vessels and a detailed extracellular matrix. In spite of 

great advances in the field, in order to address organoids’ simulation, effective tools that scale-up their simulations 

outputs and include such complex biological and physical set-ups are still much needed. 

Multiscale models (MSM) are needed to model dynamics with very different timespans, as they can integrate cell 

signalling, cell-cell and cell-environment behaviour, which take place at different time scales and use different 

mathematical approaches. For instance, multiscale modelling frameworks combining agent-based and Boolean models 

are useful as they can bridge from genes’ activity to cells’ phenotypes, to physical interactions among cells or cells 

with their environment. Agent-based models represent cells as single agents of a cell population and account for the 

interactions between cells, small diffusing molecules and the environment. These agents can move, grow, divide and 

stick to their neighbouring cells and environment. Agent-based models have been successfully used to explore tumour 

spheroids and tumours boxed in ducts (Ghaffarizadeh et al., 2018), to study defibrillation of a human heart in 

arrhythmia (Bernabeu et al., 2010) and liver regeneration (Hoehme et al., 2010). Boolean models, on the other hand, 

account for signalling pathways, cell cycle and cells’ response to external signals that are integrated and can drive the 

cell to behave in a given manner: proliferate, migrate, divide, etc. Boolean models have been successfully used to 

predict mutants’ effect on cancer phenotypes (Cohen et al., 2015), cell sensitivity to drugs and the synergistic effects 

between pairs of drugs (Flobak et al., 2015). Multiscale models are, thus, a promising genotype-to-phenotype mapping 

framework, which allows studying different kinds of variations and their effect on the cell’s individual and collective 

behaviour. 

Models have been used to study genetic variations by evaluating the effect of all knock-out mutants and over-

expression of genes in cells’ behaviour (Montagud et al., 2017). Likewise, environment variations’ effects on cells’ 

behaviours have also been studied using models with interesting results. MSMs allow for the study of tumour growth 

and evolution, bridging the gap between different levels of description, and connecting events that occur at different 

scales (An, 2010). However, due to the uncertainties regarding the underlying biology, MSMs involve a high number 

of parameters that need tuning (Ozik et al., 2018). Indeed, MSMs would benefit from the thorough exploration of the 

combination of these perturbations. To that end, high-performance computing (HPC) clusters, such as the Barcelona 

Supercomputing Center (BSC) MareNostrum 4 supercomputer, are ideal environments for intensive simulation of 

MSMs that produce extreme-scale data streams as outputs.  

In the INFORE project, the Life Science use case is tasked to provide a “virtual laboratory” for studying cancer 

growth and evolution by using multiscale models of tumour systems (Trisilowati and Mallet, 2012). The goal of this 

use case is to facilitate the design, test, and optimization of cancer treatments based on combinations of different drugs 

and dosage strategies. In this deliverable we describe the multiscale model used in the Life Sciences use case, the set 

of applicable computational techniques, the alternative models of cell signalling and cell cycle and specific HPC 

implementation. We also present the different Key Performance Indicators (KPI) of this use case as well as how we 

have addressed them. Finally, we present an initial evaluation report that includes the results of INFORE prototype 

on the available data streams.  
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3 Requirements of the Life Sciences Use Case 

To study the process of resistance acquisition by cancer cells through simulations, we use a MSM, i.e. a model that 

integrates cellular processes taking place at multiple time and space scales (e.g. molecular level, population level). 

MSM simulations represent a powerful approach to test alternative hypotheses about phenomena observed in cancer, 

enabling the prioritisation of optimal drug treatments (Ji et al., 2017). By considering multiple scales of description 

in a single model, it is possible to find putative causal connections between processes acting at subcellular level (e.g. 

mutations or drug affecting the regulatory networks of a cell), and processes that occur at a population level (e.g. 

competition for resources, tumour heterogeneity). For instance, to study the relationship between tumour 

heterogeneity and treatment response, we require a population level description in which each individual cell exhibits 

certain variability in its molecular machinery (Kim et al., 2018, 201). At a lower scale of description, processes taking 

place inside each individual cell are modelled through specific systems biology approaches, e.g. Boolean Logic to 

simulate signalling networks.  

Our MSM is based on PhysiCell, a powerful lattice-free physics-based agent-based cell simulator for 2D and 3D 

multicellular systems (Ghaffarizadeh et al., 2018) and PhysiBoSS (Letort et al., 2018), a tool that merges PhysiCell 

with the stochastic Boolean model simulator MaBoSS (Stoll et al., 2012, 2017). During the course of this project, we 

have refactored PhysiBoSS to bring it up to grade with the novel developments in MaBoSS and PhysiCell. This new 

software, termed PhysiBoSSa, for add-on, decouples the MaBoSS and the PhysiCell parts ensuring the long-time 

adaptability of these pieces of software. All of these tools are open-source and are released under free open-source 

licenses. The higher scale of description is the population level, which is modelled using the agent-based model part 

of PhysiBoSSa. This flexible framework is used to simulate population dynamics, while also considering spatial and 

physical constraints. In a PhysiBoSSa simulation, each individual agent represents a single cell that can grow, divide, 

or die (from necrosis or apoptosis), according to a set of physical rules and constraints, as well as inputs coming from 

the lower levels of description. Moreover, this agent-based framework is also able to model cell-cell and cell-

environment interactions as well as the environment. This environment is represented in terms of concentration or 

densities of different molecules such as nutrients (e.g. O2, glucose), waste products of the cells (CO2, lactate), drugs 

and signalling molecules. In our MSM, the diffusion of the different molecules is governed by a system of PDEs. 

Moreover, each individual cell is represented by a discrete agent; the physical behaviour of the agents (e.g. movement, 

cell-cell contacts) is ruled by mechanical equations. 

 
Figure 1: Scheme of the desired multiscale modelling framework. Continuous line indicates that the module 

has been incorporated into the framework, dotted line represents ongoing work. 

This MSM allows us to connect different scales of description and to find causal relationships among them. It also 

allows for the introduction of different modules that simulate different parts of the MSM, like the Cell Cycle module 

for the cell growth, the PhysiFBA module for the metabolism, MaBoSS for the intracellular processes and PhysiCell 

for the environment and the agents’ physics (Figure 1). In this sense, our MSM can be divided in four differentiated 

components: environment, agents, cell cycle and signalling. The environment component is the one that simulates all 

the diffusion, creation and uptake of chemical entities that roam in the environment. The agents’ component is the one 
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that takes care of the population level and simulates the cells dynamics, their growth, death, movement and overall 

physical behaviour among cells and among them and their surrounding environment. These first two components are 

simulated by PhysiCell. The signalling module is the one that takes care of the individual cells’ level and simulates 

the behaviour of each cell in response to its environment and its neighbouring conditions. This component is simulated 

by PhysiBoSSa. Finally, the cell cycle module that takes care of how the cells grow and divide, is embedded into 

PhysiCell. An example of a typical simulation result is reported in Appendix B. 

3.1 The agent-based component 

The development of the agent-based model for simulating tumour growth and the responses to different drug regimens 

is implemented on the top of PhysiCell framework and is mostly based on its extension PhysiBoSSa. As we detail in 

further sections, the PhysiCell framework manages the simulation of i) the environment, ii) the cell-agent mechanics, 

including movement and physical interaction and iii) the basic agent behaviour by providing standard models for cell 

growth, division and death (Figure 2).  

 

 
Figure 2: Visual representation of a multiscale simulation of a population of cells. On the left side, a 

population of cells arranged in a 3D spheroid is depicted. Cell colours indicate cells exhibiting alternative 

phenotypes. For instance, the brown core at the centre of the spheroid corresponds to necrotic cells that die 

because of the lack of nutrients. On the right side panel, the different attributes or properties of each 

individual cell agent are shown. 

Nonetheless, most of the behaviours of the cell agents are governed by complex rules that are not part of the basic 

agent-based mechanisms, as is the signalling transduction pathway, the intracellular machinery that integrate and 

process external and internal stimulus and transduce them into cell fate decision, e.g. start replication cycle or commit 

into apoptosis. In order to capture part of the intracellular processes and their dynamics, a model of cell signalling can 

be integrated within each individual cell-agent. This extension adds another layer to the multiscale model allowing 

for a more detailed description of the signal transduction process which, for instance, can be used to simulate the effect 

of drugs in a more realistic way. This motivated the development of PhysiBoSS (Letort et al., 2018), a framework 

which combines PhysiCell with MaBoSS and its refactored version PhysiBoSSa.  

PhysiBoSSa extends the functionalities of PhysiCell by allowing it to model and simulate the cell signalling network 

which processes inputs and dictates the cell fate (e.g. proliferate, commit apoptosis). Importantly, this extension adds 

a fourth time-scale in the model, the Boolean network time to the original three time-scales from PhysiCell: the 
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diffusion, the mechanics and the cell division (Figure 3). At each time-scale, the engine queries the specific component 

and evaluates if it needs to update any of the component. The diffusion ∆𝑡𝑑𝑖𝑓𝑓, typically 0.01 minutes, is the time 

where changes in the environmental entities are considered: their diffusion, reactions and transport. The mechanics 

∆𝑡𝑚𝑒𝑐ℎ, typically 0.1 minutes, is the time where changes in the cell physical behaviour are considered: cell movement, 

cell-cell attachment, cell-environment attachment, etc.. The cell division ∆𝑡𝑐𝑒𝑙𝑙 , typically 6 minutes, is the time where 

PhysiCell queries if there is any change in the cell growth, cell division and the different death modes considered 

(Apoptosis and Necrosis). Finally, the Boolean network ∆𝑡𝐵𝑁, typically 10 minutes, is the time where PhysiCell 

queries if there is any change in the cells’ behaviour as a result of the signalling pathway activation. 

 
Figure 3: Multiscale simulation main loop pseudo-code and the different time scales. 

Thus, the population dynamics allow studying different physical properties’ variations (cell-cell adhesions, cell-matrix 

adhesions) under different microenvironmental conditions (presence of oxygen, signalling molecules or extracellular 

matrix). This agent-based engine has been connected to MaBoSS to simulate the signalling network of each individual 

agent following the structure of PhysiBoSSa. This allows us to have a stochastic Boolean model simulator (MaBoSS) 

that predicts cell fates embedded in a flexible agent-based model (PhysiCell) that simulates multicellular systems. In 

a typical MSM simulation, each single sphere corresponds to a cell agent and the colour code indicates the cellular 

phenotype (Figure 2). For instance, the brown-coloured cells at the centre of the structure correspond to necrotic cells, 

i.e. cells that die as a consequence of the lack of nutrients and oxygen. On the right-hand side of Figure 2, some 

properties of the individual agents are listed. Notice that each individual agent holds its own signalling network, which 

is used to update the phenotype of the cell at each time step.  

The coupling between the different scales is conducted by using output of one model as input of the other. Specifically, 

the availability of nutrients or the presence of drugs around a cell agent are used as inputs of the signalling model of 

that cell. Subsequently, the output of the signalling model is used to update the behaviour of the cell agent. For 

example, during a simulation, a drug pulse is introduced in the environment; when the drug reaches a particular agent, 

it affects the function of its protein target, which corresponds to a node within the cell agent signalling network; then, 

the state of the signalling network is updated to assess the effect of the drug perturbation by running the Boolean 

stochastic simulator of PhysiBoSSa. The new state of the signalling network is used to update the phenotype of the 

cell agent, which for instance might enter into apoptosis due to the drug effect, closing the loop.  
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3.2 The environment component 

The aforementioned agents are not standing in the void, instead they are communicating with a rich surrounding 

environment Figure 4) with chemical entities governed by reaction-diffusion equations (Figure 4b). This environment 

is a dynamic one, where these entities are created, diffuse and can be uptaken dynamically by the agents or can be 

added from fountains or drained from sinks. For this, PhysiCell uses BioFVM, a Finite Volume Method (FVM) based 

simulation software, to simulate the chemical microenvironment with a vector of reaction-diffusion Partial Differential 

Equations (PDEs) with both bulk source/sinks and cell-centred sources and sinks (Ghaffarizadeh et al., 2016). 

 
Figure 4: Domain definition, representation and simulation of the molecular densities that define the 

microenvironment. a) The domain is discretised in voxels and each voxel stores the amount of each molecular 

density in this space point and at a given time step. b) the systems of partial differential equations that govern 

the time evolution of the different densities. c) an example of the visual representation of the profile of a given 

density (oxygen) at the final time step for a domain of size 10003. Bright yellow areas are substrate-producing 

areas and dark blue areas are areas with less substrate concentration. 

In practical terms, this means that our MSM can include diffusible chemicals such as oxygen, nutrients and drugs, as 

well as patches of dense static cells that impede the advancement of otherwise migrating cells. These elements allow 

setting up complex microenvironments that enable modellers to tackle real-life scenarios like the ones found in cancer 

growth and migration. For instance, we can set up a scenario with different substrate-producing areas in the 

environment and dynamically track the substrate diffusion (Figure 4c). 

3.3 The signalling network component 

The signal transduction machinery of a cell is composed of a network of molecular components (e.g. protein 

complexes, small molecules), which allows the cell to decode different signals and adjust its internal state to respond 

to different stimuli (Tyson et al., 2003). The interaction between the different molecular components can result in 

activation or inhibition and be wired in such a way that these pathways can include feedback and/or feedforward loops. 

Thus, a signalling pathway consists of sets of proteins and small compounds used by the cell to process different 

signals and modify its state in response to certain stimuli. 

In Figure 5, a schematic representation of different signalling pathways involved in prostate cancer is depicted. 

Distinct signalling pathways are meant to process different classes of external and internal signals, such as the 

availability of nutrients and the space to proliferate, the level of DNA damage, and others. The transduction of a signal 

induces the cell to respond by changing its internal state or the phenotype of the cell. 
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Figure 5: Schematic representation of a signalling network which includes different signalling pathways 

found in most human tissues. Downstream the signal transduction pathways, different effectors change the 

cell phase or phenotype (e.g. proliferation, apoptosis) to respond to different stimuli. Orange and red rounded 

rectangles represent the cell membrane and nucleus, respectively. Labels indicate protein complexes whereas 

arrows and T-bar lines represent activation and inhibitory interactions, respectively. Taken from 

https://en.wikipedia.org/wiki/File:Signal_transduction_pathways.png 

Living systems tend to accumulate mutations in the DNA during their lifespan. While some mutations may not alter 

the molecular functions of the cell, others can cause the malfunction or dysregulation of particular cellular processes. 

For instance, mutations affecting pathways involved in the cell cycle can lead to undesired cell phenotypes, such as 

uncontrolled cell growth, i.e. cancer (Hanahan and Weinberg, 2011). For this reason, targeting dysfunctional 

signalling pathways is one of the main focus in the development of novel target therapies. Signalling networks are 

complex systems that exhibit non-trivial behaviour. Thus, mathematical and computational models are needed to 

rationalise and understand their functioning and predict novel therapies. 

From a modelling point of view, a signalling network is a dynamical system governed by a set of differential equations. 

The structure of systems is described as a network where the nodes, representing proteins and complexes, are 

connected through directed signed interactions, indicating activation or inhibition (Calzone et al., 2018). Additionally, 

each node can be found in one of two states (active or inactive). The state at a given time point is computed through 

an activation function which integrates the different inputs of the node. The activation function operates as a logical 

gate that integrates the incoming inputs of a node (from a previous time point) and gives the updated node state. It is 

important to clarify the difference between the signalling network model and the approach used to simulate its 

behaviour: the signalling network can change in different cell types, while the same signalling model can be simulated 

with alternative approaches.  

Different mathematical approaches have been developed to simulate and analyse signalling network models. Most 

common approaches are based on ordinary differential equations (Wittmann et al., 2009), Boolean logic (Calzone et 

al., 2010), or stochastic approaches such as MaBoSS (Stoll et al., 2012, 2017). Such simulation frameworks are used 

to study the dynamics of signalling networks and, in the case of cancer research, to predict the effect of single drugs 

and combined therapies. In this project, we simulate and analyse signalling models using the stochastic Boolean 

https://en.wikipedia.org/wiki/File:Signal_transduction_pathways.png
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approach implemented in PhysiBoSSa, as it allows to compute the probabilities associated to the proliferative and 

apoptotic phenotypes. 

The signalling network is subject to the physiological role performed by the cell, thus cells belonging to different 

tissues exhibit differences in their signalling pathways. Differences can also be found between individual cells, and 

even between cells belonging to the same tumour. For this reason, models of signalling networks should be calibrated 

or adjusted to represent a particular cell type (Béal et al., 2019b, 2019a). In this project, we use a curated signalling 

model of the adenocarcinoma cancer cell line AGS (Flobak et al., 2015) (Figure 6). The model depicted in Figure 6 

accounts for most of the signalling pathways known to play a relevant role in this type of cancer (e.g. MAPK, 

PI3K/AKT/mTOR, Wnt/β-catenin and NF-κB). This model was successfully used to predict synergistic effects of 

different pairs of drugs that were validated experimentally (Flobak et al., 2015). 

 
Figure 6: Network model of the AGS cell line signalling. Nodes correspond to proteins or complexes of 

proteins. Red and green arrows correspond to inhibitory and activation interactions, respectively. Red and 

green nodes indicate those nodes associated with anti-survival and pro-survival phenotypes, respectively. 

The transduction of signals like the availability of nutrients, the presence of DNA damage, etc. will induce the cell to 

respond by changing its internal state or the phenotype of the cell like moving, growing, dividing, etc.  

These transductions of signals are described with signalling networks that are complex systems that exhibit non-trivial 

behaviours. These networks are oftentimes studied with mathematical and computational models where the nodes, 

representing proteins can be active or inactive and are connected through signed interactions, indicating activation or 

inhibition (Calzone et al., 2018). The node state at a given time point is computed through an activation function, 

which integrates the different inputs of the node. The model state is computed by aggregating all the node states at a 

given time. In this project, we simulate and analyse signalling models using the stochastic Boolean approach 

implemented in MaBoSS, as it allows us to compute the probabilities associated with the different phenotypes. 

3.4 The cell cycle component 

PhysiBoSSa include the description of 6 different models of cell cycles, these are, listed from less to more detailed: 

the “Live” model, the “Cycling-Quiescent”, the “Ki-67 Basic”, the “Ki-67 Advanced”, the “Flow Cytometry” and the 
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“Flow Cytometry Separated”. Nevertheless, all these models are based on ODEs and work more or less independently 

from the signalling or the metabolic components. 

In this section we present the implementation of an alternative model of the cell cycle inside the simulation architecture 

of PhysiBoSSa. This model differs from the rest of models already present in PhysiBoSSa as it is more detailed, more 

realistic and its different phases have different cellular phenotypes that could be modelled using agents. First of all it 

is worthy to remember that nearly all the tumours have some kind of dysfunctionality related to the cell cycle. Indeed, 

this is the biochemical time regulator and it orchestrates the cellular phases during the growth. In turn, it is tuned on 

or off in respect to the external and internal cues. Thus, being able to correctly regulate the activity of the cell cycle is 

a critical feature for cancer development. 

 
Figure 7: Cell cycle module currently considered in PhysiBoSS. 

Currently, the cell cycle model implemented in PhysiBoSSa is based on a set of transitions among the different cell 

states G1, S, G2 and M (Figure 7). Each of these phases is responsible for a certain task of the growth, like biomass 

production, DNA replication or mitotic division. At the moment, there is no quantitative connection with the growth, 

indeed the cell growth rate is independent of its cellular phase.  

Furthermore, one of the operative definitions of the cell phase is the set of genes that are expressed in that time. This 

means that each phase of the cell cycle can drive the metabolism in different directions that in turn allows the cell to 

grow or not. In order to make the model more realistic together with the implementation of metabolic models relying 

on flux balance analysis (FBA) approximations, we are developing a cell cycle dynamic that can drive the genes to an 

oscillatory behaviour, as it happens in a real cell cycle that in turn drives the metabolism. 

The model here describes the oscillatory behaviour of the gene expressions and its relative transcripts during the cell 

cycle. First, we consider a central core of genes that are responsible for these behaviours and their checkpoints, as 

well as their connection with the rest of the genome. These networks have been taken from experimental and 

computational models from literature (Yang et al., 2018; Gérard and Goldbeter, 2014) and they regulate the oscillation 

of the genome and the checkpoint dynamic of the cell cycle. We implemented a stochastic version of this dynamic 

network (Figure 8). 

We aim to connect this stochastic dynamic with the genes relative to each phase and in turn connect it to the FBA 

module. This connection allows us to turn on and off the metabolism for different phases of the cell cycle building up 

a more realistic model of the growth dynamic. 
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Figure 8: Gene expression levels oscillations driven by the cell cycle are reproduced using stochastic 

simulations coupled to a cell cycle model. 
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4 Scenario Definition 

4.1 Life Sciences use case scenario 

The Life Sciences use case explores different mechanistic explanations to help understand how cancer cells acquire 

resistance to a particular treatment (Holohan et al., 2013). In this context, a mechanistic explanation is defined by a 

set of assumptions and a set of model parameters, which need to be validated by contrasting the simulation outputs 

against experimental results. For instance, there are alternative models to explain the emergence of a resistant cell 

(Shaffer et al., 2017). In one of them, the resistant cells are already present in a population and when the drug is 

provided they are selected. In an alternative model, the stress induced to cells by the introduction of the drug triggers 

cells’ responses by changing the expression of the genes in many ways, and some of these allow cells to avoid the 

drug effect. In addition, the acquisition of resistance to a particular drug can be reversible or irreversible, meaning that 

it can occur at the level of the phenotype or the genotype. These models are being implemented and tested in the 

multiscale framework, to test which one reproduces experimental data.  

In addition to the exploration of alternative resistance acquisition models, we study how the emergence of resistant 

cells can be mitigated by using combinatorial therapies based on pairs of drugs exhibiting a synergistic effect (Flobak 

et al., 2015) as well as different drug scheduling schemes, such as intermittent pulses and drug alternation (Barros de 

Andrade E Sousa et al., 2015), to test which strategies show better results. 

PhysiBoSSa software allows to perform powerful simulations and to explore in more detail complex processes that 

can play a critical role in the emergence of resistant cells. Moreover, by considering the intracellular cell processes it 

is also possible to model phenomena that take place at the molecular level, such as the presence of synergy between 

different drug combinations. Consequently, the possibility to perform an online monitoring of the simulation is of 

great interest in the detection of patterns, which allow anticipating or predicting future events of interest, without the 

need to wait until the end of the simulation. However, due to its complexity, the simulations with this software are 

very computationally demanding. 

We study two drug resistance-related scenarios using alternative models of cell signalling: the first one is a study of 

different drug regimes using TNF and the second is a study of drug combinations using the AGS gastric cancer cell 

line. In Figure 9, a schematic representation of the workflow to run MSM simulation is depicted. The components of 

the multiscale framework are used to run a simulation (Figure 9a-b), generating the simulation outcomes for several 

in silico TNF experiments from (Letort et al., 2018) (Figure 9c): in each of the three experiments a different drug dose 

schedule was evaluated. The authors found that the drug dose provided in pulses at intervals of 300 minutes proved 

to be the best strategy (Letort et al., 2018).  

For the first scenario, we have considered the cell fate model from (Calzone et al., 2010) and included in PhysiBoSS 

(Letort et al., 2018) and a study on the best interval to deliver a drug that promotes cell death as well as survival. For 

the second scenario, we have considered an AGS Boolean model based on (Flobak et al., 2015) (Figure 6). We have 

identified how to include techniques to forecast various events of interest of these scenarios, as well as interactive 

learning techniques to assist the calibration of the parameters of our models.  

We explore two alternative geometries for cell arrangement: one-cell-thick 2D monolayers and 3D spheroids. The 2D 

monolayer is used to simulate cells growing in a plate, which correspond to the setting in which drug experiments 

where performed. The 3D spheroids are more suitable to simulate the growth of an in vivo tumour and are used to 

simulate real tumours and to explore different treatment strategies. 



 

 

 

 

 

 

Project supported by the 
European Commission 

Contract no. 825070 

WP1 T1.1-1.4  

Deliverable D1.3 

Doc.nr.: WP1 D1.3 

Rev.: 2.0 

Date: 29/06/2020 

Class.: Public 

15 of 47 

 

Figure 9: Representation of the MSM framework. MSM combines simulations of cell populations and the 

environment using an agent-based model approach (a), and the internal cells’ state using a stochastic Boolean 

simulator (b). Results of the application of PhysiBoSSa to investigate drug regime treatments are shown (c) 

(Letort et al, 2018). Experimental growth curves of cells treated with different drugs dosages (PI or PD, as 

examples of drugs) or combinations of drugs (PD+PI) in orange are shown (d) (untreated cells are shown in 

blue). 

4.2 Key Performance Indicators 

The design and implementation of the Life Sciences use case will allow us to reach the Key Performance Indicators 

(KPIs) described in the Grant Agreement. Life Sciences use case had three different KPIs that addressed different 

parts of the architecture. 

4.2.1 KPI 1: Increase the scale of the simulations up to a billion cells 

To reach this first KPI, we are using the high-performance computing (HPC) at BSC’s MareNostrum4 as it will allow 

scaling-up the simulations from thousands of cells up to a billion of cells. In this regard, our modelling framework 

already allows to use OpenMP (https://www.openmp.org/) to fully exploit the multicore architecture of each node of 

MareNostrum4.  

We have designed different ways to further optimise the parallelisation process to multiple nodes using MPI. We 

estimate that the optimised parallelisation techniques will scale the volume of the data stream from 100 MB/min to 

100 GB/min by increasing the number of agents and small molecules considered, as well as the time resolution at 

which the simulation outputs results. This MPI implementation allows us to address bigger, more complex simulation 

set-ups with cancer cell spheroids of up to a billion cells.  

More on how we are working to reach this KPI in the following sections.  

https://www.zotero.org/google-docs/?M8Q77r
https://www.openmp.org/
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4.2.2 KPI 2: Forecasting up to five biological events 

To reach this second KPI, we will use different forecasting techniques that help us detect events of biological interest. 

These techniques have been developed by the consortium in the scope of this project and are being currently tested in 

the TNF scenario. 

Specifically, we aim at identifying drug dosage (in terms of concentration and frequency) that reduces the tumour 

growth; uncovering combination strategies that help stabilise the tumour and non-trivial patterns that can be used to 

predict the early emergence of resistant cells. 

More on how we are working to reach this KPI in the following sections.  

4.2.3 KPI 3: Dynamic modification of the simulation  

The forecasting of these events will reduce uninformative simulations and avoid wasting computational resources 

while addressing highly demanding simulations such as those using billions of cell agents.  

This third KPI aims at dynamically modifying the simulation runs to reduce uninformative simulations by 10%, 

avoiding wasting computational resources while addressing highly demanding simulations such as those using billions 

of cell agents. To achieve this, we need to have a definition of what is a desired simulation, let it be because we have 

labelled them as such or because the framework has rules that are based on that labelling, so that it can assign new 

simulations as desired or undesired.  

Examples of undesired simulations are cases that are unfeasible from a biological point of view, cases that are 

uninformative, as their read-outs greatly differ from relevant biological data, cases with no remaining living cells and 

cases of drug effect saturation, where more drug will not further affect the simulation behaviour.  

More on how we are working to reach this KPI in the following sections.  

4.3 Addressing KPI 1: Multiscale Model HPC Implementation 

We are currently working in the deployment of the MSM simulation framework PhysiBoSSa in BSC’s supercomputer, 

the MareNostrum 4. This involves the parallelisation process using different technologies such as OpenMP and MPI 

to scale-up our simulations in terms of numbers of cells considered. We decided to first address the most basic level 

of simulation: the environment part and its dedicated engine, BioFVM. Our current work aims to parallelise the core 

kernels of BioFVM to support distributed parallelism using Message Passing Interface (MPI) enabling one to solve 

much larger problems with greater resolution and limited time. This work has been described in detail in Deliverable 

1.2 and we present here a summary. 

BioFVM (Ghaffarizadeh et al., 2016) is a Finite Volume Method (FVM) based simulation software for solving PDEs 

(Partial Differential Equations) that model complex processes like uptake, release and diffusion etc., of substrates for 

multicellular organisms. BioFVM is capable of handling multiple substrates and can simulate the biological processes 

such as decay, diffusion using both cell and bulk sources. The design and implementation of BioFVM is such that it 

is scalable within a compute node, enjoys a minimum dependency on external libraries, is capable of running a multi-

million cell simulation on desktops, and supports both 2D/3D simulations, among others. The software has been 

implemented in C++ and uses Open Multiprocessing (OpenMP) (OpenMP Architecture Review Board, 2018) to 

support shared memory parallelisation.  

The code takes advantage of extensive vectorisation and the diffusion equation is solved using a fast direct algorithm 

called the Thomas algorithm for solving a tridiagonal system of linear equations. Multiple instances of such linear 

systems are solved simultaneously by multiple threads that also take advantage of extensive vectorisation. Such 

multiple instances of linear systems and solutions are made possible by splitting a higher dimensional PDE into 

multiple related 1-dimensional PDEs. The method that makes this splitting possible is called the locally 1-dimensional 

method or lod for short (Ghaffarizadeh et al., 2018, 2016). Though BioFVM exhibits efficiency, reduced 

dependencies, ease of use, its greatest limitation is that it is limited to a single node only i.e. it is not capable of running 
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on multiple nodes of an HPC cluster to solve a single, coherent problem. Thus, the simulation problem size is limited 

by the memory of a single node. Our current work aims to parallelise the core kernels of BioFVM to support distributed 

parallelism using Message Passing Interface (MPI) (Message Passing Interface Forum, 2015) enabling one to solve 

much larger problems with greater resolution and to reduce the time to solution.  

We are motivated by the fact that BioFVM forms a core component of PhysiCell (Ghaffarizadeh et al., 2018) and is 

used when updating the environment component. Thus, it is imperative to parallelise the core kernels of BioFVM to 

support distributed parallelism before PhysiCell can be parallelised. Nevertheless, BioFVM as a stand-alone software 

is useful enough to warrant parallelisation. 

4.3.1 Design and parallelisation  

The first step in parallelisation is domain decomposition or domain partitioning (Saxena et al., 2016; Saxena, 2018; 

Saxena et al., 2018) where the domain is divided into multiple smaller sub-domains and assigned to a specific MPI 

process. This approach of dividing the space was preferred to the alternative approach of dividing the total work 

instead of dividing the sub-domain as it was found difficult to quantify the total work in such a way (and since this 

approach leans towards a master-slave design pattern that is generally not scalable). 

 
Figure 10: A 3D domain of dimensions 4×4×4 can be visualised as four 2D plates of dimension 4×4 arranged 

one after the other. A pure 1D domain partition of 4 MPI processes in the x-direction divides the voxels 

numbered from 1 to 64 into 4 parts. Rank 0 process contains voxel IDs 4n+1, rank 1 process contains voxel 

IDs 4n+2, rank 2 process contains voxel IDs 4n+3 and rank 3 process contains voxel IDs 4n+4, where n = 

0,1,2,...,15. Data is contiguous in the x-direction and the distance between 2 consecutive elements in the y and 

z direction is 4 and 16, respectively. 

Furthermore, a pure x-decomposition refers to the division of the x-direction of BioFVM among multiple processes. 

It can now be noted (according to our assumptions) that creating a pure x-decomposition requires creating a 1D MPI 

topology that has processes only in the y-direction. Thus, if P is the total number of MPI processes, dims[3] represents 

MPI processes in the x, y and z direction, respectively, we set dims[0]=1, dims[2]=1 and dims[1]=P to obtain a pure 

x-decomposition in BioFVM. The impact of a good domain decomposition on the performance of the diffusion solver 

in BioFVM cannot be emphasised enough and it’s further detailed hereafter. For simplicity, we use a 1D MPI Cartesian 

topology of processes instead of a 3D topology to divide the physical domain into sub-domains although the mapping 
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functions between MPI ranks, voxel indexes and points in 3D space apply to general 3D decompositions in 3D space 

(Figure 10).  

Further, each process in our design maintains the local and global values of the number of voxels, local voxel indexes 

(mesh_index), global mesh index of the local voxels and the centre of each local voxel’s global coordinates. First the 

global dimensions of the domain and the voxel dimensions are used to decide the number of local voxels. This is 

followed by the calculation of the global coordinates of the centres if voxels. Further, since each voxel must maintain 

the local and global mesh index, a local start of the global mesh index is calculated on each process, which then is 

used to assign the global mesh index to each voxel.  

Apart from the domain decomposition, a list of the immediate directional neighbours of each voxel is also maintained. 

Such a scheme must accommodate for the cases when there is no local left/right neighbour or when the process is 

aligned to the physical boundary of the domain. In the serial BioFVM, a list for the Moore neighbourhood is also built 

for each voxel but since we do not find any examples that utilised this neighbourhood, we abstain from parallelising 

this routine. Note that the Moore neighbourhood equates to a 9-point stencil in 2D and a 27-point stencil in 3D (Kamil 

et al., 2010).  

BioFVM uses the Thomas solver (Thomas, 1949) for solving a tridiagonal system of linear equations that result from 

the FVM discretisation of diffusion PDEs. This solver is inherently serial and hence cannot be fully parallelised. 

However, there do exist parallel algorithms capable of solving tridiagonal systems of linear equations but with an 

increase in operation count and significant complexity of implementation (László, 2016). Thus, we perform the 

domain decomposition in only 1 direction. This makes the solver completely parallel in two directions but sequential 

in the third direction. 

Additionally, the pure OpenMP version of BioFVM supports only the serial writing of the result data such as the 

concentration of the substrate after a specified time interval in a .mat file. In our Hybrid implementation, instead of 

gathering data at the root process, we use MPI-IO so that processes can view their portion of the file and write their 

part of the data simultaneously.  

For all our experiments, we use the MareNostrum IV (MN4) supercomputer at the Barcelona Supercomputing Center 

(BSC). There are a total of 3456 nodes where each node has two Intel Xeon Platinum 8160 processors with a base 

frequency of 2.1 GHz. Each of the processors have 24 cores and the cores in each processor share a main memory of 

48 GB. The computer nodes are interconnected using the Intel Omni-Path (OPA). The Operating System that the 

cluster uses is the SUSE Linux Enterprise Server 12 SP2. Further, we use GCC 8.1 and OpenMPI 3.1.1 as our compiler 

and MPI implementation respectively. We chose GCC as the compiler because the user documentation of BioFVM 

takes the GCC as the “gold standard”.  

4.3.2 Discussion 

BioFVM enables the simulation of biological processes such as secretion, uptake, and diffusion for multicellular 

organisms. Internally it sets-up a microenvironment and uses PDEs to represent the biological processes. After 

discretisation using the Finite Volume Method (FVM), these PDEs are numerically solved using a direct solver for 

the tridiagonal system of linear equations. Currently, BioFVM suffers from a serious limitation as it only supports 

shared memory parallelisation using OpenMP and thus the size of the problems that it can solve is limited by the 

memory of a single node. With the aim to remove this limitation, we restructured the base data-structures and functions 

of BioFVM to add support for distributed parallelism using MPI.  

To provide a proof of concept, we present the parallelisation of a chosen example and in the process, successfully 

parallelise the key kernels of BioFVM. For instance, we implement a pure 1D x-direction MPI Cartesian Topology 

and assign sub-domains to individual processes, generate basic agents that represent cells on the root process and map 

the positions to processes that these basic agents belong to, and parallelise the writing of result files among many other 

changes.  
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Figure 11: Execution time for the Thomas algorithm using pure OpenMP and Hybrid implementation. The 

Hybrid solver is completely parallel in the y and z direction but only on-node parallel in the x-direction. 

Despite the fact that the solver is only 2/3 parallel and communication bound, we see a gain of about 4.21% over the 

pure OpenMP implementation with Hyb (n=2) for a (small) domain of size 10003 and with 1000 Basic Agents (Figure 

11). Note that it is very difficult to beat the performance of the pure OpenMP implementation on a small problem size. 

As seen in Figure 12, one of the reasons for this gain is the excellent scaling of the phases: (1) creating a 

microenvironment, (2) generating a Gaussian profile and (3) the agent generation phase. Furthermore, using MPI-IO 

we substantially reduced the time for writing the files. With a domain of size 19203 and 1000 basic agents we see a 

performance gain of 13.24% with Hyb (n=2) and this gain approximately grows to 33% for a domain of size 38403. 

A domain of size 76803 cannot be executed on a single node as the application runs out of memory but was successfully 

executed using 4 and 8 nodes (Table 1). As an alternate test, we increased the number of agents to 2×106 on a domain 

of size 10003 and observed a performance gain of 26.12% over the pure OpenMP version. 

Table 1: Time in seconds of the execution for the OpenMP version and the Hybrid versions of tutorial1 of 

BioFVM with a pure 1D x-decomposition. The total voxels and resolution are ≈ 500 million. The successful 

runs with 8 nodes and a minimum of 4 nodes use 384 and 192 threads respectively. 

 

We see a high performance gain in Basic Agent generation, building the microenvironment, file I/O (Figure 11) but a 

sub-optimal gain in the diffusion solver as the solver remains partially parallelised (Figure 12). Most importantly, we 

expose the structure of BioFVM to evaluate parallelisation schemes and make it possible to simulate larger and more 

complex problems i.e. BioFVM simulations can use multiple nodes and are not in any way limited to the memory of 

a single node.  
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Figure 12: Pure OpenMP execution times with increasing problem size Vs Hybrid MPI times for the same. 

Hyb(n=1) represents the time when a single node with 2 MPI processes and 24 threads is used. The Best 

Hybrid represents the least time for that kernel for any number of experimental nodes considered. The 

kernels considered are: (a) Creating the microenvironment (b) Building the initial Gaussian profile (c) 

Generation of Basic Agents (d) Sum of the initial and final I/O file write. 

BioFVM constitutes the core at the centre of PhysiCell and its parallelisation is a required milestone to address the 

parallelisation of PhysiCell. Next, we plan to work towards optimally parallelising PhysiCell using an object-oriented 

framework. 

Furthermore, since the solver is only parallelised using OpenMP, we aim to make it fully parallel by exploring parallel 

tridiagonal solver algorithms such as recursive doubling etc. As PhysiCell allows the cells to move across subdomains, 

a strategy is needed to asynchronously track the movement of cells across subdomains. This poses an additional 

challenge in terms of choosing an appropriate design pattern and a possibility of correctly using the MPI Remote 

Memory Access (RMA) operations. Future implementations can use 3D MPI Cartesian topologies instead of a 1D 

topology that we used in the current work, if there is a significant performance gain. A plethora of literature advocates 

the three dimensional decomposition for 3D decompositions can reduce the total volume of data that is exchanged but 

there exists literature that refutes these claims (Saxena et al., 2018). 

The MPI-ready BioFVM code is freely available from https://gitlab.bsc.es/gsaxena/physicell_x and the ongoing 

efforts to have an MPI-ready PhysiCell, also termed DistPhy, are available from https://gitlab.bsc.es/gsaxena/distphy. 

  

https://gitlab.bsc.es/gsaxena/physicell_x
https://gitlab.bsc.es/gsaxena/distphy
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4.4 Addressing KPI 2 and 3: model exploration with optimisation algorithms 

Modern simulation-based application studies consist of large numbers of simulations with many possible variations 

in their parameters. Simulations are run with different parameters sets, resulting from an automated model parameter 

optimisation, classification, or, more generally, a model exploration (ME). Constructing software to run such studies 

at HPC scale is often unnecessarily time-consuming, as the resulting software artefacts are typically cluster-specific 

(Ozik et al., 2016). Applying ME to MSMs requires an iterative workflow where simulations are run across a high 

dimensional parameter space and their initial conditions change to explore alternative areas of the parameter space. 

 
Figure 13: Model Exploration workflow adapted from (Ozik et al., 2018). 

In a typical ME workflow, simulations’ outputs from a set of experiments are evaluated against some predetermined 

metric, which informs the next iteration of simulation experiments (Figure 13). This metric is problem-specific and 

can range from a linear fit to a reinforced learning algorithm. In fact, the ME process can be enhanced with the use of 

complex event forecasting techniques, which can be used to improve the parameter space exploration.  

Here, we present preliminary studies on the use of different metrics to find sets of parameters that reproduce a desired 

simulation’s behaviour. This work has been described in detail in Deliverable 1.2 and 6.2. 

4.4.1 Model exploration of simulation parameters 

The first part of the model exploration strategy focuses on performing different simulations with slightly different 

parameters using the EMEWS framework. These different parameter sets are obtained by sweeping their values 

according to parameter-specific ranges. Extreme-scale Model Exploration with Swift/T (EMEWS) uses the general-

purpose parallel scripting language Swift (Armstrong et al., 2014) to generate highly concurrent simulation 

workflows. These workflows enable the integration of external ME algorithms to coordinate the running and 

evaluation of large numbers of simulations. The general-purpose nature of the programming model allows the user to 

supplement the workflows with additional analysis and post-processing (Ozik et al., 2016). EMEWS framework and 

its high-throughput hypothesis testing has already been applied to the complex problem of tumour-immune 

interactions integrating it with PhysiCell and BioFVM (Ozik et al., 2018, 2019).  

We adapted the EMEWS framework to work with PhysiBoSSa and to study TNF-dependent behaviour. This study 

uses a signalling pathway model consisting of a network of 31 nodes that describes the behaviour of cells in response 

to different TNF regimes. In response to TNF presence, the cells can Proliferate, die by Apoptosis or Necrosis or 

remain in a Naive state of survival.  
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This study was already performed in PhysiBoSS (Letort et al., 2018), however we wanted to reproduce it in the 

upgraded version of PhysiBoSSa, where many of the functions, parameters and their implementation have changed, 

notably the internalisation of environmental chemical entities into the agents and how they trigger effects on the 

signalling pathways. Also, we wanted to study the heterogeneity of the parameter space by finding the sets of 

parameters that evolve in the same way; that is, different sets of parameters that have the same global simulation 

output. Thus, we focused on finding a proper set of values for these modified parameters (Table ) that allow for the 

reproduction of the simulations in which proliferative cells are depleted upon the addition of TNF each 150 minutes 

(Figure 14). 

Table 2: Parameter space of the workflow for the TNF-dependent behaviour example. 

Parameter description 
Set of 

parameters 
Min Max Increment Dimensions 

Concentration of TNF NCSR 0 100 5 ng / mL 

Frequency of TNF injections NCSR 0 1440 10 minutes 

Time point at which TNF is removed from the system NCSR 0 1440 10 minutes 

Duration of the TNF injections NCSR 1 200 10 minutes 

Oxygen sensing threshold NCSR 0.1 0.5 0.01 dimensionless 

TNF sensing threshold BSC 0.1 0.5 0.01 dimensionless 

TNF uptake rate BSC 0 2 0.01 ng/mL/voxel/min 

TNF secretion rate BSC 0.01 1 0.01 ng/mL/voxel/min 

Cell cycle rate BSC 0.0001 0.01 0.0001 min-1 

Time of signaling model evaluation BSC 5 20 0.5 minutes 

Duration of initial injection of TNF BSC 1 25 1 minutes 

 

 
Figure 14: Spheroid’s dynamical changes to pulses of TNF injection (0.5 ng/mL during 10 minutes) each 150 

minutes. Green, Proliferative cells; red, Apoptosis; black, Necrosis. Initial spheroid radius is 100 mm. 
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4.4.2 Use of different optimisation metrics to find proper sets of parameters 

The second part of the model exploration strategy involves the use of an optimisation metric that evaluates and ranks 

the performance of the different parameter combinations. As the set of parameters used are specific to the problem at 

hand, this metric needs also to be problem-specific. Several optimisation algorithms can be used for this; in fact, in a 

previous work (Ozik et al., 2019), authors used a genetic algorithm to find optimal parameter sets that produced 

simulations with the lowest final mean tumour cell counts as well as an active learning algorithm to build surrogate 

models for characterising the parameter space structure based on different viability thresholds. 

In our case, we have used a genetic algorithm and a random forest strategy to find a proper set of values for the 

parameters in PhysiBoSSa (Table ) that allow for the reproduction of the results from the simulation with a pulsating 

regime of TNF each 150 minutes. In this section we detail some characteristics of these algorithms that have proved 

useful for our goals, but more in-depth information on the use of these algorithms can be found in Deliverable 1.2 and 

6.2. The genetic algorithm from python’s DEAP library was used with two sets of settings (Table ) and following a 

classic GA strategy using BSC set (Figure 15) and a combined strategy using NCSR set (Figure 18). 

Table 3: Sets of parameters used in the Genetic Algorithm studies. 

 BSC set NCSR set 

Crossover probability 0.5 0.7 

Mutation probability 0.2 0.5 

Individuals’ characteristics 7 parameters 4 parameters 

Population 150 20 

Number of generations 30 20 

 

 
Figure 15: Flowchart of the genetic algorithm used on PhysiBoSSa on BSC set of parameters.  

Additionally, we used a random forest algorithm from python’s scikit-learn library (Pedregosa et al., 2011) to study 

the structure of the parameter space. While genetic algorithms can be very efficient in discovering optimal solutions 
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in large spaces, they are not sufficient for estimating the structure of complex parameter spaces, a task where random 

forests can provide useful insight.  

 

Figure 16: Flowchart of the diverse algorithms used on PhysiBoSS using NCSR set of parameters.  

The training dataset used is a set of simulations classified via 1-NN and known cases as interesting or non-interesting 

and constitutes the initial random forest seed. From here, the algorithm iterates over a set of steps in which it constructs 

a random forest; it creates a fine grid in the parameter space and classifies its points using the new random forest; then 

computes the class uncertainty and keeps the points with the highest uncertainty values, as candidate points; and if the 

number of candidate points is bigger than a threshold (k), it clusters the candidate points into k groups. Finally, the 

algorithm selects one point from each cluster at random, evaluates the selected points by running a PhysiBoSSa 

simulation and using a 1-NN classifier and adds these points to the dataset. 

4.4.3 Preliminary results 

These ongoing efforts allow us to define the structure and hierarchy of the model’s parameters and to evaluate its 

sensibility to the parameters’ perturbation and are necessary to ensure the adaptability of present multiscale modelling 

to other models and use cases. We have found sets of data that capture the desired behaviours of our model as well as 

sets of data that fail at capturing these behaviours. We hereby present some of the preliminary results (Figure 17 and 

Figure 18) using the aforementioned algorithms to find ranges of parameters that cause the model to behave like in 

Figure 14.  
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Figure 17: Some representative simulations performed by the model exploration framework on NCSR 

parameter set. (A and B) Positive examples of parameter sets that tally the behaviour of Figure 14 (C and D) 

Negative examples of parameter sets that do not tally the behaviour of Figure 14. 
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Figure 18: Some representative simulations performed by the model exploration framework on BSC 

parameter set. (A and B) Positive examples of parameter sets that tally the behaviour of Figure 14 (C and D) 

Negative examples of parameter sets that do not tally the behaviour of Figure 14. 

4.5 Set of Applicable Computational Techniques 

● Boolean model solver: To study Boolean asymptotic solutions, we use GINsim software (Naldi et al., 2018). 

● Stochastic Boolean solver: To study the transitions of the model when reaching asymptotic solutions, we 

use MaBoSS (Stoll et al., 2012, 2017). This tool, based on Monte-Carlo kinetic algorithm, performs 

stochastic simulations on logical models. This strategy allows to calculate probabilities of each phenotype 

enabling a semi-quantitative approach to study the model outcomes and their response to different 

perturbations such as drugs. MaBoSS results are analysed using tailored scripts in Python and R. 

● Multiscale model: Our MSM merges the stochastic Boolean model of MaBoSS with the agent-based 

PhysiCell software (Ghaffarizadeh et al., 2018) into a tool named PhysiBoSS (Letort et al., 2018) and 

refactored into PhysiBoSSa. PhysiCell as well as PhysiBoSS and PhysiBoSSa can be used with OpenMP and 

thus are suitable to be deployed in multi-thread computers. We are currently migrating PhysiCell to a hybrid 

OpenMP-MPI implementation to scale-up the Life Sciences use case simulations, allowing us to reach KPI 

2. 

● Visualisation of simulation results: We generally use Paraview software (https://www.paraview.org/) to 

visualise PhysiBoSSa results. In addition, other software is used for general data analyses such as PovRay, 

R or Python. 

● Model exploration: Extreme-scale Model Exploration with Swift/T (EMEWS) was used to generate highly 

concurrent simulation workflows.  

● Optimisation techniques: Genetic algorithms and random forest are being used together with EMEWS to 

select the simulation that tally a given desired output, allowing us to reach KPI 3. 

https://www.paraview.org/
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5 Initial Evaluation Report 

5.1 Expert Users and their Questionnaires 

We contacted three researchers from public European research and high-education centres to be our Life Science’s 

use case expert users. They are experienced researchers that cover different aspects in Systems Biology, modelling, 

omics data processing and pathway-based data analyses. 

All three researchers were contacted and consented to participate in our questionnaire (Appendix C) and their 

anonymised responses can be found in Appendix D. From the interviews and questionnaires, we captured their interest 

in using data-streams, even though they are not prevalent in Life Sciences, and their lack of tools to use them.  

All expert users agreed on the importance of the present project and the impact its outcomes, deliverables and KPIs 

would have on their current workflows. The models and know-how of these experts are a reflection of the state of the 

art on the field of biological modelling and their opinions are crucial as they are the ones in charge of exploring and 

incorporating in their future developments real-time data and forecasting techniques developed in the present project. 

In fact, according to their questionnaires and interviews they were willing to incorporate these tools and data on their 

day-to-day work and were very positive on the impact these would have in their fields.  

They had high interest on being able to have a framework that could facilitate the development of forecasting 

techniques on real-time data. In addition, they agreed on the usefulness of having a graphical user interface to be able 

to program analyses with little coding knowledge and their will to incorporate their own tools to such a software.  
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6 Conclusions and Future Work 

In this deliverable, we describe the Life Sciences use case, its requirements and a detailed description of the scenario, 

with different cell signalling and cell cycle modes. We have presented results on our currently ongoing HPC 

implementation and model exploration using BSC’s MareNostrum4. 

We have detailed the Multiscale model that is being used in the Life Sciences use case, its parameters and how the 

different components are connected and build up our MSM. These components consist of: 

• the environment component that simulates all the diffusion, creation and uptake of chemical entities that 

roam in the environment; 

• the agent-based component that takes care of the population level and simulates the cells dynamics, their 

growth, death, movement and overall physical behaviour among cells and among them and their surrounding 

environment; 

• the signalling network module that takes care of the individual cells’ level and simulates the behavior of each 

cell in response to its environment and its neighbouring conditions; and  

• the cell cycle module that takes care of how the cells grow and divide. 

We have explained why we need these components and their different scale of time to simulate complex cancerous 

behaviour, as well as how these components are connected and what are their relationships and dependencies. 

Then, we have also described the scenario that are considered in this use case, its KPIs and how they are being 

addressed. We consider two different biological models that study drug resistance mechanisms in cancer: TNF 

pulsating regimes and drug combinations in a gastric cell line. These are well-studied models that allow us to take 

advantage of our multiscale modelling to uncover mechanisms in the interface of the cell signalling and environment 

effect that promote drug resistances. 

Three KPIs have been established for this use case. KPI 1 requires the increase in scale of the simulations. We are 

addressing this KPI by migrating PhysiCell core code to use a hybrid OpenMP-MPI strategy in which simulations can 

now be simulated across nodes in MareNostrum4 cluster, as can be seen in Section 4.3 and in detail in D1.2. We have 

started by parallelising environment component and its Thomas solver used to simulate the diffusion of all chemical 

entities by using domain partitioning. We present benchmarks on different environmental domains that show a speed-

up in the simulations and, more importantly, that the parallelization is possible. Currently, we are parallelizing the 

agents’ component using the same domain partition strategy. This will allow to have simulations of a billion of cells 

starting from few seeding cells. 

KPI 2 requires the forecasting of five biological events and KPI3 requires to reduce uninformative simulations by 

10%. We are addressing both of these KPI by using a simulation-based optimisation using a framework of model 

exploration, termed EMEWS. This EMEWS framework allows us to find the structure and hierarchy of the model’s 

parameters and to evaluate its sensibility to the parameters’ perturbations. EMEWs can also reduce many 

uninformative simulations and paves the way to have downstream forecasting techniques (Figure 18). 

Finally, we have included the initial evaluation report, including the results of INFORE prototype on the available 

data streams in the Life Sciences use case.   
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8 Glossary 

● AGS: is the name of a cell line derived from gastric adenocarcinoma used as a laboratory model to study the 

aforementioned disease (https://web.expasy.org/cellosaurus/CVCL_0139). 

● Apoptosis: or programmed cell death that occur in multicellular organisms. 

● Cell cycle: or cell-division cycle, is the series of events that take place in a cell leading to duplication of its 

DNA (DNA replication) and division of cytoplasm and organelles to produce two daughter cells 

(https://en.wikipedia.org/wiki/Cell_cycle). 

● Drug synergy: positive interaction between two or more drugs that causes the total effect of the drugs to be 

greater than the sum of the individual effects of each drug. 

● Necrosis: traumatic cell death caused by acute cellular injury or starvation (lack of nutrients). 

● Resistant cell: cell that become immune to a specific drug or treatment. 

● Signalling pathway: is a set of proteins in a cell that work together to translate external signals and to control 

one or more cell functions, such as cell division or cell death 

(https://en.wikipedia.org/wiki/Cell_signaling#Signaling_pathways). The emergence of cancer cell is closely 

related to the deregulation of malfunctioning of specific signalling pathway.  

https://web.expasy.org/cellosaurus/CVCL_0139
https://en.wikipedia.org/wiki/Cell_cycle
https://en.wikipedia.org/wiki/Cell_signaling#Signaling_pathways
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Appendices 

Appendix A: Experimental Data for Model Calibration 

The use of drugs and mutants to study cell growth is an established strategy to uncover mechanistic associations in 

the molecular biology of cell growth, as drugs and mutants can hamper the functioning of a vital pathway diminishing 

the cells’ viability to grow. If the target of the drug or the function of the gene is known, researchers can study the 

robustness of the different signalling pathways against a given perturbation. In our modelling framework these drugs’ 

hampering effects can be simulated by inhibiting the activity of a given node that correspond to a protein or pathway. 

This same strategy can be followed to study the effects of different mutants on cell growth, such as knock-outs, over-

expressed genes or knock-downs. 

We plan to use growth experiments on a gastric cell line (AGS) to calibrate and test the predictions of the MSM 

simulations in 2D monolayer and 3D spheroids. AGS is a cell line derived from gastric adenocarcinoma and is a model 

system to study this type of cancer. We have gathered experimental datasets for cells growing under different 

treatments conditions, which include single drug experiments at different doses as well as studies of pairs of drugs 

(see Table A.1 in Appendix A for further details regarding drug and dose used). These works have been published by 

collaborators at the Norwegian University of Science and Technology (NTNU) (Flobak et al., 2015). 

Cell growth measurements were done in real-time using the xCELLigence RTCA SP growth assay (Roche Applied 

Science), an experimental system device to monitor cells in real-time that allows a non-invasive measurement of cell 

viability. Experiments were done in four replicates and controls (untreated cells) were included. This system uses 

culture plates with gold electrode arrays at the bottom of each well. The electrodes are used to perform real-time 

measurements of the impedance across the gold arrays. These measurements are reported in the dimensionless unit of 

cell index, which is taken to correspond to the number of cells (for further details see (Flobak et al., 2015)).  

Examples of growth under a single drug, combination of two drugs and their controls are depicted in Figure 9d. Cells 

grow exponentially until nutrients are consumed and cells die of starvation in the control experiment (Figure 9d, blue 

lines), while the population stops growing and, in some cases, decreases upon treatment with drugs (Figure 9d, orange 

lines), i.e., drugs hamper the functioning of a vital pathway and cells grow less. We plan to use part of these 

experiments to calibrate parameters of the MSM model in 2D monolayer and 3D spheroids – to use the same 

experimental conditions to simulate the model and reproduce the experimental results. Once this is done, we will use 

the calibrated model to propose other experiments not included during the parameter calibration (or learning) step and 

predict their outcome.  

Additionally, we have another dataset of unpublished gene expression RNA-seq data for the same AGS cell line under 

five drug treatments from our collaborators at NTNU. We plan to use these gene expression data to, first, constraint 

the Boolean AGS signalling network and, afterwards, to use it to refine the cell cycle model from CRG that uses the 

actual cell cycle state (t) of a cell to infer the gene expression profile at time t+1. 

Finally, we also have access to drug treatment experiments on other cell lines, which include 19 different drugs and 

their combinations on eight different cell lines of different cancer types (see Appendix A). For this dataset, we have 

access to the cell-line-specific IC50 values for the different drugs, a measure of the effectiveness of a substance in 

inhibiting a specific biological or biochemical function. On a later phase of the project, we plan to use the calibrated 

multiscale model to predict these IC50 values. Additional datasets can be retrieved from public repositories of cell-

line-specific drug sensitivities data such as Genomics of Drug Sensitivity in Cancer (GDSC). This database covers 

the effect of over 300 drugs on over 500 cell lines, AGS being among them.  
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We have experimental data for single and combined drug screening in the AGS cell lines. Table A.1. describes the 

names of the different drugs as well their molecular target. For those drugs indicated with (*) we have time course 

experiments, i.e. the total number of cells at each time point (before and after the drug supply). For the other drugs we 

have experimental measurements of the IC50 for different concentrations of a single drug as well as combinations of 

two of drugs. While the time course experiments were only conducted on the AGS cell lines, the IC50 experiments 

were conducted in many different cell lines, listed in Table A.2. 

Table A.1. Relation between drugs used in the experiments and the biological entity (protein/complex) target. 
Abbreviation Drug Name Drug Effect Protein/Complex Target 

5Z *(5Z)-7-oxozeaenol inhibits MAP3K7 

AK * AKTi-1,2 inhibits AKT_f 

BI BIRB0796 inhibits MAPK14 

CT CT99021 inhibits GSK3_f 

PD *PD0325901 inhibits MEK_f 

PI *PI103 inhibits PIK3CA 

PK PKF118-310 inhibits CTNNB1 

JN JNK Inhibitor XVI, JNK-IN-8 inhibits JNK_f 

D1 BI-D1870 inhibits RSK_f 

60 BI605906 (BIX02514) inhibits IKBKB 

SB SB-505124 inhibits TGFBR1, ACVR1 

RU Ruxolitinib (INCB18424) inhibits JAK_f 

D4 D4476 inhibits CK1_f 

F4 10058-F4 inhibits MYC 

SF SF1670 inhibits PTEN 

ST Stattic inhibits STAT3 

G2 GSK2334470 inhibits PDPK1 

G4 GSK-429286 inhibits ROCK1 

P5 P 505-15 (PRT 062607) inhibits SYK 

 

Table A.2. Cell line descriptors in which drug experiments were conducted and for which we have IC50 

values available. 
Cell line name Cell line descriptor Link 

A498 Renal cell carcinoma CVCL_0139 

AGS Gastric adenocarcinoma CVCL_1056 

COLO205 Colon adenocarcinoma CVCL_0218 

DU145 Prostate carcinoma CVCL_0105 

MDA-MB-468 Breast adenocarcinoma CVCL_0419 

SF295 Colon adenocarcinoma CVCL_1690 

SW620 Melanoma CVCL_0547 

UACC62 Melanoma CVCL_1780 

 

For the experiments performed on the AGS cell lines we also have gene expression level measured before (control) 

and after the drug/s supply. Figure A.1 shows a heatmap representing the expression level of those protein coding 

genes that are included in the AGS signalling network model. The clustering on the left-hand side indicates the 

replicates of the experiments are coherent. The information on gene expression can be used to further calibrate the 

MSM and, in particular, it can be used to inform the cell cycle model. 

 

https://web.expasy.org/cellosaurus/CVCL_0139
https://web.expasy.org/cellosaurus/CVCL_1056
https://web.expasy.org/cellosaurus/CVCL_0218
https://web.expasy.org/cellosaurus/CVCL_0105
https://web.expasy.org/cellosaurus/CVCL_0419
https://web.expasy.org/cellosaurus/CVCL_1690
https://web.expasy.org/cellosaurus/CVCL_0547
https://web.expasy.org/cellosaurus/CVCL_1780
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Figure A.1. Expression profile for those genes included in the signalling model corresponding to five different 

drug treatments and the control. Experiments were done in four replicates. Samples were clustered using a 

standard Hierarchical Clustering algorithm to check that they are clustered by their replicates, as indicated 

by the dendrogram on the left. 
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Appendix B: Example of Simulation Results 

For each run, PhysiBoSS builds one file per time point with the results of each of the studied variables. This semicolon-

separated file has a header row with the names of the variables and one row for each agent (cells, in this case). 

Example of output file for cells at time 0: 

Time;ID;x;y;z;radius;volume_total;radius_nuclear;contact_ECM;freezer;polarized_fraction;motility;cell_line;Cell_cell;

phase;Cycle;NFkB 

0;0;-46.758;-10.7294;-85.806;10.0174;4210.69;6.02332;0;0;0.1;0.01;0;2.65594;0;0;-1 

0;1;-46.5751;7.86895;-82.8054;9.81311;3958.3;5.90048;0;0;0.1;0.01;0;3.66865;0;0;-1 

0;2;-31.2033;-37.4872;-84.2829;9.5;3591.36;5.71221;0;0;0.1;0.01;0;2.99975;1;0;-1 

0;3;-30.9612;-19.2273;-82.8856;10.6359;5039.78;6.39521;0;0;0.1;0.01;0;4.65177;0;0;-1 

0;4;-33.8193;-0.642819;-82.4852;9.78174;3920.46;5.88162;0;0;0.1;0.01;0;5.55423;0;0;-1 

… 

0;945;39.239;-19.5593;86.5458;10.4203;4739.46;6.26558;0;0;0.1;0.01;0;4.97028;0;0;-1 

0;946;42.6192;-2.5138;88.2562;11.4447;6279.16;6.88153;0;0;0.1;0.01;0;4.00144;0;0;-1 

0;947;42.7765;18.3806;88.1489;9.64008;3752.58;5.79644;0;0;0.1;0.01;0;2.5922;0;0;-1 

Similarly, time-specific semicolon-separated files are built for the different densities (free-roaming molecules on the 

extracellular space, such as oxygen, signalling molecules, microenvironment density, etc). This are named after the 

density they represent. 

An Example of an output file for microenvironment density at time 0 is given below. Note that there is no header row. 

The first three columns correspond to spatial coordinates and the fourth to the value of the density: 

-417.5;-492.5;-492.5;0.0630239 

-357.5;-492.5;-492.5;0.0630185 

-267.5;-492.5;-492.5;0.0630086 

-252.5;-492.5;-492.5;0.0630072 

-237.5;-492.5;-492.5;0.0630059 

-117.5;-492.5;-492.5;0.0630041 
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Appendix C: Expert User Questionnaires, Life Sciences Use Case: Original 

questions 

1. User background information 

a. Company/organisation 

b. Professional position [and years of experience] 

c. Domain of expertise 

d. Background studies (university degree major, etc.) 

e. What are your main job tasks? 

f. To whom are you responsible for performing these tasks (role, not name)? 

 

2. Existing workflow 

a. Please describe the different kinds of data sources that you use in your day-to-day tasks and the 

tools that you use to process them 

Kind of data 

sources 

Volume of 

data (approx. 

MB, GB) 

Purpose (task 

involved that 

generated the 

data) 

Tools used to 

process the data* 

Data analysis is 

automatic/ 

manual/ semi-

automatic 

Data gathering is 

historical/ real-

time (online) 

If real-time, 

update 

frequency 

 
      

*If custom programs are used to process the data, please mention the programming language. 

b. Which is the aim of the analyses you perform (what kind of insights do you try to find)? 

c. What data processing challenges do you experience in your day-to-day tasks (e.g., fusion of 

heterogeneous sources, performance, analytics, scale of simulations, volume of simulation outputs, 

etc)? 

d. What problems do you run into in your day-to-day work when performing your data analysis? 

i. Why is this a problem? 

ii. How do you currently solve the problem? Is there a standard way of solving this? 

iii. How would you ideally like to solve the problem? 

e. On what kind of infrastructure do you usually run your analyses (e.g. personal laptop, high spec 

workstation, cloud server, cluster, HPC, etc)  

3. Expected benefits from using INFORE 

a. Do you work with real-time data? If not, would you like to work with this kind of data? 

i. Are you tools and workflows able to work with such data? 

ii. Would you be interested in using a data processing workflow that would allow using 

real-time data? 

iii. Would using this data allow you to address different problems than the ones you are 

currently addressing?  

b. Do you use runtime analysis or do you wait until the end of the analysis to study its results? 

i. Would you be interested in using techniques that provide runtime results in your 

analyses?  

ii. Even if the provided output was an accurate approximation of the correct result?  

c. Do you currently use forecasting techniques? Are there specific events that you would like to 

forecast in real-time, which you currently cannot forecast? 

4. Specific aspects of the Life Sciences use case 

a. Have you ever worked with biological models? With multiscale agent-based models? 

b. To what extent do multiscale agent-based simulations of tumoural cell growth relate to your 

projects/work? 
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c. Rate the following components of the INFORE Life Sciences use case according to your interest 

on the foreseen results (1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very 

useful) 

i. multiscale models.  

ii. Boolean models.  

iii. cell cycle dynamics.  

iv. drug synergies inferences.  

v. real-size tumour simulations.  

vi. real-time/online data processing.  

d. Rate the following Key Performance Indicators according to your interest on the foreseen results. 

(1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

i. KPI 1: Increase the scale of the simulations up to a billion cells.  

ii. KPI 2: Forecasting up to five biological events.  

iii. KPI 3: Dynamic modification of the simulation, such as killing simulations that are 

deviating from the targeted behaviour.  

5. After the live demo of the biological scenario: 

a. Would you be able to integrate these new developments to your current workflows? How relevant 

are they for your analyses? 

i. the use of online data stream.  

ii. the multiscale model distributed implementation.  

iii. the model exploration with optimisation.  

iv. the use of a graphical user interface such as RapidMiner that wraps it all up.  

b. Would you be interested in incorporating the tools from your workflow in RapidMiner (if 

dedicated documentation is available)? 

i. If not, what else would be needed? 

c. Rate the usefulness on the variety of characteristics of INFORE methods. (1: Not useful, 2: Of 

some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

i. How much are you satisfied by the variety of complex events that can be forecasted?  

ii. How much would you trust the output of the INFORE platform with respect to accuracy?  

iii. Is usability a key option for those developments?  

iv. Is the use of a graphical user interface such as RapidMiner is a good solution to 

incorporate new users? 

d. Are there specific events that you would like to forecast in real-time, which we currently cannot 

forecast? If so, please explain. 

e. Rate the following objectives of INFORE, based on how useful they may be at YOUR data 

analysis. (1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

i. Ability to design data processing workflows with no code required 

ii. Ability to change algorithm parameters graphically 

iii. Ability to receive quick approximate answers instead of 100% accurate, but long 

running queries 

iv. Ability to interactively explore the data in order to detect patterns/features of interest 

v. Ability to accurately forecast events of interest 

vi. Ability to optimise automatically your data analysis task over different data processing 

platforms (HPC, Big Data Platforms, etc). 

f. What is the expected benefit from INFORE for you and your corporation? Rate from 1 (low 

priority) to 5 (high priority). 

i. Performance 

ii. Ability to handle multiple sources 

iii. Timely forecast of events 

iv. Interactive and efficient optimisable workflows  
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v. Automation of processes will reduce human error 

g. Overall evaluation 

i. How likely would your organisation be to use the INFORE platform operationally in the 

future? 

ii. How useful are the methods used in INFORE? 

iii. How useful are the biological models used in INFORE? 

h. Is there anything else that you would like to add to your answers? 

Appendix D: Expert User Questionnaires, Life Sciences Use Case: Expert 

users’ anonymised answers 

1. User background information 

a. Company/organisation 

Expert user 1: Public university 

Expert user 2: Public research center 

Expert user 3: Research center, private and publicly funded 

b. Professional position [and years of experience] 

Expert user 1: Professor (30 years) 

Expert user 2: Group leader (12 years post PhD, group started 2018) 

Expert user 3: Research engineer (15 years of experience) 

c. Domain of expertise 

Expert user 1: Systems biology/medicine, functional genomics,molecular biology, cancer biology 

Expert user 2: Epigenetics, Logical modelling, immuno-oncology 

Expert user 3: Systems Biology / Mathematical modelling 

d. Background studies (university degree major, etc.) 

Expert user 1: PhD in Biochemistry 

Expert user 2: Degree Physics (2004) PhD Earth Sciences (2008) 

Expert user 3: PhD in Biology, Masters in Mathematics 

e. What are your main job tasks? 

Expert user 1: Research group leader / University  

Expert user 2: We are running projects simulating the interactions between different cells in the tumour 

micro-environment 

Expert user 3: Construction of mathematical models / Analyses of models / Participation to the 

development of appropriate tools / Writing grants / Writing articles 

f. To whom are you responsible for performing these tasks (role, not name)? 

Expert user 1: Department head / The University 

Expert user 2: Research centre director 

Expert user 3: Department head 
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2. Existing workflow 

a. Please describe the different kinds of data sources that you use in your day-to-day tasks and the 

tools that you use to process them 

Kind of data 

sources 

Volume of 

data (approx. 

MB, GB) 

Purpose (task 

involved that 

generated the 

data) 

Tools used to 

process the data* 

Data analysis is 

automatic/ 

manual/ semi-

automatic 

Data gathering is 

historical/ real-

time (online) 

If real-time, 

update 

frequency 

Outputs of 

simulations 
MB 

Model analysis / 

Mutant 

simulations / 

Drug effect 

predictions 

Logical 

modelling 

(GINsim, 

MaBoSS, 

PhysiBoSS) 

Manual historical  

In lab and 

public data 

on cancer 

cell line 

cellular and 

molecular 

(proteomic, 

transcriptomi

c) responses 

to drug 

treatment 

(single and 

combination)

; Knowledge 

bases with 

data on 

molecules, 

interaction, 

and function 

(e.g. Uniprot, 

Intact, 

reactome, 

SIGNOR, 

Gene 

ontology 

annotation; 

etc) 

In the high 

MBs 

Observe cancer 

cell drug 

response for 

testing of 

predictions from 

simulations with 

computational 

models 

Statistical tools 

(SPSS, Matlab, 

R-tools) 

Functional 

overrepresentaio

n (e.g. BINGO, 

DAVID) 

PARADIGM 

(infer protein 

state from 

transcriptomics 

and genomics) 

semi-automatic historical  

Cellular 

responses are 

mainly cell 

viability and 

are measured 

mainly in 

robotic high 

throughput 

systems; 

Molecular 

data are both 

large scale 

(NGS, MS) 

and small 

In the high 

MBs 

Molecular data: 

biomarkers for 

configuring 

computational 

models; testing 

of molecular 

hypotheses 

generated by 

models 

Statistical tools 

(SPSS, Matlab, 

R-tools) 

Functional 

overrepresentaio

n (e.g. BINGO, 

DAVID) 

PARADIGM 

(infer protein 

state from 

transcriptomics 

and genomics) 

semi-automatic historical  
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scale (e.g. 

western blot)  

 

Outputs of 

simulations MB 

Model analysis / 

Mutant 

simulations / 

Cell-cell 

interactions / 

Drug effect 

predictions 

Logical 

modelling 

(GINsim, 

MaBoSS, 

PhysiBoSS) 

Custom scripts, 

BooleanNet 

Manual, semi-

automatic 
historical  

*If custom programs are used to process the data, please mention the programming language. 

b. Which is the aim of the analyses you perform (what kind of insights do you try to find)? 

Expert user 1: Insights that can help us build computational modes predictive of individual cancer patient 

drug response and resistance 

Expert user 2: We try to understand what are the most important processes influencing the state of the 

tumour microenvironment 

Expert user 3: Reproduce experimental data, use model outputs to stratify cancer patients, predict 

outcomes of drug treatments, etc. 

c. What data processing challenges do you experience in your day-to-day tasks (e.g., fusion of 

heterogeneous sources, performance, analytics, scale of simulations, volume of simulation outputs, 

etc)? 

Expert user 1: Integration data from heterogeneous sources; Inference of state of one type of molecular 

entities in the cell (proteins) from other types of molecular entities in the cells (transcripts, genome) 

Expert user 2: Parameter search, expansion of logical model though genetic algorithms, integration with 

data 

Expert user 3: Performance: computation time spent on laptop too long; Parameter fitting is an important 

aspect of our research and the current tools do not allow a comprehensive search of parameter search 

d. What problems do you run into in your day-to-day work when performing your data analysis? 

Expert user 1: Difficult to A) integrate large scale molecular data from heterogeneous sources; B) infer 

protein state from transcriptomics and genomics 

Expert user 2: Increasing complexity of logical model 

Expert user 3: Time for each simulation 

i. Why is this a problem? 

Expert user 1: A) standardization of data format not optimal across data sources; B) science 

lacks sufficient insight into relationship between protein-transcript-gene and problem B) may 

be impossible to solve without additional data 

Expert user 2: It will hit execution time limits when trying to run enough realizations of the 

simulations 

Expert user 3: The model we use are bigger and bigger (with high number of nodes, which 

requires more time for simulations) 

ii. How do you currently solve the problem? Is there a standard way of solving this? 

Expert user 1: A) extra work (partially manual) to align data; B) available computational tool 

(PARADIGM) 
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Expert user 2: It will reduce number of simulations or increase patience 

Expert user 3: We use the clusters made available by the institute. No. I usually wait for the 

simulations to be done on my computer. 

iii. How would you ideally like to solve the problem? 

Expert user 1: Standardized data format and interconversions interlinkages between data and 

knowledge sources; improved computational tools for inferring protein states from 

transcriptomics and genomics, possibly by taking additional data and knowledge into 

consideration. 

Expert user 2: More efficient coding, explore simulations in real time 

Expert user 3: Not sure 

e. On what kind of infrastructure do you usually run your analyses (e.g. personal laptop, high spec 

workstation, cloud server, cluster, HPC, etc)  

Expert user 1: Personal laptops, high specs workstations, work servers. 

Expert user 2: Currently high-spec workstation, clusters for parameter search 

Expert user 3: Laptop / workstation / cluster 

3. Expected benefits from using INFORE 

a. Do you work with real-time data? If not, would you like to work with this kind of data? 

Expert user 1: Yes, I work with growth curves of cancer cells. 

Expert user 2: No. Yes, I would like to work with it. 

Expert user 3: No, I do not work with real-time data. Yes, I would like to work with it.  

iv. Are you tools and workflows able to work with such data? 

Expert user 1: Yes, but the analysis are quite simple. 

Expert user 2: Yes, from imaging data. 

Expert user 3: Not yet 

v. Would you be interested in using a data processing workflow that would allow using 

real-time data? 

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Of course 

vi. Would using this data allow you to address different problems than the ones you are 

currently addressing?  

Expert user 1: Yes. Namely with an improved workflow. 

Expert user 2: Yes. 

Expert user 3: No, but it would address more accurately the problems we are working on. 

b. Do you use runtime analysis or do you wait until the end of the analysis to study its results? 

Expert user 1: We wait. 

Expert user 2: We wait. 

Expert user 3: We wait. 
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i. Would you be interested in using techniques that provide runtime results in your 

analyses?  

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Yes, definitively. 

ii. Even if the provided output was an accurate approximation of the correct result?  

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Yes. 

c. Do you currently use forecasting techniques? Are there specific events that you would like to 

forecast in real-time, which you currently cannot forecast? 

Expert user 1: Not forecasting specifically, but we work with predictions. Yes, we would like to forecast 

different events regarding drug interaction and growth curves. 

Expert user 2: Yes. 

Expert user 3: No, but it would be very useful as it would save time in the parameter search. 

4. Specific aspects of the Life Sciences use case 

a. Have you ever worked with biological models? With multiscale agent-based models? 

Expert user 1: Yes. Not agent-based models, but Boolean models. 

Expert user 2: Yes. Yes. 

Expert user 3: Yes. Yes. 

b. To what extent do multiscale agent-based simulations of tumoural cell growth relate to your 

projects/work? 

Expert user 1: Very relevant for drug response. 

Expert user 2: A lot, 100%. 

Expert user 3: Completely 

c. Rate the following components of the INFORE Life Sciences use case according to your interest 

on the foreseen results (1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very 

useful) 

vii. multiscale models.  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 5 

viii. Boolean models.  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 5 

ix. cell cycle dynamics.  
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Expert user 1: 5 

Expert user 2: 3 

Expert user 3: 5 

x. drug synergies inferences.  

Expert user 1: 5 

Expert user 2: 3 

Expert user 3: 5 

xi. real-size tumour simulations.  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 5 

xii. real-time/online data processing.  

Expert user 1: 5 

Expert user 2: 4 

Expert user 3: 5 

d. Rate the following Key Performance Indicators according to your interest on the foreseen results. 

(1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

iv. KPI 1: Increase the scale of the simulations up to a billion cells.  

Expert user 1: 5 

Expert user 2: 4 

Expert user 3: 5 

v. KPI 2: Forecasting up to five biological events.  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 5 

vi. KPI 3: Dynamic modification of the simulation, such as killing simulations that are 

deviating from the targeted behaviour.  

Expert user 1: 5 

Expert user 2: 3 

Expert user 3: 5 

5. After the live demo of the biological scenario: 

a. Would you be able to integrate these new developments to your current workflows? How relevant 

are they for your analyses? 

Expert user 1: Yes. 

Expert user 2: Yes. Very much relevant. 

Expert user 3: Yes.  A lot. 
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i. the use of online data stream.  

Expert user 1: 5 

Expert user 2: Yes. 

Expert user 3: Yes. 

ii. the multiscale model distributed implementation.  

Expert user 1: 5, with proper specialists 

Expert user 2: Yes. 

Expert user 3: Yes. 

iii. the model exploration with optimisation.  

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Yes. 

iv. the use of a graphical user interface such as RapidMiner that wraps it all up.  

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Yes. 

b. Would you be interested in incorporating the tools from your workflow in RapidMiner (if 

dedicated documentation is available)? 

Expert user 1: Yes. 

Expert user 2: Yes. 

Expert user 3: Yes 

i. If not, what else would be needed? 

c. Rate the usefulness on the variety of characteristics of INFORE methods. (1: Not useful, 2: Of 

some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

i. How much are you satisfied by the variety of complex events that can be forecasted?  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 4 

ii. How much would you trust the output of the INFORE platform with respect to accuracy?  

Expert user 1: 4 

Expert user 2: 5 

Expert user 3: I would first us the platform as a test. For instance, I would like to see examples 

like cell division and different solvers to check for numerical instability. For a later 

explorative phase, then 4. 

iii. Is usability a key option for those developments?  

Expert user 1: 5 

Expert user 2: 5 
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Expert user 3: No, but it may come to be. 

iv. Is the use of a graphical user interface such as RapidMiner is a good solution to 

incorporate new users? 

Expert user 1: 5, from the looks of it. We would need to use it to evaluate it further. 

Expert user 2: 5 

Expert user 3: Yes. 

d. Are there specific events that you would like to forecast in real-time, which we currently cannot 

forecast? If so, please explain. 

Expert user 1: Yes, sure. Response of patient-derived cell culture to combinations of drugs, where time 

is of the essence. In addition, it would be interesting to simulate bigger and complex patients’ tumours 

in real time. 

Expert user 2: I would like to forecast spatiotemporal patterns. 

Expert user 3: I would like to have forecasts on the search for parameters. 

e. Rate the following objectives of INFORE, based on how useful they may be at YOUR data 

analysis. (1: Not useful, 2: Of some use, 3: Average Use, 4: Quite useful, 5: Very useful) 

vii. Ability to design data processing workflows with no code required 

Expert user 1: 5 

Expert user 2: 2 

Expert user 3: 4 

viii. Ability to change algorithm parameters graphically 

Expert user 1: 5 

Expert user 2: 3 

Expert user 3: 4 

ix. Ability to receive quick approximate answers instead of 100% accurate, but long 

running queries 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: We have two different purposes. If it’s to build models, then 2; once the 

model is built, then 4. 

x. Ability to interactively explore the data in order to detect patterns/features of interest 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 4 

xi. Ability to accurately forecast events of interest 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 4 
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xii. Ability to optimise automatically your data analysis task over different data processing 

platforms (HPC, Big Data Platforms, etc). 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 4 

f. What is the expected benefit from INFORE for you and your corporation? Rate from 1 (low 

priority) to 5 (high priority). 

i. Performance 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 5 

ii. Ability to handle multiple sources 

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 2 

iii. Timely forecast of events 

Expert user 1: 5 

Expert user 2: 3 

Expert user 3: 4 

iv. Interactive and efficient optimisable workflows  

Expert user 1: 5 

Expert user 2: 5 

Expert user 3: 4 

v. Automation of processes will reduce human error 

Expert user 1: 5 

Expert user 2: 4 

Expert user 3: 3, but needs to be transparent. 

g. Overall evaluation 

i. How likely would your organisation be to use the INFORE platform operationally in the 

future? 

Expert user 1: 5, with proper personnel and funding 

Expert user 2: Very likely. 

Expert user 3: Very high. 

ii. How useful are the methods used in INFORE? 

Expert user 1: 5 

Expert user 2: Very useful. 
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Expert user 3: Very useful. We routinely use them. 

iii. How useful are the biological models used in INFORE? 

Expert user 1: 5 

Expert user 2: Very useful. 

Expert user 3: Very useful. We routinely use them. 

h. Is there anything else that you would like to add to your answers? 

Expert user 1: No. 

Expert user 2: Addressing spatiotemporal patterns would be of high interest. 

Expert user 3: No 

 

 


